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Perfectoid prologue 
 
 It's not often that contemporary mathematics provides such a clear-cut 
example of concept formation as the one I am about to present:  Peter Scholze's 
introduction of the new notion of perfectoid space.  The 23-year old Scholze first 
unveiled the concept in the spring of 2011 in a conference talk at the Institute for 
Advanced Study in Princeton.  I know because I was there.  This was soon followed 
by an extended visit to the Institut des Hautes Études Scientifiques (IHES) at Bûres-
sur-Yvette, outside Paris — I was there too.  Scholze's six-lecture series culminated 
with a spectacular application of the new method, already announced in Princeton, to 
an outstanding problem left over from the days when the IHES was the destination of 
pilgrims come to hear Alexander Grothendieck, and later Pierre Deligne, report on the 
creation of the new geometries of their day.  Scholze's exceptionally clear lecture 
notes were read in mathematics departments around the world within days of his 
lecture — not passed hand-to-hand as in Grothendieck's day — and the videos of his 
talks were immediately made available on the IHES website.  Meanwhile, more killer 
apps followed in rapid succession in a series of papers written by Scholze, sometimes 
in collaboration with other mathematicians under 30 (or just slightly older), often 
alone.  By the time he reached the age of 24, high-level conference invitations to talk 
about the uses of perfectoid spaces (I was at a number of those too) had enshrined 
Scholze as one of the youngest elder statesmen ever of arithmetic geometry, the 
branch of mathematics where number theory meets algebraic geometry.)  Two years 
later, a week-long meeting in 2014 on Perfectoid Spaces and Their Applications at the 
Mathematical Sciences Research Institute in Berkeley broke all attendance records for 
"Hot Topics" conferences.   
 
 Four years after its birth, perfectoid geometry, the theory of perfectoid spaces, 
is a textbook example of a progressive research program in the Lakatos sense.  It is 
seen, retrospectively, as the right theory toward which several strands of arithmetic 
geometry were independently striving.  It has launched a thousand graduate student 
seminars (if I were a historian I would tell you exactly how many); the students' 
advisors struggle to keep up.  It has a characteristic terminology, notation, and style of 
argument; a growing cohort of (overwhelmingly) young experts, with Scholze and his 
direct collaborators at the center; a domain of applications whose scope continues to 
expand to encompass new branches of mathematics; an implicit mandate to unify and 
simplify the fields in its immediate vicinity.  Last, but certainly not least, there is the 
generous, smiling figure of Peter Scholze himself, in the numerous online recordings 
of his lectures or in person, patiently answering every question until his questioner is 
satisfied, still just 27 years old, an inexhaustible source of revolutionary new ideas. 
 
 For the historian of concepts (which I am not), there is only one problem with 
this picture:  the concept of a perfectoid space is one of the most difficult notions ever 
introduced in arithmetic geometry, which has a long tradition of difficult notions.  The 



reader of this essay faces a second problem:  not only am I not a historian of concepts, 
I am by no means an expert on the kinds of mathematics that have been put together 
to create the new concept of perfectoid spaces.  So I will have to skim the surface, at 
the risk of distortion; but even the surface will be unfamiliar for most readers.  I hope 
that the technical details will nevertheless provide the reader with the means of 
perceiving how the somewhat extreme case of perfectoid spaces exemplifies typical 
aspects of mathematical concept formation: the reference to a historical background 
(in this case, the long practice of studying properties of equations in number theory by 
relating them to properties of geometric objects), the identification of a specific range 
of open questions in this historical context and the expectation that they would be 
solved by the introduction of new techniques of a specific type, and the reception and 
general acceptance of the new concept as the right one because it met expectations in 
spite of its many novel features and because it lent itself immediately to solving 
outstanding open problems. 
 

Starting points 
 

 Perfectoid spaces stand at the crossroads where topology, Galois theory, and 
the study of equations by means of congruences meet.  It's a busy crossroads, already 
occupied by étale cohomology and crystalline cohomology, both created by 
Grothendieck and his school; by the new number systems (Fontaine rings) created by 
Jean-Marc Fontaine in his program to devise a mysterious functor, a canonical 
operation relating the two kinds of cohomology; and by the many technical 
innovations introduced in order to complete Fontaine's program.  The most relevant of 
these for Scholze's work is the almost mathematics of Gerd Faltings, which in turn 
builds on the foundational work of John Tate, 90 years old and still active. Tate is also 
the creator of rigid analytic spaces, the first of several successful attempts to create a 
p-adic geometry.  Perfectoid geometry doesn't transcend these previous attempts but 
rather extracts those of their features that are relevant to the problems Scholze set out 
to solve. 
 
 I don't expect readers to possess any of the technical vocabulary introduced in 
the previous paragraph.  Each of the technical terms, however, can be seen as the 
precise analogue of a familiar notion from higher-dimensional geometry in Euclidean 
space; for the purposes of this essay, much of the meaning of Scholze's innovations 
can be understood by reference to these analogies.  I will start with the way 
differential calculus encodes topology, and specifically with Green's theorem in 
calculus in two variables (as a topic in second year calculus, no other starting point is 
nearly as elementary). Green's theorem relates the line integral of a differential  
 

fdx + gdy 
 
on a simple closed curve C with the double integral of an expression involving the 
partial derivatives of f and g on the region D bounded by the curve.  This breaks down 
when D is no longer a region bounded by a simple closed curve, but rather a region 
with holes. The breakdown is an expression of the complicated topology of D — the 
presence of holes — but Green's theorem has a generalization — a version of Stokes' 
theorem that accounts for the holes.  The generalization of these theorems to a 
manifold M of arbitrary dimension relates the topology of M — and more precisely, 
the cohomology of M, which is the way of keeping track of generalized holes — to 



the possibility or impossibility of integrating differential forms on M.  For general 
(compact) manifolds the relation is the statement of de Rham's theorem.  When M is 
the space of complex solutions (in projective space) to a system of polynomial 
equations — a (smooth, projective, complex) algebraic variety — then Hodge theory 
gives a more precise relation, where the distinction between holomorphic differentials 
(like dz) and antiholomorphic differentials (like ) is central.  For the purposes of 
this discussion, the important fact about Hodge theory is that it uses differential 
calculus to compute the topology, or more precisely the cohomology, of a complex 
algebraic variety M.  Another fruitful way of saying the same thing is to say that M 
has two kinds of cohomology groups — the topological one (that keeps track of 
holes), often called Betti cohomology, and the analytic one, based on the algebra of 
differential forms, called de Rham cohomology.  Then the comparison theorem of 
Hodge theory — at this stage it's really de Rham's theorem — says that these are two 
different ways of computing the same thing. 
 
 Now forget the algebraic variety M but keep the polynomial equations used to 
define M. What happened to the holes? In the 1960s Grothendieck and his 
collaborators constructed a purely algebraic invariant1 of an algebraic variety — not 
necessarily smooth, not necessarily projective, and over any coefficient field F — that 
recovered the topological (Betti) cohomology groups, in the process transforming the 
notion of topological space practically beyond recognition.  Something was gained 
and something was lost.  What was gained was that the cohomology groups acquired 
an action of the Galois group of the coefficient field F — and when F is the field of 
rational numbers, or a finite field, this defines an invariant of exceptional richness.  
The Tate Conjecture, which has been proved in only a few situations (notably by Tate 
and Faltings), asserts that this Galois representation encodes a good deal of the 
information about solutions of the polynomial equations and higher-dimensional 
generalizations of solutions (whatever one might mean by that).  What was lost is that, 
whereas Betti cohomology groups actually count holes (more precisely, they are 
finitely generated abelian groups), the algebraic invariants introduced by 
Grothendieck and his collaborators, the étale cohomology groups, only count holes 
modulo N for all integers N — with the important proviso that N is not divisible by 
the characteristic of the coefficient field F. It is more useful to package this 
information by prime powers and to look at the l-adic (étale) cohomology, which puts 
together the étale cohomology modulo ln for all n, where l runs through the set of 
prime numbers that are invertible in the field F.2 The underlying assumption is that 
the number of holes in an algebraic variety, or even a 2-dimensional manifold, is a 
fundamental geometric property — an invariant.   
 
 Let us pause to consider that set of prime numbers l invertible in a fixed field 
F, since this is the most characteristic property of the field, and because the raison 
d'être of Scholze's work is to answer questions about equations over p-adic fields 

                                                
1 André Weil had constructed such an invariant for varieties of dimension 1, speculated that such a 
theory should exist in general, and conjectured some of its desirable properties.   Grothendieck proved 
the Weil conjectures, with the exception of the last one, which was solved in 1973 by Pierre Deligne.  I 
was at the IHES, not yet a graduate student, the day the 29-year-old Deligne announced his solution.  It 
was seen, correctly, as a very big deal. 
2 For a philosophically enlightening introduction to the topological approach to number theory, see §3 
of C. McLarty,"What does it take to prove Fermat's Last Theorem? Grothendieck and the logic of 
number theory." Bulletin of Symbolic Logic 16.03 (2010): 359-377. 
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(where some standard methods of algebraic geometry don't apply) by "tilting" the 
equations so they are now over fields of characteristic p. In fact, the characteristic of 
F is decreed to be either the set of primes that are not invertible in F, if there are such, 
or else zero, if all primes are invertible in F.  A field is of characteristic zero if and 
only if it contains the rational field Q; for example, the familiar fields of real or 
complex numbers are of characteristic zero. Otherwise, there is exactly one prime, 
traditionally denoted p, which is not invertible in F, and F is said to be of (positive) 
characteristic p.  Since every non-zero element of F is invertible, this means that p = 0 
in F, and F contains the prime field Fp = Z/pZ of p elements, the field whose 
arithmetic corresponds to the study of congruences modulo p.   Scholze's initial 
motivation, very roughly speaking, was to study equations over certain kinds of fields 
of characteristic zero by reinterpreting them as equations over fields of prime 
characteristic p, where other methods are available. 
 
 A field F of characteristic p > 0 has two closely related properties that it does 
not share with fields of characteristic zero.   
 
 (i)  First, polynomials of positive degree can have derivative zero:  indeed, if 
P(X) = Xp, then P'(X) = pXp-1 = 0 because p = 0.3   
 
 (ii)  On the other hand, the map Frob (for Frobenius) that sends a ∈ F to its p-
th power Frob(a) = ap is a homomorphism of rings:  
 

Frob(ab) = Frob(a)Frob(b) and Frob(a+b) = Frob(a) + Frob(b) 
 
for any a, b  ∈ F.  The multiplicative property is obvious, the additive property 
follows from the binomial formula for (a+b)p, because all the intermediate binomial 
coefficients are divisible by p.  Because F is a field, only 0 has p-th power zero, and 
thus Frob is injective. The field F is called perfect if Frob is also surjective:  in other 
words, if every element of F has pth roots (and therefore pnth roots for all n).  
Scholze's term perfectoid is derived from this property of perfect fields. 
 
 Algebraic varieties over any field still have differential forms, as in our earlier 
discussion and there is an algebraic version of de Rham cohomology (whose main 
properties were outlined in a letter4 from Grothendieck to Atiyah).  But to work 
properly with differentials of degree n, one needs to be able to divide by n!, and this is 
impossible if the characteristic of F is a prime dividing n; alternatively, property (i) 
above shows that one can't integrate the differential Xp-1dX.  Expanding the notion of 
space a bit more, Grothendieck outlined the properties of yet another algebraic 
cohomology theory (for smooth projective varieties), crystalline cohomology, whose 
construction was carried out in the thesis of his student Pierre Berthelot and his 
collaborators.  It was around this time that Grothendieck abandoned the IHES and the 
mathematical community, but not before he had asked for an analogue of Hodge 
                                                
3 Didn't I just say that p > 0?  So how can I say p = 0?  The prime number p is and remains a positive 
number in the field of rational numbers, but for the purposes of arithmetic in a field of characteristic p 
it is treated as if it were equal to 0, and indeed this is the meaning of characteristic p.  There is no 
logical inconsistency. 
4 A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. math. de l’I.H.É.S. tome 
29 (1966), p. 95-103. 



theory in the algebraic setting.  The original Hodge theory was defined for varieties 
with complex coefficients; Grothendieck expected an analogue for varieties over p-
adic local fields.  For our purposes a field F is p-adic local if it is a topological field 
with an open subring O = OF  such that F is obtained from O by allowing division by 
p, and such that O is a local ring (it has a unique maximal ideal m) and a discrete 
valuation ring (every ideal is a power of m such that k = O/m is a finite field).  When 
F is a p-adic local field, the algebraic de Rham cohomology, crystalline cohomology, 
and p-adic étale cohomology all have coefficients in the same kind of field, namely 
either F or a p-adic local field closely related to F.  Grothendieck asked for a 
"mysterious functor" that played the role of the de Rham and Hodge theorems in 
relating the p-adic étale cohomology of an algebraic variety over F to its algebraic de 
Rham cohomology, and (when this makes sense) to the crystalline cohomology of its 
reduction over k.   A few years earlier, Tate had introduced what are now called 
Hodge-Tate structures and, together with Jean-Pierre Serre, had formulated a different 
conjectural p-adic version of the Hodge theorem; Grothendieck's proposal would 
necessarily imply Tate's conjecture (not to be confused with "the Tate conjecture" 
mentioned earlier).  
 
 Fontaine introduced his new rings, including the ones called BdR and Bcris, as a 
way of relating the Galois structure and the differential structure, and used them to 
define a candidate for Grothendieck's mysterious functor.  There ensued an 
international contest, lasting nearly two decades, to prove that Fontaine's approach 
provided the mysterious functor.  Along the way the field saw the growth of the new 
research program of p-adic cohomology, characterized by the proliferation of new 
cohomology theories with p-adic coefficients, including syntomic cohomology, de 
Rham-Witt cohomology, and rigid cohomology, and centered around the problem of 
realizing Grothendieck's mysterious functor.5   
 
 The main goal of the program was to find better ways to understand the Galois 
representations constructed by Grothendieck, because they are among the central 
objects of algebraic number theory.  Results of this research program were of 
fundamental importance in Andrew Wiles's proof of Fermat's Last Theorem and in 
subsequent work that derived from that of Wiles.  Especially in the hands of Richard 
Taylor and his students and collaborators, this line of research has developed into one 
of the most active research programs in algebraic number theory, overlapping with the 
Langlands program on automorphic forms — and only incidentally in geometry.  
This is largely responsible for the growing familiarity of number theorists with 
Fontaine's p-adic constructions in the years preceding Scholze's perfectoid 
announcements.  
 
 A word about Fontaine's rings is in order, because of their importance for the 
theory of perfectoid spaces.  These rings, which can be thought of as alternative p-
adic analogues of the complex number field, are constructed by an elaborate series of 
steps,6 of which the first invariably involves taking pnth roots for all n in a field of 
characteristic zero in order to define a new and perfect field of characteristic p.  In 

                                                
5 It was mysterious because Grothendieck didn't know how to define it but assumed it must exist.  
Then Fontaine defined a functor and over the years he and others showed that it had the expected 
properties. 
6 See, for example, http://en.wikipedia.org/wiki/Ring_of_p-adic_periods. 



retrospect, this way of moving from characteristic 0 to characteristic p can be seen as 
a prototypically perfectoid thing to do.  As recently as 15 years ago, any talk at a 
number theory seminar involving one of Fontaine's rings would normally begin with a 
reminder of the ring's construction.  I never found this very enlightening, because it 
was never explained why this particular sequence of otherwise unmotivated steps 
yielded an interesting object — in other words, the construction did not illuminate the 
concept of the Fontaine ring.  These days, the rings tend to be introduced without 
explanation, which I take to mean that the seminar audience has become sufficiently 
familiar with the rings not to need to be reminded that the speaker knows how they 
are put together.  In practice, this means that a typical (algebraic) number theorist-in-
training is expected to know a few standard properties of Fontaine's rings; one might 
(or might not) want to say in this connection that the number theorist-in-training has 
been initiated into one or more of the language games in which Fontaine's rings 
feature prominently.  More to our purpose, this familiarity means that the community 
of participants in number theory seminars was prepared for Scholze's theory of 
perfectoid spaces by repeated exposure to the theory and use of Fontaine's rings, 
largely in connection with outgrowths of the ideas of Wiles and Taylor. 
 
 To put an end to this lengthy introduction to the background to Scholze's 
work, Fontaine's hope to have realized the mysterious functor was confirmed, not 
once but several times, giving rise to what is now generally known as p-adic Hodge 
theory.  The first complete proof was obtained by Faltings; a rather different method, 
extending ideas due to Fontaine and William Messing, was developed by Japanese 
specialists, culminating in a second (and initially more complete) complete proof by 
T. Tsuji.  Two relevant features of the Faltings approach deserve to be mentioned 
here.  The first feature is the introduction of what Faltings called almost 
mathematics,7 which is (very roughly) a form of commutative algebra in which 
certain kinds of error are systematically ignored, and in which it is shown rigorously 
that they do not matter to the final proof of Fontaine's comparison.  The second 
feature is that Faltings made systematic use of constructions involving the taking of 
pnth roots for all n.  Faltings said at the time that his constructions were inspired by 
Tate's original work on p-adic Hodge theory.   

 
 

Scholze's perfectoid concept 
 
 Scholze's perfectoid spaces are, in the first place, spaces.  The notion of space 
in algebraic geometry has evolved through several stages since André Weil 
introduced abstract varieties by the gluing together of affine algebraic varieties in his 
Foundations of Algebraic Geometry.  The current understanding is based on 
Grothendieck's framework, developed systematically by Grothendieck and Dieudonné 
in the Éléments de géométrie algébrique (EGA), following Serre's introduction of 
sheaf-theoretic methods.  A space in this setting then consists of a topological space 

                                                
7 The first complete treatment is contained in O. Gabber and L. Ramero, Almost ring theory, Lecture 
Notes in Mathematics 1800, Berlin: Springer-Verlag, (2003).  Faltings' proof is in G. Faltings, p-adic 
Hodge theory, J. Amer. Math. Soc. 1 (1): 255–299 (1988).  The "certain kinds of error" mentioned in 
the next sentence can be likened to measurement errors in physics.  It's as if one were using two 
different scales to make multiple measurements of the geometry of an algebraic variety; the scales can 
give slightly different measurements in the intermediate steps but in almost mathematics they are 
treated as identical.  It turns out that the final result is insensitive to this kind of error. 



(the "underlying topological space," generally not Hausdorff) together with the (sheaf 
of) functions defined on its open sets.  I pause to mention that Grothendieck's 
reconceptualization of topology involves a generalization of the notion of "open set" 
that is radically at odds with the primitive intuition of continuity that general topology 
was designed to formalize but that nevertheless works magnificently. 
 
 In p-adic geometry, the topology is somehow adapted to the topology of the p-
adic numbers, and the functions take p-adic values.  Perfectoid spaces are spaces in 
the setting of p-adic geometry, and more precisely p-adic analytic geometry.  Like the 
p-adic numbers themselves, p-adic geometry is a form of geometry designed to study 
solutions of congruences modulo powers of p.  The p-adic numbers themselves form a 
topological space, but it is totally disconnected, which means that the space can be 
broken continuously into arbitrarily small pieces.  This is not suitable for geometry; 
there are too many continuous functions.  One could disallow all continuous functions 
that are not polynomials, or quotients of polynomials; but that would yield algebraic 
geometry, not p-adic analytic geometry.  On the other hand, allowing all analytic 
functions — convergent power series — would again not be geometric.  Tate was the 
first to propose a workable compromise with his theory of rigid analytic spaces.   
 
 Tate's solution to the continuity problem was versatile, ingenious, and 
thoroughly in the spirit of Grothendieck's reformulation of topology.  It also had a 
number of immediate applications to traditional problems in arithmetic geometry, 
notably the construction of the Tate elliptic curve, which still serves as a model for 
applications of Tate's rigid geometry.  The field of rigid analysis that developed on 
the basis of Tate's (long unpublished) founding document has its own canon and 
characteristic vocabulary; especially after it was extended by Michel Raynaud and 
Pierre Berthelot, it has grown into a healthy subfield of arithmetic geometry, a topic 
with its own practice and a resource for those in neighboring fields.  However, it was 
not the last word; specifically, it lacked a native cohomology theory along the lines of 
étale cohomology, and the rigid analytic version of de Rham cohomology (Monsky-
Washnitzer cohomology, later incorporated in Berthelot's rigid cohomology) lacked 
certain desirable features.   This pointed to a failure of p-adic Hodge theory to be a 
true analogue of complex Hodge theory.  Just as complex algebraic varieties are also 
complex analytic manifolds, p-adic algebraic varieties are also rigid analytic spaces.  
Hodge's Hodge theory is based on complex analysis, but the proofs of p-adic Hodge 
theory were purely algebraic.  In particular, there was no p-adic analytic way to 
interpret the algebraic invariant of étale cohomology. 
 
 Three distinct versions of étale cohomology in the setting of p-adic analysis 
were proposed in the early 1990s, due respectively to Kazuhiro Fujiwara, Vladimir 
Berkovich, and Roland Huber.  Each of these approaches involved a more or less 
radical expansion of the kinds of spaces considered in p-adic geometry, and each of 
them had immediate applications.8  Huber's theory of adic spaces had relatively few 
adherents, however, until it was revived by Scholze as the setting in which perfectoid 
spaces naturally coexisted with other kinds of p-adic algebraic and analytic structures.    
 
                                                
8 This, by the way, is where I enter, and exit, the subject.  The work discussed in Chapter 9 of my 
Mathematics without Apologies was only possible because Berkovich had recently found a way to 
define l-adic cohomology for his analytic spaces.  Fujiwara's theory played a crucial role in my 
subsequent work with Richard Taylor. 



 Before I introduce Scholze's perfectoid spaces, I need to devote a few words to 
the curious fact that algebraic geometry is so thoroughly algebraic that it can 
theoretically be developed without any reference to geometry whatsoever.  The basic 
spaces in any version of algebraic geometry are the affine spaces.  For Grothendieck, 
any commutative ring R defines an affine space — an affine scheme — denoted 
Spec(R), with the tautological property that R is the ring of functions on Spec(R).  
The correspondence between R and Spec(R) is an equivalence of categories, which 
means that everything you need to know about Spec(R) can be deduced from what 
you know about R, and vice versa.9  Because Spec(R) is a kind of space, it has points, 
which are very convenient when you want to compare Spec(R) to Spec(R') for two 
rings R and R'.  The general space in Grothendieck's version10 of algebraic geometry 
is a scheme which is a topological space X that is covered by open sets that are affine 
schemes; in other words, each of whose points belongs to some Spec(R), or rather to a 
(generally infinite) collection of Spec(R'), compared in an appropriate way.  One 
usually says that X has been constructed by gluing the affine schemes it contains.  
The geometric properties of schemes that can be reinterpreted as properties of their 
affine coverings — in other words, as properties of rings — are called local. 
 
 The prototype for constructing complicated spaces from simpler spaces is the 
theory of (topological or differentiable) manifolds in topology or differential 
geometry; the simpler spaces are just miniature versions of Euclidean space of 
dimension n, and a manifold is defined as a topological space that "looks locally" like 
Euclidean space.  Differential geometry is to differential calculus as algebraic 
geometry is to ring theory.   
 
 In the various versions of p-adic geometry derived from Tate's rigid analytic 
geometry, spaces are constructed out of rings in the same way, except that the word 
affine is replaced by affinoid.  Here is Scholze's definition of a perfectoid algebra 
(ring), copied from his article in the Proceedings of the 2014 International Congress 
of Mathematicians (ICM) at Seoul: 
  

 
 
Everything in the definition is important, but the most important part is the last line:  
it says that one can take pnth roots for all n in this ring R°/p.  To begin with, this 
allows Scholze to introduce the tilt of R, denoted R♭; the process of tilting turns a 
perfectoid algebra of characteristic zero into a perfectoid algebra of characteristic p in 
such a way that all the algebraic structures relevant to étale cohomology (among 
others) are preserved under the operation.  The geometric objects Scholze attaches to 
the rings R and R♭ are adic spaces in Huber's sense; these are the affinoid perfectoid 
spaces that can then be glued together to form general perfectoid spaces. 
 

                                                
9 However, this equivalence is contravariant; a comparison map (ring homomorphism) R → R' is 
equivalent to a comparison map of schemes Spec(R') → Spec(R).   
10 There are still more general versions but this will do for now.   



 The tilting operation originates in the early stages of p-adic Hodge theory, and 
specifically in a theorem of Fontaine and Jean-Pierre Wintenberger that identifies the 
Galois theory of certain infinite extensions of p-adic fields with the Galois theory of 
what are now called their tilts, which are fields of characteristic p.  This operation is 
applied as the first step in constructing the most familiar of the Fontaine rings.  
Having learned from Grothendieck that any operation on a class of rings should be 
viewed as a local version of an operation on the corresponding class of spaces, 
arithmetic geometers naturally want to define a class of spaces to which the Fontaine-
Wintenberger tilt extends that will for this reason be recognized as the right class of 
spaces.   Several attempts were made, more or less rooted in the methods Faltings 
introduced in his work on p-adic Hodge theory; it is now acknowledged that Scholze's 
perfectoid concept is the right one for rings, and the right one for gluing the local 
pieces together into global geometric objects.  The proofs made extensive use of the 
Faltings "almost ring theory."11   
 
 "Category" is the formalized mathematical concept that currently best captures 
what is understood by the word "concept."  Scholze defined perfectoid spaces as a 
category of geometric spaces with all the expected trappings, and thus there's no 
reason to deny it the status of "concept." I will fight the temptation12 to explain in any 
more detail just why Scholze's perfectoid concept was seen to be the right one as 
soon as he explained the proofs in the (symbolically charged) suburban setting of the 
IHES.  But I do want to disabuse the reader of any hope that the revelation was as 
straightforward as a collective process of feeling the scales fall from our eyes.  
Scholze's lectures and expository writing are of a rare clarity, but they can't conceal 
the fact that his proofs are extremely subtle and difficult.  Perfectoid rings lack 
familiar finiteness properties — the term of art is that they are not noetherian13.  This 
means that the unwary will be systematically led astray by the familiar intuitions of 
algebra.  The most virtuosic pages in Scholze's papers generally involve finding ways 
to reduce constructions that appear to be hopelessly infinite to comprehensible (finite 
type) ring theory.  This is my contribution to speculation about why Scholze 
succeeded so brilliantly where so many outstanding mathematicians failed.   
 

 
The concept's reception 

 
 Scholze's first lectures on perfectoid spaces already included a stunning 
application, namely the proof of the weight-monodromy conjecture, in the special 
case of complete intersections in projective space (extended in the published version 
to complete intersections in toric varieties) over p-adic fields.  As was mentioned in 
the Prologue, this question was left unsolved by Grothendieck and Deligne.  The latter 
had indeed proved the complete conjecture over the characteristic p analogues of p-

                                                
11 As formalized and systematized by O.Gabber and L. Ramero in Almost ring theory, volume 1800 of 
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003.  Gabber, who is based at the IHES, 
attended Scholze's lectures, and I can't resist mentioning how much arithmetic geometry is indebted to 
Gabber's constantly insightful questioning, which has kept the field honest for over 30 years.  At 
several points during his lectures Scholze thanked Gabber for forcing him to clarify his ideas. 
12 I don't have to fight very hard, because I only barely understand the proofs myself.  The interested 
reader can find the details in Scholze, P., Perfectoid spaces. Publ. Math. Inst. Hautes É ́tudes Sci. 116 
(2012), 245–313. 
13 After Emmy Noether, the founder of modern algebra. 



adic fields — I can assure the reader that this was a very hard thing to do — and 
Scholze's methods allowed him to "tilt up" Deligne's proof for the cases he was able 
to settle.    
 
 Six months before his IAS lectures, Scholze was seen as an exceptional talent 
by many colleagues, but not by everyone; a prestigious journal foolishly rejected one 
of his pre-perfectoid papers (which was later published in an even more prestigious 
journal).  His proof of the weight-monodromy conjecture was enough to guarantee 
that this would not happen again.  My understanding was that Scholze invented 
perfectoid spaces in order to "tilt up" Deligne's proof of the weight-monodromy 
conjecture, but it was clear from the outset that the concept would have many more 
applications.14  A few months after his IHES lectures, a French graduate student asked 
whether I would be willing to be his thesis advisor; things started conventionally 
enough, but very soon the student in question was bitten by the perfectoid bug and 
produced a Mémoire M2 — a mainly expository paper equivalent to a minor thesis — 
that was much too complicated for his helpless advisor.15  By then Scholze had found 
two new spectacular applications that the precocious student managed to cram into his 
Mémoire M2, making it by far the longest Mémoire it has even been my pleasure to 
direct. 
 
 Although there have been more applications in the meantime — and I will 
mention at least one of them — I want to devote a moment to the two that were 
discovered in the year immediately following the IHES lectures, because they served 
to cement the idea that perfectoid spaces provide the right framework to adapt the 
constructions of complex Hodge theory in the p-adic setting.  The first application 
was an (unexpectedly general) extension of the main theorems of p-adic Hodge theory 
to (proper) rigid-analytic varieties.  This includes a new proof of the theorem of 
Faltings and Tsuji mentioned above; of the four existing proofs (the fourth, slightly 
later, is due to W. Niziol), Scholze's, in its large structure and in its local arguments, is 
the one that most closely resembles the proofs of the main theorems of complex 
Hodge theory.  The second application, joint with Jared Weinstein, was a 
classification of p-divisible groups over a complete algebraically closed p-adic field.  
All I want to say about p-divisible groups, is that they are objects of fundamental 
importance in arithmetic geometry and number theory, that they are distantly related 
to the Abel-Jacobi theory of period integrals on algebraic curves, and that there has 
been a dizzying variety of classification schemes for p-divisible groups, each one 
useful for one purpose or another.  Again, of all the classifications, the one of Scholze 
and Weinstein, apart from being perhaps the easiest to remember (though certainly 
not the easiest to prove), is the one that most closely resembles its complex 
counterpart.  In both cases, the familiarity of the complex analogue, which is an 
advanced but necessary part of the training of practically any mathematician, 
reinforces the impression that Scholze has found the right way to think about p-adic 

                                                
14 During the breaks in Scholze's lectures there was active speculation about the applicability of his 
concept to one or another favorite problem. 
15 The student in question — who has taken on by a second, more competent advisor — has not yet 
finished his thesis but I would already count him as a member of the second perfectoid circle revolving 
around Scholze.  The first circle, as I see it, includes Scholze's immediate collaborators and a few 
others; the second circle is already much broader, and there is a third circle consisting of everyone 
hoping to apply the concept to one thing or another.    



geometry.  And Scholze has himself contributed to this impression in his expository 
writing about perfectoid spaces. 
 
 Most of the blog posts, expository articles, and letters of reference I've seen 
agree that the outstanding applications of perfectoid geometry are contained in 
Scholze's paper entitled "On torsion in the cohomology of locally symmetric spaces."  
A great deal can be said about this paper, which solved several outstanding 
conjectures in the course of vastly improving and generalizing an earlier paper16 on a 
related topic.  For the purposes of this essay, the importance of Scholze's paper is that 
it confirmed that perfectoid geometry provides the right framework for thinking about 
a number of central questions in algebraic number theory and, secondarily, that the 
cohomology of perfectoid spaces has the right (p-adic integrality) properties for 
applications to such questions.17  And it confirmed the impression that number 
theorists had made the right decision to devote time to learning Scholze's new 
framework even before it had been shown to have important applications to their 
field. 
   
 

Discussion 
 
I began writing this essay three years after Scholze's IHES lectures and one month 
after his ICM lecture in Seoul.  One year earlier, I could safely assert that no one had 
(correctly) made use of the perfectoid concept except in close collaboration with 
Scholze.  The Seoul lecture made it clear that this was already no longer the case.  
Now, after nearly a year has passed, the perfectoid concept has been assimilated by 
the international community of arithmetic geometers and a growing group of number 
theorists, in applications to questions that its creator had never considered.  It is an 
unqualified success. 
 
How can this be explained?  Mathematicians in fields different from mine are no 
better prepared than philosophers or historians to evaluate our standards of 
significance.  One does occasionally hear dark warnings about disciplines dominated 
by cliques that expand their influence by favorably reviewing one another's papers, 
but by and large, when a field as established and prestigious as arithmetic geometry 
asserts unanimously that a young specialist is the best one to come along in decades, 
our colleagues in other fields defer to our judgment.   
 
Doubts may linger nonetheless.  I don't think that even a professional historian would 
see the point in questioning whether Scholze is exceedingly bright, but is his work 
really that important?  How much of the fanfare around Scholze is objectively 
legitimate, how much an effect of Scholze's obvious brilliance and unusually 
appealing personality, and how much just an expression of the wish to have 
something to celebrate, the "next big thing"?  Is a professional historian even allowed 
to believe that (some) value judgments are objective, that the notion of the right 
concept is in any way coherent?  How can we make sweeping claims on behalf of 

                                                
16 a joint paper by Michael Harris, Kai-Wen Lan, Richard Taylor, and Jack Thorne entitled "On the 
rigid cohomology of certain Shimura varieties."   
17 The authors of the paper cited in the previous footnote — no doubt like many others working on 
similar questions — were actively seeking a p-adic cohomology theory with just these properties.   



perfectoid geometry when historical methodology compels us to admit that even 
complex numbers may someday be seen as a dead end?  "Too soon to tell," as Zhou 
En-Lai supposedly said when asked his opinion of the French revolution.   
 
It's possible to talk sensibly about convergence without succumbing to the illusion of 
inevitability.  In addition to the historical background sketched above, and the active 
search for the right frameworks that many feel Scholze has provided, perfectoid 
geometry develops themes that were already in the air when Scholze began his 
career.18  With respect to the active research programs that provide a field with its 
contours, it's understandable that practitioners can come to the conclusion that a new 
framework provides the clearest and most comprehensive unifying perspective 
available.  When the value judgment is effectively unanimous, as it is in the case of 
perfectoid geometry, it deserves to be considered as objective as the existence of the 
field itself. 
 
A value judgment applied to a new concept thus becomes an inflection or modality of 
a judgment of existence.  I don't have much time for debates over the independent 
existence of the objects of mathematical practice, but I consider the existence of 
mathematical practice to be as objective as any other factual judgment.  In that sense, 
I don't need to worry that the judgments by which my field's practice defines itself 
might be seen as tautological; what else could they be? 
 
    

                                                
18 These include the Fargues-Fontaine curve, a unifying construction due to Fontaine and Laurent 
Fargues, announced just over a year before Scholze's IAS lectures and generalized by Scholze, and 
work of K. Kedlaya and R. Liu on relative p-adic Hodge theory.   Scholze described both of these in 
detail in his 2014 ICM talk.   


