MODERN ALGEBRA I GU4041

Homework 5, due October 12: Permutations

1. Judson, Section 5.4, exercise 1 and 2 (a)-(d), 2(f), 2(j), 2(m).
2. Let S_{n} denote the group of permutations of n letters. List the possible orders of all elements of S_{7} and exhibit an element whose order is maximal and write it as the product of disjoint cycles.
3. Find two permutations of 4 letters σ and τ such that $\sigma^{2}=\tau^{2}=e$ but $\sigma \tau \neq \tau \sigma$.
4. Draw a pentagon and label its corners $1,2,3,4,5$. Let $D \subset S_{5}$ be the set of permutations of the corners that take adjacent corners to adjacent corners. Show that D is a subgroup of S_{5}. What is its order?
5. What are the orders of the following permutations?
(a) (231) in $S_{3}(\mathrm{~b})(165)(234)$ in S_{6} (c) $(14235)^{2}$ in S_{5}.

Recommended Reading

Judson book, Section 5.1; Howie's notes, Chapter 4.

