MODERN ALGEBRA I GU4041

Homework 12, due December 7: Sylow theorems and groups of SMALL ORDER

1. Let A be a finite abelian group of order N. Let $p_{1}<p_{2}<\cdots<p_{n}$ denote the distinct prime numbers dividing N.
(a) Prove that A has a unique Sylow p-subgroup A_{i} of order a power of p_{i} for $i=1, \ldots, n$.
(b) Show that

$$
A \xrightarrow{\sim} A_{1} \times A_{2} \times \cdots \times A_{n} .
$$

2. Construct p-Sylow subgroups of the symmetric groups S_{3}, S_{4}, S_{5} for $p=2,3,5$.
3. Let $p>3$ be a prime number. Show that any group of order $3 p$ is solvable.
4. Show that no group of order 64 or 96 is simple. Construct two distinct non-abelian groups of each order.
5. Show that no group of order 112 is simple. (Hint: if the group G is simple then it admits an injective homomorphism to the symmetric group S_{r}, where r is the number of 2-Sylow subgroups.)
6. Judson, section 14.5, exercises 11, 12; section 15.4, exercises 1, 3, 6, 7, $9,20,22,23$. (This problem will not be graded.)

Recommended Reading
Gallagher notes 18, 19, 22, 23, 24; Judson, Chapter 15.

