MODERN ALGEBRA I GU4041

Homework 6, due October 24: Lagrange's theorem, HOMOMORPHISMS AND NORMAL SUBGROUPS

1. Howie notes, section 3.5, exercise 6.
2. Howie notes, section 6.6, exercises 1 and 2 .
3. Choose a subgroup H of order 2 in S_{3}.
(a) Find $g \in S_{3}$ such that $g H g^{-1} \neq H$, thus demonstrating that H is not a normal subgroup.
(b) Write down representatives of the sets of left cosets S_{3} / H and right cosets $H \backslash S_{3}$.
4. (from the Judson book, section 6.5, exercise 11): Let H be a subgroup of a group G and let $g_{1}, g_{2} \in G$. Show that the following are equivalent:

- $g_{1} H=g_{2} H$.
- $H g_{1}^{-1}=H g_{2}^{-1}$
- $g_{1} H \subset g_{2} H$
- $g_{1} \in g_{2} H$
- $g_{1}^{-1} g_{2} \in H$.

5. Let G denote the set of 3×3 matrices with entries in \mathbb{R}, of the form

$$
\left(\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & \lambda
\end{array}\right)
$$

that satisfy the relation

$$
(a d-b c) \lambda=1
$$

(a) Show that G is a group.
(b) Show that the subset $H \subset G$ for which $a=d=1$ and $b=c=0$ is a subgroup.
(c) Show that H is a normal subgroup of G.
(d) Let $\phi: G \rightarrow G L(2, \mathbb{R})$ be the map

$$
\phi\left(\left(\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & \lambda
\end{array}\right)\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Show that ϕ is a homomorphism and that $\phi(g)$ is the identity matrix if and only if $g \in H$.
6. Let $n>2$ be an integer. Show that the group of rotations of the regular n-gon is a normal subgroup of the dihedral group $D_{2 n}$, and identify the quotient group.

Recommended Reading

Howie notes, section 3.4, sections 6.1-6.3

