INTRODUCTION TO HIGHER MATHEMATICS V2000

REVIEW FOR SECOND MIDTERM: SOLUTIONS

Problems are in blue, solutions in black.
1. (a) State the principle of Strong Induction, defining all terms.

(b) Define what it means for a function f: R — R to be continuous at a
point a.

(c) State the division algorithm, defining all terms.
Solutions: omitted
2. (a) Find a formula for the sum of the first n even integers.
En)=2+44---+2n.
Find it first by using the formula 1 4+2 4+ -+ +n = w Then give a
separate proof using mathematical induction.
The first solution:
n(n+1)

En)=2+4+---+2n=2(14+2+--4+n) =2 5

=n(n+1).

The second solution: Since we already know that the answer is n(n + 1),
we prove this is true by induction. The case E(1) = 2 = 1(1 4 1) is true.
Suppose we know E(n) =n(n+ 1). Then

E(n+1) = E(n)+2(n+1) = n(n+1)4+2(n+1) = (n+1)(n+2) = (n+1)(n+1+ 1)
which completes the induction step.
(b) Find a formula for the sum of the first n odd integers
On)=1+3+---+2n-1
using the results of (a), then prove it using mathematical induction.
The first solution: Define S(n) = 1+2+---+n. We know S(n) = w
_ 2n(2n+1)

O(n)+E(n) = 1424+3+4+ - -+(2n+1)+2n = S(2n) 5

Thus
O(n) =82n) —E(n) =n2n+1)—nn+1) =n2n+1— (n+1)) = n?

The second solution: Since we already know that the answer is n2, we prove

= n(2n+1).

this is true by induction. The case O(1) = 1 = 12 is true. Suppose we know
O(n) = n?. Then

On+1)=0n)+2n+1)—1]=n>+2n+1) = (n+1)?

which completes the induction step.
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(c) Exercises 4.23 and 4.24 in Dumas-McCarthy.

Exercise 4.23: We use strong induction on the number of symbols in the
statement. For this we need to recall that the symbols are all of the form
P;, Qi where P; are atomic statements, and the four connectives =, A, V, =.
Let T'(n) be the claim that all well-formed propositional statement of at
most n symbols has a well-defined truth value. If n = 0 or n = 1 this is
true by definition because an atomic statement by definition is a statement,
hence has a truth value. Now suppose T'(m) is true for m < n. If S is a
well-formed statement with n symbols, then by definition it is of the form
P, PANQ, PVQ, or P= (@ where P and () are well-formed statements.
We see that P and @ have fewer than n symbols, hence have well-defined
truth values. Now we apply the truth tables to obtain the truth values of
the compounds.

Exercise 4.24: This uses De Morgan’s laws to replace A by V and —, and
the equivalence of P = @ and () V =P to eliminate the =’s.

3. (a) Let p be a prime number and let b be an integer that is relatively
prime to p. For any integer a € 7Z, we denote the congruence class of a
modulo p by [a]. Show that the operation

o+ la] = [ba]
is a well-defined bijection Z/pZ — Z/pZ.

Done in class.

(b) In the situation of (a), show that there exists ¢ € Z such that be = 1
(mod a). Show that the operations f. and f, are inverse bijections.

Since fj is a bijection, there exists ¢ such that f;(c) = [1], and this exactly
means bc =1 (mod a). Now for any a,

feo folla]) = fe([ba]) = [cba] = [bea] = [1 - a] = |a].
Since multiplication mod p is commutative, we similarly obtain fjo f.([a]) =
[a].
(c) Using Fermat’s little theorem, show that ¢ = =2 (mod p). NOTE
MISPRINT!

We know that b»~! =1 (mod a) by Fermat’s little theorem. Thus
W2.b=1=c-b (mod p).
It follows that
p | lc-b=bP"2.b =p | blc—0b"2).
By Gauss’s lemma, either p | b or p | ¢ —bP~2. But since b is relatively prime
to p, we see that the latter must be true, hence
W2=c¢ (mod p).

(d) Use the Euclidean algorithm to find the greatest common divisor of
247 and 456.
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Solution omitted.

4. (a) Let a, = £~ Using the definitions, show that

lim a, = —.
n—o00 2

Solution omitted (material not covered).
(b) Let f be the function
3

fa) = =
on the set R\ 2. Show using the definitions that f has no limit at z = 2.

Solution: Proof by contradiction. Suppose lim,_o f(x) = L for some
L € R. Then for € = 1 there is a § > 0 such that

O0<|lzr—2|<d =|f(x)—L| < 1.

(Since we know that the function is not bounded near x = 2, we can take
any positive number for €; the value 1 is the most convenient.)

Now let a = min(ﬁim, %) and take x = 2+a (or any number in (2,2+a] ¢
(2,2 + 6). Since the numerator z* is an increasing function, we know that

fay =215 7

> —=->|L+2|
a a
In particular, by the triangle inequality
[f@)|=1f(z) = L+ L] <[f(z) — L] + ||

which implies
[f(z) = LI = [f(2)| = |L| = [L+2[ - |L[ = 2 >e.
This contradicts the hypothesis that L is the limit.

(c) Suppose f and g are functions from R to R. Let a € R and suppose f
and ¢ are continuous at a. Prove that the product f - ¢ is continuous at a.

Solution omitted (proof done in class and also in Dumas-McCarthy.)



