MODERN ALGEBRA I GU4041

Homework 4, due October 5: Examples of groups

1. Show that the set \mathbb{Z}_{7}^{*} of non-zero residue classes modulo 7 forms a group under multiplication. Is it a cyclic group?
2. (a) List all the subgroups of the cyclic group \mathbb{Z}_{81}.
(b) Does the cyclic group \mathbb{Z}_{42} have a subgroup of order 12? Of order 14? Justify your answer.
3. (a) Let G be a group in which each element is its own inverse: $g=g^{-1}$ for all g. Show that G is abelian.
(b) Let G be a finite group with identity e and an even number of elements. Show that there is an element $g \neq e$ such that $g^{2}=e$.
4. Let G be any group and $g \in G$. Consider the set $H=<g>$ of all powers g^{n} where $n \in \mathbb{Z}$. Here we let $g^{0}=e$ and if $n=-m$ where $m>0$ then we set $g^{n}=\left(g^{-1}\right)^{m}$.
(a) Show that H is a cyclic subgroup of G.
(b) Show that every cyclic subgroup of G is of the form $\langle g\rangle$ for some $g \in G$.
5. List all the subgroups of the dihedral group D_{26}. Which of them are cyclic?
6. Recall that the direct product $G \times H$ of two groups G and H is the set of ordered pairs (g, h) with $g \in G$ and $h \in H$. The identity in $G \times H$ is the element $\left(e_{G}, e_{H}\right)$, where e_{G} is the identity in G and e_{H} is the identity in H. Multiplication in $G \times H$ is given by

$$
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right) .
$$

(a) Show that $G \times H$ is a group with respect to this operation. In particular, this means defining the inverse of an element (g, h).
(b) Show that the direct product $\mathbb{Z}_{3} \times \mathbb{Z}_{7}$ is isomorphic to a cyclic group by finding a cyclic generator. Show that the direct product $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$ is not a cyclic group. How many cyclic subgroups does $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ contain?

Recommended Reading

Judson book, Section 4.1, 4.2 (read quickly); Gallagher's notes, Chapter 9.

