MODERN ALGEBRA I GU4041

Homework 2, due September 21: Equivalence relations, MODULAR ARITHMETIC

1. In each of the following situations, X is a set and R is a relation. Determine whether it is an equivalence relation by checking whether it satisfies each of the necessary conditions (reflexive, symmetric, transitive). Justify your answer. If R is an equivalence relation, give a simple description of the set of equivalence classes.
(a) $X=\mathbb{Z}, a R b$ if $a+b$ is odd.
(b) $X=\mathbb{R}^{3}, v R w$ if there is a rotation of X centered at the origin that takes v to w.
(c) X is the set of triangles in the plane, $A R B$ if A and B are similar triangles.
(d) X is the set of real-valued functions on $\mathbb{R}, f R g$ if $f(n)-g(n) \geq 0$ for any integer $n \in \mathbb{Z} \subset \mathbb{R}$.
2. Continuing problem 1 , let X be the set of continuous real-valued functions on the interval [0, 1]. If $f, g, \in X$, say $f R g$ if

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} g(x) d x
$$

Prove that R is an equivalence relation and define a bijection between the set of equivalence classes for R and the set \mathbb{R} of real numbers.
3. Represent the elements of \mathbb{Z}_{17} by the residue classes [0], [1], [2], [3], [4], [5], .., [16]. Then we can write multiplication with these representatives:

$$
[5][5]=[25] ;[10] \cdot[5]=[9] .
$$

A residue class $[n]$ is called a quadratic residue (modulo 17) if there is another integer d between 0 and 16 such that $[d] \cdot[d]=[n]$.
(a) Show that $[8]$ is a quadratic residue modulo 17.
(b) Give an example of a residue class that is not a quadratic residue modulo 17.
(c) Show that if $[n]$ and $[m]$ are quadratic residues, then so is $[m \cdot n]$.
(d) Show that if $[n]$ is a quadratic residue and $[m]$ is not a quadratic residue, then $[m \cdot n]$ is not a quadratic residue. (Hint: Suppose $[n]=[d] \cdot[d]$ and suppose $[m]$ is not a quadratic residue. Since 17 is a prime number,

Bezout's theorem shows that there is a number f such that $[d] \cdot[f]=[1]$. Use this to obtain a contradiction.)
4. Use the Euclidean algorithm to determine the GCD and LCM for each of the following pairs of integers. (i) $n=107, m=865$. (ii) $n=185$, $m=5291$.
5. Judson book, Exercises 24, 25, section 2.4.

Recommended Reading

Gallagher's notes, sections 1 and 2, at https://www.math.columbia. edu/~khovanov/modAlgSpring2017/Gallagher/.

