
Group ACTIONS



GROUP ACTIONS
-

Before
"

MODERN ALGEBRA
,

"

groups were

collections of invertible transformations
.

Permutations permit C some fade set )

Invertiblelinear transformations more
vectors in

a vector Space

Galois groups
C next term ) exchange roots of a

polynomial .

-

The general notion underlying these examples is that

of a groupact.org
.



Definition An action of the
group G on the set X is

a map a : a xx → X (g , X ) It g. x

when Ig Cx I
i . ex = X tf x EX

2. &, go.ly
= g , Cgi ) V 81192 tf← X

t.GS#hn3.
The elements of Sa are determined by

the @ in action (permutation ) of X
.



Example : G = GLU
, N1 Convertible matrices )

X -

- IX
'

g -

- lack ) x= ( 41
gx= Cc:Easy,

e .

- cos,

Cfi92) x = g , cgaxl by associativity of

matrix multiplication .

-txampe : G any group ,
X = NEGacgggn) = ygng-2 Conjugation action

.

N -

-
G is especially important



EhAMPC : RUBIK 'S CUBE
-

EACH OF THE SIX FACET CAN BE ROTATED

900
,

1800
,

278
,

on 360° C the identity )

.
 

-

 f
i

The group
of transformations of the

Rubik's cube is generated by 6 qoo

rotations
,

each of order 4
,

-



Definition Let G act on X .
Let Xsyex

Say
x - ay if I get , gX=y

-
Proposition The relation Na is an equivalence

relation .

Proot :

Refine
:

tf X EX ex -

- X

symmetric If gx=y ,
then y-

- G
- 2X

Transitive If gx
-

- y , hy=Z ,
then

lhglxahcgxl =hy=Z .

⇒ XYZ .



The equivalence classes for Na are called

orbits .

The orbit containingXEX is written Ox .

txample G . GUY N ) X = Rl
' Two orbits

2%13 and everything else
.

Example .
.

G = X acting on itself by

conjugation . The orbits are conjugacy classes
-

Definition
.
The action of G on X is transiting

if it has only one orbit

Eixample : Sn acting on I
,

- in ) is transitive



Definition :
Let a act on X

.
The stabilizer

Subgenusof X
,

denoted Gx ,
is theIt

Gx = hgealgx =x3
.

Lemmy i
. This is a subgroup .

Proof  i
.

Exercise .

-

Challenge .
Let G '

- Sn
,

X = Ll , . ,
us

.

what is an = the stabilizer of the element y ?

-

Challenge 2
.

let G- GLYN ,
V -

- R ?
,Tweten

mine the stabiliser subgroup Gr
.



theorem : let a he a finite group acting on

a sleetX .

Then

I 0×1= 161441
-

Poet : We know that I 4441 is the number of

co sets of Gx in a
.

we define a bijection

d- Glay
.

→ Ox
.

To any g
e a we let

Iga , ) = gcxl .

I
.

a is well defined
.

If g Gx = gtx then

F he Gx
, g

'
-

- gh . But lghlx = ghcxl -741
because h E Gx



2
.

L is surjective .
If y E A ,

then

I go - G
, g x -

- y ,
Then y = xcgcxl .

3
,

d is Injective. Suppose

2cg axle

that
⇒ gall =

had .

Men Ch- egllxl= h -4kcal '

- X

so h -2g tax ⇒ gax =h ax .

Thus

14141=1441--10×1 . a



G acting on X
.

Xa '

- dxexlgcxl ' x Fg Eh }

= set of orbits consisting of

a single element
.

-

X =L
, glhl = ghg

-2

conjugation
action

.Xa = the G- Xl ghg -2=4 Hg EG }
ghg -2--4 ⇐gh=hgV- g Eh Xa ? ZG



Conjugation . G- X .

gal ' gchg
- e

.

What is Ge ? C stabilized

What is One ? geg-en-gg.se

feel -1
.

geg-e.eu?ea?/TYEoy



Another action of G on G X =L

Cx a - G
g Chl =

g. h
.

what are the orbits ?

Answer : the action is transitive .

-
-

gcel = g. e -

- g .
⇒ egg kg

So the orbit Oe -

- G
.

Ge -

- stabilize of @
.

I 94!' e

g
-

- Let
141*0--104=14



Corollary l theorbit equation)
. Suppose G

IS a finite group acting on a finite set X
,

Then orbits = fixed points U d x
,

.  - Ox
. )

1×1 = HaltI ka . axe ]
,

where
- = I

XG '
- thx e X I g x - x tf sea ) Is the

Athlonset-offand LX.rs are representatives of distinctthat
are not fixed points . int

,
.  .

,
n .

Exempla.
X -

- G
,

with conjugation
.

Then Xa=ZC4
is the center of a

.



Proof of the orbit equation '
-

nous , b

X = fixed points I orbits that are

not feed points

In each orbit on the right choose an element

Xi .

X : Xa It Ox
,

It Oak.  -

HO
ya

fixed points

IN -

- Halt IQ.lt -
- . that



IN = Hal t I
,

1%1

But10×1=14/16*1= Ea : GilYu
= Halt !

,

Tt '
- axil

a
Conjugation action next time

.



Theorem:  Let G be a finite group.  Then  
|G| = |ZG| + ∑ |𝑮/𝑪𝒉𝒊

𝒏
𝒊	%	𝟏 | 

 
where hi runs through representatives of conjugacy classes not 
in the center and 𝑪𝒉𝒊 is the centralizer. 



Pivot : heXa tf g EG ghs -2=4

⇒ kg EG gh=hg⇒ he Z Cal
,

#

Mgreoreyfor any hEG .

the stabilize

h = I g c- Gl ghg -2 ah )
= Ch

-

- Cg eat gang ,thefeg.la/izen--
The orbit equation in this case 4 called

the class equation
IGI -

- HGH t tach?



I u -

- A Call t.I-a.ch , ]
-

Exude .
.

In G -

- Sn
,

n s 2
,

we know 7 Gal 'hes

and the conjugacy classes are in bijection with
The partitions off n C cycle lengths )

,

Judson says this Is ( almost ) an up complete
problem .

-



theorem : Let a be a p
- group where prepare .

Then I Hall > p .

.

Picot : We hare

14=17611 t ? II.Cad
.

Each Chi is a Subgroup of G
, hence

is a p - group . And14=-0Cpl , Karl C 14

⇒ pl Ea : Capt , p 114
.

Thus pl I HGH
.



Corollary : let IGI =p
' for some p .

Then a is abelian
.

Proof : We know 121417 p .

Let

h EG
,

htt 7 CG)
.

Then the group It

generated by hand 2- Cal is of order > p
but divides p

'

⇒ H' - G
.

But h

commutes with 761 , so It is an abelian

group ⇒ his abelian
.



Rough statement of the Sylow theorems
Some applications

Proofs of the Sylow Theorems

A theorem of Cauchy

Theorem
Let G be a finite group of order n and let p be a prime dividing n.
Then G has an element of order p.

Proof.
We use the Class Equation, where the xi are representatives of
conjugacy classes not in the center:

|G| = |Z(G)|+
∑

i

[G : Cxi ]

Assume the theorem is true for groups of order less than n. If p divides
the order of one of the Cxi , then by induction Cxi has an element g of
order p, because |Cxi | < |G| = n. But g ∈ Cxi ⊆ G, so we are done.

GU4041 Sylow’s theorems



Rough statement of the Sylow theorems
Some applications

Proofs of the Sylow Theorems

Proof of Cauchy’s theorem, continued

Proof.
So we assume p divides no Cxi . Then p|[G : Cxi ] = |G|/|Cxi | for all i.
Now p divides

|G| −
∑

i

[G : Cxi ] = |Z(G)|

because it divides each term on the left-hand side. Thus p divides
|Z(G)|. But then |Z(G)| has an element of order p, by the
classification of finite abelian groups.

GU4041 Sylow’s theorems
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Proof.
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GU4041 Sylow’s theorems



Rough statement of the Sylow theorems
Some applications

Proofs of the Sylow Theorems

Proof of Cauchy’s theorem, continued

Proof.
So we assume p divides no Cxi . Then p|[G : Cxi ] = |G|/|Cxi | for all i.
Now p divides

|G| −
∑

i

[G : Cxi ] = |Z(G)|

because it divides each term on the left-hand side. Thus p divides
|Z(G)|. But then |Z(G)| has an element of order p, by the
classification of finite abelian groups.

GU4041 Sylow’s theorems



The group
of transformations of

Rubik's cube has order

43,252,003,274,489,858,000
= 227345 ?72.11#It is aEEEzTPhobics⑦5×2

,

" )xGAgxAddK )
.

'
.

 

:

-



AND IT ACTS BY PERMUTING Two

SUBSETS OF THE 26 BLOCKS :

. THE 8 CORNERS ) HENCE Aq
.

. THE 12 EDGES and An

THE 6 CENTERS OF EACH FACE

DON 'T MOVE
-

-

CAN 'T PERMUTE two¥¥f€CONNORS LEAVIN THE

others ALONE
.


