MODERN ALGEBRA I GU4041

Homework 8, due November 2: Isomorphism theorems

1. Let n and m be two positive integers. Denote by $f: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$ the two natural maps, and define

$$
f \times g: \mathbb{Z} \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}
$$

by $(f \times g)(x)=(f(x), g(x))$.
(a) Suppose $(n, m)=1$. Show that the kernel of $f \times g$ is the subgroup of multiples of $n m$ in \mathbb{Z}.
(b) Still supposing $(n, m)=1$, use the First Isomorphism Theorem to reprove the Chinese remainder theorem:

$$
\mathbb{Z}_{n m} \xrightarrow{\sim} \mathbb{Z}_{n} \times \mathbb{Z}_{m}
$$

(c) If $n=m$, determine the image and kernel of $f \times g$, and show that this is consistent with the First Isomorphism Theorem.
2. We illustrate the Second Isomorphism Theorem by continuing question 1 , but now not assuming n and m are relatively prime. In what follows $\langle a\rangle$ denotes the subgroup of multiples of a in \mathbb{Z}, for any integer a.

Let $G=\mathbb{Z}, H=<m>=\operatorname{ker}(g) \subset \mathbb{Z}, N=<n>=\operatorname{ker}(f) \subset \mathbb{Z}$. Let $d=G C D(m, n), c$ the least common multiple $\operatorname{LCM}(m, n)$.
(a) Use Bezout's theorem to show that $H \cdot N=<d>\subset \mathbb{Z}$. (The Second Isomorphism Theorem uses multiplicative notation for the group operation, but since H and N are subgroups of \mathbb{Z} you may prefer to use additive notation.)
(b) Show that $H \cap N=<c>\subset \mathbb{Z}$.
(c) Show that the Second Isomorphism Theorem can be rewritten

$$
\mathbb{Z}_{c / m} \xrightarrow{\sim} \mathbb{Z}_{n / d}
$$

and that this comes down to the formula $m \cdot n=c \cdot d$.
(Hint: Multiplication by d is an isomorphism $\mathbb{Z} \xrightarrow{\sim}\langle d>\subset \mathbb{Z}$. What is the image of the subgroup $\langle n / d>\subset \mathbb{Z}$?)
3. Let G be a group and $N \triangleleft G$ be a normal subgroup. Suppose N is of prime index p in G. Let $H \subset G$ be any subgroup. Prove that exactly one of the following is true:
(i) $H \subset N$; or
(ii) $G=H N$ and $[H: H \cap N]=p$.
4. Let G be a group and $N \triangleleft G$ and $M \triangleleft G$ be normal subgroups. Suppose also that $G=N M$.
(a) Prove that there is an isomorphism

$$
G / N \cap M \xrightarrow{\sim} G / N \times G / M .
$$

(Hint: Use the First Isomorphism Theorem.)
(b) Use (a) and the Second Isomorphism Theorem to deduce that, if G is the product of two normal subgroups N and M such that $N \cap M=(\mathbf{e})$ then

$$
G \xrightarrow{\sim} M \times N .
$$

5. Judson book, section 11.4, exercises 14, 17.

Recommended reading

Howie notes, sections 6.4, 6.5; Judson, Chapter 11.

