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Theta characteristics and noncongruence modular forms

GYyuJIN OH*

Abstract: We prove that a section of a theta characteristic v (or
any odd power of it) of a modular curve different from the Hodge
bundle w is a noncongruence modular form in most cases. On the
other hand, we show how v # w gives rise to a twisted period map
to a Siegel modular variety of dimension three, where the twist
comes from the fact that the moduli of abelian surfaces A, is a
stack. Some questions on the Brill-Noether theory of the modular
curves are answered.
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1. Introduction

The theory of theta characteristics was initiated in hopes to clarify the for-
mulas satisfied by theta functions. Recall that a theta characteristic of a
connected compact Riemann surface is a divisor class © where 20 is the
canonical class. In general, aside from the parity of a theta characteristic,
it is difficult to distinguish one theta characteristic from another. For exam-
ple, by [3], choosing a theta characteristic of a compact complex manifold
amounts to choosing a spin structure on the manifold. The set of all theta
characteristics of a connected compact Riemann surface C' is a homogeneous
space under the action of the group of 2-torsions of the Jacobian of C, but
there is no good choice of a basepoint.

However, there are certain curves over which there is a “preferred choice”
of a theta characteristic. A prominent example is the case of a modular curve,
which is the moduli space of elliptic curves with certain structures. If we
denote the universal elliptic curve as f : &€ — Y, then the Hodge bundle
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fx Q}: ne often denoted as w, satisfies the Kodaira—Spencer isomorphism, which
says that w is a theta characteristic of Y (see Theorem 2.1). Starting off with
this observation, this paper aims to investigate the following question.

How “special” is w compared to the other theta characteristics of the
modular curve?

Noncongruence modular forms and geometric local systems The
above vague question may be interpreted in various ways. Indeed, the modular
curve Y and its Hodge bundle w is of fundamental importance in the study
of arithmetic of modular forms, which may deem Y and w special. On the
other hand, we give a much more precise result as to why w is the most
arithmetically meaningful theta characteristic of the modular curve.!

Theorem 1.1. Let v be a theta characteristic different from the Hodge bun-
dle w. For k > 1 odd, the sections of v®* are noncongruence modular forms.

This is Theorem 4.1 of the paper. Recall that a noncongruence modu-
lar form is a holomorphic function over the upper half plane satisfying the
properties of the modular forms, except that the level group is a finite index
subgroup of SLy(7Z) that is not a congruence subgroup. As the sections of a
power of w are modular forms with the level being the level of the modular
curve, this picks out w as the unique theta characteristic of the modular curve
whose sections are congruence modular forms.

We establish Theorem 1.1 by studying the finite index subgroup I', C
SLa(Z) associated to each theta characteristic v via the nonabelian Hodge
correspondence. It was already noticed by Simpson in [25] that a theta char-
acteristic L on a curve C' can be used to define a Higgs bundle (L & L™}, 0)
which corresponds via nonabelian Hodge correspondence to the monodromy
representation underlying the variation of the Hodge structures induced from
the complex uniformization of the curve C. As a section of v®* is a weight k
modular form with level I',, the content of Theorem 4.1 is that I, is not a
congruence subgroup for v # w, which we prove by slightly generalizing [18].

The difference between I', and the level of the modular curve I' := T,
is mild, as I', and T" have the same image in PSLs(Z), or equivalently,
+I", = #£I'. In fact, even though I', for v # w is not a congruence subgroup,
the standard representation p, : I', — GLg(C) defines a local system of the

'What we actually study are the logarithmic versions of theta characteristics over
a compact modular curve. For this purpose, we require logarithmic generalizations
of various results (such as complex/p-adic nonabelian Hodge correspondence) in
the paper. In the Introduction, we suppress this issue for the sake of exposition.
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modular curve which come from geometry. More precisely, in §6, we construct
a family of abelian surfaces W, named the twisted Kuga—Sato variety, over
the modular curve, which gives rise to a geometric local system which contains
pu as a sub-local system.

The twisted Kuga—Sato variety W, over Y gives rise to a twisted period
map 7, 1 Y — Ao to the moduli stack of abelian surfaces. This differs from
the usual diagonal period map 7giag : ¥ — Az induced from the diagonal
embedding H — H x H — Hs from the upper half plane to the Siegel upper
half space of degree 2, but in a very subtle way: m, # Tqiag but p, = Ddiag,
where p,, paiag : Y — Ag are the corresponding period map into the coarse
moduli scheme A, of abelian surfaces. Namely, the difference between the two
period maps comes from the stacky nature of As. In §7, we also construct
a certain non-standard level structure on the Siegel modular threefold over
which we see the difference between the two period maps on the level of
schemes.

The twisted Kuga—Sato variety W, can be seen as realizing the “geometric
local system” corresponding to the Higgs bundle (E, := v®v~1,6,). In §6, we
construct a variation of Hodge structures p, i and a de Rham 7Z,-local system
pvp on Y, constructed as a part of the relative H' of the twisted Kuga-Sato
variety W, /Y. These geometric local systems satisfy the following.

Theorem 1.2. The variation of Hodge structures p, g is the unique variation
of Hodge structures whose associated graded is (E,,0,). The de Rham Z,-local
system py,p restricted to Yoo (here, Q" is the maximal unramified extension
of Qp) is a crystalline Zy,-local system, and it is associated to a unique filtered
convergent F-isocrystal whose associated graded is (E,,0,).

The constructions of the local systems are in Definition 6.2, and The-
orem 1.2 is a combination of Theorems 6.1 and 6.3. The proofs use the
usual nonabelian Hodge correspondence of Simpson [25] and the p-adic non-
abelian Hodge correspondence established by Lan-Sheng-Zuo [21] and Lan-
Sheng-Yang-Zuo [20].

Brill-Noether theory of the modular curves and the Hodge bundle
There is another prominent avenue of research on the “specialty” of curves
and line bundles, the Brill-Noether theory. In the Brill-Noether theory, a line
bundle L over a smooth projective complex curve C' is considered special if
hO(L) is “larger than usual” Furthermore, a curve C' is considered special if
there exists a certain line bundle with a larger than usual h°. The notion
of “larger than usual” is precise, as the fundamental theorems of the Brill-
Noether theory (as developed by [16, 19, 12, 11]) show various properties of



2190 Gyujin Oh

a general curve in Mg, the moduli of genus g curves, and any curve or a
line bundle violating these properties are deemed “special”; for the precise
definition, see Definition 5.1.

Due to the special nature of the modular curves and their Hodge bundles,
it is natural to guess that they may be special in the sense of Brill-Noether
theory. Indeed, we show the following in §5.

Proposition 1.1. Any modular curve of a sufficiently fine level is special in
the sense of Brill-Noether theory.

This is Proposition 5.1. We think this result could be folkloric, but we
were unable to find a reference to it, so we provide the proof. On the other
hand, it seems that the Hodge bundle w has no relationship with the Brill-
Noether theory; we show in Examples 5.1 and 5.2 that sometimes the Hodge
bundle w is the theta characteristic with the most sections, while sometimes
it is the theta characteristic with the fewest sections. The computation in
Example 5.2 approaches a noncongruence modular form of level I', for a
theta characteristic v # w as a square root of a weight 2 modular form of
congruence level, which is interesting in its own right.

It may still be true that the Hodge bundle w is special in the sense of Brill-
Noether theory if the level is sufficiently fine enough. We end the Introduction
with a heuristic for this. It will be interesting to see if this heuristic can be
made more precise.

Let A be the discriminant modular form, which is a cusp form of level 1
and weight 12, which vanishes exactly once at every cusp and nowhere else.
If we denote the space of cusp forms of weight k£ and level I', for a theta
characteristic v as Si(I',), then there is an injective map S;(I",) x4, S13(0y)
given by multiplication by A. The image of this map consists of the cusp
forms of weight 13 and level I', which vanish at every cusp to order 2 or
higher. Let ¢y, ..., ¢, be the cusps of the modular curve, and for f € Sg(T,),
let ¥y be the m-dimensional vector consisted of the first Fourier coefficients
in the g-expansions of f at the cusps. If fi,..., fy is a basis of Sy3(T',), let

M, = (Ufl Ufz T ﬁfd)'

Then, dim S;(I')) = dim S;3(I", ) —rank M,,. On the other hand, dim Sy3(I",) is
independent of v by Riemann—Roch. Therefore, dim S (I'",) is large if rank M,
is small, i.e. when there are more relations between @¢’s, or when there are
more relations between the Fourier expansions of the same modular form at
different cusps.
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If v = w, then there are various relations between the Fourier expansions
of a Hecke eigenform at different cusps, as there are Hecke operators; this
principle was already used in the calculation of Example 5.2. On the other
hand, if v # w, then Si3(I",) is entirely consisted of noncongruence modular
forms by Theorem 1.1, so the Hecke operators simply vanish by the result of
Berger [4]. Therefore, we expect that there will be less relation between the
Fourier expansions of a noncongruence modular form at different cusps. This
heuristic says that rank M, has more reasons to be smaller than rank M, for
v # w, which converts to that dim S;(I',,) has more reasons to be larger than

dim Sl (Fl,)
1.1. Notations

Let I' < SLy(Z) be a congruence subgroup that satisfies the following condi-
tion.?

(%) There exist integers Ny, Ny such that (Ny, N2) is odd, lem(Ny, No) >
5,and I' = Fl(Nl) N F(Nz)

For example, the standard congruence subgroups I'y (V) and I'(N) for any
N > 5 satisfy (x). Note that (%) implies that I" is torsion-free.

Let Y(I') = T'\H be the (open) modular curve, regarded as a Riemann
surface, and let X (") be the compactification of Y (T'). Thanks to (x), there is
a universal elliptic curve f : £ = Y(I'). Let D = X(I') = Y(I") be the cuspidal
divisor. We will add subscripts to these geometric objects (e.g. Y (I')g) if we
need to specify the base ring. Throughout the paper, we fix the embeddings
Q— Cand Q — @p, and an isomorphism C & @p compatible with the em-
beddings. We also fix a Q-point * € Y'(I')g(Q) which we use as the basepoint
for 7 throughout the paper. The points induced from * by the embeddings
Q—Cand Q— @p are again denoted as * by abuse of notation.

We denote the genus of X (I') as gr and the number of cusps as nr, and
we will omit the subscripts when there is no confusion. As I' is torsion-free,
we have
SLs(Z): 1) e

24 2

The space of weight & modular forms (cusp forms, respectively) of level

' is denoted as My(T") (Sk(T'), respectively).

gr =1+

2We impose this condition just for simplicity, and we expect our results to be
extended to more general torsion-free congruence subgroups. On the other hand,
the torsion-free-ness is a more crucial assumption.
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Let A, be the moduli space of principally polarized abelian varieties of
dimension g, regarded as a Deligne-Mumford stack over Q. More generally,
for a level structure I', let A, be the corresponding moduli space with the
I-level structure. Let Ay, Ay r be the associated coarse moduli schemes.

2. The Hodge bundle w

Definition 2.1. For a field F of characteristic away from the level, the Hodge
bundle w is a line bundle over Y (I')z defined as

W= Qe v ()

The Hodge bundle extends canonically (in the sense of Deligne and Harris)
over X(I')p, and, by abuse of notations, we will also denote the canonical
extension as w. One may, for example, define w over X (I') as the algebraization
of the analytic sheaf of sections of logarithmic growth of w at infinity over
Y (I).

The following is well-known.

Theorem 2.1 (Kodaira—Spencer isomorphism). Quer Y (I')g, one has a
canonical isomorphism

KS:w® & Q%/(F)F/F.
Over X(I')p, one has a natural isomorphism
KS:w® = Qk(F)F/F(D).
Proof. There is a canonical morphism,
w— W ® Q)

which is the Higgs field arising as the associated graded of the Gauss—Manin
connection on S (Ep/Y (I')g). Since the Gauss—Manin connection has no
singularities on Y (I') g, the Higgs field is nonvanishing everywhere, thus an
isomorphism. The Kodaira—Spencer isomorphism over X (I') p follows by tak-
ing the canonical extension of both sides of the above isomorphism over
Y(D)p. O

It will be later important that w®? and Qk(r)(D) are not just merely iso-
morphic to each other but also that there is a canonical isomorphism between
the two.
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Corollary 2.1. The degree of w is g — 1+ 3.

Because of the condition on the level, we have
My(T) = HO(X(D), ), Su(T) = HO(X(T), w™(~D)).

A simple application of Riemann—Roch yields the following result.
Proposition 2.1.

1. If k > 2, we have dim My (L) = (k —1)(g — 1) + 2.

2. If k > 3, we have dim Sg(I") = (k —1)(¢g — 1) + n(kT_Q) We also have
dim S(I") = g.

3. We have dim My (T') — dim S;(I') = §.

4. If n > 2g — 2, we have dim M (I') = § and dim S;(I") = 0.

n

Proof. Only dim M;(T') — dim S(I') = § requires an explanation. From the
short exact sequence 0 — w(—D) — w — w|p — 0, we have the long exact
sequence

0— S1(I) — My (I') - H(w|p) = H' (w(=D)) — H'(w) =0
as w|p is a skyscraper sheaf. On the other hand, by Serre duality,

ker(H'(w(—=D)) = H'(w)) = ker(H*(w)* = H°(w(-D))")

= (coker(H°(w(—D)) = H(w)))" = (]\;11((1?))) .

Thus, we have a short exact sequence

My (T) 0 (Ml(F)>*
0 — H"(w|p) — — 0.
Therefore, dim M;(T") — dim S;(T) is the half of dim H%(w|p) = n. O

Remark 2.1. For a cusp form of weight 1 and level I' to exist, the inequality
n < 2g — 2, or equivalently the inequality 24n < [SLy(Z) : I'], must be
satisfied, which is true when I' is sufficiently small. For example, if I' = T'(V),
the inequality is satisfied if N > 12.

Remark 2.2. It is expected that there is no simple formula that expresses
dim S1(I"). It is however conjectured that S;(I") is mostly consisted of dihedral
forms (for example, see [9, §1]).
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3. Theta characteristics as uniformizing logarithmic Higgs
bundles

In the previous section, the computation of degw and the dimension of the
space of modular forms only used the Kodaira—Spencer isomorphism. Thus,
the same dimension formulae will hold true for any line bundle v such that

v 2 O 1yc(D)-

Definition 3.1. A line bundle v over X (I') which satisfies
v 2 O rye(D)

is called a theta characteristic.”

Lemma 3.1. The results of Proposition 2.1 holds for any theta characteristic
v, if we interpret My, = HO(X(T'),v®*) and Sy = HO(Y ('), v®*).

If v is a theta characteristic, v®@w ™! is a square-root of © x(r)- Thus, there
are in total 229 = # Jac(X (I"))[2](C) many theta characteristics up to isomor-
phism. For a theta characteristic v, the isomorphism v®? = Qﬁ((r) /(C(D) in-

duces an isomorphism v = p~! ®Q§((F) /C(D). This in turn deduces a logarith-
mic Higgs field 0, : E — E®Q}((F)/C(D) on the vector bundle £, :== v®v !,

91, v P I/_l — UV :> V_l (4 Q%{(F)/(C(D) — (V D l/_l) ® Q}X(F)/C(D%

making (F,,0,) a logarithmic Higgs bundle on X (T").

In view of the nonabelian Hodge correspondence, one may ask which local
systems correspond to the Higgs fields constructed using theta characteristics.
In the non-logarithmic setting, Simpson showed in [25] that the Higgs field
formed by a theta characteristic of a hyperbolic curve is precisely a lift of
the projective representation of the topological 7; of the curve given by the
complex uniformization.

Using a tame regular analogue of the nonabelian Hodge correspondence
over a noncompact Riemann surface, we can show that the theta characteris-
tics in our sense are also characterized by the projective lifts of 71 (Y'(I'), %) =
PT.

3Perhaps a better terminology will be the stable theta characteristic: a line bundle
is called a theta characteristic if it is a square root of the canonical bundle Q; a
stable theta characteristic is when a line bundle is a square root of the canonical
bundle twisted by a specific divisor. As we will only care about the square-roots
of Q(D) in this article, most of the time we will just refer to such line bundles as
theta characteristics.
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Before stating the theorem, we introduce some terminologies.

Definition 3.2. Let PI" be the projective image of I'. Namely,
PT' = im(I" — SLy(R) — PSLy(R)).

A projective lift of PT is a subgroup IV < SLy(R) such that PT" = PT. A
projective lift is honest if the natural map I” — PI" = PT is injective (thus

bijective).
As Y(I') is topologically just a surface of genus g with n punctures, we
can choose a set of generators ai,b1,...,a,4,by4,c1,...,c, € PI' such that the

only relation between the generators is
[a1,b1] - [ag,bglcr -+ - cp = 1.

Let Ay, By,..., Ay, By, Cy,...,C, € T be the corresponding elements in I'.
A hyperbolic projective lift is an honest projective lift of the form

<611A1, 61231, ey 691149, Ggng, Cl, R ,Cn> C SLQ(R),

where ¢;; € {£1} for 1 <i<g,1<j <2
Lemma 3.2.

1. The notion of the hyperbolic projective lifts does not depend on the
choice of a presentation of PI' as a topological fundamental group of
a surface.

2. Given a hyperbolic projective lift ' of PT', let pr: be the two-dimensional
real representation of PI' given by the composition

pr - Pr &1 SLQ(R) C GLQ(R)

For two different hyperbolic projective lifts T} # T, we have pr, Z pry-
Proof.

1. Asn > 1,I' = PI'is a free group with 2g+mn—1 generators. Thus, given
a presentation of PI" as above, choosing an honest projective lift of PI" is
the same as choosing a sign for each of Ay, By, ..., Ay, By, C1, ..., Ch_1,
or equivalently, choosing a homomorphism PT'" — (Z/27)%n~1,

Note that X(I') has the fundamental group, denoted PT', (with the
same choice of basepoint as Y (I') via the inclusion Y(I') — X(I"))
whose presentation can be given by

P (@ by,..... a0 | [a.bi) - [a5.5) = 1),
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and the natural homomorphism 71 (Y (T"), ¥) — w1 (X ("), *) is given by
a; — @, b; = b;, ¢; — 1. Thus, an honest projective lift is a hyperbolic
projective lift if and only if the corresponding homomorphism PI' —
(Z,/27)%9+"=! factors through the morphism PT' — PT. Since the latter
condition does not refer to a specific presentation at all and only uses
the natural map PI' — PT, the notion of hyperbolic projective lifts is
independent of the choice of a presentation of PI'.

2. Choose a presentation of PI' as above. Given I’} # T', there is some
1 < i < g such that either a; or b; is lifted to matrices with the
opposite signs. Let d € {a;,b;} be such element. Then, trpp (d) =
—tr pry (d). Since A; and B; are hyperbolic matrices, tr A; and tr B; are
both nonzero. Thus, tr pr/ (d) # tr pr, (d), which means that as abstract
representations pr, and pr;, are non-isomorphic. U

The above lemma shows that we can refer to the hyperbolic projective
lifts of PI' as being certain two-dimensional real representations of PI', or,
after conjugation, two-dimensional representations of PI" valued in SU(1,1).

We are now able to state the main theorem of this section, which should
be a standard consequence of the tame regular nonabelian Hodge correspon-
dence.

Theorem 3.1 (Theta characteristics are hyperbolic projective lifts). There
is a one-to-one correspondence between the theta characteristics and the hy-
perbolic projective lifts of PI', characterized as follows.

o For a theta characteristic v, pr, is the 2-dimensional local system on
Y (') corresponding to the logarithmic Higgs bundle (E,,0,) via the
tame nonabelian Hodge correspondence. Furthermore, there is a natural
isomorphism H°(X ('), v®*) = M (T,) for k > 1.

« I'y=T.

Proof. We would like to use the tame regular version of nonabelian Hodge
correspondence over a noncompact curve as in [26]: for the definitions of the
terms, see [26, Synopsis].

Theorem 3.2 (Tame nonabelian Hodge correspondence over non-compact
curves, [26, p. 718]). Over a smooth algebraic noncompact curve, there is a
natural one-to-one correspondence between stable filtered reqular Higgs bun-
dles of degree zero, and stable filtered local systems of degree zero. The corre-
spondence preserves the rank on both sides.

On the other hand, a special case of this correspondence is proved in
[25, Theorem 4]: taking the graded pieces gives an equivalence of categories
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from the category of complex variations of Hodge structures on Y (I') to the
category of Hodge bundles on Y (I'). Here, the geometric objects on Y (I') are
extended to X (I') as “canonical extensions” (namely, the filtration is given
by the growth behavior at the punctures).

We equip the Higgs bundle (E,,0,) with a left-continuous decreasing fil-
tration

Eyo = E,(~[a]D), a€R,

This is by definition a filtered regular Higgs bundle of degree zero. Moreover,
it is stable, as the only proper nonzero #-stable subbundle of E, is v~!, whose
filtered degree is negative. This is the same as the “canonical extension” of
(Ey; eu) |Y(F)‘

By the tame nonabelian Hodge correspondence, from (E,,{E, o}, 0,), we
obtain a 2-dimensional stable filtered local system L, of degree zero. The
correspondence of the statement of the Theorem is then

v — the underlying local system of L,,.

The inverse of the correspondence can be given as follows. Let IV be a hyper-
bolic projective lift of PI'. Then, the universal variation of Hodge structures
on H descend to a variation of Hodge structure on Y (I") = Y(I") whose un-
derlying local system is the same as the local system corresponding to I".
Since the local system has unipotent local monodromies around the punc-
tures, the Hodge filtration extends canonically (in the sense of Deligne) to
X(T) as a filtration of vector bundles. Let F! be the canonical extension of
F': namely, it is the sheaf of sections of F'! with at worst logarithmic growth
at the punctures. Then the inverse correspondence is

IV — F1.

This is certainly a restriction of the inverse of the tame nonabelian Hodge
correspondence as above by [25, Theorem 4]. It sends hyperbolic projective
lifts of PI' to theta characteristics. Since the two sets, the set of hyperbolic
projective lifts of PI" and the set of theta characteristics, are finite sets with
the same cardinality 29, it gives rise to a one-to-one correspondence. From
the description of the inverse correspondence, the rest of the Theorem follows
immediately. O

Note that, for a theta characteristic v, there is a line bundle L on X(I")
such that L®? = Ox() and v = w ® L. We introduce the following (non-
standard) definitions which will be used throughout the paper.
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Definition 3.3. On a scheme X, a 2-torsion line bundle is a line bundle L
over X equipped with an isomorphism iy, : L®? = Oy (the isomorphism is
a part of the data). Two 2-torsion line bundles L, L’ are regarded as being
isomorphic if there exists an isomorphism of line bundles ¢ : L = L’ which is
compatible with the isomorphisms iy, : L&? = Ox and iy : L' ®2 Ox. A
trivial 2-torsion line bundle is Ox together with the identity map of Ox.*
Similarly, over a field F', a theta characteristic with Kodaira—Spencer data
on X(I')p is a theta characteristic ¥ on X(I')p equipped with a Kodaira—
Spencer isomorphism KS, : v%? = Qﬁ((r)F/F(D). Two theta characteristics
with Kodaira—Spencer data are isomorphic if there is an isomorphism between
the underlying theta characteristics which respects the Kodaira—Spencer iso-

morphisms.

It is well-known that (e.g. [14, Exercise IV.2.7]) there is a one-to-one cor-
respondence between 2-torsion line bundles and étale double covers. Although
such a correspondence is usually stated for smooth projective curves over an
algebraically closed field, it holds true in much greater generality if one keeps
track of the relevant isomorphisms.

Lemma 3.3. LetY be a connected scheme over which 2 is invertible. Then,
there is a natural one-to-one correspondence between the isomorphism classes
of 2-torsion line bundles on X and the isomorphism classes of Galois® cov-
ers f: X =Y of degree 2. Furthermore, the one-to-one correspondence 1is
compatible with the base-change of Y on both sides.

Proof. Given a 2-torsion line bundle L over Y (with an isomorphism iy, :
L®? = Oy), one can define a finite Oy-algebra

.AL =0y DL

such that the multiplication Aj, ®¢, Ar — Ay is given by the obvious rules
and the isomorphism iy : L ®o, L — Oy. Let X := 5pecoyAL, which
by construction is a finite surjective Y-scheme of degree 2. To show that
the natural morphism X; — Y is étale, we can reduce to the case when Y =
Spec R is affine and L = Oy. Then, X, = Spec R[t]/(t? —a) for some a € R*,

4Note that, given a 2-torsion line bundle L with iy, : L®? = Oy, one can scale
iz, by an invertible element a € H?(X,Ox)*, and the new 2-torsion line bundle
(L, air,) is isomorphic to (L,iy) if and only if a is a square. This is always the case
for example if X is a projective variety over an algebraically closed field.

5In this paper, by a Galois cover we mean a finite étale cover whose self-product
splits as a trivial cover. In particular, we allow disconnected covers to be considered
Galois.
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which is clearly étale over Y = Spec R as 2t is invertible in R[t]/(t* — a). The
construction (L,iz) — X, is well-defined, as isomorphic 2-torsion line bundles
yield isomorphic Oy-algebras. Finally, a morphism ¢ : X — X, induced by
the morphism of Oy-algebras,

OY @ L (m,y)»—>(m,—y) OY @ L7

gives a nontrivial element of Auty (X ), which shows that X — Y is Galois.

Conversely, suppose that f : X — Y is a finite étale cover of degree 2.
We claim that f is a Galois covering, i.e. there is a nontrivial involution o :
X — X of Y-schemes. If X is not connected, then it is clear due to the degree
reasons that X is consisted of two connected components, each isomorphic to
Y, so there is an obvious involution of X. Thus, suppose that X is connected.
Then, the projection to the first coordinate pry : X xy X — X is also a finite
étale cover of degree 2 that has a section given by the diagonal X — X xy X.
This implies that X xy X has a connected component that is isomorphic to X
(e.g. [29, Proposition 5.3.1]) as an X-scheme. Again, by the degree reasons, it
follows that X xy X = X [] X as X-schemes. Therefore, there is a nontrivial
involution 7 : X xy X — X xy X of X-schemes (exchanging connected
components). By the faithfully flat descent, pryor : X xy X — X factors
through pry : X xy X — X via a map ¢ : X — X that is an involution of
Y -schemes, as desired.

The involution ¢ induces an endomorphism of f,Ox, which is a vector
bundle of rank 2 over Y, and as 2 is invertible on Y, f.Ox = (f.Ox)°=! @
(f«Ox)°="! where (f.Ox)°=*! is also a vector bundle. Using the descent
along pry : X xy X — X, we deduce that (f,Ox)°=! =: Ly is a line bundle
over Y, and (f.Ox)°=! = Oy; the latter identification is canonical via the
adjunction morphism Oy — f,Ox.

Note also that the involution o respects the multiplication morphism
(f+0x) @0, ([+Ox) — f.Ox, so that the image of its restriction to Lx ®o,
Ly lies in (f.Ox)°=! = Oy. This restriction morphism Lx ®¢, Lx — Oy
is an isomorphism as it is an isomorphism after base-changing along pr, :
X Xy X — X. Thus, given a finite étale cover f : X — Y of degree 2, one
obtains a 2-torsion line bundle Ly and Lx ®e, Lx — Oy. It is clear that
the two above constructions are inverses to each other, which implies that
these establish a one-to-one correspondence between 2-torsion line bundles
and finite étale covers of degree 2. It is also clear from the constructions that
the correspondence is compatible with the base-change of Y. O

The correspondence in Lemma 3.3 gives another geometric way to com-
pute I',,.
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Proposition 3.1. For a 2-torsion line bundle L on X(I'), let o : X —
X(T) be the étale double cover corresponding to L under the correspondence
of Lemma 3.3. If we define the representation py of PT' = m (Y (T'),*) to be
the composition

m (Y(D), %) = m (X(T), %) — Gal(X/X(T)) = {£1},
the local system pr, satisfies pr, = pr, ® pr. In particular,
_ a b a b a b
[, = ({1 A1, €1B1,e5A2,6,Bs, ... egAy, €,Bg,C1, ..., Cp),

where €& = pr(a;) and € = pr(b;).

Note that, in the above case, the choice of an isomorphism L& = O X(I)
is irrelevant, as H(X(I'), Ox ) = C is an algebraically closed field.

Proof. As first noted by Deligne, the nonabelian Hodge correspondence is
compatible with tensor products (see [27, p. 8]). Thus, we only need to show
that pr, : m (X ('), %) — {£1} and the Higgs bundle (L, 0) with zero Higgs
field on X(I") correspond to each other via the nonabelian Hodge correspon-
dence on X(I').

Let ¢ € Gal(X1/X(I)) be the nontrivial Galois element, which gives rise
to an automorphism ¢ € Autx(p)(f(L). Consider % (X1/X(T)), which is a
vector bundle with an integrable connection Vg of rank 2 on X (I'). It is
isomorphic to

(t%’iﬁ:{ (XL/X(F))v VGM) = (OX(F)7 d) ® (Lv d)7

where (Oxr),d) denotes the canonical differential d : Oxry — Qk(r) /C
and (L,d) = L ® (Ox(r),d) (this defines a connection as L®* = O, so
the transition functions for a sufficiently fine atlas can be taken to be con-

stant functions, namely +1). Furthermore, c gives rise to an endomorphism
of H(X1/X (D)), where

(%%(XL/X(F)%VGM)C:I = (Ox),d),
(A% (XL/X(D)), Van)™ ' = (L, d).

Thus, py, (considered as a character) is a local system that underlies a vari-
ation of Hodge structure corresponding to (#°(Xy /X (T')))*="", and its as-
sociated graded is (L,0). This implies that pr, and (L,0) correspond to each
other via the nonabelian Hodge correspondence. O
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We will see later that without much difficulty the same construction works
motivically.

4. The Hodge bundle is the unique congruence theta
characteristic

By Theorem 3.1, for each theta characteristic v, HO(X(I'), v®*) is a space of
weight k£ modular forms of level I',. Note that, if k is even, then

Ok — (1/®2)®k/2 _ (w®2)®k/2 — Ok

Y

so Mp(T'y) = My(T') is consisted of modular forms of level I" which is a
congruence subgroup.

From this, one naturally wonders about the nature of odd-weight modular
forms of level I',. We introduce the following definition.

Definition 4.1. A theta characteristic v is called a congruence theta char-
acteristic if T',, < SLg(Z) is a congruence subgroup.

In contrast to the even-weight case, the main theorem of this section shows
that, if £ is odd and v # w, Mg(T',) is consisted entirely of noncongruence
modular forms!%

Theorem 4.1. A theta characteristic v is a congruence theta characteristic
if and only if v = w.

A quick corollary is that, for v # w, the Hecke operators are zero on

HO(X(T),v®*) for odd k.

Corollary 4.1. For (p, N) =1 and odd k > 1, define the Hecke operator T),
on HO(X(T),v®%) = My(T,) as follows: for f € My(T,),

Tpf = Z f’aam

where

I'yal'y, = UF,,oeozi, o= (g ?) .

If v # w, we always have T, f = 0.

SRecall that a noncongruence modular form is a modular form of some level
which does not arise as a modular form of congruence level.
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Proof. By [4], we know that T, factors through the trace map to the congru-
ence closure. In our case, if v # w, by Theorem 4.1, the congruence closure
of T'y is (£1,T). Since there is no nonzero odd-weight modular form of level
(£1,T), the desired statement follows. O

Remark 4.1. The above Hecke operator can be geometrically interpreted as
the correspondence

X(T,Nna 'T,anTy(p) —=X(al'La tNT,NT%p))

X(T,) X(I)

where I'(p) = {(¢%) = (+?) (modp)}. As I, is an index 2 subgroup of a
congruence subgroup of level prime to p, « in general does not normalize I,
but rather sends I', to a possibly different index 2 subgroup of (+1,T").

The proof of Theorem 4.1 will be a slight generalization of the proofs in
[17, §2], for which we use the technical condition (). As in loc. cit., we define

Va(G) := G™/(G™)? = G** @, F,

for a group G. Note that V5 is a functor that sends finitely generated groups to
finite-dimensional Fa-vector spaces, which has the following easy properties.

Lemma 4.1.

1. Vy is a right-exact functor.”
2. ‘/2(G1 X GQ) = VQ(Gl) X VQ(GQ)

Proof. The functor V5 is the composition of the abelianization functor with
(—) ®z Fq, and both are right exact. O

Proof of Theorem 4.1. AsT',, =T', ', is a congruence subgroup, which proves
one direction. Conversely, suppose that I, is a congruence subgroup. As per
Theorem 3.1, we need to prove that there is no hyperbolic projective lift of
PT" which is a congruence subgroup and is different from I'.

Suppose that I' is of level N; namely, N is the minimal number such
that ['(N) < T'. By the result of Wohlfahrt [32, Theorem 2] and Kiming—
Schiitt—Verrill [18, Proposition 3], T" is of general level either N or % Recall
that the general level of a Fuchsian group is the least common multiple of

"Even though the category of groups is not an abelian category, the notion of
exact sequences makes sense.
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the widths of the cusps. The general level only depends on the projective
image of the Fuchsian group, so I', is of general level N. By loc. cit., I, >
I'(2N). Thus, (£1,T") > T', > I'(2N). Thus, I',, corresponds to a subgroup of
(£1,T)/T(2N) = (£1) x I'/T(2N) such that {1} and T', together generate
the whole subgroup (£1,T") /T'(2N). As in [17, Proposition 1], projective lifts
of PI' that are also congruence subgroups are in one-to-one correspondence
with a sub-Fa-vector space U of Vo((£1,T)/T'(2N)) = (£1) x Va(I'/T'(2N))
such that U and —1 together span the whole vector space. Such projective
lift is honest if U is a proper subspace, and —1 ¢ U. Thus, the composition
U= V((£1,T)/T(2N)) = (£1) x Vo(I'/T'(2N)) — Vo(I'/T(2N)) is injective,
thus bijective (as the target and the source have the same Fo-dimensions).
Thus, choosing an honest congruence projective lift is the same as choosing
the signs for the lifts of basis elements of Vo(I'/T'(2N)).

By the assumption (%), N = lem(Ny, N2), and I'(N) < T < T'y(N). Let
N = 25plt ... plr where p;’s are odd primes. Note also that

SLy(Z)/T(2N) = SLy(Z/2N7Z) = SLy(Z/2°1' Z) x H SLo(Z/pliZ),

i=1

so I'1(N)/T(2N) injects into 'y (2%)/T(2°+1) x [1i; Ty (p}) /T (pl), which is a
bijection as the two groups are finite groups of the same order for 1 <a<b,
#T'1(p*)/T(p*) = p**~2¢. Under this isomorphism, we have

[/T(2N) = A x HBZ,

where B; < T'y(pl#)/T'(pl') is a subgroup, and

SLa(Z)/T(2) if s =0,
A= T(2%)/T(25TY)  if 2| Ny,
[(2%)/T(25FY)  if 2|Ns.

Note that T';(p')/T'(pl) is of odd order, so B is of odd order as well. Thus,
the natural projection map I'/T(2N) — A induces an isomorphism
Va(D/T(2N)) > Va(A).

By the right-exactness of V5, we have a surjective natural map Va(I') —
Vo(T'/T'(2N)). Since a hyperbolic projective lift fixes the signs of the lifts of
the loops around the cusps, to prove Theorem 4.1, it suffices to prove that
Vo(I'/T(2N)) is spanned by the images of shearing transformations along the
cusps. We prove that this is true by dividing into cases.
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(Case 1)

(Case 2)

(Case 3)

Gyujin Oh

If s =0, then A = SLy(F2) = S5, and V2(A) = (Z/2Z) is generated
by (§1). As T' = T'1(Ny) NT(N2) with Ny, Ny odd, (§72) € I'is
sent to (§1) € A via the natural projection I' — A. Since (§2)
is a shearing transformation along the cusp oo € P1(Q), there is no
hyperbolic projective lift different from I'.

If s > 0 and 2|Ny, then A = T'(2%)/T'(2°"1). As in the proof of
[17, Proposition 2], one notes that A = V,(A) = (Z/2Z)3 with a
generator given by

_(r2) 4 (rrr -2 (10
o 1) 77 25 1-9s) T2 1)

Note that we took a slightly different set of generators. Note that

1 N2 s
a= (O ) >(m0d2 ),
_ 1+ NNy —NiNy s+1
5‘( NN, 1—N1N2> (mod 275,
— 1 0 s+1
72(]\71]\72 1)(mon )

and these matrices are genuine elements of I' = T'y(Ny) N T'(Va).
Also note that ((1) N2) is a shearing transformation along the cusp
oo € PH(Q), (nly, §) is a shearing transformation along the cusp
0 € PL(Q), and (1}11\[]1\,]2\72 1:%1]%22) is a shearing transformation along

the cusp 1 € P1(Q), since

1+N Ny —NiNp \ (11 1 0\/1 -1
N1 N, 1-NNy) \0 1)\ NNy 0 1)
Therefore, there is no hyperbolic projective lift different from I'.

If s > 0 and 2| Ny, then A = T'1(2%)/T(25T1). As per loc. cit., Vo(A) =
(Z/27)* with a basis given by

(11 (10
T=lo 1) 77 \2s 1)

Since Ny is odd, 27! is invertible modulo Ns, which implies that
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there exists k € Z such that k2°7! = —1(mod N»). Now note that

_ (1 14 k25! s+1 _ 1 0 s+1
T:(O . )(mon ), v= NN, 1 (mod 2°1),

and these matrices are genuine elements of I' = 'y (N7) NI'(Ng). It is
clear that these matrices are also shearing transformations along the
cusps 00,0 € P1(Q), respectively, so there is no hyperbolic projective
lift different from I. O

5. Brill-Noether theory of the modular curves and the
Hodge bundle

There is a different perspective on how special a line bundle on a curve is,
which goes under the general name of Brill-Noether theory. Generally speak-
ing, given a smooth projective complex curve C' and a line bundle L (or
equivalently a divisor class [D]), L is considered special if dim¢ H%(C, L) is
larger than the other line bundles on C' of the same degree. Furthermore, the
curve C' is considered special if there exists a certain line bundle with a larger
than usual h°. More precisely, we introduce the following definition which is
common in the literature.

Definition 5.1. A smooth projective complex curve C of genus g is called
Brill-Noether general if, for all r,d > 0, the moduli space G(C) of linear
systems on C' of degree d and dimension r (for the definition, see [1, p. 177])
is smooth of dimension p(g,d,r) := g — (r + 1)(g — d + r); this in particular
means that GJ(C) is empty if p(g,d,r) < 0.

Otherwise, C is called Brill-Noether special.

The classical Brill-Noether theory [16, 19, 12, 11] shows that a general
curve is Brill-Noether general (i.e. there is a Zariski dense open subset of the
moduli M, of genus g curves whose closed points are Brill-Noether general
curves). Given the special nature of the modular curves and their Hodge
bundles, one is naturally led to ask whether they are special in the sense of
Brill-Noether theory.

We first show that a modular curve of sufficiently fine level is Brill-

Noether special. For this, we notice a simple lemma, which extends the idea
of [31, Remark 1.12].

Lemma 5.1. Let C be a smooth projective complex curve, and suppose that
there exists a degree d divisor D satisfying the following two conditions:
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1. h°(O(D)) > 2;
2. K¢ — 2D is linearly equivalent to an effective divisor (may be zero).

If C — C'is a_finite surjective morphism from a smooth projective complex
curve C, then C' is Brill-Noether special.

Proof. We first show that C' itself is Brill-Noether special, and then show
that C itself has a divisor satisfying the two conditions. Take a 2-dimensional
subspace V' C H°(C,O(D)). We will show that G}(C) is not smooth at the
point corresponding to the linear system (D, V'), which will then show that
C is Brill-Noether special. This will follow if the Petri map

ppy 1 V@ H(C,QL(=D)) — H°(C,0QL),

which is simply the cup product, is not injective. Note that Qf(—D) = O(D+
E), where E is an effective divisor. Therefore, any section s € HY(C,O(D)) is
also a section of O(D + E). Take two linearly independent sections s,s € V,
then s ® s’ — s’ ® s is in ker pup y, which implies that the above Petri map is
indeed not injective, as desired.

Suppose now that 7 : C — C' is a finite surjective morphism. We claim
that 7* D satisfies the properties (1) and (2). By [13, (2.2.8)], H°(C, O(D)) —
HO(C,O(x*D)) is injective, so (1) holds. If Ko ~ 2D + E for some effective
divisor E, then 7*K¢ ~ 27* D+ n*E. By Hurwitz’s theorem (e.g. [14, Propo-
sition IV.2.3]), K5 ~ 27" D + (7*E + R) where R is the ramification divisor,
which is in particular effective. Thus, (2) holds as well. O

Proposition 5.1. The modular curve X (T') is Brill-Noether special if one of
the following conditions holds:

1. dimg S, (T) > 2;
2. ' = I't(N), when N is a squarefree number such that N > 10 and
Alp(N);
3. T <T' for " satisfying any of the above conditions.
Proof.

1. The Petri map for w(—D) is
o)+ HY(X(D),w(=D)) ® HO(X(T),w) — HO(X(D), L),

which is simply the multiplication map S1(I') @ M;(T") — Sa(T"). For any
two-dimensional subspace V' C S1(I'), s®s’—s'®s is in the kernel of the
Petri map, where s, s’ are two linearly independent sections of V', which
implies that G;qu(X (I')) is not smooth at the point corresponding

to the linear system (w(—D), V).
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2. The map X;(N) — Xo(N) is a Galois cover with the Galois group
(Z/NZ)* /{£1}. By the assumption on N, the Galois group is of even
order, so one may find an order 2 element in the Galois group, which
corresponds to an étale double cover X;(N) — X for some smooth
projective complex curve X of genus > 0. By [31, Remark 1.12], X7 (V)
is Brill-Noether special.

3. In the above two cases, X (I") is shown to be Brill-Noether special using
a divisor satisfying the conditions (1) and (2) of Lemma 5.1. Thus, we
can apply Lemma 5.1 to the covering X(I') — X(I) to deduce that
X(T') is also Brill-Noether special. O

In contrast to the modular curves, it turns out that the Hodge bundle w
has no meaningful relationship with the Brill-Noether theory, as illustrated
by the following two examples.

Example 5.1 (When w is the theta characteristic with the most sections).
Let I' = I'1(23). According to [23],

dime H?(X1(23),w(—D)) = dimc S1(I'1(23)) = 1.

On the other hand, X;(23) is of genus 12 and has 22 cusps, so degw(—D) = 0.
Therefore, w(—D) = Ox;, (23). For any other theta characteristic v, v(—D) is of
degree zero and is not the structure sheaf, so H%(X;(23), v(—=D)) = 0. There-
fore, dimg H%(X1(23),w) > dim¢c H%(X1(23),v) for any theta characteristic
v # w, or w is the “most special” theta characteristic.

Example 5.2 (When w is the theta characteristic with the fewest sections).
Let I' =T'1(35). According to [23],

dime H?(X1(35),w(—D)) = dime S1(I'1(35)) = 0.
We claim that there is a unique theta characteristic v such that

dime H(X,(35),v(—D)) = 1,
dime H(X1(35),/(=D)) = 0 for any theta characteristic v/ # v.

Necessarily, v # w. This implies that w is the “least special” theta character-
istic in this case.

Note that X1 (35) is of genus 25 and has 48 cusps, so deg Q. @5 (—D) =0.
This means that if there exists a nonzero weight 2 cusp form on X;(35)
which vanishes to order 2 at all cusps, then it does not vanish outside the
cusps and therefore is a square of a holomorphic function, which is a weight
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one non-congruence modular form. Furthermore, if v is the theta character-
istic corresponding to the level of this non-congruence modular form, then
dime H°(X1(35),v(—=D)) = 1, as degv(—D) = 0, v(—D) = Ox,35). More-
over, for any other theta characteristic v/ # v, V/(—D) is a degree zero line
bundle that is not the structure sheaf, so dim¢ H°(X1(35),7/(—D)) = 0.

Let f1,fa € S2(I'1(35)) be the embedded newforms 35.2.a.b.1.1 and
35.2.a.b.1.2 in [23], respectively. We claim that f := fo — f1 vanishes to
order 2 at all cusps of X;(35). We may compute its g-expansion at the cusps
other than the infinity cusp using [2]. To state the results, we introduce some
notations. For the remainder of this example, we assume that N = p;---p,
is a square-free odd integer.

There are 2" (p; — 1) - -+ (p, — 1) cusps of X (), where we can take the
representatives of the cusps nicely as

{carab = 715 €PHQ) : N=M My, 1 < a < My, (a, My) = 1, (b, Maa) = 1}

I’

~

where cup, ap ~ Curp o if and only if My = Mj and if there exists e € {+1}
such that a = ed’ (mod M) and b = eb’ (mod My). Note that ¢4 is the
infinity cusp, and cpy, o is of width M;. For a modular form g € M (I'1(N)),
let

e ab(9)(0) = D arrani(9)g™" € C[lg"M]]
j=0

be the g-expansion of g at the cusp cas, qp; more precisely, it is the Fourier
expansion of fa, 45(2) == f(on ap(2)), Where opr op € SLa(Z) is a matrix
such that

_ 1 =
UMll,a,bZCMl,a,b (Fl(N)) s OMy,a.b C (O 1) )

where Z,, ., (I'i(N)) C I'1(NV) is the stabilizer of car, g in I'1(N).
We may now state a result of Asai computing the g-expansion of a new
Hecke eigenform at all cusps.

Proposition 5.2 ([2, Theorem 2]). Let g € Sp*(N, x) be a Hecke eigenform
such that, at 11,1 = 00, g has the q-expansion

e11,1(9)(q) = Z anq", a;=1.
n=1
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Let x = Xp, - Xp, be the product such that x,, is a Dirichlet character mod
pi (may not be primitive). Then, for all cusps car, ap,

ko (M _ S n
exnan)@) = xeds + Mad) TT (54 (S JmClx) ) 2 all g,
plMy n=1

where ¢, d € Z are such that cM; + dMs = 1,

D 1<h<p Xp(h)eZT /P if X, is primitive,
Clxp) = - . . .
—q if Xp 15 trivial,

and oM s defined as

x(dnMs + cMi)an, — if (n, M) =1,
alM™) = { y(enMy + dMy)a, —if (n, My) =1,
oM ) ifn=uwy, (,y) =1

For our purpose, this can be packaged more simply as follows.

Corollary 5.1. Fiz x and a cusp ca, a0 € X1(N) of width M. Then, there
exist a constant X € C that depends only on My, a,b, and, for each n > 1,
a constant €, € C that depends only on My,a,b,n, such that, for any nor-
malized Hecke eigenform g € SpV (N, x) with the q-expansion e111(9)(q) =
Zzo:l a‘nqn at 0,

()‘en Hp\Ml a_p)an Zf (n7 Ml) - 1;
aM17a,b,n(g) ={ (Nen Hp\Ml a_p)m if (n, M) =1,

aﬂfl,a,b,m(g)al\/fl,m,b,y(g) Z- n=uzx and T — 1
5Tl f y and (z,y) = 1.

Now we are ready to show that f vanishes to order 2 at all cusps of X1(35).
Note first that fy, fo, f all have trivial character, so the order of vanishing
of f is constant along the cusps of X;(35) in a single fiber of the Galois
covering X;(35) — X((35), namely the order of vanishing of f is constant
along the cusps of the same width. As a1111(f) = 0, we only need to show
that a571’171(f) = a771’171(f) = a357171,1(f) = 0. Let fz = Z;il am-q" be the
g-expansion of f;. As f; and f5 are both newforms, we may use Corollary 5.1
to compute that, for My, = 5,7, 35,

ama11(f) =Cwm, ( H Q2p — H W,p>

p| M p| M
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for some constant Cyy, € C that only depends on M;. According to [23], we
have

a5 =1, aj7=—1,

ass =1, a7 = —1,

which implies that apr,1.1,1(f) = 0 for M; = 5,7,35. This implies that f
vanishes to order 2 at all cusps of X;(35), as desired.

6. Twisted Kuga—Sato varieties and geometric local systems
for theta characteristics

We now aim to show that the construction of Lemma 3.3 yields, for each
theta characteristic with Kodaira—Spencer data v, a compatible system of
local systems over Y (I') i over an appropriate number field K that comes from
geometry. Furthermore, we will show that these local systems correspond to
the uniformizing logarithmic Higgs bundles (E,,6,) via complex and p-adic
nonabelian Hodge correspondences. We will construct the geometric local
systems from the twisted Kuga—Sato variety.

Definition 6.1. Let K/Q be a number field, and let a : X — X (I')x be

a finite Galois cover of degree r. The twisted Kuga—Sato variety u : ka —
X(I')k associated with X is defined as the Weil restriction of the pullback
a*€k,

W= R)?/X(F)K (a*Ek).

The open twisted Kuga—Sato variety u : W — Y/(I') ¢ is defined as the open
subscheme of W 5 lying over Y/(I') g € X(I')k.
We will also use the notation ¥ := o~ (Y (I')g).

For the definition of scheme-theoretic Weil restriction of scalars, see [5,
§7.6].

Example 6.1. For a trivial Galois r-cover X(I')g [ -1 X(I')g — X(I')g
consisted of  copies of X (I")q, the corresponding twisted Kuga—Sato variety is
the usual Kuga—Sato variety (before the canonical desingularization), namely

the r-fold fiber product of Eg over X (I')g.

Remark 6.1. As in the case of the usual Kuga—Sato variety, the twisted Kuga—
Sato variety W 5 is in general singular, even though a*Ek itself is a smooth
K-scheme. On the other hand, the open twisted Kuga-Sato variety W is
smooth.
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The open twisted Kuga—Sato variety W still turns out to be a family of
principally polarized abelian r-folds over Y (I") k.

Proposition 6.1. The open twisted Kuga-Sato variety u: W — Y (I')k is
a family of principally polarized abelian varieties of dimension r.

Proof. By [8, Proposition 2], the Weil restriction of a principal polarization
is a principal polarization. As an elliptic curve is canonically principally po-
larized, W is a family of principally polarized abelian varieties. O

We can thus think of classifying map to the moduli space of principally
polarized abelian varieties of dimension r,

5 Yk = Ark,

and this induces a classifying map to the corresponding coarse moduli scheme,
Py Y(F)K — Ar,K-

Proposition 6.2. Let mgiag : Y (I')xk — Ar i be the classifying map which
corresponds to the r-th self-product Ex Xy (), -+ Xy @), Ex over Y (I)k,
and let paiag : Y (I')k — Ay ik be the corresponding map to the coarse moduli

scheme. Then, paiag = p5- On the other hand, Taiag # 75 unless X — XDk
s a trivial cover.

Proof. By [6, Proposition A.5.2], we have

W)? Xy(F)K }7 Oz*(‘:K ><1~/ (37 Xy(F)K Y))

— R~ -~
YXy(F)KY/Y(

Since Y Xy () Y is isomorphic to the disjoint union of r copies of Y, we have

W)?Xy(F)KY = R;H"'H?/? (Oz*gK H s HOK*EK) = Oé*gK ><1~/' . ><3704*5K~
This implies that

Ws Xy (@)« Y 2 (Ex Xy(@g Xy @ EK) Xy(@)x Y-
Furthermore, the two abelian schemes are isomorphic as ?—schemes; even
though Y xy ), Y 2 Y [[---[[Y is most naturally thought as being indexed
by the elements in Gal(Y /Y (I') k), for any o € Gal(Y /Y (I') k), the Y-scheme
Y S Yis isomorphic as a Y-scheme to ¥ % V. Thus, Tgiag 0 = Ty 0o, and

X
Pdiag © ¢ = pg o . Since « is flat, surjective, and locally of finite presentation,
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by [28, Tag 05VM], « is an epimorphism (i.e. surjective as a map of sheaves),
which implies that paiag = p5-

The fact that maiag # 75 is equivalent to W # Ex Xy (), -+ Xy (@), €K
There are many ways of seeing this — we will soon see that the monodromy
representations of their relative H}, are different. A more elementary way of
seeing the difference is to observe that the descent data for the two schemes
are different for the étale covering a : ¥ — Y (I') . Let us fix an isomorphism

LI?H"'HY/Q?Xy(F)K?

such that the two projection maps p1,po : Y Xy () x Y — Y are identified
with

where Gal(Y /Y (I)x) = {01 = id,0,...,0,}. Note that Gal(Y /Y (I')x) C
S, where one can identify 0 € Gal(Y /Y (I')x) with the permutation of the
components

?HH?;?XY(F)K?M?XY(F)K?;?HH?

The descent datum for Ex Xy (), - - Xy (1), Ex for the covering Y — Y (D)
is given by

(Oé*gK Xi; v X)'; O(*gK) H . H(Ofkg}( X)'; cee Xi; OJ*EK)
ld,,ld * * * *
g) (a Ex X}~, X?Oé EK)HH(OC Ex X? X;,Oz EK),
whereas the descent datum for W for the covering Y — Y (') is given by
(a*(‘:}( X}j s X;, OJ*SK) H tee H(Q*SK X}'; cee X}j Oé*gK)
M) (Oé*gK X? cee X)~, Cl*g}() H -H(a*SK ><3~, cee X? Oé*gK),
where

M * A~ . e ~ *
a8k X5 Xy o' Ek

— (a*é’K X)~, s X}~’ OJ*EK) HH(OJ*E'K ><§~/ Xy Oé*g[()
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is defined as f = (o1,...,0,), where o; is the natural map corresponding
to the permutation that it represents. As there is no ?—automorphism that
intertwines the two descent data, the two descend to two non-isomorphism
Y (T") g-schemes, as desired. O

Proposition 6.3. The family of abelian varieties W5 on Y(I)k has the
following properties.

1. Given a field extension K'/K and a point v € Y (T')(K'), the fiber

(W) is the abelian variety over K' given by

(W)?)z = R)?I/K/ ((Ew)j(vz)v

where E, is the elliptic curve corresponding to x, and X, is the étale
K'-algebra of degree 1 given by the fiber of o : X — X (D) g over z.

2. The family u : Wi — Y(I')k is Gal(Y /Y (D) g )-equivariant, where
Gal(Y /Y (D)k) acts trivially on Y (D)k.

Proof. (1) follows directly from the fact that the Weil restriction of schemes is
compatible with base-change. The action of Gal(Y /Y (I')x) on Y and on o*Ex
gives, by functoriality of the Weil restriction, the action of Gal(Y /Y (I')x) on
W5, fixing Y(I') ¢ on the base, from which (2) follows. O

The twisted Kuga—Sato variety Wy gives rise to the “geometric local
systems” on the modular curve, which will be related to the uniformizing
logarithmic Higgs bundles.

Definition 6.2. Suppose that a : X — X(I')g is an abelian étale Galois
cover, and that the exponent of the abelian group Gal(X /X (T')x) is n. For
a character y : Gal(X /X (I')g) — Z[C,]*, we define the following “geometric
local systems”:

o for a complex embedding ¢ : K — C, we define a varitaion of polar-
ized pure Z[(,]-Hodge structures of weight 1 and rank 2 on Y(I') (as a
Riemann surface),

p)ZX,H = %Bl (Wj} XK,o (C/Y(F), Z[Cn])[X]a

where #3 (W5 X0 C/Y(T),Z[(,]) is the relative first Betti cohomol-

ogy with Z[(,]-coefficients, and [x] means the x-isotypic part of the
action of Gal(X /X (T')x) on #3 (W5 xx0 C/Y(T));
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o for (p, Nn) = 1, we define an étale Z,[(,]-local system of rank 2 over
Y (T)k,

P% = Rlus «Zp[Cal[X],

XoP

where u : Wi — Y/(I')k is the natural map, and [x] means the ¢ o x-

isotypic part of the action of Gal(X/X(T)x) on R ug Zy[Ca], where
L Z|G) = Zp[(y) is the natural embedding.

As these local systems come from geometry, the following properties are
immediate.

¢ The Betti-étale comparison isomorphism holds: namely,

—

p_)?%p‘m,éc(y(F)K X ¢,oC %) =1 o@,H - m (Y(F)7 *) — GLg (Zp[gn])'

Here, the left hand side is the restriction of the Z,[(,]-étale local system
P5 . p [0 the geometric fundamental group 7 ¢ (Y(I") g X ko C, %), which
is naturally isomorphic to the profinite completion of the topological
fundamental group 71 (Y (I'), %), and the right hand side is the profinite
completion of the topological local system ¢ o PR s © T (Y([),*) —
CLa(Zy[G).

o For (p, Nn) = 1, the étale local system PZp extends to an étale local
system over an integral model ) over Ok g of Y(I')x for a finite set
of primes S of K including the primes above p. Furthermore, at every

place p of K above p, ’ﬂl,ét(y(F)KP7*) is a de Rham local system.®

PX xp

We now specialize the above situation to the case of theta characteristics.
Let K/Q be a number field, and v be a theta characteristic with Kodaira—
Spencer data over X (I')k, so that v = w ® L for a 2-torsion line bundle L.
Let o : X; — X(I')k be the Galois double cover corresponding to the 2-
torsion line bundle L via Lemma 3.3. We will show that the —1-isotypic
part of the geometric local systems, namely the variation of polarized pure
Z-Hodge structures PR, Lol for o : K — C, and the étale Z,-local system
PR, -1 for (p,2N) =1, correspond to the uniformizing logarithmic Higgs
bundle (E, = v @ v~1,60,) via the complex and p-adic nonabelian Hodge
correspondences, respectively. We will use the simplified notation

Pvo -= pXVL,*LU,H’ Prp -= ng,*l,P.

8For the definition of de Rham local systems, see [24].
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Remark 6.2. Tt should be noted that the isomorphism class of the uniformiz-
ing logarithmic Higgs bundle (F,,0,) only depends on the underlying theta
characteristic ¥ and does not depend on the Kodaira—Spencer isomorphism
KS,. Indeed, (FE,,0,) = (E,,t0,) as Higgs bundles for any nonzero scalar t.
Thus, one should only expect that (E,,6,) may only determine the informa-
tion that only depends on the underlying line bundle of the 2-torsion line
bundle L.

6.1. Variation of Hodge structures attached to (E,,6,)

For the variation of Hodge structures p, ,, we aim to show the following.

Theorem 6.1. For a complex embedding o : K — C, p,, is the unique,
up to the shift of indices, variation of Hodge structures over Y (I') where the
associated graded of its canonical extension is isomorphic to (E,,0,) Xk, C.

Remark 6.3. This is indeed consistent with Remark 6.2, as (XL)C only de-
pends on the underlying line bundle of L; namely, C* = (C*)2.

Proof. Let us use the notation (—), for the shorthand of (—) Xk, C. In the
proof of Theorem 3.1, we have already seen that (E, ,,0,,) is a stable Higgs
bundle. Furthermore, it is clear that (E, »,0,,) = (E,,,t0,,) for any t € C*.
Therefore, by [27, Lemma 4.1], the local system corresponding to (E,,6,,0)
comes from a complex variation of Hodge structures, which is unique up to
the shift of indices.

On the other hand, the variation of polarized pure Z-Hodge structures
pv,o has the underlying vector bundle 7, , := p, , ® Oy (r) isomorphic to the
relative de Rham cohomology

S = A (Wi [V (D) 5.

where x5 : Gal(X/X(I)g) — {£1} < Z* is the nontrivial character.
Note that the local system underlying the variation of Hodge structures
%BI(WXU/Y(F),Z) is, as the representation of m (Y (I'),*), isomorphic to

w1 (Y (T),*) w1 (Y ,x)
Indﬂj(?,*) Resﬂl(y(r)z
ation of Hodge structures 73 (/Y (I'),Z). The fact that H is the classifying
space of pure polarized Z-Hodge structures of weight 1 and rank 2 implies
that, as Y(I') = H/TI', pg is isomorphic to the representation 1 (Y ('), %) =

) PE> where pg is the local system underlying the vari-
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It is a general fact that, if H < G is a finite index subgroup, given a
representation p of G,

Indfl Resgp = p® Sa/m,

where Sg g 1 G — GLjg.)(Z) is the left regular representation. Therefore,
the local system underlying the VHS ‘%ﬂBl(W)?,a /Y (I'),Z) is isomorphic to
p @ p® x5 Thus, the local system underlying p, , is isomorphic to p ® x ;.
By Proposition 3.1, it follows that the canonical extension of p,, has the
associated Hodge bundle equal to (E, s, 6, ). This proves the Theorem. O

6.2. Crystalline local systems attached to (E,,0,)

Let (p,2N disc(K/Q)) = 1, and let p,p, : m (Y (D) g, *) = GLa(Z,) be the Z,-
étale local system defined above. Let p be a prime of K lying over p (by the
assumption on p, p is unramified over p), and define p, 4, @ T (Y (D) g, , %) —
GL2(Z,) to be the restriction of p,, . In this subsection, we aim to describe the
relation between p,, , , and the uniformizing logarithmic Higgs bundle (E,, 6,)
in the optic of the p-adic nonabelian Hodge correspondence as developed
in [21] (or its generalization to logarithmic Higgs bundles in [20]). In what
follows, we will freely use the terms from [21, 20] and [30].

As Remark 6.2 suggests, the p-adic nonabelian Hodge correspondence
determines only a part of p,,,. To explain this, we introduce the following
definition.

Definition 6.3. Let F' be a field extension of Q,, where (p,2N) = 1 (so
that X (I')r has a canonical integral model over Op). We say that a theta
characteristic with Kodaira—Spencer data (v, KS,) admits an integral model
if there is a line bundle vp, on X(I')p, and an isomorphism KSyo, V%i =

Qﬁ((F)oF e (D) whose generic fiber coincides with (v, KS,). Similarly, we say

that a 2-torsion line bundle L®? = O Xx(T)r admits an integral model if the flat
extension £ € Jac(X(I") o, )[2](OF) (which uniquely exists as Jac(X (I")o,)[2]
is a finite flat group scheme over OF) admits an isomorphism £%? = O X(Mo,

whose generic fiber coincides with the isomorphism L®? = O X(T)p-

Lemma 6.1. Let F be a discretely valued field extension of Q,, with (p,2N) =
1, and let m € F be a uniformizer. Let (v,KS,) be a theta characteristic with
Kodaira—Spencer data on X (I')p. Then, (v,KS,) admits an integral model
if and only if (v,mKS,) does not admit an integral model. Equivalently, if
L L®2 5 Ox (), 18 a 2-torsion line bundle, then (L, L) admits an integral
model if and only if (L, ) does not admit and integral model. In particular,
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the property “admitting an integral model” is insensitive to an unramified base
change of F.

Proof. Suppose that (v, KS,) admits an integral model. If (v,tKS,), for ¢ €
F>*/(F*)? admits an integral model, then the integral Kodaira—Spencer iso-
morphisms are scalar multiples of each other. This implies that ¢ € OF /(O ).
Conversely, if t € OF/(OF)?, then clearly (v,tKS,) admits an integral model.
Note that there is a short exact sequence

1 — (05)/(0%)* = F*/(F*)* X5 {£1} — 1,

where vp is the normalized valuation on F' (i.e. vp(m) = 1). Therefore,
(v, KS,) admits an integral model if and only if (v, 7 KS,) does not admit
an integral model.

Let F'/F be an unramified field extension. If (v,KS,) admits an inte-
gral model, then clearly (vp/,KS,,,) admits an integral model via pullback.
If (v,KS,) does not admit an integral model, then (v, 7KS,) admits an in-
tegral model, so (v, mKS, ) admits an integral model, which implies that
(vpr, mKS,,,) does not admit an integral model. This finishes the proof. [

Lemma 6.2. Let F be a discretely valued field extension of Q, with (p,2N) =
1 such that the residue field of F is algebraically closed (e.g. the maximal
unramified extension of Q,). Then, given a theta characteristic v, there are
exactly two isomorphism classes of theta characteristic with Kodaira—Spencer
data whose underlying theta characteristic is v: one that admits an integral
model and one that does not admit an integral model. The same applies to
2-torsion line bundles.

Proof. This follows from OF = (OF)?, which is a consequence of Hensel’s
lemma. O

We first prove that the étale Zy-local system associated with a theta
characteristic with Kodaira—Spencer data admitting an integral model is crys-
talline.

Proposition 6.4. If (v,KS,) admits an integral model, the étale local system
Pupyp 08 a crystalline Z,-local system.’

Proof. By [7], the universal generalized elliptic curve £ — X(I')x has a
natural model over Ok, , denoted as f : EOKP — X(Toy, » which is smooth
over Y(I')o,, . Furthermore, if we denote ky by the residue field of p, then
X(I')x, is a smooth curve.

9For the definition of crystalline Z,-local systems, see [30, Definition 3.10].
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The same definition of w,
o 1
W= f*ngKp /Y(F)OKp )

gives rise to a theta characteristic on Y(F)@KP, as the Kodaira—Spencer iso-
morphism holds on the integral level [15, A.1.3.17]. There is the unique canon-
ical extension on the integral level,

can __ 1
W= £l ix(m)oy, 108990)
. F (Ol -1 (Ol
T f*(QEOKp/OKp (f (D))/f (QX(F)OKP/OKp (D)))7

which satisfies the Kodaira—Spencer isomorphism'®

can)®2 ~

(w — Q%((F)@Kp Jox, (D).

Moreover, the canonical extension w*" arises as the first Hodge filtration of
the log-de Rham cohomology bundle R'f,, dR7*(gOKp /X(Toy, ), where the

log-structures for gOKp and X(I')o,, are given by fﬁl(D) and D, respec-
tively. We will omit the superscript " from now on.

Let £ € Jac(X(I)oy,)[2](Ok,) with L% = Ox(r),, be an integral
model of the 2-torsion line bundle L. By applying the same construction, we
obtain the double Galois cover a : Xo Ky X Mo «, Of degree 2. Accordingly,

we obtain u : kao —+ X (F)Oxp- Using this integral model, one can also
K

P
extend a logarithmic Higgs sheaf (£,,60,) = (E,,0,) ® (L,0) over X(I')g, to
(Ew, 0) ® (£,0) over X (D)o, -
Since u: Wg — — Y(I')oy, is smooth and proper, [30, Proposition 5.4]
Kp

implies that the relative crystalline cohomology & := Rlues O gives rise to
a convergent F-isocrystal on Y (I'), (which is in fact overconvergent). From
the relative crystalline comparison theorem, [30, Theorem 5.5], it follows that
Pupp is a crystalline Zy-local system, and is associated to & O

Remark 6.4. This also implies that, for (v,KS,) not admitting an integral
model, p,,p is “potentially crystalline” in some sense, but we are not aware
of a good formalism for such local systems.

10We were unable to locate a literature that states the log version of the Kodaira—
Spencer isomorphism on the integral modular curve. A much more general version
of the log Kodaira—Spencer isomorphism on the integral level is proved in [22,
Proposition 6.9], which contains the statements that we would like for the modular
curves.
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Now we turn to the p-adic nonabelian Hodge correspondence as developed
by [21] and [20], which associates crystalline local systems to periodic (loga-
rithmic) Higgs-de Rham flows. For their definition, see [21, Definition 5.2].!1
Combined with the p-adic Riemann—Hilbert correspondence of [10],'? we state
the version of the p-adic nonabelian Hodge correspondence we will use.

Theorem 6.2 (p-adic nonabelian Hodge correspondence). Let k = F,, and
F =W(k)[1/p]. Let X be a smooth projective curve over W (k) and Do C
X be a relative effective Cartier divisor over W (k). Then, there is a fully
faithful covariant functor from the category of 1-periodic logarithmic Higgs-
de Rham flow over X« to the category of crystalline Z,-local systems over
Yoor := (Xoo — Doo)r (with respect to the integral model Yoo = Xoo — Doo)
with the Hodge—Tate weights in [0,p — 2]. This functor preserves the rank.

Using this, we will prove the p-adic analogue of Theorem 6.1.

Theorem 6.3. Let v be a theta characteristic with a Kodaira—Spencer data
over K that admits an integral model. Then, p,p, (Y (D)) depends only
on the underlying theta characteristic, where K" is the mazimal unramified
extension of K. It is the crystalline Z,-local system associated to a unique
filtered convergent F'-isocrystal on Y(F)Ep whose associated graded is isomor-
phic to (E,,0,) Xk Ky

Proof. For simplicity, we let Xoo = X (F)W(EF), with the log structures com-
ing from D. Thanks to the p-adic nonabelian Hodge correspondence (Theo-
rem 6.2), the Theorem will follow if we show that there exists, up to a shift
in filtration, a unique 1-periodic logarithmic Higgs-de Rham flow over X,
whose underlying Higgs bundle is (EV,W(E,:V QV,W(E,,)) = (Ew,W(Ep) , wa@p))@
(EW(EP)v 0). As the rank of the Higgs bundle is 2, the Higgs field is nonzero,
and v # v~!, the filtration is unique up to shift of indices. Therefore, the
vector bundle with flat connection part of the 1-periodic Higgs-de Rham flow
is determined by the inverse Cartier transform of [21, §4] and [20, §5, §6].
This finishes the proof. O

Remark 6.5. As [20, Theorem 1.2] suggests, X(F)W(Ep) is in some sense a
“canonical lifting” of X (F)Ep associated to the uniformizing logarithmic Higgs
bundle (E,,7kp,01,7kp).

HStrictly speaking, [21] only concerns the non-log case, but the same defini-
tion works for the log case using the inverse Cartier transform in the log case as
considered in [20, §5, §6].

12A crystalline Zy-local system in the sense of [10] is a crystalline Z,-local system
in the sense of [30] by [30, Proposition 3.21].
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7. Twisted period map to a Siegel modular threefold

From now on, we assume for simplicity'® that T' is either I'y(N) or T'(V).
Recall that W5 — Y(I')k is a family of abelian surfaces that is different
from the square of the universal elliptic curve, but they become isomorphic
after an étale base-change to Y:

W~ ¥ 5}( Xy [Tk 5[(7 Od*W)? = OJ*SK X

*
YOé 5[(.

In this case, it turns out that, from the universal level structure on £/Y (T'),
one can construct a certain natural level structure on W /Y (T') g, which is a
twisted version of the natural level structure on & Xy (1, k. This implies
that Y(I')x admits a twisted period map into the moduli space of abelian
surfaces with a level structure that is different from the usual “diagonal em-
bedding.” Under this diagonal embedding, we see that a Siegel modular form
restricts to a noncongruence modular from of level associated with the theta
characteristic v.

To construct the twisted level structure, we first describe W as a variety

over Y with a descent datum.

Proposition 7.1. Leto : Y = Y be the nontrivial element of Gal(Y /Y (I) ).
Let \:Y Xy (T)x Yy Y 11 Y be an isomorphism on schemes such that the
following diagram commutes.

YXy(F)K ?H?
\ idHO’

Let X : W5 Xy ), Y & a*Ex X5 a*E be the natural isomorphism obtained
from X : Y Xy ()5 Yy & Y]_[Y Then, the following diagram commutes.

~ (id,o) =~
WX Xy Tk Y W;{ Xy () Y
Al lA
£ X 0*E “Eie X OFE
QK Xy K S e K Y @K

13This is merely for the simplicity of the moduli problem that the corresponding
level structure represents.
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Proof. Note that

=~ =~ (dyo) o
Y XY(F)K Y —5Y XY(F)K Y,

after conjugating by A, is identified with

vy S rLvovlle LAYy

By [6, Proposition A.5.2], the Weil restriction of schemes has a natural iso-
morphism

RS’/S(X,) Xs T= RT’/T(X/ X5 T/)’

where S’ is a finite locally free S-scheme, X’ is an S’-scheme and 77 = S’ x ¢T.
Therefore, the isomorphism

Wi 3y Y = Ry ypy, (7EK)) Xy ¥
[0 5}( X (Y XY(I‘)K ?)),

~

RYXy(r) Y/Y(

is natural, where in the rightmost expression, the morphism Y Xy (I) g Y -V
used in the subscript is the second projection, while the morphism Y Xy (),

Y — Y used in the expression in the parenthesns is the first projection. Thus,
after conjugating by A : Y Xy (), Yy & Y J]Y, this is identified with

R?H?/Y(a SK XS (YHY))
where id[[o: Y[V = Y (id]Tid : YIIY =Y, respectively) is used in the
subscript (the expression in the parentheses, respectively). Therefore, under
this identification, the morphism
(id,a) : W)? XY(F)K }7 — W)? XY(F)K Y
is identified with the morphism
R?H)’;/Y(a 5K>< (YHY)) ?H)’;/?(Oé*g}( X}7 (YHY)),
where the subscripts are related by the diagram

~ -~ zlfy=y]le -~
lldHO’

%

1dH0'
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and the expressions in the parentheses are related by the diagram

yrv el gy

id

id _ idJid
Y

From this, the statement easily follows. O

We consider a I'-level structure on an elliptic scheme E/S. In the case of
I' = T'(N), it is a pair of sections P;, P, : S — FE that fiberwise generates
E[N], and in the case of I' = I'y(N), it is a section P : S — E[N] that
has exact order N. We take the I'-level structure on the universal elliptic
curve £k /Y (D) g as either P, Q : Y(I')xk — Ex[N] (in the case of I'(N)) or
P Y (I')k — Ex[N] (in the case of I'1(IV)). Using the level structure on &g,
we may define a twisted level structure on Wy as follows.

Definition 7.1 (I'(N)*- and I'; (V) T-structures on an abelian surface). For
a principally polarized abelian surface (A/S,\), a I'(N)T-structure is a col-
lection of étale-local sections Py, Py, P3, Py of A[N] such that they generate
A[N] fiberwise, and two such collections

P17P27P37P47 P1,7P2,7P2§7P417

are equivalent if {Py, P} = {Pj, Py} and {Ps, P,} = {Pj, P;} (as unordered
sets).

A T'y(N)*-structure is a collection of étale-local sections Py, Py of A[N]
such that they generate a totally isotropic subspace of A[N], with respect to
the Weil pairing induced by A, and two such collections

P17P27 P1/7P2/7

are equivalent if { Py, P} = {P], Py} (as unordered sets).

Remark 7.1. The moduli space of principally polarized abelian surfaces with
['(N)*- or I'y(N)*-structures are identified with the arithmetic quotient of
the Siegel upper half space by a subgroup of Sp,(Z). More precisely, if the
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0

100
symplectic form corresponds to the matrix ( ! 8 8 (1)), then
0-10

0
0
0 1 0 0 0O 1 0 0
-1 0 0 O -1 0 0 O
+_ ) t= .
0 0 01 0 0 1

where I'(N) and I'1 (V) are the standard congruence subgroups of Sp,(Z),

I'(N)={M e Spy(Z) | M =1y (mod N)},
I'1(N)={M € Sp,(Z) | M (mod N) is upper triangular unipotent}.

Definition 7.2 (Twisted level structure on W). Let I'" be I'(N)™ (T'1(N)¥,
respectively) if I' = I'(IV) (I' = I'1(IV), respectively). We define the twisted
level structure, a I'"-structure on W5 Z a*Ek Xy a*E, as follows.

o If ' =T(N), we consider the sections Pi, P, 01,95 Y — ("Ex X3
a*Ek)[N], where

Pr= (a*P,a’e), Py:= (a*e,aP),
9, = (a*Q,a%e), Qy = (a¥e,a”Q).

The above étale-local sections define a I'( V)" -structure on a*Ws.

o« If I' = I'y(N), we consider the sections 751,752 LY - (a*Ek X
a*Ek)[N], where

Pr = (a*P,a%e), Py:= (ae,aP).

The above étale-local sections define a 'y (N)*-structure on o Ws.

Lemma 7.1. The twisted level structure on oWy, as a 't -level structure,
descends into a twisted level structure, again as a I'"-level structure, on Ws.
Namely, the twisted level structure on oW is invariant under the automor-

phism induced by o : Y > Y.

Proof. We already know what descent datum oW = a*&x X a*Ek has,
thanks to Proposition 7.1. We only need to check that that the I'"-level
structure is compatible with the descent datum, which is clear as the level
structure is indifferent to the switch between 731 and 732 (and also the switch

between Q; and @2, if ' =T(N)). ]
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Remark 7.2. The twisted period map 75 : Y/(I')x — Apr+ is different from
the usual “diagonal” period map mgiag : Y (I') k — Asg r+, given by the diago-
nal morphism between the moduli functors, E + E?. This is simply because
the pullbacks of the universal abelian surface over Ay p+ by the two period
maps are different.

It may first look strange to have a classifying map into a congruence
quotient of a Shimura variety even though the starting object is “noncon-
gruence”. This phenomenon happens because the double cover of congruence
quotients Ao — Ajg p+ of a larger group somehow “absorbs” the double cover

Y — Y (I') k. To be more precise, for the diagonal period map, there is a map
Y (I')xk — A r that fills in the diagram

YD) x Y () x —— Azr

|

Y (D) Ao+

On the other hand, for the twisted period map 5 the diagonal arrow cannot
be filled:

Y Az p

l ’ l
<
X XX
e
e

Y(I)g — Ao+

It is interesting to note that we had to use the stacky double cover Ay —
Ajg r+, which seems necessary.

The following suggests that a Siegel modular form restricted along the
twisted period map gives rise to a noncongruence modular form.

Proposition 7.2. Let wy be the Hodge bundle on Agp+, i.e. the automor-
phic vector bundle corresponding to the standard representation of Spy, or
equivalently, w4 = 10*(2;/“42 e where p : X — Ay p+ is the universal abelian
surface. Then, T5ws = w @ v, where v is the underlying theta characteris-

tic of the theta cﬁamcteristic with Kodaira—Spencer data associated with the
coverY — Y (D)k.

Proof. This is a simple consequence of the cohomology and base change the-
orem, e.g. [14, Theorem I11.12.11]. O

This implies that the Siegel modular form of weight (k,j) and level
', which corresponds to being a section of the automorphic vector bun-
dle det* w4 ® Sym? w4, restricts along the twisted period map to a section of
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the vector bundle

wk+j ® Vk ) wk+j—1 ® Vk—H QP wkH ® Vk+j—1 D wk ® I/k+j.

For example, the restriction of the Siegel modular form of weight (k,1) is a
pair of a modular form of weight 2k + 1 and level I' and a noncongruence
modular form of weight 2k + 1 and level ',,.
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