Problem 1

1. True. Using classification theorem for finite abelian groups, there are precisely three isomorphism classes for an abelian group of order p^{3} : $\mathbb{Z}_{p^{3}}, \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}, \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
2. False. From classification of finite abelian groups there is only one of them which is $\mathbb{Z}_{p q} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}$.
3. False. WLOG say $q<p$. By Sylow's theorem it has a p-Sylow subgroup of index q. Therefore because $n_{p} \mid q$ and $n_{p} \equiv 1 \bmod p$ we have $n_{p}=1$, so the p-Sylow subgroup is normal. Therefore any group of order $p q$ cannot be simple.
4. True. The 5 -Sylow subgroup has order 125 and index 8 . Now $n_{5} \mid 8$ and $\equiv 1 \bmod 5$, so it has to be 1 .

Problem 2

(a)

Conjugacy classes in S_{6} corresponds to partitions of $\{1,2,3,4,5,6\}$, or equivalently by different types of disjoint cycles. Elements from each conjugacy class and their centralizer are given by

1. $e: S_{6}$ of size 6 ! and index 1 .
2. (12): $\{$ everything that does not contain $(12)\} \times\left\langle\left(\begin{array}{ll}1 & 2)\end{array}\right.\right.$ of size 48 and index 15 .
3. (12 3): $\left\{\right.$ everything that does not contain $\left.\left(\begin{array}{ll}1 & 2\end{array}\right)\right\} \times\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle$ of size 18 and index 40.
4. (12) (3 4): $\left\langle\binom{ 5}{6},(13)(24),(12),\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle$ of size 16 and index 45 .
5. (1 234 4): $\left\langle\left(\begin{array}{ll}5 & 6\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array} 34\right)\right\rangle$ of size 8 and index 90 .
6. (1 23$)(45):\left\langle\left(\begin{array}{ll}1 & 2 \\ 3\end{array}\right),\binom{4}{5}\right\rangle$ of size 6 and index 120 .
7. $(1234)(56):\langle(1234),(56)\rangle$ of size 8 and index 90 .
8. (12 345): $\langle(12345)\rangle$ of size 5 and index 144 .
9. $(123456):\langle(123456)\rangle$ of size 6 and index 120 .
10. (12 3) (456): $\left\langle\left(\begin{array}{l}1 \\ 1\end{array} 3\right),\left(\begin{array}{ll}4 & 5\end{array}\right),(14)(25)(36)\right\rangle$ of size 18 and index 40.
11. (1 2) (3 4) (5 6): $\langle(13)(24),(15)(26),(35)(46),(135)(246)\rangle$ of size 48 and index 15.
$Z\left(S_{6}\right)=\{e\}$ has size one. Combined we have
$1+15+40+45+90+120+90+144+120+40+15=720=6!$.

(b)

$\{e\},\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(56),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(456)$ are conjugacy classes in A_{6}. (1 2345) is not because (12345) and (13524) belong to two different conjugacy classes in A_{6}.

Problem 3

(a)

Indeed, from high school algebra knowledge we know $|z w|=|z||w|$ so this is a homomorphism. The image is $\mathbb{R}^{>0}$, the set of positive real numbers and the kernel is $U(1)$ or the unit circle or $\left\{z \in \mathbb{C}^{\times}| | z \mid=1\right\}$.
(b)

Take any $G \subset \mathbb{C}^{\times}$finite and $g \in G$. Then g has finite order, say $g^{n}=1$. Then $\left|g^{n}\right|=|g|^{n}=1$ and $|g| \in \mathbb{R}^{>0}$, so $|g|=1$.

(c)

Since $G \subset \mathbb{C}^{\times}$is finite and from (b) $G \subset U(1)$. Say $G=\left\{g_{1}, \ldots, g_{m}\right\}$. Now every element $g_{i} \in G$ has finite order, say n_{i}, and $g_{i}=e^{i c}$ for some $c \in \mathbb{R}$. Since $g_{i}^{n_{i}}=1$ we deduce that $c=p \frac{2 \pi}{n_{i}}$ for some integer p, and $g_{i} \in\left\langle e^{\frac{2 i \pi}{n_{i}}}\right\rangle$. Therefore $G \subseteq \bigcup_{i=1}^{m}\left\langle e^{\frac{2 i \pi}{n_{i}}}\right\rangle=\left\langle e^{\frac{2 i \pi}{n}}\right\rangle$ where $n=\underset{i}{\operatorname{lcm}} n_{i}$. So we deduce that G is a subgroup of a cyclic group, so it is cyclic.

Problem 4 (a) $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ under multiplication given by $i^{2}=j^{2}=k^{2}=i j k=-1$.
Note that for $g, h \neq \pm 1, \quad g h g^{-1} h^{-1}=g h(-g)(-h)=(g h)^{2}=-1$.
If $g= \pm 1$, then for any $h \in Q_{8}, g h g^{-1} h^{-1}=h h^{-1}=1$.
So, $D\left(Q_{8}\right)$ is the subgroup of Q_{8} generated by ± 1.
$D\left(Q_{8}\right)=\{ \pm 1\}=$ cyclic group of order 2 .
Since $D\left(Q_{8}\right)$ is abelian, $D^{2}\left(Q_{8}\right)=\{1\}$ trivial.
(b) $D\left(S_{4}\right)$ contains all elements of the type $g h g^{-1} h^{-1}$ where $g, h \in S_{4}$. So, $D\left(S_{4}\right)$ contains $\underset{\uparrow}{(l}(h) \cdot h^{-1}$ for all $h \in S_{4}$. conjugacy class of h
We know that the conjugacy class of a permutation contains all permutations of its cycle type. Also, the inverse of a permutation has the same cycle type.
This means that $D\left(S_{4}\right)$ is generated by elements $\sigma_{1} \sigma_{2}$ where σ_{1} and σ_{2} have the same cycle type. Such $\sigma_{1} \sigma_{2}$ is always even (sign of $\sigma_{1}=$ sign of σ_{2}), so $D\left(S_{4}\right) \subseteq A_{4}$. On the other hand, every 3-cycle $(a b c)=(a b)(b c)$ is in same cycle shape
$D\left(S_{4}\right)$. Since A_{4} is generated by 3 -cycles, we get $A_{4} \subseteq D\left(S_{4}\right)$.
So, $D\left(S_{4}\right)=A_{4}$.

Now we want $D\left(A_{4}\right)$. For distinct a, b, c, d, the 3-cycle $(a b c)$ and product of disjoint transpositions $(a b)(c d)$ are in A_{4}.

$$
\begin{aligned}
& (a b c) \cdot(a b)(c d) \cdot((a b c))^{-1}((a b)(c d))^{-1} \\
= & (a c)(c d)(a c b)(a b)(c d)=(a c)(c d)(c b)(c d) \\
= & (a c)(b d) .
\end{aligned}
$$

So, $D\left(A_{4}\right)$ contains $(12)(34),(13)(24)$ and $(14)(23)$. Note that each of these has order 2 and $(12)(34)(13)(24)=(14)(23)$.

Thus, $\{(1),(12)(34),(13)(24),(14)(23)\}$ is a subgroup of $D\left(A_{4}\right)$ and A_{4} isomorphic to K_{4}. In fact, it is a normal subgroup since it contains the entire conjugacy class of $(12)(34)$. $\left|A_{4}\right|=\frac{4!}{2}=12$. So, A_{4} / K_{4} has order 3 and is therefore abelian (cyclic group of order 3). Then K_{4} must contain $D\left(A_{4}\right)$. But $K_{4} \subseteq D\left(A_{4}\right)$. Thus, $D^{2}\left(S_{4}\right)=D\left(A_{4}\right)=K_{4}$.

Problem 5 Let $g \in G, n \in N$. Since N is generated by $s, n=s_{1} s_{2} \ldots s_{r}$ for some $s_{i} \in S$. Then

$$
\begin{aligned}
g n g^{-1} & =g s_{1} s_{2} \ldots s_{r} g^{-1} \\
& =\left(g s_{1} g^{-1}\right)\left(g s_{2} g^{-1}\right) \ldots\left(g s_{r} g^{-1}\right) .
\end{aligned}
$$

Since S is a conjugacy class, every $g s_{i} g^{-1} \in S$. So, $g n g^{-1}$ above is generated by elements of S and lies in N.
For any $g \in G, g N g^{-1} \subseteq N \Rightarrow N$ is a normal subgroup.

Problem 6 (a) Non-abelian group of order 21:
Note that since 7 is a prime, $\operatorname{Aut}\left(\mathbb{Z}_{7}\right)=\mathbb{Z}_{7}^{x}=$ cyclic group of \mathbb{Z}_{7}^{x} contains a cyclic group of order 3 as a subgroup.

$$
\begin{aligned}
C_{3}=\left\{1, a, a^{2}\right\} & \longleftrightarrow \mathbb{Z}_{7}^{x}=\text { Ant }\left(\mathbb{Z}_{7}\right) \\
a & \longmapsto[2]
\end{aligned}
$$

So, there is a semidirect product $\mathbb{Z}_{7} \times C_{3}$ of order 21 .
This is not abelian:

$$
\begin{aligned}
& ([1], a)\left([1], a^{2}\right)=\left([1]+[2][1], a^{3}\right)=([3], 1) \\
\neq & \left([1], a^{2}\right)([1], a)=\left([1]+[4][1], a^{3}\right)=([5], 1)
\end{aligned}
$$

(b) Non-abelian group of order 55:

We have Ant $\left(\mathbb{Z}_{11}\right)=\mathbb{Z}_{11}{ }^{\mathbf{x}}=$ Cyclic group of order 10. There is a homomorphism

$$
\begin{aligned}
C_{5}=\left\{1, a, a^{2}, a^{3}, a^{4}\right\} & \longmapsto \mathbb{Z}_{11}^{x}=\text { Ant }\left(\mathbb{Z}_{11}\right) \\
a & \longmapsto[4]
\end{aligned}
$$

which leads to a semi-direct product $\mathbb{Z}_{11} \times C_{5}$ of order 55. This is not abelian:

$$
\begin{aligned}
& ([1], a)\left([1], a^{2}\right)=\left([1]+[4][1], a^{3}\right)=\left([5], a^{3}\right) \\
\neq \quad & \left([1], a^{2}\right)([1], a)=\left([1]+[16][1], a^{3}\right)=\left([6], a^{3}\right)
\end{aligned}
$$

Problem 7 Let G be a group of order $56=8 \times 7=2^{3} \times 7$. Then G contains a Sylow-7 subgroup of order 7 . The number of such subgroups divides 56 and is congruent to 1 modulo 7. The only divisors of 56 which are $1 \bmod 7$ are 1 and 8 . If there is only one Sylow- 7 subgroup, then it must be normal and G cannot be simple.
Suppose that G has 8 distinct Sylow 7-subgroups. Each of these subgroups is isomorphic to \mathbb{Z}_{7}. So, each has 6 elements of order 7 . Moreover, any two of these subgroups intersect trivially. Thus, G has at least $8 \times 6=48$ elements of order 7. Then the remaining 8 elements of G must form the unique Sylow-2 subgroup of G. (We know that G has at least one Sylow- 2 subgroup of order 8 and such a subgroup cannot contain an element of order 7. Now we don't have enough elements to form more than one Sylow-2 subgroup.) Then the Sylow- 2 subgroup must be normal and G cannot be simple.

Problem 8

(a). Let G be a group of order p^{2}. By the class equation, every p-group has nontrivial center, so the center $Z(G)$ of G is nontrivial. Its order can be either p^{2} or p. If its order is p^{2}, then $G=Z(G)$, and therefore G is abelian. If its order is p, then the quotient $G / Z(G)$ has order p, so $G / Z(G)$ is cyclic. This implies that G is abelian, so $G=Z(G)$, which is impossible since we assumed that $|Z(G)|$ has order p. Thus, G is abelian.
(b). Consider the Heisenburg group modulo p, consisting of matrices of the form

$$
\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)
$$

where $x, y, z \in \mathbb{Z}_{p}$. It is easy to check that this group satisfies the group axioms, since it is closed under multiplication, contains the identity matrix, and that

$$
\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & -x & x z-y \\
0 & 1 & -z \\
0 & 0 & 1
\end{array}\right)
$$

which belongs to the Heisenberg group modulo p. Moreover, this group clearly has order p^{3}, and it is nonabelian because

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

whereas

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Problem 9

We prove a stronger statement: the size of any conjugacy class of G must divide n. For any $g \in G$, let $C l(g)$ be its conjugacy class. Recall that $|C l(g)|=\left[G: C_{G}(g)\right]$, where $C_{G}(g)$ is the centralizer of g. Because Z is a subgroup of $C_{G}(g)$, we have

$$
n=[G: Z]=\left[G: C_{G}(g)\right]\left[C_{G}(g): Z\right] .
$$

In particular, we get that $\left[G: C_{G}(g)\right]$ divides n. Hence, $|C l(g)|$ divides n.

Problem 10

The Klein group K_{4} is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We can think of this as a vector space over \mathbb{Z}_{2}, and any autmorphism on $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is an invertible linear map, represented by the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

where $a, b, c, d \in \mathbb{Z}_{2}$. There are exactly 6 such matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

Therefore, $\operatorname{Aut}\left(K_{4}\right)$ contains 6 elements. Alternatively, we can think of K_{4} as

$$
K=\{\mathrm{id},(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\} .
$$

Any automorphism of K_{4} must fix the identity and permute the rest of the three elements, so $\operatorname{Aut}\left(K_{4}\right) \cong S_{3}$, which contains 6 elements.

