MODERN ALGEBRA I GU4041

HOMEWORK 8, DUE NOVEMBER 2: ISOMORPHISM THEOREMS

1. Let *n* and *m* be two positive integers. Denote by $f : \mathbb{Z} \to \mathbb{Z}_n$ and $g : \mathbb{Z} \to \mathbb{Z}_m$ the two natural maps, and define

$$f \times g : \mathbb{Z} \to \mathbb{Z}_n \times \mathbb{Z}_m$$

by $(f \times g)(x) = (f(x), g(x)).$

(a) Suppose (n, m) = 1. Show that the kernel of $f \times g$ is the subgroup of multiples of nm in \mathbb{Z} .

(b) Still supposing (n,m) = 1, use the First Isomorphism Theorem to reprove the Chinese remainder theorem:

$$\mathbb{Z}_{nm} \xrightarrow{\sim} \mathbb{Z}_n \times \mathbb{Z}_m.$$

(c) If n = m, determine the image and kernel of $f \times g$, and show that this is consistent with the First Isomorphism Theorem.

2. We illustrate the Second Isomorphism Theorem by continuing question 1, but now not assuming n and m are relatively prime. In what follows $\langle a \rangle$ denotes the subgroup of multiples of a in \mathbb{Z} , for any integer a.

Let $G = \mathbb{Z}$, $H = \langle m \rangle = \ker(g) \subset \mathbb{Z}$, $N = \langle n \rangle = \ker(f) \subset \mathbb{Z}$. Let d = GCD(m, n), c the least common multiple LCM(m, n).

(a) Use Bezout's theorem to show that $H \cdot N = \langle d \rangle \subset \mathbb{Z}$. (The Second Isomorphism Theorem uses multiplicative notation for the group operation, but since H and N are subgroups of \mathbb{Z} you may prefer to use additive notation.)

(b) Show that $H \cap N = \langle c \rangle \subset \mathbb{Z}$.

(c) Show that the Second Isomorphism Theorem can be rewritten

$$\mathbb{Z}_{c/m} \xrightarrow{\sim} \mathbb{Z}_{n/d}$$

and that this comes down to the formula $m \cdot n = c \cdot d$.

(Hint: Multiplication by d is an isomorphism $\mathbb{Z} \xrightarrow{\sim} \langle d \rangle \subset \mathbb{Z}$. What is the image of the subgroup $\langle n/d \rangle \subset \mathbb{Z}$?)

3. Let G be a group and $N \triangleleft G$ be a normal subgroup. Suppose N is of prime index p in G. Let $H \subset G$ be any subgroup. Prove that exactly one of the following is true:

- (i) $H \subset N$; or
- (ii) G = HN and $[H : H \cap N] = p$.

4. Let G be a group and $N \triangleleft G$ and $M \triangleleft G$ be normal subgroups. Suppose also that G = NM.

(a) Prove that there is an isomorphism

$$G/N \cap M \xrightarrow{\sim} G/N \times G/M.$$

(Hint: Use the First Isomorphism Theorem.)

(b) Use (a) and the Second Isomorphism Theorem to deduce that, if G is the product of two normal subgroups N and M such that $N \cap M = (\mathbf{e})$ then

$$G \xrightarrow{\sim} M \times N.$$

5. Judson book, section 11.4, exercises 14, 17.

RECOMMENDED READING

Howie notes, sections 6.4, 6.5; Judson, Chapter 11.