MODERN ALGEBRA I GU4041

HOMEWORK 6, DUE OCTOBER 24: LAGRANGE'S THEOREM, HOMOMORPHISMS AND NORMAL SUBGROUPS

- 1. Howie notes, section 3.5, exercise 6.
- 2. Howie notes, section 6.6, exercises 1 and 2.
- 3. Choose a subgroup H of order 2 in S_3 .

(a) Find $g \in S_3$ such that $gHg^{-1} \neq H$, thus demonstrating that H is not a normal subgroup.

(b) Write down representatives of the sets of left cosets S_3/H and right cosets $H \setminus S_3$.

4. (from the Judson book, section 6.5, exercise 11): Let H be a subgroup of a group G and let $g_1, g_2 \in G$. Show that the following are equivalent:

- $g_1H = g_2H.$ $Hg_1^{-1} = Hg_2^{-1}$
- $g_1H \subset g_2H$
- $g_1 \in g_2 H$ $g_1^{-1} g_2 \in H.$

5. Let G denote the set of 3×3 matrices with entries in \mathbb{R} , of the form

$$\begin{pmatrix} a & b & e \\ c & d & f \\ 0 & 0 & \lambda \end{pmatrix}$$

that satisfy the relation

$$(ad - bc)\lambda = 1.$$

(a) Show that G is a group.

(b) Show that the subset $H \subset G$ for which a = d = 1 and b = c = 0 is a subgroup.

- (c) Show that H is a *normal* subgroup of G.
- (d) Let $\phi: G \to GL(2,\mathbb{R})$ be the map

$$\phi(\begin{pmatrix}a & b & e \\ c & d & f \\ 0 & 0 & \lambda\end{pmatrix}) = \begin{pmatrix}a & b \\ c & d\end{pmatrix}.$$

Show that ϕ is a homomorphism and that $\phi(g)$ is the identity matrix if and only if $g \in H$.

6. Let n > 2 be an integer. Show that the group of rotations of the regular *n*-gon is a normal subgroup of the dihedral group D_{2n} , and identify the quotient group.

Recommended reading

Howie notes, section 3.4, sections 6.1-6.3