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Theta characteristics and noncongruence modular forms
Gyujin Oh

∗

Abstract: We prove that a section of a theta characteristic ν (or
any odd power of it) of a modular curve different from the Hodge
bundle ω is a noncongruence modular form in most cases. On the
other hand, we show how ν ̸= ω gives rise to a twisted period map
to a Siegel modular variety of dimension three, where the twist
comes from the fact that the moduli of abelian surfaces 𝒜2 is a
stack. Some questions on the Brill–Noether theory of the modular
curves are answered.
Keywords: Theta characteristics, noncongruence modular forms,
non-abelian Hodge theory.

1. Introduction

The theory of theta characteristics was initiated in hopes to clarify the for-
mulas satisfied by theta functions. Recall that a theta characteristic of a
connected compact Riemann surface is a divisor class Θ where 2Θ is the
canonical class. In general, aside from the parity of a theta characteristic,
it is difficult to distinguish one theta characteristic from another. For exam-
ple, by [3], choosing a theta characteristic of a compact complex manifold
amounts to choosing a spin structure on the manifold. The set of all theta
characteristics of a connected compact Riemann surface C is a homogeneous
space under the action of the group of 2-torsions of the Jacobian of C, but
there is no good choice of a basepoint.

However, there are certain curves over which there is a “preferred choice”
of a theta characteristic. A prominent example is the case of a modular curve,
which is the moduli space of elliptic curves with certain structures. If we
denote the universal elliptic curve as f : ℰ → Y , then the Hodge bundle
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f∗Ω1
ℰ/Y , often denoted as ω, satisfies the Kodaira–Spencer isomorphism, which

says that ω is a theta characteristic of Y (see Theorem 2.1). Starting off with
this observation, this paper aims to investigate the following question.

How “special” is ω compared to the other theta characteristics of the
modular curve?

Noncongruence modular forms and geometric local systems The
above vague question may be interpreted in various ways. Indeed, the modular
curve Y and its Hodge bundle ω is of fundamental importance in the study
of arithmetic of modular forms, which may deem Y and ω special. On the
other hand, we give a much more precise result as to why ω is the most
arithmetically meaningful theta characteristic of the modular curve.1

Theorem 1.1. Let ν be a theta characteristic different from the Hodge bun-
dle ω. For k ≥ 1 odd, the sections of ν⊗k are noncongruence modular forms.

This is Theorem 4.1 of the paper. Recall that a noncongruence modu-
lar form is a holomorphic function over the upper half plane satisfying the
properties of the modular forms, except that the level group is a finite index
subgroup of SL2(ℤ) that is not a congruence subgroup. As the sections of a
power of ω are modular forms with the level being the level of the modular
curve, this picks out ω as the unique theta characteristic of the modular curve
whose sections are congruence modular forms.

We establish Theorem 1.1 by studying the finite index subgroup Γν ⊂
SL2(ℤ) associated to each theta characteristic ν via the nonabelian Hodge
correspondence. It was already noticed by Simpson in [25] that a theta char-
acteristic L on a curve C can be used to define a Higgs bundle (L ⊕ L−1, θ)
which corresponds via nonabelian Hodge correspondence to the monodromy
representation underlying the variation of the Hodge structures induced from
the complex uniformization of the curve C. As a section of ν⊗k is a weight k
modular form with level Γν , the content of Theorem 4.1 is that Γν is not a
congruence subgroup for ν ̸= ω, which we prove by slightly generalizing [18].

The difference between Γν and the level of the modular curve Γ := Γω

is mild, as Γν and Γ have the same image in PSL2(ℤ), or equivalently,
±Γν = ±Γ. In fact, even though Γν for ν ̸= ω is not a congruence subgroup,
the standard representation ρν : Γν → GL2(ℂ) defines a local system of the

1What we actually study are the logarithmic versions of theta characteristics over
a compact modular curve. For this purpose, we require logarithmic generalizations
of various results (such as complex/p-adic nonabelian Hodge correspondence) in
the paper. In the Introduction, we suppress this issue for the sake of exposition.
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modular curve which come from geometry. More precisely, in §6, we construct
a family of abelian surfaces Wν , named the twisted Kuga–Sato variety, over
the modular curve, which gives rise to a geometric local system which contains
ρν as a sub-local system.

The twisted Kuga–Sato variety Wν over Y gives rise to a twisted period
map πν : Y → 𝒜2 to the moduli stack of abelian surfaces. This differs from
the usual diagonal period map πdiag : Y → 𝒜2 induced from the diagonal
embedding ℍ → ℍ×ℍ → ℍ2 from the upper half plane to the Siegel upper
half space of degree 2, but in a very subtle way: πν ̸= πdiag but pν = pdiag,
where pν , pdiag : Y → A2 are the corresponding period map into the coarse
moduli scheme A2 of abelian surfaces. Namely, the difference between the two
period maps comes from the stacky nature of 𝒜2. In §7, we also construct
a certain non-standard level structure on the Siegel modular threefold over
which we see the difference between the two period maps on the level of
schemes.

The twisted Kuga–Sato variety Wν can be seen as realizing the “geometric
local system” corresponding to the Higgs bundle (Eν := ν⊕ν−1, θν). In §6, we
construct a variation of Hodge structures ρν,H and a de Rham ℤp-local system
ρν,p on Y , constructed as a part of the relative H1 of the twisted Kuga–Sato
variety Wν/Y . These geometric local systems satisfy the following.

Theorem 1.2. The variation of Hodge structures ρν,H is the unique variation
of Hodge structures whose associated graded is (Eν , θν). The de Rham ℤp-local
system ρν,p restricted to Yℚnr

p
(here, ℚnr

p is the maximal unramified extension
of ℚp) is a crystalline ℤp-local system, and it is associated to a unique filtered
convergent F -isocrystal whose associated graded is (Eν , θν).

The constructions of the local systems are in Definition 6.2, and The-
orem 1.2 is a combination of Theorems 6.1 and 6.3. The proofs use the
usual nonabelian Hodge correspondence of Simpson [25] and the p-adic non-
abelian Hodge correspondence established by Lan–Sheng–Zuo [21] and Lan–
Sheng–Yang–Zuo [20].

Brill–Noether theory of the modular curves and the Hodge bundle
There is another prominent avenue of research on the “specialty” of curves
and line bundles, the Brill–Noether theory. In the Brill–Noether theory, a line
bundle L over a smooth projective complex curve C is considered special if
h0(L) is “larger than usual.” Furthermore, a curve C is considered special if
there exists a certain line bundle with a larger than usual h0. The notion
of “larger than usual” is precise, as the fundamental theorems of the Brill–
Noether theory (as developed by [16, 19, 12, 11]) show various properties of
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a general curve in ℳg, the moduli of genus g curves, and any curve or a
line bundle violating these properties are deemed “special”; for the precise
definition, see Definition 5.1.

Due to the special nature of the modular curves and their Hodge bundles,
it is natural to guess that they may be special in the sense of Brill–Noether
theory. Indeed, we show the following in §5.

Proposition 1.1. Any modular curve of a sufficiently fine level is special in
the sense of Brill–Noether theory.

This is Proposition 5.1. We think this result could be folkloric, but we
were unable to find a reference to it, so we provide the proof. On the other
hand, it seems that the Hodge bundle ω has no relationship with the Brill–
Noether theory; we show in Examples 5.1 and 5.2 that sometimes the Hodge
bundle ω is the theta characteristic with the most sections, while sometimes
it is the theta characteristic with the fewest sections. The computation in
Example 5.2 approaches a noncongruence modular form of level Γν for a
theta characteristic ν ̸= ω as a square root of a weight 2 modular form of
congruence level, which is interesting in its own right.

It may still be true that the Hodge bundle ω is special in the sense of Brill–
Noether theory if the level is sufficiently fine enough. We end the Introduction
with a heuristic for this. It will be interesting to see if this heuristic can be
made more precise.

Let Δ be the discriminant modular form, which is a cusp form of level 1
and weight 12, which vanishes exactly once at every cusp and nowhere else.
If we denote the space of cusp forms of weight k and level Γν for a theta
characteristic ν as Sk(Γν), then there is an injective map S1(Γν)

×Δ−−→ S13(Γν)
given by multiplication by Δ. The image of this map consists of the cusp
forms of weight 13 and level Γν which vanish at every cusp to order 2 or
higher. Let c1, . . . , cm be the cusps of the modular curve, and for f ∈ Sk(Γν),
let v⃗f be the m-dimensional vector consisted of the first Fourier coefficients
in the q-expansions of f at the cusps. If f1, . . . , fd is a basis of S13(Γν), let

Mν := (v⃗f1 v⃗f2 · · · v⃗fd).

Then, dimS1(Γν) = dimS13(Γν)−rankMν . On the other hand, dimS13(Γν) is
independent of ν by Riemann–Roch. Therefore, dimS1(Γν) is large if rankMν

is small, i.e. when there are more relations between v⃗f ’s, or when there are
more relations between the Fourier expansions of the same modular form at
different cusps.
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If ν = ω, then there are various relations between the Fourier expansions
of a Hecke eigenform at different cusps, as there are Hecke operators; this
principle was already used in the calculation of Example 5.2. On the other
hand, if ν ̸= ω, then S13(Γν) is entirely consisted of noncongruence modular
forms by Theorem 1.1, so the Hecke operators simply vanish by the result of
Berger [4]. Therefore, we expect that there will be less relation between the
Fourier expansions of a noncongruence modular form at different cusps. This
heuristic says that rankMω has more reasons to be smaller than rankMν for
ν ̸= ω, which converts to that dimS1(Γω) has more reasons to be larger than
dimS1(Γν).

1.1. Notations

Let Γ ≤ SL2(ℤ) be a congruence subgroup that satisfies the following condi-
tion.2

(∗) There exist integers N1, N2 such that (N1, N2) is odd, lcm(N1, N2) ≥
5, and Γ = Γ1(N1) ∩ Γ(N2).

For example, the standard congruence subgroups Γ1(N) and Γ(N) for any
N ≥ 5 satisfy (∗). Note that (∗) implies that Γ is torsion-free.

Let Y (Γ) = Γ\ℍ be the (open) modular curve, regarded as a Riemann
surface, and let X(Γ) be the compactification of Y (Γ). Thanks to (∗), there is
a universal elliptic curve f : ℰ → Y (Γ). Let D = X(Γ)−Y (Γ) be the cuspidal
divisor. We will add subscripts to these geometric objects (e.g. Y (Γ)ℚ) if we
need to specify the base ring. Throughout the paper, we fix the embeddings
ℚ ↪→ ℂ and ℚ ↪→ ℚp, and an isomorphism ℂ ∼= ℚp compatible with the em-
beddings. We also fix a ℚ-point ∗ ∈ Y (Γ)ℚ(ℚ) which we use as the basepoint
for π1 throughout the paper. The points induced from ∗ by the embeddings
ℚ ↪→ ℂ and ℚ ↪→ ℚp are again denoted as ∗ by abuse of notation.

We denote the genus of X(Γ) as gΓ and the number of cusps as nΓ, and
we will omit the subscripts when there is no confusion. As Γ is torsion-free,
we have

gΓ = 1 + [SL2(ℤ) : Γ]
24 − nΓ

2 .

The space of weight k modular forms (cusp forms, respectively) of level
Γ is denoted as Mk(Γ) (Sk(Γ), respectively).

2We impose this condition just for simplicity, and we expect our results to be
extended to more general torsion-free congruence subgroups. On the other hand,
the torsion-free-ness is a more crucial assumption.
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Let 𝒜g be the moduli space of principally polarized abelian varieties of
dimension g, regarded as a Deligne–Mumford stack over ℚ. More generally,
for a level structure Γ, let 𝒜g,Γ be the corresponding moduli space with the
Γ-level structure. Let Ag, Ag,Γ be the associated coarse moduli schemes.

2. The Hodge bundle 𝝎

Definition 2.1. For a field F of characteristic away from the level, the Hodge
bundle ω is a line bundle over Y (Γ)F defined as

ω := f∗Ω1
ℰF /Y (Γ)F .

The Hodge bundle extends canonically (in the sense of Deligne and Harris)
over X(Γ)F , and, by abuse of notations, we will also denote the canonical
extension as ω. One may, for example, define ω over X(Γ) as the algebraization
of the analytic sheaf of sections of logarithmic growth of ω at infinity over
Y (Γ).

The following is well-known.

Theorem 2.1 (Kodaira–Spencer isomorphism). Over Y (Γ)F , one has a
canonical isomorphism

KS : ω⊗2 ∼−→ Ω1
Y (Γ)F /F .

Over X(Γ)F , one has a natural isomorphism

KS : ω⊗2 ∼−→ Ω1
X(Γ)F /F (D).

Proof. There is a canonical morphism,

ω → ω−1 ⊗ Ω1
Y (Γ)/ℂ,

which is the Higgs field arising as the associated graded of the Gauss–Manin
connection on H 1

dR(ℰF /Y (Γ)F ). Since the Gauss–Manin connection has no
singularities on Y (Γ)F , the Higgs field is nonvanishing everywhere, thus an
isomorphism. The Kodaira–Spencer isomorphism over X(Γ)F follows by tak-
ing the canonical extension of both sides of the above isomorphism over
Y (Γ)F .

It will be later important that ω⊗2 and Ω1
X(Γ)(D) are not just merely iso-

morphic to each other but also that there is a canonical isomorphism between
the two.



Theta characteristics and noncongruence modular forms 2193

Corollary 2.1. The degree of ω is g − 1 + n
2 .

Because of the condition on the level, we have

Mk(Γ) = H0(︁X(Γ), ω⊗k)︁, Sk(Γ) = H0(︁X(Γ), ω⊗k(−D)
)︁
.

A simple application of Riemann–Roch yields the following result.

Proposition 2.1.

1. If k ≥ 2, we have dimMk(Γ) = (k − 1)(g − 1) + nk
2 .

2. If k ≥ 3, we have dimSk(Γ) = (k − 1)(g − 1) + n(k−2)
2 . We also have

dimS2(Γ) = g.
3. We have dimM1(Γ) − dimS1(Γ) = n

2 .
4. If n > 2g − 2, we have dimM1(Γ) = n

2 and dimS1(Γ) = 0.

Proof. Only dimM1(Γ) − dimS1(Γ) = n
2 requires an explanation. From the

short exact sequence 0 → ω(−D) → ω → ω|D → 0, we have the long exact
sequence

0 → S1(Γ) → M1(Γ) → H0(ω|D) → H1(︁ω(−D)
)︁
→ H1(ω) → 0

as ω|D is a skyscraper sheaf. On the other hand, by Serre duality,

ker
(︁
H1(︁ω(−D)

)︁
→ H1(ω)

)︁
= ker

(︁
H0(ω)∗ → H0(︁ω(−D)

)︁∗)︁
=
(︁
coker

(︁
H0(︁ω(−D)

)︁
→ H0(ω)

)︁)︁∗ =
(︃
M1(Γ)
S1(Γ)

)︃∗
.

Thus, we have a short exact sequence

0 → M1(Γ)
S1(Γ) → H0(ω|D) →

(︃
M1(Γ)
S1(Γ)

)︃∗
→ 0.

Therefore, dimM1(Γ) − dimS1(Γ) is the half of dimH0(ω|D) = n.

Remark 2.1. For a cusp form of weight 1 and level Γ to exist, the inequality
n ≤ 2g − 2, or equivalently the inequality 24n ≤ [SL2(ℤ) : Γ], must be
satisfied, which is true when Γ is sufficiently small. For example, if Γ = Γ(N),
the inequality is satisfied if N ≥ 12.
Remark 2.2. It is expected that there is no simple formula that expresses
dimS1(Γ). It is however conjectured that S1(Γ) is mostly consisted of dihedral
forms (for example, see [9, §1]).
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3. Theta characteristics as uniformizing logarithmic Higgs
bundles

In the previous section, the computation of degω and the dimension of the
space of modular forms only used the Kodaira–Spencer isomorphism. Thus,
the same dimension formulae will hold true for any line bundle ν such that
ν⊗2 ∼= Ω1

X(Γ)/ℂ(D).

Definition 3.1. A line bundle ν over X(Γ) which satisfies

ν⊗2 ∼= Ω1
X(Γ)/ℂ(D)

is called a theta characteristic.3

Lemma 3.1. The results of Proposition 2.1 holds for any theta characteristic
ν, if we interpret Mk = H0(X(Γ), ν⊗k) and Sk = H0(Y (Γ), ν⊗k).

If ν is a theta characteristic, ν⊗ω−1 is a square-root of 𝒪X(Γ). Thus, there
are in total 22g = # Jac(X(Γ))[2](ℂ) many theta characteristics up to isomor-
phism. For a theta characteristic ν, the isomorphism ν⊗2 ∼= Ω1

X(Γ)/ℂ(D) in-
duces an isomorphism ν ∼= ν−1⊗Ω1

X(Γ)/ℂ(D). This in turn deduces a logarith-
mic Higgs field θν : E → E⊗Ω1

X(Γ)/ℂ(D) on the vector bundle Eν := ν⊕ν−1,

θν : ν ⊕ ν−1 → ν
∼−→ ν−1 ⊗ Ω1

X(Γ)/ℂ(D) →
(︁
ν ⊕ ν−1)︁⊗ Ω1

X(Γ)/ℂ(D),

making (Eν , θν) a logarithmic Higgs bundle on X(Γ).
In view of the nonabelian Hodge correspondence, one may ask which local

systems correspond to the Higgs fields constructed using theta characteristics.
In the non-logarithmic setting, Simpson showed in [25] that the Higgs field
formed by a theta characteristic of a hyperbolic curve is precisely a lift of
the projective representation of the topological π1 of the curve given by the
complex uniformization.

Using a tame regular analogue of the nonabelian Hodge correspondence
over a noncompact Riemann surface, we can show that the theta characteris-
tics in our sense are also characterized by the projective lifts of π1(Y (Γ), ∗) =
PΓ.

3Perhaps a better terminology will be the stable theta characteristic: a line bundle
is called a theta characteristic if it is a square root of the canonical bundle Ω1; a
stable theta characteristic is when a line bundle is a square root of the canonical
bundle twisted by a specific divisor. As we will only care about the square-roots
of Ω1(D) in this article, most of the time we will just refer to such line bundles as
theta characteristics.
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Before stating the theorem, we introduce some terminologies.

Definition 3.2. Let PΓ be the projective image of Γ. Namely,

PΓ = im
(︁
Γ ↪→ SL2(ℝ) → PSL2(ℝ)

)︁
.

A projective lift of PΓ is a subgroup Γ′ ≤ SL2(ℝ) such that PΓ′ = PΓ. A
projective lift is honest if the natural map Γ′ → PΓ′ = PΓ is injective (thus
bijective).

As Y (Γ) is topologically just a surface of genus g with n punctures, we
can choose a set of generators a1, b1, . . . , ag, bg, c1, . . . , cn ∈ PΓ such that the
only relation between the generators is

[a1, b1] · · · [ag, bg]c1 · · · cn = 1.

Let A1, B1, . . . , Ag, Bg, C1, . . . , Cn ∈ Γ be the corresponding elements in Γ.
A hyperbolic projective lift is an honest projective lift of the form

⟨ϵ11A1, ϵ12B1, . . . , ϵg1Ag, ϵg2Bg, C1, . . . , Cn⟩ ⊂ SL2(ℝ),

where ϵij ∈ {±1} for 1 ≤ i ≤ g, 1 ≤ j ≤ 2.

Lemma 3.2.

1. The notion of the hyperbolic projective lifts does not depend on the
choice of a presentation of PΓ as a topological fundamental group of
a surface.

2. Given a hyperbolic projective lift Γ′ of PΓ, let ρΓ′ be the two-dimensional
real representation of PΓ given by the composition

ρΓ′ : PΓ ∼←− Γ′ ↪→ SL2(ℝ) ⊂ GL2(ℝ).

For two different hyperbolic projective lifts Γ′
1 ̸= Γ′

2, we have ρΓ′
1
̸∼= ρΓ′

2
.

Proof.

1. As n ≥ 1, Γ = PΓ is a free group with 2g+n−1 generators. Thus, given
a presentation of PΓ as above, choosing an honest projective lift of PΓ is
the same as choosing a sign for each of A1, B1, . . . , Ag, Bg, C1, . . . , Cn−1,
or equivalently, choosing a homomorphism PΓ → (ℤ/2ℤ)2g+n−1.
Note that X(Γ) has the fundamental group, denoted PΓ, (with the
same choice of basepoint as Y (Γ) via the inclusion Y (Γ) ↪→ X(Γ))
whose presentation can be given by

PΓ ∼=
⟨︁
a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg] = 1

⟩︁
,
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and the natural homomorphism π1(Y (Γ), ∗) → π1(X(Γ), ∗) is given by
ai ↦→ ai, bi ↦→ bi, ci ↦→ 1. Thus, an honest projective lift is a hyperbolic
projective lift if and only if the corresponding homomorphism PΓ →
(ℤ/2ℤ)2g+n−1 factors through the morphism PΓ → PΓ. Since the latter
condition does not refer to a specific presentation at all and only uses
the natural map PΓ → PΓ, the notion of hyperbolic projective lifts is
independent of the choice of a presentation of PΓ.

2. Choose a presentation of PΓ as above. Given Γ′
1 ̸= Γ′

2, there is some
1 ≤ i ≤ g such that either ai or bi is lifted to matrices with the
opposite signs. Let d ∈ {ai, bi} be such element. Then, tr ρΓ′

1
(d) =

− tr ρΓ′
2
(d). Since Ai and Bi are hyperbolic matrices, trAi and trBi are

both nonzero. Thus, tr ρΓ′
1
(d) ̸= tr ρΓ′

2
(d), which means that as abstract

representations ρΓ′
1

and ρΓ′
2

are non-isomorphic.

The above lemma shows that we can refer to the hyperbolic projective
lifts of PΓ as being certain two-dimensional real representations of PΓ, or,
after conjugation, two-dimensional representations of PΓ valued in SU(1, 1).

We are now able to state the main theorem of this section, which should
be a standard consequence of the tame regular nonabelian Hodge correspon-
dence.

Theorem 3.1 (Theta characteristics are hyperbolic projective lifts). There
is a one-to-one correspondence between the theta characteristics and the hy-
perbolic projective lifts of PΓ, characterized as follows.

• For a theta characteristic ν, ρΓν is the 2-dimensional local system on
Y (Γ) corresponding to the logarithmic Higgs bundle (Eν , θν) via the
tame nonabelian Hodge correspondence. Furthermore, there is a natural
isomorphism H0(X(Γ), ν⊗k) ∼= Mk(Γν) for k ≥ 1.

• Γω = Γ.

Proof. We would like to use the tame regular version of nonabelian Hodge
correspondence over a noncompact curve as in [26]: for the definitions of the
terms, see [26, Synopsis].

Theorem 3.2 (Tame nonabelian Hodge correspondence over non-compact
curves, [26, p. 718]). Over a smooth algebraic noncompact curve, there is a
natural one-to-one correspondence between stable filtered regular Higgs bun-
dles of degree zero, and stable filtered local systems of degree zero. The corre-
spondence preserves the rank on both sides.

On the other hand, a special case of this correspondence is proved in
[25, Theorem 4]: taking the graded pieces gives an equivalence of categories
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from the category of complex variations of Hodge structures on Y (Γ) to the
category of Hodge bundles on Y (Γ). Here, the geometric objects on Y (Γ) are
extended to X(Γ) as “canonical extensions” (namely, the filtration is given
by the growth behavior at the punctures).

We equip the Higgs bundle (Eν , θν) with a left-continuous decreasing fil-
tration

Eν,α = Eν

(︁
−⌈α⌉D

)︁
, α ∈ ℝ.

This is by definition a filtered regular Higgs bundle of degree zero. Moreover,
it is stable, as the only proper nonzero θ-stable subbundle of Eν is ν−1, whose
filtered degree is negative. This is the same as the “canonical extension” of
(Eν , θν)|Y (Γ).

By the tame nonabelian Hodge correspondence, from (Eν , {Eν,α}, θν), we
obtain a 2-dimensional stable filtered local system Lν of degree zero. The
correspondence of the statement of the Theorem is then

ν ↦→ the underlying local system of Lν .

The inverse of the correspondence can be given as follows. Let Γ′ be a hyper-
bolic projective lift of PΓ. Then, the universal variation of Hodge structures
on ℍ descend to a variation of Hodge structure on Y (Γ′) = Y (Γ) whose un-
derlying local system is the same as the local system corresponding to Γ′.
Since the local system has unipotent local monodromies around the punc-
tures, the Hodge filtration extends canonically (in the sense of Deligne) to
X(Γ) as a filtration of vector bundles. Let F 1 be the canonical extension of
F 1; namely, it is the sheaf of sections of F 1 with at worst logarithmic growth
at the punctures. Then the inverse correspondence is

Γ′ ↦→ F 1.

This is certainly a restriction of the inverse of the tame nonabelian Hodge
correspondence as above by [25, Theorem 4]. It sends hyperbolic projective
lifts of PΓ to theta characteristics. Since the two sets, the set of hyperbolic
projective lifts of PΓ and the set of theta characteristics, are finite sets with
the same cardinality 2g, it gives rise to a one-to-one correspondence. From
the description of the inverse correspondence, the rest of the Theorem follows
immediately.

Note that, for a theta characteristic ν, there is a line bundle L on X(Γ)
such that L⊗2 ∼= 𝒪X(Γ) and ν = ω ⊗ L. We introduce the following (non-
standard) definitions which will be used throughout the paper.
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Definition 3.3. On a scheme X, a 2-torsion line bundle is a line bundle L
over X equipped with an isomorphism iL : L⊗2 ∼−→ 𝒪X (the isomorphism is
a part of the data). Two 2-torsion line bundles L,L′ are regarded as being
isomorphic if there exists an isomorphism of line bundles ι : L ∼−→ L′ which is
compatible with the isomorphisms iL : L⊗2 ∼−→ 𝒪X and iL′ : L′⊗2 ∼−→ 𝒪X . A
trivial 2-torsion line bundle is 𝒪X together with the identity map of 𝒪X .4

Similarly, over a field F , a theta characteristic with Kodaira–Spencer data
on X(Γ)F is a theta characteristic ν on X(Γ)F equipped with a Kodaira–
Spencer isomorphism KSν : ν⊗2 ∼−→ Ω1

X(Γ)F /F (D). Two theta characteristics
with Kodaira–Spencer data are isomorphic if there is an isomorphism between
the underlying theta characteristics which respects the Kodaira–Spencer iso-
morphisms.

It is well-known that (e.g. [14, Exercise IV.2.7]) there is a one-to-one cor-
respondence between 2-torsion line bundles and étale double covers. Although
such a correspondence is usually stated for smooth projective curves over an
algebraically closed field, it holds true in much greater generality if one keeps
track of the relevant isomorphisms.

Lemma 3.3. Let Y be a connected scheme over which 2 is invertible. Then,
there is a natural one-to-one correspondence between the isomorphism classes
of 2-torsion line bundles on X and the isomorphism classes of Galois5 cov-
ers f : X → Y of degree 2. Furthermore, the one-to-one correspondence is
compatible with the base-change of Y on both sides.

Proof. Given a 2-torsion line bundle L over Y (with an isomorphism iL :
L⊗2 ∼−→ 𝒪Y ), one can define a finite 𝒪Y -algebra

𝒜L := 𝒪Y ⊕ L

such that the multiplication 𝒜L ⊗𝒪Y 𝒜L → 𝒜L is given by the obvious rules
and the isomorphism iL : L ⊗𝒪Y L → 𝒪Y . Let XL := Spec𝒪Y

𝒜L, which
by construction is a finite surjective Y -scheme of degree 2. To show that
the natural morphism XL → Y is étale, we can reduce to the case when Y =
SpecR is affine and L = 𝒪Y . Then, XL = SpecR[t]/(t2−a) for some a ∈ R×,

4Note that, given a 2-torsion line bundle L with iL : L⊗2 ∼−→ 𝒪X , one can scale
iL by an invertible element a ∈ H0(X,𝒪X)×, and the new 2-torsion line bundle
(L, aiL) is isomorphic to (L, iL) if and only if a is a square. This is always the case
for example if X is a projective variety over an algebraically closed field.

5In this paper, by a Galois cover we mean a finite étale cover whose self-product
splits as a trivial cover. In particular, we allow disconnected covers to be considered
Galois.
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which is clearly étale over Y = SpecR as 2t is invertible in R[t]/(t2 − a). The
construction (L, iL) ↦→ XL is well-defined, as isomorphic 2-torsion line bundles
yield isomorphic 𝒪Y -algebras. Finally, a morphism c : XL → XL induced by
the morphism of 𝒪Y -algebras,

𝒪Y ⊕ L
(x,y)↦→(x,−y)−−−−−−−−→ 𝒪Y ⊕ L,

gives a nontrivial element of AutY (XL), which shows that X → Y is Galois.
Conversely, suppose that f : X → Y is a finite étale cover of degree 2.

We claim that f is a Galois covering, i.e. there is a nontrivial involution σ :
X → X of Y -schemes. If X is not connected, then it is clear due to the degree
reasons that X is consisted of two connected components, each isomorphic to
Y , so there is an obvious involution of X. Thus, suppose that X is connected.
Then, the projection to the first coordinate pr1 : X×Y X → X is also a finite
étale cover of degree 2 that has a section given by the diagonal X → X×Y X.
This implies that X×Y X has a connected component that is isomorphic to X
(e.g. [29, Proposition 5.3.1]) as an X-scheme. Again, by the degree reasons, it
follows that X×Y X ∼= X

∐︁
X as X-schemes. Therefore, there is a nontrivial

involution τ : X ×Y X → X ×Y X of X-schemes (exchanging connected
components). By the faithfully flat descent, pr2 ◦τ : X ×Y X → X factors
through pr2 : X ×Y X → X via a map σ : X → X that is an involution of
Y -schemes, as desired.

The involution σ induces an endomorphism of f∗𝒪X , which is a vector
bundle of rank 2 over Y , and as 2 is invertible on Y , f∗𝒪X = (f∗𝒪X)σ=1 ⊕
(f∗𝒪X)σ=−1 where (f∗𝒪X)σ=±1 is also a vector bundle. Using the descent
along pr2 : X×Y X → X, we deduce that (f∗𝒪X)σ=−1 =: LX is a line bundle
over Y , and (f∗𝒪X)σ=1 = 𝒪Y ; the latter identification is canonical via the
adjunction morphism 𝒪Y → f∗𝒪X .

Note also that the involution σ respects the multiplication morphism
(f∗𝒪X)⊗𝒪Y (f∗𝒪X) → f∗𝒪X , so that the image of its restriction to LX ⊗𝒪Y

LX lies in (f∗𝒪X)σ=1 = 𝒪Y . This restriction morphism LX ⊗𝒪Y LX → 𝒪Y

is an isomorphism as it is an isomorphism after base-changing along pr2 :
X ×Y X → X. Thus, given a finite étale cover f : X → Y of degree 2, one
obtains a 2-torsion line bundle LX and LX ⊗𝒪Y LX

∼−→ 𝒪Y . It is clear that
the two above constructions are inverses to each other, which implies that
these establish a one-to-one correspondence between 2-torsion line bundles
and finite étale covers of degree 2. It is also clear from the constructions that
the correspondence is compatible with the base-change of Y .

The correspondence in Lemma 3.3 gives another geometric way to com-
pute Γν .
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Proposition 3.1. For a 2-torsion line bundle L on X(Γ), let α : ˜︁XL →
X(Γ) be the étale double cover corresponding to L under the correspondence
of Lemma 3.3. If we define the representation ρL of PΓ = π1(Y (Γ), ∗) to be
the composition

π1
(︁
Y (Γ), ∗

)︁
→ π1

(︁
X(Γ), ∗

)︁
↠ Gal

(︁ ˜︁XL/X(Γ)
)︁

= {±1},

the local system ρΓν satisfies ρΓν = ρΓω ⊗ ρL. In particular,

Γν =
⟨︁
ϵa1A1, ϵ

b
1B1, ϵ

a
2A2, ϵ

b
2B2, . . . , ϵ

a
gAg, ϵ

b
gBg, C1, . . . , Cn

⟩︁
,

where ϵai = ρL(ai) and ϵbi = ρL(bi).

Note that, in the above case, the choice of an isomorphism L⊗2 ∼−→ 𝒪X(Γ)
is irrelevant, as H0(X(Γ),𝒪X(Γ)) = ℂ is an algebraically closed field.

Proof. As first noted by Deligne, the nonabelian Hodge correspondence is
compatible with tensor products (see [27, p. 8]). Thus, we only need to show
that ρL : π1(X(Γ), ∗) → {±1} and the Higgs bundle (L, 0) with zero Higgs
field on X(Γ) correspond to each other via the nonabelian Hodge correspon-
dence on X(Γ).

Let c ∈ Gal( ˜︁XL/X(Γ)) be the nontrivial Galois element, which gives rise
to an automorphism c ∈ AutX(Γ)( ˜︁XL). Consider H 0

dR( ˜︁XL/X(Γ)), which is a
vector bundle with an integrable connection ∇GM of rank 2 on X(Γ). It is
isomorphic to (︁

H 0
dR
(︁ ˜︁XL/X(Γ)

)︁
,∇GM

)︁ ∼= (𝒪X(Γ), d) ⊕ (L, d),

where (𝒪X(Γ), d) denotes the canonical differential d : 𝒪X(Γ) → Ω1
X(Γ)/ℂ,

and (L, d) = L ⊗ (𝒪X(Γ), d) (this defines a connection as L⊗2 ∼= 𝒪, so
the transition functions for a sufficiently fine atlas can be taken to be con-
stant functions, namely ±1). Furthermore, c gives rise to an endomorphism
of H 0

dR( ˜︁XL/X(Γ)), where
(︁
H 0

dR
(︁ ˜︁XL/X(Γ)

)︁
,∇GM

)︁c=1 = (𝒪X(Γ), d),(︁
H 0

dR
(︁ ˜︁XL/X(Γ)

)︁
,∇GM

)︁c=−1 = (L, d).

Thus, ρL (considered as a character) is a local system that underlies a vari-
ation of Hodge structure corresponding to (H 0( ˜︁XL/X(Γ)))c=−1, and its as-
sociated graded is (L, 0). This implies that ρL and (L, 0) correspond to each
other via the nonabelian Hodge correspondence.
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We will see later that without much difficulty the same construction works
motivically.

4. The Hodge bundle is the unique congruence theta
characteristic

By Theorem 3.1, for each theta characteristic ν, H0(X(Γ), ν⊗k) is a space of
weight k modular forms of level Γν . Note that, if k is even, then

ν⊗k =
(︁
ν⊗2)︁⊗k/2 =

(︁
ω⊗2)︁⊗k/2 = ω⊗k,

so Mk(Γν) = Mk(Γ) is consisted of modular forms of level Γ which is a
congruence subgroup.

From this, one naturally wonders about the nature of odd-weight modular
forms of level Γν . We introduce the following definition.

Definition 4.1. A theta characteristic ν is called a congruence theta char-
acteristic if Γν ≤ SL2(ℤ) is a congruence subgroup.

In contrast to the even-weight case, the main theorem of this section shows
that, if k is odd and ν ̸= ω, Mk(Γν) is consisted entirely of noncongruence
modular forms!6

Theorem 4.1. A theta characteristic ν is a congruence theta characteristic
if and only if ν = ω.

A quick corollary is that, for ν ̸= ω, the Hecke operators are zero on
H0(X(Γ), ν⊗k) for odd k.

Corollary 4.1. For (p,N) = 1 and odd k ≥ 1, define the Hecke operator Tp

on H0(X(Γ), ν⊗k) = Mk(Γν) as follows: for f ∈ Mk(Γν),

Tpf =
∑︂
i

f |ααi ,

where

ΓναΓν =
⋃︂
i

Γνααi, α =
(︄
p 0
0 1

)︄
.

If ν ̸= ω, we always have Tpf = 0.
6Recall that a noncongruence modular form is a modular form of some level

which does not arise as a modular form of congruence level.
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Proof. By [4], we know that Tp factors through the trace map to the congru-
ence closure. In our case, if ν ̸= ω, by Theorem 4.1, the congruence closure
of Γν is ⟨±1,Γ⟩. Since there is no nonzero odd-weight modular form of level
⟨±1,Γ⟩, the desired statement follows.

Remark 4.1. The above Hecke operator can be geometrically interpreted as
the correspondence

X(Γν ∩ α−1Γνα ∩ Γ0(p))

↓↓

∼ →→ X(αΓνα
−1 ∩ Γν ∩ Γ0(p))

↓↓
X(Γν) X(Γν)

where Γ0(p) = {( a b
c d ) ≡ ( ∗ 0

∗ ∗ ) (mod p)}. As Γν is an index 2 subgroup of a
congruence subgroup of level prime to p, α in general does not normalize Γν ,
but rather sends Γν to a possibly different index 2 subgroup of ⟨±1,Γ⟩.

The proof of Theorem 4.1 will be a slight generalization of the proofs in
[17, §2], for which we use the technical condition (∗). As in loc. cit., we define

V2(G) := Gab/
(︁
Gab)︁2 = Gab ⊗ℤ 𝔽2

for a group G. Note that V2 is a functor that sends finitely generated groups to
finite-dimensional 𝔽2-vector spaces, which has the following easy properties.

Lemma 4.1.

1. V2 is a right-exact functor.7
2. V2(G1 ×G2) ∼= V2(G1) × V2(G2).

Proof. The functor V2 is the composition of the abelianization functor with
(−) ⊗ℤ 𝔽2, and both are right exact.

Proof of Theorem 4.1. As Γω = Γ, Γω is a congruence subgroup, which proves
one direction. Conversely, suppose that Γν is a congruence subgroup. As per
Theorem 3.1, we need to prove that there is no hyperbolic projective lift of
PΓ which is a congruence subgroup and is different from Γ.

Suppose that Γ is of level N ; namely, N is the minimal number such
that Γ(N) ≤ Γ. By the result of Wohlfahrt [32, Theorem 2] and Kiming–
Schütt–Verrill [18, Proposition 3], Γ is of general level either N or N

2 . Recall
that the general level of a Fuchsian group is the least common multiple of

7Even though the category of groups is not an abelian category, the notion of
exact sequences makes sense.
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the widths of the cusps. The general level only depends on the projective
image of the Fuchsian group, so Γν is of general level N . By loc. cit., Γν ≥
Γ(2N). Thus, ⟨±1,Γ⟩ ≥ Γν ≥ Γ(2N). Thus, Γν corresponds to a subgroup of
⟨±1,Γ⟩/Γ(2N) ∼= ⟨±1⟩ × Γ/Γ(2N) such that {±1} and Γν together generate
the whole subgroup ⟨±1,Γ⟩/Γ(2N). As in [17, Proposition 1], projective lifts
of PΓ that are also congruence subgroups are in one-to-one correspondence
with a sub-𝔽2-vector space U of V2(⟨±1,Γ⟩/Γ(2N)) ∼= ⟨±1⟩ × V2(Γ/Γ(2N))
such that U and −1 together span the whole vector space. Such projective
lift is honest if U is a proper subspace, and −1 /∈ U . Thus, the composition
U ↪→ V2(⟨±1,Γ⟩/Γ(2N)) = ⟨±1⟩×V2(Γ/Γ(2N)) ↠ V2(Γ/Γ(2N)) is injective,
thus bijective (as the target and the source have the same 𝔽2-dimensions).
Thus, choosing an honest congruence projective lift is the same as choosing
the signs for the lifts of basis elements of V2(Γ/Γ(2N)).

By the assumption (∗), N = lcm(N1, N2), and Γ(N) ≤ Γ ≤ Γ1(N). Let
N = 2spt11 · · · ptrr , where pi’s are odd primes. Note also that

SL2(ℤ)/Γ(2N) ∼= SL2(ℤ/2Nℤ) ∼= SL2
(︁
ℤ/2s+1ℤ

)︁
×

r∏︂
i=1

SL2
(︁
ℤ/ptii ℤ

)︁
,

so Γ1(N)/Γ(2N) injects into Γ1(2s)/Γ(2s+1)×∏︁r
i=1 Γ1(ptii )/Γ(ptii ), which is a

bijection as the two groups are finite groups of the same order; for 1 ≤ a ≤ b,
#Γ1(pa)/Γ(pb) = p3b−2a. Under this isomorphism, we have

Γ/Γ(2N) ∼= A×
r∏︂

i=1
Bi,

where Bi ≤ Γ1(ptii )/Γ(ptii ) is a subgroup, and

A =

⎧⎪⎪⎨⎪⎪⎩
SL2(ℤ)/Γ(2) if s = 0,
Γ1(2s)/Γ(2s+1) if 2|N1,
Γ(2s)/Γ(2s+1) if 2|N2.

Note that Γ1(ptii )/Γ(ptii ) is of odd order, so B is of odd order as well. Thus,
the natural projection map Γ/Γ(2N) ↠ A induces an isomorphism
V2(Γ/Γ(2N)) ∼−→ V2(A).

By the right-exactness of V2, we have a surjective natural map V2(Γ) ↠
V2(Γ/Γ(2N)). Since a hyperbolic projective lift fixes the signs of the lifts of
the loops around the cusps, to prove Theorem 4.1, it suffices to prove that
V2(Γ/Γ(2N)) is spanned by the images of shearing transformations along the
cusps. We prove that this is true by dividing into cases.
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(Case 1) If s = 0, then A = SL2(𝔽2) ∼= S3, and V2(A) ∼= (ℤ/2ℤ) is generated
by ( 1 1

0 1 ). As Γ = Γ1(N1) ∩ Γ(N2) with N1, N2 odd, ( 1 N2
0 1 ) ∈ Γ is

sent to ( 1 1
0 1 ) ∈ A via the natural projection Γ ↠ A. Since ( 1 N2

0 1 )
is a shearing transformation along the cusp ∞ ∈ ℙ1(ℚ), there is no
hyperbolic projective lift different from Γ.

(Case 2) If s > 0 and 2|N2, then A = Γ(2s)/Γ(2s+1). As in the proof of
[17, Proposition 2], one notes that A = V2(A) ∼= (ℤ/2ℤ)3 with a
generator given by

α =
(︄

1 2s
0 1

)︄
, β =

(︄
1 + 2s −2s

2s 1 − 2s

)︄
, γ =

(︄
1 0
2s 1

)︄
.

Note that we took a slightly different set of generators. Note that

α ≡
(︄

1 N2
0 1

)︄(︁
mod 2s+1)︁,

β ≡
(︄

1 + N1N2 −N1N2
N1N2 1 −N1N2

)︄(︁
mod 2s+1)︁,

γ ≡
(︄

1 0
N1N2 1

)︄(︁
mod 2s+1)︁,

and these matrices are genuine elements of Γ = Γ1(N1) ∩ Γ(N2).
Also note that ( 1 N2

0 1 ) is a shearing transformation along the cusp
∞ ∈ ℙ1(ℚ), ( 1 0

N1N2 1 ) is a shearing transformation along the cusp
0 ∈ ℙ1(ℚ), and ( 1+N1N2 −N1N2

N1N2 1−N1N2
) is a shearing transformation along

the cusp 1 ∈ ℙ1(ℚ), since(︄
1 + N1N2 −N1N2
N1N2 1 −N1N2

)︄
=
(︄

1 1
0 1

)︄(︄
1 0

N1N2

)︄(︄
1 −1
0 1

)︄
.

Therefore, there is no hyperbolic projective lift different from Γ.
(Case 3) If s > 0 and 2|N1, then A = Γ1(2s)/Γ(2s+1). As per loc. cit., V2(A) ∼=

(ℤ/2ℤ)2 with a basis given by

τ =
(︄

1 1
0 1

)︄
, γ =

(︄
1 0
2s 1

)︄
.

Since N2 is odd, 2s+1 is invertible modulo N2, which implies that
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there exists k ∈ ℤ such that k2s+1 ≡ −1(modN2). Now note that

τ ≡
(︄

1 1 + k2s+1

0 1

)︄(︁
mod 2s+1)︁, γ ≡

(︄
1 0

N1N2 1

)︄(︁
mod 2s+1)︁,

and these matrices are genuine elements of Γ = Γ1(N1)∩Γ(N2). It is
clear that these matrices are also shearing transformations along the
cusps ∞, 0 ∈ ℙ1(ℚ), respectively, so there is no hyperbolic projective
lift different from Γ.

5. Brill–Noether theory of the modular curves and the
Hodge bundle

There is a different perspective on how special a line bundle on a curve is,
which goes under the general name of Brill–Noether theory. Generally speak-
ing, given a smooth projective complex curve C and a line bundle L (or
equivalently a divisor class [D]), L is considered special if dimℂH0(C,L) is
larger than the other line bundles on C of the same degree. Furthermore, the
curve C is considered special if there exists a certain line bundle with a larger
than usual h0. More precisely, we introduce the following definition which is
common in the literature.

Definition 5.1. A smooth projective complex curve C of genus g is called
Brill–Noether general if, for all r, d ≥ 0, the moduli space Gr

d(C) of linear
systems on C of degree d and dimension r (for the definition, see [1, p. 177])
is smooth of dimension ρ(g, d, r) := g − (r + 1)(g − d + r); this in particular
means that Gr

d(C) is empty if ρ(g, d, r) < 0.
Otherwise, C is called Brill–Noether special.

The classical Brill–Noether theory [16, 19, 12, 11] shows that a general
curve is Brill–Noether general (i.e. there is a Zariski dense open subset of the
moduli ℳg of genus g curves whose closed points are Brill–Noether general
curves). Given the special nature of the modular curves and their Hodge
bundles, one is naturally led to ask whether they are special in the sense of
Brill–Noether theory.

We first show that a modular curve of sufficiently fine level is Brill–
Noether special. For this, we notice a simple lemma, which extends the idea
of [31, Remark 1.12].

Lemma 5.1. Let C be a smooth projective complex curve, and suppose that
there exists a degree d divisor D satisfying the following two conditions:
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1. h0(𝒪(D)) ≥ 2;
2. KC − 2D is linearly equivalent to an effective divisor (may be zero).

If ˜︁C → C is a finite surjective morphism from a smooth projective complex
curve ˜︁C, then ˜︁C is Brill–Noether special.

Proof. We first show that C itself is Brill–Noether special, and then show
that ˜︁C itself has a divisor satisfying the two conditions. Take a 2-dimensional
subspace V ⊂ H0(C,𝒪(D)). We will show that G1

d(C) is not smooth at the
point corresponding to the linear system (D,V ), which will then show that
C is Brill–Noether special. This will follow if the Petri map

μD,V : V ⊗H0(︁C,Ω1
C(−D)

)︁
→ H0(︁C,Ω1

C

)︁
,

which is simply the cup product, is not injective. Note that Ω1
C(−D) ∼= 𝒪(D+

E), where E is an effective divisor. Therefore, any section s ∈ H0(C,𝒪(D)) is
also a section of 𝒪(D +E). Take two linearly independent sections s, s′ ∈ V ,
then s⊗ s′ − s′ ⊗ s is in kerμD,V , which implies that the above Petri map is
indeed not injective, as desired.

Suppose now that π : ˜︁C → C is a finite surjective morphism. We claim
that π∗D satisfies the properties (1) and (2). By [13, (2.2.8)], H0(C,𝒪(D)) →
H0( ˜︁C,𝒪(π∗D)) is injective, so (1) holds. If KC ∼ 2D + E for some effective
divisor E, then π∗KC ∼ 2π∗D+π∗E. By Hurwitz’s theorem (e.g. [14, Propo-
sition IV.2.3]), K˜︁C ∼ 2π∗D + (π∗E +R) where R is the ramification divisor,
which is in particular effective. Thus, (2) holds as well.

Proposition 5.1. The modular curve X(Γ) is Brill–Noether special if one of
the following conditions holds:

1. dimℂ S1(Γ) ≥ 2;
2. Γ = Γ1(N), when N is a squarefree number such that N > 10 and

4|φ(N);
3. Γ ≤ Γ′ for Γ′ satisfying any of the above conditions.

Proof.

1. The Petri map for ω(−D) is

μω(−D) : H0(︁X(Γ), ω(−D)
)︁
⊗H0(︁X(Γ), ω

)︁
→ H0(︁X(Γ),Ω1

C

)︁
,

which is simply the multiplication map S1(Γ)⊗M1(Γ) → S2(Γ). For any
two-dimensional subspace V ⊂ S1(Γ), s⊗s′−s′⊗s is in the kernel of the
Petri map, where s, s′ are two linearly independent sections of V , which
implies that G1

g−1−n
2
(X(Γ)) is not smooth at the point corresponding

to the linear system (ω(−D), V ).
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2. The map X1(N) → X0(N) is a Galois cover with the Galois group
(ℤ/Nℤ)×/{±1}. By the assumption on N , the Galois group is of even
order, so one may find an order 2 element in the Galois group, which
corresponds to an étale double cover X1(N) → X for some smooth
projective complex curve X of genus > 0. By [31, Remark 1.12], X1(N)
is Brill–Noether special.

3. In the above two cases, X(Γ′) is shown to be Brill–Noether special using
a divisor satisfying the conditions (1) and (2) of Lemma 5.1. Thus, we
can apply Lemma 5.1 to the covering X(Γ) → X(Γ′) to deduce that
X(Γ) is also Brill–Noether special.

In contrast to the modular curves, it turns out that the Hodge bundle ω
has no meaningful relationship with the Brill–Noether theory, as illustrated
by the following two examples.

Example 5.1 (When ω is the theta characteristic with the most sections).
Let Γ = Γ1(23). According to [23],

dimℂH0(︁X1(23), ω(−D)
)︁

= dimℂ S1
(︁
Γ1(23)

)︁
= 1.

On the other hand, X1(23) is of genus 12 and has 22 cusps, so degω(−D) = 0.
Therefore, ω(−D) ∼= 𝒪X1(23). For any other theta characteristic ν, ν(−D) is of
degree zero and is not the structure sheaf, so H0(X1(23), ν(−D)) = 0. There-
fore, dimℂH0(X1(23), ω) > dimℂH0(X1(23), ν) for any theta characteristic
ν ̸= ω, or ω is the “most special” theta characteristic.

Example 5.2 (When ω is the theta characteristic with the fewest sections).
Let Γ = Γ1(35). According to [23],

dimℂH0(︁X1(35), ω(−D)
)︁

= dimℂ S1
(︁
Γ1(35)

)︁
= 0.

We claim that there is a unique theta characteristic ν such that

dimℂH0(︁X1(35), ν(−D)
)︁

= 1,
dimℂH0(︁X1(35), ν ′(−D)

)︁
= 0 for any theta characteristic ν ′ ̸= ν.

Necessarily, ν ̸= ω. This implies that ω is the “least special” theta character-
istic in this case.

Note that X1(35) is of genus 25 and has 48 cusps, so deg Ω1
X1(35)(−D) = 0.

This means that if there exists a nonzero weight 2 cusp form on X1(35)
which vanishes to order 2 at all cusps, then it does not vanish outside the
cusps and therefore is a square of a holomorphic function, which is a weight
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one non-congruence modular form. Furthermore, if ν is the theta character-
istic corresponding to the level of this non-congruence modular form, then
dimℂH0(X1(35), ν(−D)) = 1, as deg ν(−D) = 0, ν(−D) ∼= 𝒪X1(35). More-
over, for any other theta characteristic ν ′ ̸= ν, ν ′(−D) is a degree zero line
bundle that is not the structure sheaf, so dimℂH0(X1(35), ν ′(−D)) = 0.

Let f1, f2 ∈ S2(Γ1(35)) be the embedded newforms 35.2.a.b.1.1 and
35.2.a.b.1.2 in [23], respectively. We claim that f := f2 − f1 vanishes to
order 2 at all cusps of X1(35). We may compute its q-expansion at the cusps
other than the infinity cusp using [2]. To state the results, we introduce some
notations. For the remainder of this example, we assume that N = p1 · · · pr
is a square-free odd integer.

There are 2r−1(p1 − 1) · · · (pr − 1) cusps of X1(N), where we can take the
representatives of the cusps nicely as

{cM1,a,b := b
M2a

∈ℙ1(ℚ) : N =M1M2, 1 ≤ a < M1, (a,M1) = 1, (b,M2a) = 1}
∼ ,

where cM1,a,b ∼ cM ′
1,a

′,b′ if and only if M1 = M ′
1 and if there exists ϵ ∈ {±1}

such that a ≡ ϵa′ (modM1) and b ≡ ϵb′ (modM2). Note that c1,1,1 is the
infinity cusp, and cM1,a,b is of width M1. For a modular form g ∈ Mk(Γ1(N)),
let

eM1,a,b(g)(q) =
∞∑︂
j=0

aM1,a,b,j(g)qj/M1 ∈ ℂ
[︁[︁
q1/M1

]︁]︁
be the q-expansion of g at the cusp cM1,a,b; more precisely, it is the Fourier
expansion of fM1,a,b(z) := f(σM1,a,b(z)), where σM1,a,b ∈ SL2(ℤ) is a matrix
such that

σ−1
M1,a,b

ZcM1,a,b

(︁
Γ1(N)

)︁
, σM1,a,b ⊂

(︄
1 ∗
0 1

)︄
,

where ZcM1,a,b
(Γ1(N)) ⊂ Γ1(N) is the stabilizer of cM1,a,b in Γ1(N).

We may now state a result of Asai computing the q-expansion of a new
Hecke eigenform at all cusps.

Proposition 5.2 ([2, Theorem 2]). Let g ∈ Snew
k (N,χ) be a Hecke eigenform

such that, at c1,1,1 = ∞, g has the q-expansion

e1,1,1(g)(q) =
∞∑︂
n=1

anq
n, a1 = 1.
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Let χ = χp1 · · ·χpr be the product such that χpi is a Dirichlet character mod
pi (may not be primitive). Then, for all cusps cM1,a,b,

eM1,a,b(g)(q) = χ
(︁
bcM1 + M2

2ad
)︁ ∏︂
p|M1

(︃
p−

k
2χp

(︃
M1

p

)︃
apC(χp)

)︃ ∞∑︂
n=1

a(M1)
n qn/M1 ,

where c, d ∈ ℤ are such that cM1 + dM2 = 1,

C(χp) =
{︄∑︁

1≤h<p χp(h)e2πih/p if χp is primitive,
−q if χp is trivial,

and a
(M1)
n is defined as

a(M1)
n =

⎧⎪⎪⎨⎪⎪⎩
χ(dnM2 + cM1)an if (n,M1) = 1,
χ(cnM1 + dM2)an if (n,M2) = 1,
a

(M1)
x a

(M1)
y if n = xy, (x, y) = 1.

For our purpose, this can be packaged more simply as follows.

Corollary 5.1. Fix χ and a cusp cM1,a,b ∈ X1(N) of width M1. Then, there
exist a constant λ ∈ ℂ that depends only on M1, a, b, and, for each n ≥ 1,
a constant ϵn ∈ ℂ that depends only on M1, a, b, n, such that, for any nor-
malized Hecke eigenform g ∈ Snew

k (N,χ) with the q-expansion e1,1,1(g)(q) =∑︁∞
n=1 anq

n at ∞,

aM1,a,b,n(g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(λϵn

∏︁
p|M1 ap)an if (n,M1) = 1,

(λϵn
∏︁

p|M1 ap)an if (n,M2) = 1,
aM1,a,b,x(g)aM1,a,b,y(g)

λϵ1
∏︁

p|M1
ap

if n = xy and (x, y) = 1.

Now we are ready to show that f vanishes to order 2 at all cusps of X1(35).
Note first that f1, f2, f all have trivial character, so the order of vanishing
of f is constant along the cusps of X1(35) in a single fiber of the Galois
covering X1(35) → X0(35), namely the order of vanishing of f is constant
along the cusps of the same width. As a1,1,1,1(f) = 0, we only need to show
that a5,1,1,1(f) = a7,1,1,1(f) = a35,1,1,1(f) = 0. Let fi =

∑︁∞
j=1 ai,jq

n be the
q-expansion of fi. As f1 and f2 are both newforms, we may use Corollary 5.1
to compute that, for M1 = 5, 7, 35,

aM1,1,1,1(f) = CM1

(︃∏︂
p|M1

a2,p −
∏︂
p|M1

a1,p

)︃
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for some constant CM1 ∈ ℂ that only depends on M1. According to [23], we
have

a1,5 = 1, a1,7 = −1,
a2,5 = 1, a2,7 = −1,

which implies that aM1,1,1,1(f) = 0 for M1 = 5, 7, 35. This implies that f
vanishes to order 2 at all cusps of X1(35), as desired.

6. Twisted Kuga–Sato varieties and geometric local systems
for theta characteristics

We now aim to show that the construction of Lemma 3.3 yields, for each
theta characteristic with Kodaira–Spencer data ν, a compatible system of
local systems over Y (Γ)K over an appropriate number field K that comes from
geometry. Furthermore, we will show that these local systems correspond to
the uniformizing logarithmic Higgs bundles (Eν , θν) via complex and p-adic
nonabelian Hodge correspondences. We will construct the geometric local
systems from the twisted Kuga–Sato variety.

Definition 6.1. Let K/ℚ be a number field, and let α : ˜︁X → X(Γ)K be
a finite Galois cover of degree r. The twisted Kuga–Sato variety u : W ˜︁X →
X(Γ)K associated with ˜︁X is defined as the Weil restriction of the pullback
α∗ℰK ,

W ˜︁X := R ˜︁X/X(Γ)K

(︁
α∗ℰK

)︁
.

The open twisted Kuga–Sato variety u : W˜︁X → Y (Γ)K is defined as the open
subscheme of W ˜︁X lying over Y (Γ)K ⊂ X(Γ)K .

We will also use the notation ˜︁Y := α−1(Y (Γ)K).

For the definition of scheme-theoretic Weil restriction of scalars, see [5,
§7.6].

Example 6.1. For a trivial Galois r-cover X(Γ)ℚ
∐︁ · · ·∐︁X(Γ)ℚ → X(Γ)ℚ

consisted of r copies of X(Γ)ℚ, the corresponding twisted Kuga–Sato variety is
the usual Kuga–Sato variety (before the canonical desingularization), namely
the r-fold fiber product of ℰℚ over X(Γ)ℚ.

Remark 6.1. As in the case of the usual Kuga–Sato variety, the twisted Kuga–
Sato variety W ˜︁X is in general singular, even though α∗ℰK itself is a smooth
K-scheme. On the other hand, the open twisted Kuga–Sato variety W˜︁X is
smooth.
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The open twisted Kuga–Sato variety W˜︁X still turns out to be a family of
principally polarized abelian r-folds over Y (Γ)K .

Proposition 6.1. The open twisted Kuga–Sato variety u : W˜︁X → Y (Γ)K is
a family of principally polarized abelian varieties of dimension r.

Proof. By [8, Proposition 2], the Weil restriction of a principal polarization
is a principal polarization. As an elliptic curve is canonically principally po-
larized, W˜︁X is a family of principally polarized abelian varieties.

We can thus think of classifying map to the moduli space of principally
polarized abelian varieties of dimension r,

π˜︁X : Y (Γ)K → 𝒜r,K ,

and this induces a classifying map to the corresponding coarse moduli scheme,

p˜︁X : Y (Γ)K → Ar,K .

Proposition 6.2. Let πdiag : Y (Γ)K → 𝒜r,K be the classifying map which
corresponds to the r-th self-product ℰK ×Y (Γ)K · · · ×Y (Γ)K ℰK over Y (Γ)K ,
and let pdiag : Y (Γ)K → Ar,K be the corresponding map to the coarse moduli
scheme. Then, pdiag = p˜︁X . On the other hand, πdiag ̸= π˜︁X unless ˜︁X → X(Γ)K
is a trivial cover.

Proof. By [6, Proposition A.5.2], we have

W˜︁X ×Y (Γ)K
˜︁Y = R˜︁Y×Y (Γ)K

˜︁Y /˜︁Y (︁α∗ℰK ×˜︁Y (˜︁Y ×Y (Γ)K
˜︁Y )
)︁
.

Since ˜︁Y ×Y (Γ)K
˜︁Y is isomorphic to the disjoint union of r copies of ˜︁Y , we have

W˜︁X×Y (Γ)K
˜︁Y ∼= R˜︁Y ∐︁···

∐︁˜︁Y /˜︁Y (︂α∗ℰK
∐︂

· · ·
∐︂

α∗ℰK
)︂
∼= α∗ℰK×˜︁Y · · ·×˜︁Y α∗ℰK .

This implies that

W˜︁X ×Y (Γ)K
˜︁Y ∼= (ℰK ×Y (Γ)K · · · ×Y (Γ)K ℰK) ×Y (Γ)K

˜︁Y .

Furthermore, the two abelian schemes are isomorphic as ˜︁Y -schemes; even
though ˜︁Y ×Y (Γ)K

˜︁Y ∼= ˜︁Y ∐︁ · · ·∐︁ ˜︁Y is most naturally thought as being indexed
by the elements in Gal(˜︁Y /Y (Γ)K), for any σ ∈ Gal(˜︁Y /Y (Γ)K), the ˜︁Y -scheme˜︁Y σ−→ ˜︁Y is isomorphic as a ˜︁Y -scheme to ˜︁Y id−→ ˜︁Y . Thus, πdiag ◦α = π˜︁X ◦α, and
pdiag ◦α = p˜︁X ◦α. Since α is flat, surjective, and locally of finite presentation,
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by [28, Tag 05VM], α is an epimorphism (i.e. surjective as a map of sheaves),
which implies that pdiag = p˜︁X .

The fact that πdiag ̸= π˜︁X is equivalent to W˜︁X ̸= ℰK ×Y (Γ)K · · ·×Y (Γ)K ℰK .
There are many ways of seeing this – we will soon see that the monodromy
representations of their relative H1

ét are different. A more elementary way of
seeing the difference is to observe that the descent data for the two schemes
are different for the étale covering α : ˜︁Y → Y (Γ)K . Let us fix an isomorphism

ι : ˜︁Y ∐︂ · · ·
∐︂ ˜︁Y ∼= ˜︁Y ×Y (Γ)K

˜︁Y
such that the two projection maps p1, p2 : ˜︁Y ×Y (Γ)K

˜︁Y → ˜︁Y are identified
with

p1 ◦ ι : ˜︁Y ∐︂ · · ·
∐︂ ˜︁Y (id,...,id)−−−−−→ ˜︁Y ,

p2 ◦ ι : ˜︁Y ∐︂ · · ·
∐︂ ˜︁Y (σ1,...,σr)−−−−−→ ˜︁Y ,

where Gal(˜︁Y /Y (Γ)K) = {σ1 = id, σ2, . . . , σr}. Note that Gal(˜︁Y /Y (Γ)K) ⊂
Sr where one can identify σ ∈ Gal(˜︁Y /Y (Γ)K) with the permutation of the
components

˜︁Y ∐︂ · · ·
∐︂ ˜︁Y ∼−→ ˜︁Y ×Y (Γ)K

˜︁Y (σ,id)−−−→ ˜︁Y ×Y (Γ)K
˜︁Y ∼←− ˜︁Y ∐︂ · · ·

∐︂ ˜︁Y .

The descent datum for ℰK ×Y (Γ)K · · ·×Y (Γ)K ℰK for the covering ˜︁Y → Y (Γ)K
is given by(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁∐︂

· · ·
∐︂(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁

(id,...,id)−−−−−→
(︁
α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK

)︁∐︂
· · ·
∐︂(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁
,

whereas the descent datum for W˜︁X for the covering ˜︁Y → Y (Γ)K is given by

(︁
α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK

)︁∐︂
· · ·
∐︂(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁

(f,...,f)−−−−→
(︁
α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK

)︁∐︂
· · ·
∐︂(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁
,

where

f : α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
→
(︁
α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK

)︁∐︂
· · ·
∐︂(︁

α∗ℰK ×˜︁Y · · · ×˜︁Y α∗ℰK
)︁
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is defined as f = (σ1, . . . , σr), where σi is the natural map corresponding
to the permutation that it represents. As there is no ˜︁Y -automorphism that
intertwines the two descent data, the two descend to two non-isomorphism
Y (Γ)K-schemes, as desired.

Proposition 6.3. The family of abelian varieties W˜︁X on Y (Γ)K has the
following properties.

1. Given a field extension K ′/K and a point x ∈ Y (Γ)(K ′), the fiber
(W˜︁X)x is the abelian variety over K ′ given by

(W˜︁X)x = R ˜︁Xx/K′

(︁
(Ex)˜︁Xx

)︁
,

where Ex is the elliptic curve corresponding to x, and ˜︁Xx is the étale
K ′-algebra of degree r given by the fiber of α : ˜︁X → X(Γ)K over x.

2. The family u : W˜︁X → Y (Γ)K is Gal(˜︁Y /Y (Γ)K)-equivariant, where
Gal(˜︁Y /Y (Γ)K) acts trivially on Y (Γ)K .

Proof. (1) follows directly from the fact that the Weil restriction of schemes is
compatible with base-change. The action of Gal(˜︁Y /Y (Γ)K) on ˜︁Y and on α∗ℰK
gives, by functoriality of the Weil restriction, the action of Gal(˜︁Y /Y (Γ)K) on
W˜︁X , fixing Y (Γ)K on the base, from which (2) follows.

The twisted Kuga–Sato variety W˜︁X gives rise to the “geometric local
systems” on the modular curve, which will be related to the uniformizing
logarithmic Higgs bundles.

Definition 6.2. Suppose that α : ˜︁X → X(Γ)K is an abelian étale Galois
cover, and that the exponent of the abelian group Gal( ˜︁X/X(Γ)K) is n. For
a character χ : Gal( ˜︁X/X(Γ)K) → ℤ[ζn]×, we define the following “geometric
local systems”:

• for a complex embedding σ : K ↪→ ℂ, we define a varitaion of polar-
ized pure ℤ[ζn]-Hodge structures of weight 1 and rank 2 on Y (Γ) (as a
Riemann surface),

ρ˜︁X,χ,H
:= H 1

B

(︁
W˜︁X ×K,σ ℂ/Y (Γ),ℤ[ζn]

)︁
[χ],

where H 1
B (W˜︁X ×K,σ ℂ/Y (Γ),ℤ[ζn]) is the relative first Betti cohomol-

ogy with ℤ[ζn]-coefficients, and [χ] means the χ-isotypic part of the
action of Gal( ˜︁X/X(Γ)K) on H 1

B (W˜︁X ×K,σ ℂ/Y (Γ));
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• for (p,Nn) = 1, we define an étale ℤp[ζn]-local system of rank 2 over
Y (Γ)K ,

ρ˜︁X,χ,p
:= R1uét,∗ℤp[ζn][χ],

where u : W˜︁X → Y (Γ)K is the natural map, and [χ] means the ι ◦ χ-
isotypic part of the action of Gal( ˜︁X/X(Γ)K) on R1uét,∗ℤp[ζn], where
ι : ℤ[ζn] ↪→ ℤp[ζn] is the natural embedding.

As these local systems come from geometry, the following properties are
immediate.

• The Betti-étale comparison isomorphism holds: namely,

ρ˜︁X,χ,p
|π1,ét(Y (Γ)K×K,σℂ,∗)

∼= ˆ︂ι ◦ ρ˜︁X,χ,H
: ˆ︂π1
(︁
Y (Γ), ∗

)︁
→ GL2

(︁
ℤp[ζn]

)︁
.

Here, the left hand side is the restriction of the ℤp[ζn]-étale local system
ρ˜︁X,χ,p

to the geometric fundamental group π1,ét(Y (Γ)K×K,σℂ, ∗), which
is naturally isomorphic to the profinite completion of the topological
fundamental group π1(Y (Γ), ∗), and the right hand side is the profinite
completion of the topological local system ι ◦ ρ˜︁X,χ,H

: π1(Y (Γ), ∗) →
GL2(ℤp[ζn]).

• For (p,Nn) = 1, the étale local system ρ˜︁X,χ,p
extends to an étale local

system over an integral model 𝔜 over 𝒪K,S of Y (Γ)K for a finite set
of primes S of K including the primes above p. Furthermore, at every
place 𝔭 of K above p, ρ˜︁X,χ,p

|π1,ét(Y (Γ)K𝔭 ,∗) is a de Rham local system.8

We now specialize the above situation to the case of theta characteristics.
Let K/ℚ be a number field, and ν be a theta characteristic with Kodaira–
Spencer data over X(Γ)K , so that ν = ω ⊗ L for a 2-torsion line bundle L.
Let α : ˜︁XL → X(Γ)K be the Galois double cover corresponding to the 2-
torsion line bundle L via Lemma 3.3. We will show that the −1-isotypic
part of the geometric local systems, namely the variation of polarized pure
ℤ-Hodge structures ρ˜︁XL,−1,σ,H for σ : K ↪→ ℂ, and the étale ℤp-local system
ρ˜︁XL,−1,p for (p, 2N) = 1, correspond to the uniformizing logarithmic Higgs
bundle (Eν = ν ⊕ ν−1, θν) via the complex and p-adic nonabelian Hodge
correspondences, respectively. We will use the simplified notation

ρν,σ := ρ˜︁XL,−1,σ,H , ρν,p := ρ˜︁XL,−1,p.

8For the definition of de Rham local systems, see [24].
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Remark 6.2. It should be noted that the isomorphism class of the uniformiz-
ing logarithmic Higgs bundle (Eν , θν) only depends on the underlying theta
characteristic ν and does not depend on the Kodaira–Spencer isomorphism
KSν . Indeed, (Eν , θν) ∼= (Eν , tθν) as Higgs bundles for any nonzero scalar t.
Thus, one should only expect that (Eν , θν) may only determine the informa-
tion that only depends on the underlying line bundle of the 2-torsion line
bundle L.

6.1. Variation of Hodge structures attached to (𝑬𝝂 , 𝜽𝝂)

For the variation of Hodge structures ρν,σ, we aim to show the following.

Theorem 6.1. For a complex embedding σ : K ↪→ ℂ, ρν,σ is the unique,
up to the shift of indices, variation of Hodge structures over Y (Γ) where the
associated graded of its canonical extension is isomorphic to (Eν , θν)×K,σ ℂ.

Remark 6.3. This is indeed consistent with Remark 6.2, as ( ˜︁XL)ℂ only de-
pends on the underlying line bundle of L; namely, ℂ× = (ℂ×)2.

Proof. Let us use the notation (−)σ for the shorthand of (−) ×K,σ ℂ. In the
proof of Theorem 3.1, we have already seen that (Eν,σ, θν,σ) is a stable Higgs
bundle. Furthermore, it is clear that (Eν,σ, θν,σ) ∼= (Eν,σ, tθν,σ) for any t ∈ ℂ×.
Therefore, by [27, Lemma 4.1], the local system corresponding to (Eν,σ, θν,σ)
comes from a complex variation of Hodge structures, which is unique up to
the shift of indices.

On the other hand, the variation of polarized pure ℤ-Hodge structures
ρν,σ has the underlying vector bundle Hν,σ := ρν,σ ⊗𝒪Y (Γ) isomorphic to the
relative de Rham cohomology

Hν,σ
∼= H 1

dR
(︁
W˜︁X,σ

/Y (Γ)
)︁
[χ˜︁X ],

where χ˜︁X : Gal( ˜︁X/X(Γ)K) → {±1} ↪→ ℤ× is the nontrivial character.
Note that the local system underlying the variation of Hodge structures
H 1

B (W˜︁X,σ
/Y (Γ),ℤ) is, as the representation of π1(Y (Γ), ∗), isomorphic to

Indπ1(Y (Γ),∗)
π1(˜︁Y ,∗)

Resπ1(˜︁Y ,∗)
π1(Y (Γ),∗) ρE , where ρE is the local system underlying the vari-

ation of Hodge structures H 1
B (ℰ/Y (Γ),ℤ). The fact that ℍ is the classifying

space of pure polarized ℤ-Hodge structures of weight 1 and rank 2 implies
that, as Y (Γ) ∼= ℍ/Γ, ρE is isomorphic to the representation π1(Y (Γ), ∗) ∼=
Γ ↪→ SL2(ℤ) → GL2(ℤ).
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It is a general fact that, if H ≤ G is a finite index subgroup, given a
representation ρ of G,

IndG
H ResHG ρ ∼= ρ⊗ SG/H ,

where SG/H : G → GL[G:H](ℤ) is the left regular representation. Therefore,
the local system underlying the VHS H 1

B (W˜︁X,σ
/Y (Γ),ℤ) is isomorphic to

ρ⊕ ρ⊗ χ˜︁X . Thus, the local system underlying ρν,σ is isomorphic to ρ⊗ χ˜︁X .
By Proposition 3.1, it follows that the canonical extension of ρν,σ has the
associated Hodge bundle equal to (Eν,σ, θν,σ). This proves the Theorem.

6.2. Crystalline local systems attached to (𝑬𝝂 , 𝜽𝝂)

Let (p, 2N disc(K/ℚ)) = 1, and let ρν,p : π1(Y (Γ)K , ∗) → GL2(ℤp) be the ℤp-
étale local system defined above. Let 𝔭 be a prime of K lying over p (by the
assumption on p, 𝔭 is unramified over p), and define ρν,p,𝔭 : π1(Y (Γ)K𝔭

, ∗) →
GL2(ℤp) to be the restriction of ρν,p. In this subsection, we aim to describe the
relation between ρν,p,𝔭 and the uniformizing logarithmic Higgs bundle (Eν , θν)
in the optic of the p-adic nonabelian Hodge correspondence as developed
in [21] (or its generalization to logarithmic Higgs bundles in [20]). In what
follows, we will freely use the terms from [21, 20] and [30].

As Remark 6.2 suggests, the p-adic nonabelian Hodge correspondence
determines only a part of ρν,p,𝔭. To explain this, we introduce the following
definition.

Definition 6.3. Let F be a field extension of ℚp, where (p, 2N) = 1 (so
that X(Γ)F has a canonical integral model over 𝒪F ). We say that a theta
characteristic with Kodaira–Spencer data (ν,KSν) admits an integral model
if there is a line bundle ν𝒪F on X(Γ)𝒪F and an isomorphism KSν𝒪F

: ν⊗2
𝒪F

∼−→
Ω1

X(Γ)𝒪F
/𝒪F

(D) whose generic fiber coincides with (ν,KSν). Similarly, we say
that a 2-torsion line bundle L⊗2 ∼−→ 𝒪X(Γ)F admits an integral model if the flat
extension ℒ ∈ Jac(X(Γ)𝒪F )[2](𝒪F ) (which uniquely exists as Jac(X(Γ)𝒪F )[2]
is a finite flat group scheme over 𝒪F ) admits an isomorphism ℒ⊗2 ∼−→ 𝒪X(Γ)𝒪F

whose generic fiber coincides with the isomorphism L⊗2 ∼−→ 𝒪X(Γ)F .

Lemma 6.1. Let F be a discretely valued field extension of ℚp, with (p, 2N) =
1, and let π ∈ F be a uniformizer. Let (ν,KSν) be a theta characteristic with
Kodaira–Spencer data on X(Γ)F . Then, (ν,KSν) admits an integral model
if and only if (ν, πKSν) does not admit an integral model. Equivalently, if
ι : L⊗2 ∼−→ 𝒪X(Γ)F is a 2-torsion line bundle, then (L, ι) admits an integral
model if and only if (L, πι) does not admit and integral model. In particular,
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the property “admitting an integral model” is insensitive to an unramified base
change of F .

Proof. Suppose that (ν,KSν) admits an integral model. If (ν, tKSν), for t ∈
F×/(F×)2, admits an integral model, then the integral Kodaira–Spencer iso-
morphisms are scalar multiples of each other. This implies that t ∈ 𝒪×

F /(𝒪×
F )2.

Conversely, if t ∈ 𝒪×
F /(𝒪×

F )2, then clearly (ν, tKSν) admits an integral model.
Note that there is a short exact sequence

1 →
(︁
𝒪×

F

)︁
/
(︁
𝒪×

F

)︁2 → F×/
(︁
F×)︁2 vF−→ {±1} → 1,

where vF is the normalized valuation on F (i.e. vF (π) = 1). Therefore,
(ν,KSν) admits an integral model if and only if (ν, πKSν) does not admit
an integral model.

Let F ′/F be an unramified field extension. If (ν,KSν) admits an inte-
gral model, then clearly (νF ′ ,KSνF ′ ) admits an integral model via pullback.
If (ν,KSν) does not admit an integral model, then (ν, πKSν) admits an in-
tegral model, so (νF ′ , πKSνF ′ ) admits an integral model, which implies that
(νF ′ , πKSνF ′ ) does not admit an integral model. This finishes the proof.

Lemma 6.2. Let F be a discretely valued field extension of ℚp with (p, 2N) =
1 such that the residue field of F is algebraically closed (e.g. the maximal
unramified extension of ℚp). Then, given a theta characteristic ν, there are
exactly two isomorphism classes of theta characteristic with Kodaira–Spencer
data whose underlying theta characteristic is ν: one that admits an integral
model and one that does not admit an integral model. The same applies to
2-torsion line bundles.

Proof. This follows from 𝒪×
F = (𝒪×

F )2, which is a consequence of Hensel’s
lemma.

We first prove that the étale ℤp-local system associated with a theta
characteristic with Kodaira–Spencer data admitting an integral model is crys-
talline.

Proposition 6.4. If (ν,KSν) admits an integral model, the étale local system
ρν,p,𝔭 is a crystalline ℤp-local system.9

Proof. By [7], the universal generalized elliptic curve ℰK → X(Γ)K has a
natural model over 𝒪K𝔭

, denoted as f : ℰ𝒪K𝔭
→ X(Γ)𝒪K𝔭

, which is smooth
over Y (Γ)𝒪K𝔭

. Furthermore, if we denote k𝔭 by the residue field of 𝔭, then
X(Γ)k𝔭 is a smooth curve.

9For the definition of crystalline ℤp-local systems, see [30, Definition 3.10].
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The same definition of ω,

ω := f∗Ω1
ℰ𝒪K𝔭

/Y (Γ)𝒪K𝔭

,

gives rise to a theta characteristic on Y (Γ)𝒪K𝔭
, as the Kodaira–Spencer iso-

morphism holds on the integral level [15, A.1.3.17]. There is the unique canon-
ical extension on the integral level,

ωcan = f∗Ω1
ℰ𝒪K𝔭

/X(Γ)𝒪K𝔭

(log∞f )

:= f∗
(︁
Ω1

ℰ𝒪K𝔭
/𝒪K𝔭

(︁
f
−1(D)

)︁
/f

∗(︁Ω1
X(Γ)𝒪K𝔭

/𝒪K𝔭
(D)

)︁)︁
,

which satisfies the Kodaira–Spencer isomorphism10

(︁
ωcan)︁⊗2 ∼−→ Ω1

X(Γ)𝒪K𝔭
/𝒪K𝔭

(D).

Moreover, the canonical extension ωcan arises as the first Hodge filtration of
the log-de Rham cohomology bundle R1f log dR,∗(ℰ𝒪K𝔭

/X(Γ)𝒪K𝔭
), where the

log-structures for ℰ𝒪K𝔭
and X(Γ)𝒪K𝔭

are given by f
−1(D) and D, respec-

tively. We will omit the superscript can from now on.
Let ℒ ∈ Jac(X(Γ)𝒪K𝔭

)[2](𝒪K𝔭
) with ℒ⊗2 ∼−→ 𝒪X(Γ)K𝔭

be an integral
model of the 2-torsion line bundle L. By applying the same construction, we
obtain the double Galois cover α : ˜︁X𝒪K𝔭

→ X(Γ)𝒪K𝔭
of degree 2. Accordingly,

we obtain u : W ˜︁X𝒪K𝔭

→ X(Γ)𝒪K𝔭
. Using this integral model, one can also

extend a logarithmic Higgs sheaf (Eν , θν) = (Eω, θω)⊗ (L, 0) over X(Γ)K𝔭
to

(Eω, θω) ⊗ (ℒ, 0) over X(Γ)𝒪K𝔭
.

Since u : W˜︁X𝒪K𝔭

→ Y (Γ)𝒪K𝔭
is smooth and proper, [30, Proposition 5.4]

implies that the relative crystalline cohomology E := R1ucris,∗𝒪 gives rise to
a convergent F -isocrystal on Y (Γ)k𝔭 (which is in fact overconvergent). From
the relative crystalline comparison theorem, [30, Theorem 5.5], it follows that
ρν,p,𝔭 is a crystalline ℤp-local system, and is associated to E .

Remark 6.4. This also implies that, for (ν,KSν) not admitting an integral
model, ρν,p,𝔭 is “potentially crystalline” in some sense, but we are not aware
of a good formalism for such local systems.

10We were unable to locate a literature that states the log version of the Kodaira–
Spencer isomorphism on the integral modular curve. A much more general version
of the log Kodaira–Spencer isomorphism on the integral level is proved in [22,
Proposition 6.9], which contains the statements that we would like for the modular
curves.
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Now we turn to the p-adic nonabelian Hodge correspondence as developed
by [21] and [20], which associates crystalline local systems to periodic (loga-
rithmic) Higgs-de Rham flows. For their definition, see [21, Definition 5.2].11
Combined with the p-adic Riemann–Hilbert correspondence of [10],12 we state
the version of the p-adic nonabelian Hodge correspondence we will use.

Theorem 6.2 (p-adic nonabelian Hodge correspondence). Let k = 𝔽p and
F = W (k)[1/p]. Let X∞ be a smooth projective curve over W (k) and D∞ ⊂
X∞ be a relative effective Cartier divisor over W (k). Then, there is a fully
faithful covariant functor from the category of 1-periodic logarithmic Higgs-
de Rham flow over X∞ to the category of crystalline ℤp-local systems over
Y∞,F := (X∞ − D∞)F (with respect to the integral model Y∞ = X∞ − D∞)
with the Hodge–Tate weights in [0, p− 2]. This functor preserves the rank.

Using this, we will prove the p-adic analogue of Theorem 6.1.

Theorem 6.3. Let ν be a theta characteristic with a Kodaira–Spencer data
over K that admits an integral model. Then, ρν,p,𝔭|π1,ét(Y (Γ)Knr

𝔭
) depends only

on the underlying theta characteristic, where Knr
𝔭 is the maximal unramified

extension of K𝔭. It is the crystalline ℤp-local system associated to a unique
filtered convergent F -isocrystal on Y (Γ)k𝔭

whose associated graded is isomor-
phic to (Eν , θν) ×K Knr

𝔭 .

Proof. For simplicity, we let X∞ = X(Γ)W (k𝔭), with the log structures com-
ing from D. Thanks to the p-adic nonabelian Hodge correspondence (Theo-
rem 6.2), the Theorem will follow if we show that there exists, up to a shift
in filtration, a unique 1-periodic logarithmic Higgs-de Rham flow over X∞
whose underlying Higgs bundle is (Eν,W (k𝔭), θν,W (k𝔭)) = (Eω,W (k𝔭), θω,W (k𝔭))⊗
(ℒW (k𝔭), 0). As the rank of the Higgs bundle is 2, the Higgs field is nonzero,
and ν ̸= ν−1, the filtration is unique up to shift of indices. Therefore, the
vector bundle with flat connection part of the 1-periodic Higgs-de Rham flow
is determined by the inverse Cartier transform of [21, §4] and [20, §5, §6].
This finishes the proof.

Remark 6.5. As [20, Theorem 1.2] suggests, X(Γ)W (k𝔭) is in some sense a
“canonical lifting” of X(Γ)k𝔭

associated to the uniformizing logarithmic Higgs
bundle (Eν,k𝔭 , θν,k𝔭).

11Strictly speaking, [21] only concerns the non-log case, but the same defini-
tion works for the log case using the inverse Cartier transform in the log case as
considered in [20, §5, §6].

12A crystalline ℤp-local system in the sense of [10] is a crystalline ℤp-local system
in the sense of [30] by [30, Proposition 3.21].
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7. Twisted period map to a Siegel modular threefold

From now on, we assume for simplicity13 that Γ is either Γ1(N) or Γ(N).
Recall that W˜︁X → Y (Γ)K is a family of abelian surfaces that is different
from the square of the universal elliptic curve, but they become isomorphic
after an étale base-change to ˜︁Y :

W˜︁X ̸∼= ℰK ×Y (Γ)K ℰK , α∗W˜︁X ∼= α∗ℰK ×˜︁Y α∗ℰK .

In this case, it turns out that, from the universal level structure on ℰ/Y (Γ),
one can construct a certain natural level structure on W˜︁X/Y (Γ)K , which is a
twisted version of the natural level structure on ℰK ×Y (Γ)K ℰK . This implies
that Y (Γ)K admits a twisted period map into the moduli space of abelian
surfaces with a level structure that is different from the usual “diagonal em-
bedding.” Under this diagonal embedding, we see that a Siegel modular form
restricts to a noncongruence modular from of level associated with the theta
characteristic ν.

To construct the twisted level structure, we first describe W˜︁X as a variety
over ˜︁Y with a descent datum.

Proposition 7.1. Let σ : ˜︁Y → ˜︁Y be the nontrivial element of Gal(˜︁Y /Y (Γ)K).
Let λ : ˜︁Y ×Y (Γ)K

˜︁Y ∼−→ ˜︁Y ∐︁ ˜︁Y be an isomorphism of ˜︁Y -schemes such that the
following diagram commutes.

˜︁Y ×Y (Γ)K
˜︁Y
pr2

↘↘⟍
⟍⟍

⟍⟍
⟍⟍

⟍⟍
⟍

λ →→ ˜︁Y ∐︁ ˜︁Y
id
∐︁

σ↙↙⟋⟋
⟋⟋
⟋⟋
⟋⟋
⟋

˜︁Y
Let λ : W˜︁X ×Y (Γ)K

˜︁Y ∼−→ α∗ℰK ×˜︁Y α∗ℰK be the natural isomorphism obtained
from λ : ˜︁Y ×Y (Γ)K

˜︁Y ∼−→ ˜︁Y ∐︁ ˜︁Y . Then, the following diagram commutes.

W˜︁X ×Y (Γ)K
˜︁Y (id,σ) →→

λ

↓↓

W˜︁X ×Y (Γ)K
˜︁Y

λ

↓↓
α∗ℰK ×˜︁Y α∗ℰK (x,y)↦→(σ(y),σ(x))

→→ α∗ℰK ×˜︁Y α∗ℰK

13This is merely for the simplicity of the moduli problem that the corresponding
level structure represents.
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Proof. Note that ˜︁Y ×Y (Γ)K
˜︁Y (id,σ)−−−→ ˜︁Y ×Y (Γ)K

˜︁Y ,

after conjugating by λ, is identified with

˜︁Y ∐︂ ˜︁Y x
∐︁

y ↦→y
∐︁

x
−−−−−−−−→ ˜︁Y ∐︂ ˜︁Y .

By [6, Proposition A.5.2], the Weil restriction of schemes has a natural iso-
morphism

RS′/S

(︁
X ′)︁×S T ∼= RT ′/T

(︁
X ′ ×S′ T ′)︁,

where S′ is a finite locally free S-scheme, X ′ is an S′-scheme and T ′ = S′×ST .
Therefore, the isomorphism

W˜︁X ×Y (Γ)K
˜︁Y =

(︁
R˜︁Y /Y (Γ)K

(︁
α∗ℰK

)︁)︁
×Y (Γ)K

˜︁Y
∼= R˜︁Y×Y (Γ)K

˜︁Y /˜︁Y (︁α∗ℰK ×˜︁Y (˜︁Y ×Y (Γ)K
˜︁Y )
)︁
,

is natural, where in the rightmost expression, the morphism ˜︁Y ×Y (Γ)K
˜︁Y → ˜︁Y

used in the subscript is the second projection, while the morphism ˜︁Y ×Y (Γ)K˜︁Y → ˜︁Y used in the expression in the parenthesis is the first projection. Thus,
after conjugating by λ : ˜︁Y ×Y (Γ)K

˜︁Y ∼−→ ˜︁Y ∐︁ ˜︁Y , this is identified with

R˜︁Y ∐︁˜︁Y /˜︁Y (︂α∗ℰK ×˜︁Y (︂˜︁Y ∐︂ ˜︁Y )︂)︂,
where id

∐︁
σ : ˜︁Y ∐︁ ˜︁Y → ˜︁Y (id

∐︁
id : ˜︁Y ∐︁ ˜︁Y → ˜︁Y , respectively) is used in the

subscript (the expression in the parentheses, respectively). Therefore, under
this identification, the morphism

(id, σ) : W˜︁X ×Y (Γ)K
˜︁Y → W˜︁X ×Y (Γ)K

˜︁Y
is identified with the morphism

R˜︁Y ∐︁˜︁Y /˜︁Y (︂α∗ℰK ×˜︁Y (︂˜︁Y ∐︂ ˜︁Y )︂)︂→ R˜︁Y ∐︁˜︁Y /˜︁Y (︂α∗ℰK ×˜︁Y (︂˜︁Y ∐︂ ˜︁Y )︂)︂,
where the subscripts are related by the diagram

˜︁Y ∐︁ ˜︁Y x
∐︁

y ↦→y
∐︁

x
→→

id
∐︁

σ
↓↓

˜︁Y ∐︁ ˜︁Y
id
∐︁

σ
↓↓˜︁Y σ

→→ ˜︁Y
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and the expressions in the parentheses are related by the diagram

˜︁Y ∐︁ ˜︁Y x
∐︁

y ↦→y
∐︁

x
→→

id
∐︁

id ↘↘⟍
⟍⟍

⟍⟍
⟍⟍

⟍⟍
˜︁Y ∐︁ ˜︁Y

id
∐︁

id↙↙⟋⟋
⟋⟋
⟋⟋
⟋⟋
⟋

˜︁Y
From this, the statement easily follows.

We consider a Γ-level structure on an elliptic scheme E/S. In the case of
Γ = Γ(N), it is a pair of sections P1, P2 : S → E that fiberwise generates
E[N ], and in the case of Γ = Γ1(N), it is a section P : S → E[N ] that
has exact order N . We take the Γ-level structure on the universal elliptic
curve ℰK/Y (Γ)K as either 𝒫,𝒬 : Y (Γ)K → ℰK [N ] (in the case of Γ(N)) or
𝒫 : Y (Γ)K → ℰK [N ] (in the case of Γ1(N)). Using the level structure on ℰK ,
we may define a twisted level structure on W˜︁X as follows.

Definition 7.1 (Γ(N)+- and Γ1(N)+-structures on an abelian surface). For
a principally polarized abelian surface (A/S, λ), a Γ(N)+-structure is a col-
lection of étale-local sections P1, P2, P3, P4 of A[N ] such that they generate
A[N ] fiberwise, and two such collections

P1, P2, P3, P4, P ′
1, P

′
2, P

′
3, P

′
4,

are equivalent if {P1, P2} = {P ′
1, P

′
2} and {P3, P4} = {P ′

3, P
′
4} (as unordered

sets).
A Γ1(N)+-structure is a collection of étale-local sections P1, P2 of A[N ]

such that they generate a totally isotropic subspace of A[N ], with respect to
the Weil pairing induced by λ, and two such collections

P1, P2, P ′
1, P

′
2,

are equivalent if {P1, P2} = {P ′
1, P

′
2} (as unordered sets).

Remark 7.1. The moduli space of principally polarized abelian surfaces with
Γ(N)+- or Γ1(N)+-structures are identified with the arithmetic quotient of
the Siegel upper half space by a subgroup of Sp4(ℤ). More precisely, if the
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symplectic form corresponds to the matrix
(︃ 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

)︃
, then

Γ(N)+ =Γ(N)·
⟨︄⎛⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⟩︄
, Γ1(N)+ =Γ1(N)·

⟨︄⎛⎜⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
⟩︄
,

where Γ(N) and Γ1(N) are the standard congruence subgroups of Sp4(ℤ),

Γ(N) =
{︁
M ∈ Sp4(ℤ) | M ≡ I4 (modN)

}︁
,

Γ1(N) =
{︁
M ∈ Sp4(ℤ) | M (modN) is upper triangular unipotent

}︁
.

Definition 7.2 (Twisted level structure on W˜︁X). Let Γ+ be Γ(N)+ (Γ1(N)+,
respectively) if Γ = Γ(N) (Γ = Γ1(N), respectively). We define the twisted
level structure, a Γ+-structure on α∗W˜︁X ∼= α∗ℰK ×˜︁Y α∗ℰK , as follows.

• If Γ = Γ(N), we consider the sections ˜︁𝒫1, ˜︁𝒫2, ˜︁𝒬1, ˜︁𝒬2 : ˜︁Y → (α∗ℰK ×˜︁Y
α∗ℰK)[N ], where

˜︁𝒫1 :=
(︁
α∗𝒫, α∗e

)︁
, ˜︁𝒫2 :=

(︁
α∗e, α∗𝒫

)︁
,˜︁𝒬1 :=

(︁
α∗𝒬, α∗e

)︁
, ˜︁𝒬2 :=

(︁
α∗e, α∗𝒬

)︁
.

The above étale-local sections define a Γ(N)+-structure on α∗W˜︁X .
• If Γ = Γ1(N), we consider the sections ˜︁𝒫1, ˜︁𝒫2 : ˜︁Y → (α∗ℰK ×˜︁Y

α∗ℰK)[N ], where

˜︁𝒫1 :=
(︁
α∗𝒫, α∗e

)︁
, ˜︁𝒫2 :=

(︁
α∗e, α∗𝒫

)︁
.

The above étale-local sections define a Γ1(N)+-structure on α∗W˜︁X .

Lemma 7.1. The twisted level structure on α∗W˜︁X , as a Γ+-level structure,
descends into a twisted level structure, again as a Γ+-level structure, on W˜︁X .
Namely, the twisted level structure on α∗W˜︁X is invariant under the automor-
phism induced by σ : ˜︁Y → ˜︁Y .

Proof. We already know what descent datum α∗W˜︁X ∼= α∗ℰK ×˜︁Y α∗ℰK has,
thanks to Proposition 7.1. We only need to check that that the Γ+-level
structure is compatible with the descent datum, which is clear as the level
structure is indifferent to the switch between ˜︁𝒫1 and ˜︁𝒫2 (and also the switch
between ˜︁𝒬1 and ˜︁𝒬2, if Γ = Γ(N)).
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Remark 7.2. The twisted period map π˜︁X : Y (Γ)K → 𝒜2,Γ+ is different from
the usual “diagonal” period map πdiag : Y (Γ)K → 𝒜2,Γ+ , given by the diago-
nal morphism between the moduli functors, E ↦→ E2. This is simply because
the pullbacks of the universal abelian surface over 𝒜2,Γ+ by the two period
maps are different.

It may first look strange to have a classifying map into a congruence
quotient of a Shimura variety even though the starting object is “noncon-
gruence”. This phenomenon happens because the double cover of congruence
quotients 𝒜2,Γ → 𝒜2,Γ+ of a larger group somehow “absorbs” the double cover˜︁Y → Y (Γ)K . To be more precise, for the diagonal period map, there is a map
Y (Γ)K → 𝒜2,Γ that fills in the diagram

Y (Γ)K
∐︁

Y (Γ)K →→

↓↓

𝒜2,Γ

↓↓
Y (Γ)K

→→⟋⟋⟋⟋⟋⟋⟋⟋⟋⟋⟋⟋
→→ 𝒜2,Γ+

On the other hand, for the twisted period map π˜︁X , the diagonal arrow cannot
be filled: ˜︁Y →→

↓↓

𝒜2,Γ

↓↓
Y (Γ)K →→

×××⟋
⟋

↗↗⟋
⟋

𝒜2,Γ+

It is interesting to note that we had to use the stacky double cover 𝒜2,Γ →
𝒜2,Γ+ , which seems necessary.

The following suggests that a Siegel modular form restricted along the
twisted period map gives rise to a noncongruence modular form.

Proposition 7.2. Let ω𝒜 be the Hodge bundle on 𝒜2,Γ+ , i.e. the automor-
phic vector bundle corresponding to the standard representation of Sp4, or
equivalently, ω𝒜 := p∗Ω1

𝒳/𝒜2,Γ+
, where p : 𝒳 → 𝒜2,Γ+ is the universal abelian

surface. Then, π∗˜︁Xω𝒜 = ω ⊕ ν, where ν is the underlying theta characteris-
tic of the theta characteristic with Kodaira–Spencer data associated with the
cover ˜︁Y → Y (Γ)K .

Proof. This is a simple consequence of the cohomology and base change the-
orem, e.g. [14, Theorem III.12.11].

This implies that the Siegel modular form of weight (k, j) and level
Γ+, which corresponds to being a section of the automorphic vector bun-
dle detk ω𝒜 ⊗ Symj ω𝒜, restricts along the twisted period map to a section of
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the vector bundle

ωk+j ⊗ νk ⊕ ωk+j−1 ⊗ νk+1 ⊕ · · · ⊕ ωk+1 ⊗ νk+j−1 ⊕ ωk ⊗ νk+j .

For example, the restriction of the Siegel modular form of weight (k, 1) is a
pair of a modular form of weight 2k + 1 and level Γ and a noncongruence
modular form of weight 2k + 1 and level Γν .
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