Problem 1

- 1. True. Using classification theorem for finite abelian groups, there are precisely three isomorphism classes for an abelian group of order p^3 : $\mathbb{Z}_{p^3}, \mathbb{Z}_p \times \mathbb{Z}_{p^2}, \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$.
- 2. False. From classification of finite abelian groups there is only one of them which is $\mathbb{Z}_{pq} \cong \mathbb{Z}_p \times \mathbb{Z}_q$.
- 3. False. WLOG say q < p. By Sylow's theorem it has a *p*-Sylow subgroup of index *q*. Therefore because $n_p|q$ and $n_p \equiv 1 \mod p$ we have $n_p = 1$, so the *p*-Sylow subgroup is normal. Therefore any group of order pq cannot be simple.
- 4. True. The 5-Sylow subgroup has order 125 and index 8. Now $n_5|8$ and $\equiv 1 \mod 5$, so it has to be 1.

Problem 2

(a)

Conjugacy classes in S_6 corresponds to partitions of $\{1, 2, 3, 4, 5, 6\}$, or equivalently by different types of disjoint cycles. Elements from each conjugacy class and their centralizer are given by

- 1. $e: S_6$ of size 6! and index 1.
- 2. (1 2): {everything that does not contain (1 2)}× $\langle (1 2) \rangle$ of size 48 and index 15.
- 3. (1 2 3): {everything that does not contain (1 2 3)}× $\langle (1 2 3) \rangle$ of size 18 and index 40.
- 4. $(1\ 2)(3\ 4)$: $\langle (5\ 6), (1\ 3)(2\ 4), (1\ 2), (3\ 4) \rangle$ of size 16 and index 45.
- 5. $(1\ 2\ 3\ 4)$: $((5\ 6), (1\ 2\ 3\ 4))$ of size 8 and index 90.
- 6. $(1\ 2\ 3)(4\ 5)$: $\langle (1\ 2\ 3), (4\ 5) \rangle$ of size 6 and index 120.
- 7. $(1\ 2\ 3\ 4)(5\ 6)$: $\langle (1\ 2\ 3\ 4), (5\ 6) \rangle$ of size 8 and index 90.

- 8. $(1\ 2\ 3\ 4\ 5)$: $\langle (1\ 2\ 3\ 4\ 5) \rangle$ of size 5 and index 144.
- 9. $(1\ 2\ 3\ 4\ 5\ 6)$: $((1\ 2\ 3\ 4\ 5\ 6))$ of size 6 and index 120.
- 10. $(1\ 2\ 3)(4\ 5\ 6)$: $\langle (1\ 2\ 3),\ (4\ 5\ 6),\ (1\ 4)(2\ 5)(3\ 6)\rangle$ of size 18 and index 40.
- 11. $(1\ 2)(3\ 4)(5\ 6)$: $\langle (1\ 3)(2\ 4), (1\ 5)(2\ 6), (3\ 5)(4\ 6), (1\ 3\ 5)(2\ 4\ 6) \rangle$ of size 48 and index 15.
- $Z(S_6) = \{e\}$ has size one. Combined we have

1 + 15 + 40 + 45 + 90 + 120 + 90 + 144 + 120 + 40 + 15 = 720 = 6!.

(b)

 $\{e\}$, $(1\ 2\ 3)$, $(1\ 2)(3\ 4)$, $(1\ 2\ 3\ 4)(5\ 6)$, $(1\ 2\ 3)(4\ 5\ 6)$ are conjugacy classes in A_6 . $(1\ 2\ 3\ 4\ 5)$ is not because $(1\ 2\ 3\ 4\ 5)$ and $(1\ 3\ 5\ 2\ 4)$ belong to two different conjugacy classes in A_6 .

Problem 3

(a)

Indeed, from high school algebra knowledge we know |zw| = |z||w| so this is a homomorphism. The image is $\mathbb{R}^{>0}$, the set of positive real numbers and the kernel is U(1) or the unit circle or $\{z \in \mathbb{C}^{\times} \mid |z| = 1\}$.

(b)

Take any $G \subset \mathbb{C}^{\times}$ finite and $g \in G$. Then g has finite order, say $g^n = 1$. Then $|g^n| = |g|^n = 1$ and $|g| \in \mathbb{R}^{>0}$, so |g| = 1.

(c)

Since $G \subset \mathbb{C}^{\times}$ is finite and from (b) $G \subset U(1)$. Say $G = \{g_1, ..., g_m\}$. Now every element $g_i \in G$ has finite order, say n_i , and $g_i = e^{ic}$ for some $c \in \mathbb{R}$. Since $g_i^{n_i} = 1$ we deduce that $c = p\frac{2\pi}{n_i}$ for some integer p, and $g_i \in \langle e^{\frac{2i\pi}{n_i}} \rangle$. Therefore $G \subseteq \bigcup_{i=1}^m \langle e^{\frac{2i\pi}{n_i}} \rangle = \langle e^{\frac{2i\pi}{n}} \rangle$ where $n = \lim_i n_i$. So we deduce that Gis a subgroup of a cyclic group, so it is cyclic.

Problem 4 (a)
$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$$
 under multiplication given by
 $i^2 = j^2 = k^2 = ijk = -1.$
Note that for $g, h \neq \pm 1$, $ghg^{-1}h^{-1} = gh(-g)(-h) = (gh)^2 = -1.$
If $g = \pm 1$, then for any $h \in Q_8$, $ghg^{-1}h^{-1} = hh^{-1} = 1.$
So, $D(Q_8)$ is the subgroup of Q_8 generated by $\pm 1.$
 $D(Q_8) = \{\pm 1\} = cyclic$ group of order 2.
Since $D(Q_8)$ is abelian, $D^2(Q_8) = \{1\}$ trivial.

(b)
$$D(S_4)$$
 contains all elements of the type $ghg^{-1}h^{-1}$ where $g,h \in S_4$. So, $D(S_4)$ contains $(l(h) \cdot h^{-1})$ for all $h \in S_4$.
conjugacy class of h

We know that the conjugacy class of a permutation contains all permutations of its cycle type. Also, the inverse of a permutation has the same cycle type. This means that $D(S_4)$ is generated by elements $\sigma_1 \sigma_2$ where σ_1 and σ_2 have the same cycle type. Such $\sigma_1 \sigma_2$ is always even (sign of $\sigma_1 = sign of \sigma_2$), so $D(S_4) \in A_4$. On the other hand, every 3-cycle (abc) = (ab) (bc) is in same cycle shape

$$D(S_4)$$
. Since A_4 is generated by 3-cycles, we get $A_4 \in D(S_4)$.
So, $D(S_4) = A_4$.

Now we want $D(A_4)$. For distinct a,b,c,d, the 3-cycle (abc) and product of disjoint transpositions (ab)(cd) are in A_4 . (abc)·(ab)(cd)·((abc))⁻¹((ab)(cd))⁻¹ = (ac)(cd) (acb)(ab)(cd) = (ac)(cd)(cb)(cd) = (ac)(bd). So, $D(A_4)$ contains (12)(34), (13)(24) and (14)(23). Note

that each of these has order 2 and (12)(34)(13)(24)=(14)(23).

Thus, $\{(1), (12)(34), (13)(24), (14)(23)\}\$ is a subgroup of $D(A_4)$ and A_4 is omorphic to K_4 . In fact, it is a normal subgroup since it contains the entire conjugacy class of (12)(34). $|A_4| = \frac{4!}{2} = 12$. So, A_4 / K_4 has order 3 and is therefore abelian (cyclic group of order 3). Then K_4 must contain $D(A_4)$. But $K_4 \subseteq D(A_4)$. Thus, $D^2(S_4) = D(A_4) = K_4$.

Problem 5 Let gEG, nEN. Since N is generated by S, N=S, S2... Sr for some s; ES. Then gng-1= gs, s2 -- srg-1 $= (gs_1g^{-1})(gs_2g^{-1}) \cdots (gs_rg^{-1}).$ Since S is a conjugacy class, every gs; g-1 ES. So, gng-1 above is generated by elements of S and lies in N. For any gEG, gNg⁻¹ EN \Rightarrow N is a normal subgroup. (a) Non-abelian group of order 21: Problem 6 Note that since 7 is a prime, Aut $(\mathbb{Z}_7) = \mathbb{Z}_7^{\times} = \operatorname{cyclic}_7 \operatorname{cycl$ 2, contains a cyclic group of order 3 as a subgroup. $(_3 = \{1, a, a^2\} \longrightarrow \mathbb{Z}_7^{\times} = \operatorname{Aut}(\mathbb{Z}_7)$ $a \mapsto [2]$ So, there is a semidirect product Z7 × C3 of order 21. This is not abelian:

$$([1], a) ([1], a^{2}) = ([1] + [2] [1], a^{3}) = ([3], 1)$$

$$\neq ([1], a^{2}) ([1], a) = ([1] + [4] [1], a^{3}) = ([5], 1)$$

(b) Non-abelian group of order 55: We have Aut $(Z_{11}) = Z_{11}^{\times} = Cyclic$ group of order 10. There is a homomorphism $(5 = \{1, a, a^2, a^3, a^4\} \longrightarrow Z_{11}^{\times} = Aut (Z_{11})$ $a \longmapsto 54]$ which leads to a semi-direct product $\mathbb{Z}_{11} \rtimes \mathbb{C}_{5}$ of order 55. This is not abelian:

$$([1], a) ([1], a^{2}) = ([1] + [4] [1], a^{3}) = ([5], a^{3})$$

$$= ([1], a^{2}) ([1], a) = ([1] + [16] [1], a^{3}) = ([6], a^{3})$$

Problem 7 Let G be a group of order 56 = 8x7 = 2³x7. Then G contains a Sylow - 7 subgroup of order 7. The number of such subgroups divides 56 and is congruent to 1 modulo 7. The only divisors of 56 which are I mod 7 are 1 and 8. If there is only one Sylow-7 subgroup, then it must be normal and G cannot be simple. Suppose that G has 8 distinct Sylow 7-subgroups. Each of these subgroups is isomorphic to Z7. So, each has 6 elements of order 7. Moreover, any two of these subgroups intersect trivially. Thus, G has at least 8×6=48 elements of order 7. Then the remaining 8 elements of G must form the unique Sylow - 2 subgroup of G. (We know that G has at least one Sylow-2 subgroup of order 8 and such a subgroup cannot contain an element of order 7. Now we don't have enough elements to form more than one Sylow-2 subgroup.) Then the Sylow-2 subgroup must be normal and G cannot be simple.

Problem 8

(a). Let G be a group of order p^2 . By the class equation, every p-group has nontrivial center, so the center Z(G) of G is nontrivial. Its order can be either p^2 or p. If its order is p^2 , then G = Z(G), and therefore G is abelian. If its order is p, then the quotient G/Z(G) has order p, so G/Z(G) is cyclic. This implies that G is abelian, so G = Z(G), which is impossible since we assumed that |Z(G)| has order p. Thus, G is abelian.

(b). Consider the Heisenburg group modulo p, consisting of matrices of the form

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix},$$

where $x, y, z \in \mathbb{Z}_p$. It is easy to check that this group satisfies the group axioms, since it is closed under multiplication, contains the identity matrix, and that

$$\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix},$$

which belongs to the Heisenberg group modulo p. Moreover, this group clearly has order p^3 , and it is nonabelian because

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

whereas

Problem 9

We prove a stronger statement: the size of any conjugacy class of G must divide n. For any $g \in G$, let Cl(g) be its conjugacy class. Recall that $|Cl(g)| = [G : C_G(g)]$, where $C_G(g)$ is the centralizer of g. Because Z is a subgroup of $C_G(g)$, we have

$$n = [G:Z] = [G:C_G(g)][C_G(g):Z].$$

In particular, we get that $[G: C_G(g)]$ divides n. Hence, |Cl(g)| divides n.

Problem 10

The Klein group K_4 is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. We can think of this as a vector space over \mathbb{Z}_2 , and any autmorphism on $\mathbb{Z}_2 \times \mathbb{Z}_2$ is an invertible linear map, represented by the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

1

where $a, b, c, d \in \mathbb{Z}_2$. There are exactly 6 such matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Therefore, $Aut(K_4)$ contains 6 elements. Alternatively, we can think of K_4 as

$$K = \{ \mathrm{id}, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \}.$$

Any automorphism of K_4 must fix the identity and permute the rest of the three elements, so $Aut(K_4) \cong S_3$, which contains 6 elements.

2