MODERN ALGEBRA I GU4041

Homework 3, due September 28: Basic properties of groups

1. Let X be a set with two elements e, f.
(a) Can you define a binary operation

$$
\star: X \times X \rightarrow X
$$

that is not associative?
(b) Now suppose X has three elements e, f, g, and e is a two-sided identity:

$$
e \star e=e ; e \star f=f \star e=f ; e \star g=g \star e=g .
$$

Is \star necessarily associative?
2. List all subgroups of the cyclic groups $\mathbb{Z} / 5 \mathbb{Z}$ and $\mathbb{Z} / 6 \mathbb{Z}$. How many subgroups contain 3 elements in each case?
3. Let $n \geq 3$ be an integer. Let Δ_{n} be a regular polygon with n sides in the complex plane, with one vertex at the point 1 and the other vertices on the circle $x^{2}+y^{2}=1$. Let μ_{n} denote the set of vertices of Δ_{n}.
(a) Use either the exponential function or trigonometric functions to list the coordinates of the points in μ_{n}.
(b) Show that the subset $\mu_{n} \subset \mathbb{C}$ is a group under multiplication.
(c) Define an isomorphism of groups $f: \mathbb{Z} / n \mathbb{Z} \rightarrow \mu_{n}$.
(d) How many solutions does part (c) have? Explain.
4. (a) Show that the set of 2×2 matrices with real coefficients and determinant different from 0 forms a group $G L(2, \mathbb{R})$, where the operation is matrix multiplication. Show by an example that it is not commutative.
(b) Define subgroups of $G L(2, \mathbb{R})$ of order 2,3 , and 4 .
5. Judson book, Exercises 2 and 10, section 3.5.

Recommended Reading
Howie book, Chapter 1; you should do as many exercises as you can.

