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HONOR CODE AFFIRMATION.

I affirm that I will not plagiarize, use unauthorized materials, or give or
receive illegitimate help on assignments, papers, or examinations. I will also
uphold equity and honesty in the evaluation of my work and the work of
others. I do so to sustain a community built around this Code of Honor.

Please sign and scan and submit this signed page:

Your name:

Your UNI:

This is an open book test. The exam will be available at 10:00 AM Eastern
Daylight Time on May 13.

The exam is due at 10 PM (New York time) May 15 on Courseworks.
It is strongly recommended that you submit this signed page as soon as
you receive the exam; this will let you know well in advance whether or
not the system is working properly. Please contact CUIT immediately, at
askcuit@columbia.edu, or call 212-854-1919, if you encounter any obstacle.

The professor will be available intermittently on Zoom to answer questions;
please write to mh2836@columbia.edu to request an appointment
Questions by email will be impossible to manage; please do not send any.
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Each question is worth 20 points.

1. True or False? Provide an explanation in either case. The explanation
can be brief but it is not enough to say that the statement was explained in
the course.

(a) Let p be a prime. There are exactly three non-isomorphic abelian
groups of order p3.

(b) Let p 6= q be distinct primes. There are exactly two non-isomorphic
abelian groups of order pq.

(c) Let p 6= q be distinct primes. There is exactly one simple group of
order pq.

(d) A group of order 1000 has a unique 5-Sylow subgroup.

2. (a) List the conjugacy classes of the symmetric group S6. Choose an
element s in each conjugacy class and determine its centralizer in S6. Use
this information to determine the number of elements in each conjugacy
class, and verify the class equation.

(b) Which of the conjugacy classes in (a) belong to the alternating group
A6?

3. (a) Prove that the absolute value map z 7→ |z| is a homomorphism
from the multiplicative group C× of complex numbers to the multiplicative
group R× of real numbers. What is its image and what is its kernel?

(b) Prove that any finite subgroup of C× is contained in the circle con-
sisting of elements of absolute value 1.

(c) Prove that any finite subgroup of C× is cyclic.

4. (a) Let G = Q8 be the quaternion group. Write down the derived
subgroup D(G) and its derived subgroup D2(G) = D(D(G)).

(b) Same as (a), with G = S4.

5. Let G be any group and S ⊆ G any conjugacy class. Let N = 〈S〉 ⊆ G
be the subgroup generated by S. Prove that N is a normal subgroup.

6. Construct non-abelian groups of order 21 and 55.

7. Show that there are no simple groups of order 56.

8. Let p be a prime number.

(a) Prove that any group of order p2 is abelian.

(b) Give an example of a group of order p3 that is not abelian (for every
p).

9. Let G be a finite group with center Z. Suppose [G : Z] = n. Prove
that any conjugacy class of G has at most n elements. Can you be more
precise about the size of conjugacy classes?
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10. Let K4 be the Klein group. How many elements does Aut(K4) con-
tain?


