REALIZING $\widehat{\mathcal{O}}_{G^{\sharp}}$ -COMODULES EXPLICITLY

We show the following theorem [BL22a, Theorem 3.5.8] by mimic the argument of [BL22b, Proposition 2.4.4].

Theorem 0.1. There is an equivalence of categories

$$\mathcal{D}(\mathrm{WCart}^{\mathrm{HT}}) \simeq \widehat{\mathcal{D}}_{(\Theta^{\mathrm{p}}-\Theta)-\mathrm{nil}}(\mathbb{Z}_p[\Theta])$$

In particular, the Cartier dual of \mathbb{G}_m^{\sharp} is the formal completion of $\operatorname{Spec}(\mathbb{Z}[\Theta])$ along $V(p, \Theta^p - \Theta)$.

Proof. Let $\eta: \mathrm{Spf}(\mathbb{Z}_p) \to \mathrm{WCart}^{\mathrm{HT}}$ be the faithfully flat cover. Identifying $\widehat{\mathcal{O}}_{G_m^{\sharp}}$ with $\mathbb{Z}[t^{-1}, (t-1)^n/n!]^{\wedge}$ and a simple computation we have a short exact sequence

$$0 \to \mathbb{Z}_p \to \widehat{\mathcal{O}}_{G_m^{\sharp}} \xrightarrow{\frac{d}{d\log(t)}} \widehat{\mathcal{O}}_{G_m^{\sharp}} \to 0.$$

By faithfully flatness of η , this gives a fiber sequence

$$\mathcal{O}_{\mathrm{WCart}^{\mathrm{HT}}} o \eta_* \mathcal{O}_{\mathrm{Spf}(\mathbb{Z}_p)} \xrightarrow{\Theta_{\mathbb{Z}_p}} \eta_* \mathcal{O}_{\mathrm{Spf}(\mathbb{Z}_p)}$$

where $\Theta_{\mathbb{Z}_p}$ denote the Sen operator for $\eta_*\mathcal{O}_{\mathrm{Spf}(\mathbb{Z}_p)}$. Since η_* and η^* both commutes with filtered colimits, it follows from the projection formula and the above fibre sequence that $R\Gamma(\mathrm{WCart}^{\mathrm{HT}}, -)$ also commutes with filtered colimits. Hence for any $\mathcal{E} \in \mathcal{D}(\mathrm{WCart}^{\mathrm{HT}})$, we have $\mathcal{E}_{\eta} \simeq R\Gamma(\mathrm{WCart}^{\mathrm{HT}}, \eta_*\mathcal{E}_{\eta}) \simeq R\Gamma(\mathrm{WCart}^{\mathrm{HT}}, \eta_*\mathcal{O}_{\mathrm{Spf}(\mathbb{Z}_p)} \otimes \mathcal{E})$ carrying an endomorphism $\Theta_{\mathcal{E}}$ (given by $\Theta_{\mathbb{Z}_p} \otimes \mathrm{Id}_{\mathcal{E}}$). Since $\Theta_{\mathbb{Z}_p}^p - \Theta_{\mathbb{Z}_p}$ is locally nilpotent mod p, so is $\Theta_{\mathcal{E}}$ by using $R\Gamma(\mathrm{WCart}^{\mathrm{HT}}, -)$ commuting with filtered colimits. In conclusion, we get a functor

$$\mathcal{D}(\mathrm{WCart}^{\mathrm{HT}}) \to \widehat{\mathcal{D}}_{(\Theta^{\mathrm{p}}-\Theta)-\mathrm{nil}}(\mathbb{Z}_p[\Theta])$$

by $\mathcal{E} \mapsto (\mathcal{E}_{\eta}, \Theta_{\mathcal{E}})$. And the above fiber sequence shows that this functor is fully faithful.

As for essential surjectivity, suppose $M \in \widehat{\mathcal{D}}_{(\Theta^p - \Theta) - \text{nil}}(\mathbb{Z}_p[\Theta])$, i.e. p-adically complete \mathbb{Z}_p -module M with a Θ -action which $\Theta^p - \Theta$ is locally nilpotent (mod p). We endow M a $\widehat{\mathcal{O}}_{G_m^{\sharp}}$ comodule structure by the following function $t^{\Theta}: M \to \widehat{\mathcal{O}}_{G_m^{\sharp}} \otimes M$:

$$t^{\Theta}(m) = \sum_{n=0}^{\infty} \frac{(t-1)^n}{n!} \otimes (\Theta(\Theta-1)\cdots(\Theta-n+1)(m)).$$

It is well defined by the natural of $\Theta^p - \Theta \equiv \prod_{0 \le n < p} (\Theta - n) \mod p$ being locally nilpotent. It is then not hard to verify that this realizes M as a $\widehat{\mathcal{O}}_{G_m^\sharp}$ -comodule and it is an inverse.

Remark 0.2. Heuristically, one can think

$$t^{\Theta}(m) = \exp(\log(t)\Theta)(m)$$

$$:= \sum_{n=0}^{\infty} \frac{(\log(t))^n}{n!} \otimes \Theta^n(m)$$

which agrees with the formula in [BL22a, Proposition 3.7.1]. However, it is not very clear that the infinite sum converges here.

In particular, one obtains the following result in [BL22a, Proposition 3.5.11].

Proposition 0.3. Let $\eta : \operatorname{Spf}(\mathbb{Z}_p) \to \operatorname{WCart}^{\operatorname{HT}}$ be the faithfully flat cover. Then for any $\mathcal{E} \in \mathcal{D}(\operatorname{WCart}^{\operatorname{HT}})$, we have a canonical fibre sequence:

$$R\Gamma(WCart^{HT}, \mathcal{E}) \to \mathcal{E}_{\eta} \xrightarrow{\Theta_{\mathcal{E}}} \mathcal{E}_{\eta}$$

where $\Theta_{\mathcal{E}}$ is the Sen operator.

Proof. By the Theorem above we have

$$R\Gamma(\mathrm{WCart}^{\mathrm{HT}}, \mathcal{E}) \to \mathcal{E}_{\eta} \xrightarrow{\Theta_{\mathbb{Z}_p} \otimes \mathrm{Id}_{\mathcal{E}_{\eta}}} \mathcal{E}_{\eta}$$

It suffices to show that $\Theta_{\mathbb{Z}_p} \otimes \operatorname{Id}_{\mathcal{E}}$ is isomorphic to $\Theta_{\mathcal{E}}$. Since $\mathcal{E}_{\eta} = R\Gamma(\eta_*\mathcal{E}_{\eta})$ is the fibre of

$$\widehat{\mathcal{O}}_{G_m^{\sharp}} \otimes \mathcal{E}_{\eta} \xrightarrow{\frac{d}{d \log(t)} \otimes \operatorname{Id}_{\mathcal{E}_{\eta}}} \widehat{\mathcal{O}}_{G_m^{\sharp}} \otimes \mathcal{E}_{\eta}$$

it suffices to show we have the following commutative diagram with vertical arrows isomorphic

We then win by the usual trick of trivializing Hopf algebra's comodules and the above Theorem. \Box

References

 $[BL22a] \ Bhargav \ Bhatt \ and \ Jacob \ Lurie, \ Absolute \ prismatic \ cohomology, \ arXiv \ preprint \ arXiv:2201.06120 \ (2022). \\ [BL22b] \ \underline{\hspace{1cm}}, \ Prismatic \ f\text{-}gauges, \ Lecture \ notes \ available \ at \ https://www. \ math. \ ias. \ edu/~bhatt/teaching/mat549f22/lectures. \ pdf \ (2022).$