
INTRODUCTION TO HIGHER MATHEMATICS V2000

Review for second midterm: solutions

Problems are in blue, solutions in black.
1. (a) State the principle of Strong Induction, defining all terms.

(b) Define what it means for a function f : R → R to be continuous at a
point a.

(c) State the division algorithm, defining all terms.
Solutions: omitted
2. (a) Find a formula for the sum of the first n even integers.

E(n) = 2 + 4 + · · ·+ 2n.

Find it first by using the formula 1 + 2 + · · · + n = n(n+1)
2 . Then give a

separate proof using mathematical induction.

The first solution:

E(n) = 2 + 4 + · · ·+ 2n = 2(1 + 2 + · · ·+ n) = 2
n(n+ 1)

2
= n(n+ 1).

The second solution: Since we already know that the answer is n(n+ 1),
we prove this is true by induction. The case E(1) = 2 = 1(1 + 1) is true.
Suppose we know E(n) = n(n+ 1). Then

E(n+1) = E(n)+2(n+1) = n(n+1)+2(n+1) = (n+1)(n+2) = (n+1)(n+1 + 1)

which completes the induction step.

(b) Find a formula for the sum of the first n odd integers

O(n) = 1 + 3 + · · ·+ 2n− 1

using the results of (a), then prove it using mathematical induction.

The first solution: Define S(n) = 1+2+ · · ·+n. We know S(n) = n(n+1)
2 .

O(n)+E(n) = 1+2+3+4+· · ·+(2n+1)+2n = S(2n) =
2n(2n+ 1)

2
= n(2n+1).

Thus

O(n) = S(2n)− E(n) = n(2n+ 1)− n(n+ 1) = n(2n+ 1− (n+ 1)) = n2.

The second solution: Since we already know that the answer is n2, we prove

this is true by induction. The case O(1) = 1 = 12 is true. Suppose we know
O(n) = n2. Then

O(n+ 1) = O(n) + [2(n+ 1)− 1] = n2 + (2n+ 1) = (n+ 1)2

which completes the induction step.
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(c) Exercises 4.23 and 4.24 in Dumas-McCarthy.

Exercise 4.23: We use strong induction on the number of symbols in the
statement. For this we need to recall that the symbols are all of the form
Pi, Qk where Pi are atomic statements, and the four connectives ¬,∧,∨,⇒.
Let T (n) be the claim that all well-formed propositional statement of at
most n symbols has a well-defined truth value. If n = 0 or n = 1 this is
true by definition because an atomic statement by definition is a statement,
hence has a truth value. Now suppose T (m) is true for m < n. If S is a
well-formed statement with n symbols, then by definition it is of the form
¬P , P ∧ Q, P ∨ Q, or P ⇒ Q where P and Q are well-formed statements.
We see that P and Q have fewer than n symbols, hence have well-defined
truth values. Now we apply the truth tables to obtain the truth values of
the compounds.

Exercise 4.24: This uses De Morgan’s laws to replace ∧ by ∨ and ¬, and
the equivalence of P ⇒ Q and Q ∨ ¬P to eliminate the ⇒’s.

3. (a) Let p be a prime number and let b be an integer that is relatively
prime to p. For any integer a ∈ Z, we denote the congruence class of a
modulo p by [a]. Show that the operation

fb : [a] 7→ [ba]

is a well-defined bijection Z/pZ → Z/pZ.

Done in class.

(b) In the situation of (a), show that there exists c ∈ Z such that bc ≡ 1
(mod a). Show that the operations fc and fb are inverse bijections.

Since fb is a bijection, there exists c such that fb(c) = [1], and this exactly
means bc ≡ 1 (mod a). Now for any a,

fc ◦ fb([a]) = fc([ba]) = [cba] = [bca] = [1 · a] = [a].

Since multiplication mod p is commutative, we similarly obtain fb◦fc([a]) =
[a].

(c) Using Fermat’s little theorem, show that c ≡ bp−2 (mod p). NOTE
MISPRINT!

We know that bp−1 ≡ 1 (mod a) by Fermat’s little theorem. Thus

bp−2 · b ≡ 1 ≡ c · b (mod p).

It follows that

p | [c · b− bp−2 · b] ⇒ p | b(c− bp−2).
By Gauss’s lemma, either p | b or p | c− bp−2. But since b is relatively prime
to p, we see that the latter must be true, hence

bp−2 ≡ c (mod p).

(d) Use the Euclidean algorithm to find the greatest common divisor of
247 and 456.
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Solution omitted.

4. (a) Let an = n−1
2n−1 . Using the definitions, show that

lim
n→∞

an =
1

2
.

Solution omitted (material not covered).
(b) Let f be the function

f(x) =
x3

x− 2

on the set R \ 2. Show using the definitions that f has no limit at x = 2.

Solution: Proof by contradiction. Suppose limx→2 f(x) = L for some
L ∈ R. Then for ε = 1 there is a δ > 0 such that

0 < |x− 2| < δ ⇒ |f(x)− L| < 1.

(Since we know that the function is not bounded near x = 2, we can take
any positive number for ε; the value 1 is the most convenient.)

Now let a = min( 8
|L+2| ,

δ
2) and take x = 2+a (or any number in (2, 2+a] (

(2, 2 + δ). Since the numerator x3 is an increasing function, we know that

f(x) =
2 + a

a
>

23

a
=

8

a
≥ |L+ 2|.

In particular, by the triangle inequality

|f(x)| = |f(x)− L+ L| ≤ |f(x)− L|+ |L|
which implies

|f(x)− L| ≥ |f(x)| − |L| ≥ |L+ 2| − |L| ≥ 2 > ε.

This contradicts the hypothesis that L is the limit.

(c) Suppose f and g are functions from R to R. Let a ∈ R and suppose f
and g are continuous at a. Prove that the product f · g is continuous at a.

Solution omitted (proof done in class and also in Dumas-McCarthy.)


