# DERIVED HECKE ALGEBRA FOR MODULAR FORMS OF WEIGHT ONE VIA CLASSICALITY

### GYUJIN OH

ABSTRACT. We construct the action of the derived diamond operators at p on the space of weight one (classical) modular forms in two different ways, one using p-adic modular forms and another using  $\Lambda$ -adic Sen operator. This is the p-adic analogue of the operation of taking complex conjugation to modular forms, and it originates from the (obstruction to) classicality of overconvergent modular forms of weight one. Our construction uses a recent work of Pan [Pan22] which gives a geometric interpretation of the classicality. Using this construction, we formulate a p-adic version of the conjecture of Harris–Venkatesh [HV19].

#### **CONTENTS**

| 1.         | Introduction                                                        | 1 |
|------------|---------------------------------------------------------------------|---|
| 2.         | Derived diamond action via classicality of weight one modular forms | 2 |
| 3.         | Derived Sen action via $\Lambda$ -adic Sen operator                 | 6 |
| 1.         | The <i>p</i> -adic analogue of the Harris–Venkatesh conjecture      | 8 |
| References |                                                                     | 8 |

## 1. Introduction

The archimedean derived Hecke operator in the context of weight one modular forms is the complex conjugation. This is folklore, but was first explicitly spelled out in [Hor23, Oh22]. It exploits the fact that the algebraic cohomology groups  $H^0(X,\omega)$  and  $H^1(X,\omega)$  can be also computed in a transcendental way using the Dolbeault complex:

$$0 \to H^0(X, \omega) \to \mathscr{A}^{0,0}(X, \omega) \to \mathscr{A}^{0,1}(X, \omega) \to H^1(X, \omega) \to 0.$$

The complex conjugation is then done by seeing a modular form as a real analytic section in  $\mathscr{A}^{0,0}(X,\omega)$ , taking the complex conjugation, which yields a real analytic section in  $\mathscr{A}^{0,1}(X,\omega)$ , and projecting to  $H^1(X,\omega)$ .

We aim to explain a similar picture in the p-adic context. Namely, the algebraic cohomology groups  $H^0(X,\omega)$  and  $H^1(X,\omega)$  can be computed in a p-adic analytic way using the works of Pan [Pan22]:

$$0 \to H^0(X,\omega) \to H^0_0 \to H^1_w \to H^1(X,\omega) \to 0.$$

Here,  $H_0^0$  and  $H_w^1$  are in an appropriate sense the weight one specializations of Hida/Coleman theory and higher Hida/Coleman theory (in the sense of Boxer–Pilloni [BP21, Pil24]), respectively. The four-term exact sequence above is equivariant under many actions such as prime-to-p Hecke operators,  $U_p$ -operators, and the diamond operators, and the derived action of the diamond operators is the p-adic analogue of the archimedean picture we had alluded above in the first paragraph.

This can be seen as the weight-one-modular-form analogue of the work of [KR23] on derived diamond operators on the Betti cohomology of locally symmetric spaces with  $\operatorname{rank}_{\mathbb{R}} G \neq \operatorname{rank}_{\mathbb{R}} K$ .

# **Acknowledgements.** To be added later.

**Notation.** Let p be a rational prime,  $C = \mathbb{C}_p$  and  $K^p \subset \operatorname{GL}_2(\mathbb{A}_f^p)$  be a tame level. Let  $\mathcal{X}_{K^pK_p} = X(K^pK_p)^{\operatorname{ad}}_C$  be the adic space associated with the modular curve of level  $K^pK_p$  over C, and let  $\mathcal{X}_{K^p} \sim \varprojlim_{K_p \subset \operatorname{GL}_2(\mathbb{Q}_p)} \mathcal{X}_{K^pK_p}$  be the perfectoid modular curve of tame level  $K^p$ . Let  $G = \operatorname{GL}_2(\mathbb{Q}_p)$ ,  $B \subset G$  be the upper triangular Borel subgroup,  $N \subset B$  be the unipotent radical of B,  $\mathfrak{g} = \operatorname{Lie} G \otimes_{\mathbb{Q}_p} C$ ,  $\mathfrak{b} = \operatorname{Lie} B \otimes_{\mathbb{Q}_p} C$ ,  $\mathfrak{n} = \operatorname{Lie} N \otimes_{\mathbb{Q}_p} C$ . There is the Hodge-Tate period map

$$\pi_{\mathrm{HT}}:\mathcal{X}_{K^p}\to\mathbb{P}^1_C,$$

that is equivariant under the action of  $\mathrm{GL}_2(\mathbb{Q}_p)$  (which acts on  $\mathbb{P}^1_C$  on the right) and the Hecke operators away from p (which acts trivially on  $\mathbb{P}^1_C$ ). Let  $\mathcal{O}_{K^p} = \pi_{\mathrm{HT},*}\mathcal{O}_{\mathcal{X}_{K^p}}$ , and  $\omega_{K^p}$  be line bundle over  $\mathcal{X}_{K^p}$  that comes from the Hodge line bundles  $\omega$  over  $X(K^pK_p)_C$ .

#### 2. Derived diamond action via classicality of weight one modular forms

We briefly review the work of Pan [Pan22] on the geometric interpretation of classicality of weight one overconvergent modular forms. The theory starts with the observation that there is a nice notion of the functor of "taking locally analytic vectors" of an admissible Banach representation of a p-adic Lie group. In particular, with respect to the  $\mathrm{GL}_2(\mathbb{Q}_p)$ -action on  $\mathcal{O}_{K^p}$ , there is the subsheaf  $\mathcal{O}_{K^p}^{\mathrm{la}} \subset \mathcal{O}_{K^p}$  of "locally analytic vectors". One key property of the sheaf of locally analytic vectors is that the action of  $\mathrm{GL}_2(\mathbb{Q}_p)$  can be differentiated, so that there is a C-linear action of  $\mathfrak{g}$  on  $\mathcal{O}_{K^p}^{\mathrm{la}}$  that commutes with the G-action.

Regarding  $\mathbb{P}^1_C$  as the flag variety of  $\mathrm{GL}_{2,C}$ , for  $x\in\mathbb{P}^1_C(C)$ , let  $\mathfrak{b}_x\subset\mathfrak{g}$  be the corresponding Borel subalgebra, and  $\mathfrak{n}_x\subset\mathfrak{b}_x$  be its nilpotent radical. We define

$$egin{aligned} \mathfrak{g}^0 &:= \mathcal{O}_{\mathbb{P}^1_C} \otimes_C \mathfrak{g}, \ & \mathfrak{b}^0 &:= \{ f \in \mathfrak{g}^0 \mid f_x \in \mathfrak{b}_x \}, \ & \mathfrak{n}^0 &:= \{ f \in \mathfrak{g}^0 \mid f_x \in \mathfrak{n}_x \}. \end{aligned}$$

The action of  $\mathfrak g$  on  $\mathcal O_{K^p}^{\mathrm{la}}$  extends to an action of  $\mathfrak g^0$  via  $(f\otimes z)\cdot s:=f(z\cdot s).$ 

**Theorem 2.1** (Geometric Sen theory). The action of  $\mathfrak{n}^0$  annihilates  $\mathcal{O}_{K^p}^{\mathrm{la}}$ .

Let  $\mathfrak{h}$  be the Cartan subalgebra of diagonal matrices of  $\mathfrak{g}$ . Then, by Theorem 2.1,  $\mathfrak{b}^0/\mathfrak{n}^0 \cong \mathcal{O}_{\mathbb{P}^1_C} \otimes_C \mathfrak{h}$  is a trivial vector bundle over  $\mathbb{P}^1_C$  acting on  $\mathcal{O}^{\mathrm{la}}_{K^p}$ . A specific trivialization can be chosen by fixing  $H^0(\mathbb{P}^1_C,\mathfrak{b}^0/\mathfrak{n}^0) \cong \mathfrak{h}$ , and we can identify  $\mathfrak{h}$  with the constant sections of  $\mathfrak{b}^0/\mathfrak{n}^0$ . Let the action of  $\mathfrak{h}$  on  $\mathcal{O}^{\mathrm{la}}_{K^p}$  defined as the action of the constant sections of  $\mathfrak{b}^0/\mathfrak{n}^0$  be denoted as  $\theta_{\mathfrak{h}}$ . We will call this the *horizontal action* of  $\mathfrak{h}$  to distinguish it from the action of  $\mathfrak{h} \subset \mathfrak{g}$ .

**Theorem 2.2** (Arithmetic Sen theory). The operator  $\theta_{\mathfrak{h}}\left(\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)\right)$  is the Sen operator in the sense of [Pan22, Definition 5.1.5].

Let us emphasize that  $\mathcal{O}_{K^p}^{\text{la}}$  has the actions of G,  $\mathfrak{g}$ ,  $\theta_{\mathfrak{h}}$ , and the Hecke operators away from p, all commuting with each other. For a character  $\chi:\mathfrak{h}\to C$ , let  $\mathcal{O}_{K^p}^{\mathrm{la},\chi}$  be the subsheaf of  $\mathcal{O}_{K^p}^{\mathrm{la}}$  of sections of weight  $\chi$  (i.e., local sections f of  $\mathcal{O}_{K^p}^{\mathrm{la}}$  where  $\theta_{\mathfrak{h}}(h)f=\chi(h)f$  for  $h\in\mathfrak{h}$ ). Then,  $\mathcal{O}_{K^p}^{\mathrm{la},\chi}$ has mutually commuting actions of G,  $\mathfrak{g}$ , and the prime-to-p Hecke operators.

**Theorem 2.3** (Pan). For  $n_1, n_2 \in C$ , let  $(n_1, n_2) : \mathfrak{h} \to C$  be the character defined by

$$(n_1, n_2) \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} := an_1 + dn_2,$$

- (1) The  $\mathfrak{n}$ -coinvariant  $(\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)})_{\mathfrak{n}}$  (where the action of  $\mathfrak{n}$  on  $\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)}$  is via the  $\mathfrak{g}$ -action) is supported at  $\infty \in \mathbb{P}^1_C$ .
- (2) If  $n_1 n_2 \in \overline{\mathbb{Q}} \{0, -1, -2, \cdots\}$ , then  $(\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)})_{\mathfrak{n}} \cong (\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)})_{\infty}$ . (3) Suppose that  $n_1, n_2$  are integers. The stalk  $(\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)})_{\infty}$  can be explicitly identified with the space of B-overconvergent modular forms of weight  $n_1 - n_2$  and tame level  $K^p$ , namely

$$(\mathcal{O}_{K^p}^{\mathrm{la},(n_1,n_2)})_{\infty} \cong \varinjlim_{n \to \infty} M_{n_1-n_2}^{\dagger}(K^p\Gamma(p^n)) =: M_{n_1-n_2}^{B-\dagger}(K^p),$$

where  $M^\dagger_{n_1-n_2}(K^p\Gamma(p^n))$  is the space of overconvergent sections of  $\omega^{n_1-n_2}$  on a strict neighborhood borhood of the canonical locus of  $X_{K^p\Gamma(p^n)}$ .

*Proof.* For (1), see [Pan22, Proposition 5.2.10 (1)]. For (2), see [Pan22, Proposition 5.2.10 (3)]. For (3), see [Pan22, Proposition 5.2.6]. 

Note that  $(\mathcal{O}_{K^p}^{\mathrm{la},\chi})_{\infty}$  has mutually commuting actions of B (the stabilizer of  $\infty \in \mathbb{P}^1_C$  in G),  $\mathfrak{g}$ , and the prime-to-p Hecke operators.

In the above Theorem, we used a non-standard terminology of B-overconvergent modular forms. The name originates from the fact that the space of B-overconvergent modular forms has an action of  $B(\mathbb{Q}_p)$ . The traditional definition of overconvergent modular forms involve taking the limit over deeper (balanced)  $\Gamma_1$ -levels. Namely, if we define

$$\Gamma_1(p^n) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}_p) \mid a - 1, d - 1, c \in p^n \mathbb{Z}_p \right\},$$

then the space of overconvergent modular forms of weight  $k \in \mathbb{Z}$  and tame level  $K^p$  is defined as

$$M_k^{\dagger}(K^p) := \varinjlim_{n \to \infty} M_k^{\dagger}(K^p \Gamma_1(p^n)).$$

Note that  $M_k^{\dagger}(K^p)$  has the action of  $H(\mathbb{Z}_p) = \left\{ \begin{pmatrix} \mathbb{Z}_p^{\times} & 0 \\ 0 & \mathbb{Z}_p^{\times} \end{pmatrix} \right\}$ , where  $H \subset G$  is the diagonal Cartan. Moreover, there is an action of the  $U_p$ -operator, defined by

$$U_p := \sum_{i=0}^{p-1} \begin{pmatrix} p & i \\ 0 & 1 \end{pmatrix}.$$

One can recover  $M_k^\dagger(K^p)$  from  $M_k^{B-\dagger}(K^p)$  and vice versa, as follows. Firstly,  $M_k^\dagger(K^p) = M_k^{B-\dagger}(K^p)^{N(\mathbb{Z}_p)}$ , with the action of  $H(\mathbb{Z}_p)$  and  $U_p$  induced from the action of G. Conversely,  $M_k^{B-\dagger}(K^p)$  is recovered from  $M_k^{\dagger}(K^p)$  by inverting the action of  $\begin{pmatrix} p^{-1} & 0 \\ 0 & 1 \end{pmatrix}$ .

Let  $k \in \mathbb{N}$ , and  $\omega_{K^p}^{k,\mathrm{sm}} \subset \pi_{\mathrm{HT},*}\omega_{K^p}^{\otimes k}$  be the subsheaf of G-smooth sections. This sheaf encodes the "classical" modular forms:

**Lemma 2.1** (Pan). For i = 0, 1, there is a natural isomorphism

$$H^i(\mathbb{P}^1_C, \omega_{K^p}^{k, \mathrm{sm}}) \cong \varinjlim_{K_p \subset G} H^i(X(K^p K_p)_C, \omega^{\otimes k}).$$

*Proof.* This is a consequence of the rigid-analytic GAGA and [Pan22, Lemma 5.3.5].

By the observations in [Pan22, 5.3.10], multiplication by  $t^{-k}e_1^k$  gives rise to an injection

$$\mathcal{O}_{K^p}^{\mathrm{la},(k,0),\mathfrak{n}} \hookrightarrow \omega_{K^p}^{k,\mathrm{sm}},$$

that is an isomorphism away from  $\infty \in \mathbb{P}^1$ . Namely, we have a short exact sequence of sheaves

$$0 \to \mathcal{O}_{K^p}^{\mathrm{la},(k,0),\mathfrak{n}} \xrightarrow{\times t^{-k}e_1^k} \omega_{K^p}^{k,\mathrm{sm}} \to (i_{\infty})_* M_k^{B-\dagger}(K^p) \to 0,$$

where  $i_{\infty}$  is the inclusion map of  $\infty$  into  $\mathbb{P}^1_C$ . Taking the sheaf cohomology, we obtain an exact sequence

$$0 \to H^0(\mathbb{P}^1_C, \mathcal{O}^{\mathrm{la}, (k, 0), \mathfrak{n}}_{K^p}) \to H^0(\mathbb{P}^1_C, \omega^{k, \mathrm{sm}}_{K^p}) \to M^{B - \dagger}_k(K^p) \to H^1(\mathbb{P}^1_C, \mathcal{O}^{\mathrm{la}, (k, 0), \mathfrak{n}}_{K^p}) \to H^1(\mathbb{P}^1_C, \omega^{k, \mathrm{sm}}_{K^p}) \to 0.$$

We have used that  $(i_\infty)_*M_k^{B\text{-}\dagger}(K^p)$  is supported at  $\infty$  and thus has no higher cohomology. Furthermore,  $H^0(\mathbb{P}^1_C,\mathcal{O}_{K^p}^{\mathrm{la},(k,0),\mathfrak{n}})=0$ , as  $\mathcal{O}_{K^p}^{\mathrm{la},(k,0),\mathfrak{n}}$  has zero stalk at  $\infty$ . Therefore, we have a four-term exact sequence

$$0 \to H^0(\mathbb{P}^1_C, \omega_{K^p}^{k, \mathrm{sm}}) \to M_k^{B\text{-}\dagger}(K^p) \to H^1(\mathbb{P}^1_C, \mathcal{O}_{K^p}^{\mathrm{la}, (k, 0), \mathfrak{n}}) \to H^1(\mathbb{P}^1_C, \omega_{K^p}^{k, \mathrm{sm}}) \to 0.$$

This four-term exact sequence is equivariant under mutually commuting actions of B,  $\mathfrak{h} = \mathfrak{b}/\mathfrak{n}$ , and the prime-to-p Hecke operators. This short exact sequence may be regarded as the local cohomology exact sequence of the sheaf  $\omega_{K^p}^{k,\mathrm{sm}}$  with respect to  $\infty \hookrightarrow \mathbb{P}^1_C \longleftrightarrow \mathbb{A}^1_C$ .

By Lemma 2.1, both the first and the fourth terms of the four-term exact sequence are not zero only if k = 1. For i = 0, 1, we define the *space of classical H<sup>i</sup>-modular forms of weight one* as

$$H^i(\omega) := H^i(\mathbb{P}^1_C, \omega^{1,\mathrm{sm}}_{K^p}).$$

Furthermore, we define the space of B-overconvergent  $H^i$ -modular forms of weight one as

$$H^0(\omega^{B-\dagger}) := M_1^{B-\dagger}(K^p),$$

$$H^1(\omega^{B\text{-}\dagger}):=H^1(\mathbb{P}^1_C,\mathcal{O}^{\mathrm{la},(1,0),\mathfrak{n}}_{K^p}).$$

We may drop the decoration " $H^{i}$ -" in the above definitions when i=0.

The four-term exact sequence when k=1 then becomes

$$0 \to H^0(\omega) \to H^0(\omega^{B\text{-}\dagger}) \to H^1(\omega^{B\text{-}\dagger}) \to H^1(\omega) \to 0.$$

**Definition 2.1.** We define the *boundary operator* 

$$\delta: H^0(\omega^{B-\dagger}) \to H^1(\omega^{B-\dagger})$$

be the middle map of the four-term exact sequence when k=1. The boundary operator is equivariant under mutually commuting actions of B,  $\mathfrak{h}$ , and the prime-to-p Hecke operators.

The boundary operator may be defined on the overconvergent modular forms as well.

**Definition 2.2.** We define the space of overconvergent  $H^i$ -modular forms of weight one as

$$H^i(\omega^{\dagger}) := H^i(\omega^{B-\dagger})^{N(\mathbb{Z}_p)}.$$

Indeed,  $H^0(\omega^{\dagger}) = M_1^{\dagger}(K^p)$ . Taking  $N(\mathbb{Z}_p)$ -invariants, we obtain

$$\delta: H^0(\omega^{\dagger}) \to H^1(\omega^{\dagger}),$$

and we also refer to it as the *boundary operator*. This boundary operator is equivariant under mutually commuting actions of  $H(\mathbb{Z}_p)$ ,  $U_p$ ,  $\mathfrak{h}$ , and the prime-to-p Hecke operators. As these cohomology classes can be computed using the Čech-cohomology with an affine cover  $U_1, U_2$  of  $\mathbb{P}^1_C$  such that  $0 \in U_1, \infty \in U_2$  and  $U_1, U_2$  are stable under the  $N(\mathbb{Z}_p)$ -action, there is a four-term exact sequence

$$0 \to H^0(\omega)^{N(\mathbb{Z}_p)} \to H^0(\omega^{\dagger}) \xrightarrow{\delta} H^1(\omega^{\dagger}) \to H^1(\omega)^{N(\mathbb{Z}_p)} \to 0.$$

**Remark 2.1.** The space of overconvergent  $H^1$ -modular forms is closely related to the *higher Coleman theory* of Boxer–Pilloni (see [BP21, BP22, Pil24]). In this context, the boundary operator is closely related to a differential in the *Cousin complex*.

We can now define the *derived diamond operator* as follows.

**Definition 2.3.** Let  $H_0 = \left\{ \begin{pmatrix} \mathbb{Z}_p^{\times} & 0 \\ 0 & 1 \end{pmatrix} \right\} \subset H$ . Let  $K^{\bullet} = [H^0(\omega^{\dagger}) \xrightarrow{\delta} H^1(\omega^{\dagger})]$  be the complex of C-Banach representations of  $H_0$ , with  $H^i$  in cohomological degree i. For  $n \geq 1$ , we define the derived diamond action at  $\Gamma_1(p^n)$ -level to be the natural action

$$\operatorname{Ext}^{1}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,C) \times \operatorname{Hom}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,H^{0}(K^{\bullet}))$$

$$\cong \operatorname{Ext}^{1}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,C) \times \operatorname{Hom}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,K^{\bullet})$$

$$\to \operatorname{Ext}^{1}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,K^{\bullet})$$

$$\to \operatorname{Hom}_{C[1+p^{n}\mathbb{Z}_{p}]}(C,H^{1}(K^{\bullet})),$$

where the last map is the natural connecting map,  $C[1+p^n\mathbb{Z}_p]:=\mathcal{O}_C[[1+p^n\mathbb{Z}_p]][1/p]$ , and  $1+p^n\mathbb{Z}_p$  acts by  $1+p^n\mathbb{Z}_p\hookrightarrow\mathbb{Z}_p^\times\cong H_0$ .

The relation of the derived diamond action with the classical modular forms comes from the following.

**Lemma 2.2.** For i = 0, 1 and  $n \ge 1$ , we have natural isomorphisms

$$\operatorname{Hom}_{C[1+p^n\mathbb{Z}_p]}(C, H^i(K^{\bullet})) \cong H^i(X(K^p\Gamma_1(p^n))_C, \omega),$$

equivariant under mutually commuting actions of  $U_p$  and the prime-to-p Hecke operators.

*Proof.* This is immediate from the four-term exact sequence.

Therefore, the derived diamond action at  $\Gamma_1(p^n)$ -level is the  $U_p$ -equivariant Hecke-equivariant action

$$\operatorname{Ext}^{1}_{C[1+p^{n}\mathbb{Z}_{n}]}(C,C)\times H^{0}(X(K^{p}\Gamma_{1}(p^{n}))_{C},\omega)\to H^{1}(X(K^{p}\Gamma_{1}(p^{n}))_{C},\omega),$$

where the Hecke action and the  $U_p$ -action on  $\operatorname{Ext}^1_{C[1+p^n\mathbb{Z}_p]}(C,C)$  are trivial.

## 3. Derived Sen action via $\Lambda$ -adic Sen operator

Using the geometric interpretation of the (obstruction to) classicality developed in §2, we can give another action similar to the derived dimaond action, where a Tor-group acts in the reverse direction to the derived diamond operator, using the  $\Lambda$ -adic Galois representation attached to a Hida family. This duality between the Tor-action and the Ext-action is natural in the context of derived Hecke operators; see [CG18, GV18, Ven19]. Note that, even though the construction of this section itself does not require the results on classicality as in §2, that it is related to classical  $H^i$ -modular forms a posteriori uses the results on classicality. Another advantage is that the construction in this section yields an *integral* operator.

Before the construction, we need to recall the notion of  $\Lambda$ -adic Galois representation attached to a Hida theory and related constructions, as clarified in [Cai18a, Cai18b].

Let  $N \ge 1$  be such that (N, p) = 1. Consider

$$H^1_{\mathrm{\acute{e}t}} := \varprojlim_r H^1_{\mathrm{\acute{e}t}}(X_1(Np^r)_{\overline{\mathbb{Q}}}, \mathbb{Z}_p),$$

where  $X_1(Np^r)$  is the modular curve corresponding to the level group

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\widehat{\mathbb{Z}}) \mid a - 1, c \in Np^r \widehat{\mathbb{Z}} \right\}.$$

The diamond operators give rise to the  $\Lambda:=\mathbb{Z}_p[[1+p\mathbb{Z}_p]]$ -module structure on  $H^1_{\mathrm{\acute{e}t}}$ . Furthermore, if we let e be Hida's ordinary projector (arising as the limit of the powers of  $U_p$ ), a theorem of Hida tells that  $eH^1_{\mathrm{\acute{e}t}}$  is finite and free as a  $\Lambda$ -module. Moreover, this gives rise to a  $\Lambda$ -adic Galois representation

$$\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}_{\Lambda}(eH^1_{\operatorname{\acute{e}t}})$$

which interpolates the Galois representations attached to  $eH^1_{\text{\'et}}(X_1(Np^r)_{\overline{\mathbb{Q}}}, \mathbb{Z}_p)$ . This Galois representation is *ordinary* at p. Namely, upon restricting to  $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ ,  $eH^1_{\text{\'et}}$  has a filtration

$$0 \to (eH^1_{\mathrm{\acute{e}t}})^I \to eH^1_{\mathrm{\acute{e}t}} \to (eH^1_{\mathrm{\acute{e}t}})_I \to 0,$$

where  $I \subset \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$  is the inertia subgroup, and  $(-)^I$  and  $(-)_I$  are the I-invariants and the I-coinvariants functors, respectively. It turns out that  $(eH^1_{\operatorname{\acute{e}t}})^I$  and  $(eH^1_{\operatorname{\acute{e}t}})_I$  are also finite and free as  $\Lambda$ -modules, and  $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$  acts as explicit characters on  $(eH^1_{\operatorname{\acute{e}t}})^I$  and  $(eH^1_{\operatorname{\acute{e}t}})_I$  (see [Cai18b, Corollary 1.2.7]).

The Λ-adic Eichler–Shimura isomorphism [Oht95, Cai18b] gives a canonical isomorphism

$$(eH^{1}_{\operatorname{\acute{e}t}})^{I} \otimes_{\Lambda} \Lambda_{W(\overline{\mathbb{F}}_{p})[\mu_{N}]} \cong e\mathfrak{H} \otimes_{\Lambda} \Lambda_{W(\overline{\mathbb{F}}_{p})[\mu_{N}]},$$
$$(eH^{1}_{\operatorname{\acute{e}t}})_{I} \otimes_{\Lambda} \Lambda_{W(\overline{\mathbb{F}}_{p})[\mu_{N}]} \cong eS(N,\Lambda) \otimes_{\Lambda} \Lambda_{W(\overline{\mathbb{F}}_{p})[\mu_{N}]},$$

where  $eS(N,\Lambda)$  is the space of ordinary  $\Lambda$ -adic cusp forms of tame level N, and  $e\mathfrak{H}:=\varprojlim_r e\mathfrak{H}_r$  is the ordinary Hida Hecke algebra.

Given a  $\Lambda$ -adic cusp form  $\mathbf{f} \in eS(N,\Lambda)$ , cutting  $\rho$  out by the corresponding Hecke eigensystem  $\lambda_{\mathbf{f}}: e\mathfrak{H} \to \Lambda$  gives rise to a 2-dimensional  $\Lambda$ -adic Galois representation  $\rho_{\mathbf{f}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\Lambda)$ . This interpolates the Galois representations attached to specializations of  $\mathbf{f}$ . Namely, given an integer k and a primitive  $p^r$ -th root of unity  $\zeta$ , consider the arithmetic point  $x_{k,\zeta}: \Lambda \to \mathbb{Z}_p[\zeta]$  given by  $[\gamma] \mapsto \zeta \varepsilon_{\mathrm{cyc}}^k(\gamma)$ , where  $\varepsilon_{\mathrm{cyc}}$  is the p-adic cyclotomic character and  $1 + p\mathbb{Z}_p$  is identified with  $\operatorname{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q})$  (here  $\mathbb{Q}^{\mathrm{cyc}}$  is the cyclotomic  $\mathbb{Z}_p$ -extension of  $\mathbb{Q}$ ). Then, for  $k \geq 2$ ,  $x_{k,\zeta} \circ \lambda_{\mathbf{f}}$  gives rise to a Hecke eigensystem of a normalized cuspidal Hecke eigen-new-form  $\mathbf{f}_{x,\zeta} \in \mathbb{Q}$ 

 $S_k(\Gamma_1(Np^r), \mathbb{Z}_p[\zeta])$ , and its associated Galois representation  $\rho_{\mathbf{f}_{k,\zeta}}$  coincides with  $x_{k,\zeta} \circ \rho_{\mathbf{f}}$ . We also see  $\mathbb{Z}_p[\zeta]$  ( $\mathbb{Q}_p[\zeta]$ , respectively) as a  $\Lambda$ -module via  $x_{k,\zeta}$ , which we denote by  $\mathcal{O}_{k,\zeta}$  ( $\mathcal{O}_{k,\zeta}[1/p]$ , respectively).

It is famously known that the specialization of  $\mathbf{f}$  for k=1 is not necessarily a classical modular form of weight one. However, the Fontaine–Mazur conjecture tells us when  $\mathbf{f}_{1,\zeta}$  is a classical modular form of weight one, based on the Galois representation.

# **Theorem 3.1.** *Let* $\zeta$ *be a p-power root of unity.*

- (1) The weight one specialization  $x_{1,\zeta} \circ \rho_{\mathbf{f}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_p[\zeta])$  is almost Hodge-Tate of weight 0, 0 at p (in the sense of [Fon04]).
- (2) The ordinary filtration

$$0 \to N_{\mathbf{f}} \to \rho_{\mathbf{f}} \to M_{\mathbf{f}} \to 0,$$
 where  $N_{\mathbf{f}} := (eH^1_{\mathrm{\acute{e}t}})^I[\lambda_{\mathbf{f}}]$  and  $M_{\mathbf{f}} := (eH^1_{\mathrm{\acute{e}t}})_I[\lambda_{\mathbf{f}}]$ , gives rise to an extension 
$$c_{\mathbf{f}} \in \operatorname{Ext}^1_{\Lambda[\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)]}(M_{\mathbf{f}}, N_{\mathbf{f}}).$$

Then,  $\mathbf{f}_{1,\zeta}$  is a classical modular form of weight one if and only if  $c_{\mathbf{f}} \otimes_{\Lambda} \mathcal{O}_{1,\zeta} = 0$ , i.e., the extension  $0 \to N_{\mathbf{f}} \otimes_{\Lambda} \mathcal{O}_{1,\zeta} \to \rho_{\mathbf{f}} \otimes_{\Lambda} \mathcal{O}_{1,\zeta} \to M_{\mathbf{f}} \otimes_{\Lambda} \mathcal{O}_{1,\zeta} \to 0$  splits. This is also equivalent to  $x_{1,\zeta} \circ \rho_{\mathbf{f}} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_p[\zeta])$  being Hodge-Tate of weight 0, 0 at p.

*Proof.* This is the Fontaine–Mazur conjecture in the ordinary case, see [CG18, Pan22]. □

Theorem 3.1 leads us to consider the following.

**Definition 3.1** (Λ-adic Sen operator). Let  $\Gamma = \operatorname{Gal}(\mathbb{Q}_p(\zeta_{p^\infty})/\mathbb{Q}_p)$ . Then,  $(\rho_{\mathbf{f}} \otimes_{\Lambda} \Lambda_{W(C^\flat)})^{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p(\zeta_{p^\infty}))}$  inherits an action of  $\Gamma$ . Let  $(\rho_{\mathbf{f}} \otimes_{\Lambda} \Lambda_{W(C^\flat)})^{\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p(\zeta_{p^\infty})),\Gamma$ - an be the largest submodule where  $\Gamma$  acts analytically (in this case, unipotently), which now inherits the action of  $\operatorname{Lie}(\Gamma) \cong \mathbb{Z}_p$ . The action of  $1 \in \mathbb{Z}_p \cong \operatorname{Lie}(\Gamma)$  induces a  $\Lambda$ -linear map  $\theta : M_{\mathbf{f}} \to N_{\mathbf{f}}$ , which we call the  $\Lambda$ -adic Sen operator.

**Lemma 3.1.** Let  $\zeta$  be a p-power root of unity. Then,  $\mathbf{f}_{1,\zeta}$  is a classical modular form of weight one if and only if  $\theta \otimes_{\Lambda} \mathcal{O}_{1,\zeta} = 0$ .

*Proof.* This follows immediately from the definition of the Sen operator that an almost Hodge–Tate representation of weight 0,0 is Hodge–Tate if and only if the Sen operator vanishes. See [Fon04].

We are now ready to construct the derived Sen action.

**Definition 3.2** (Derived Sen action). Let  $\widetilde{K}_{\mathbf{f}}^{\bullet} := [M_{\mathbf{f}} \xrightarrow{\theta} N_{\mathbf{f}}]$  be the complex of  $\Lambda$ -modules in homological degrees [0,1]. Let  $\zeta$  be a primitive  $p^r$ -th root of unity. We define the *derived Sen action* to be the action

$$\operatorname{Tor}_{\Lambda}^{1}(\mathcal{O}_{1,\zeta},\mathcal{O}_{1,\zeta}) \times \operatorname{coker} \theta \otimes \mathcal{O}_{1,\zeta}$$

$$\cong \operatorname{Tor}_{\Lambda}^{1}(\mathcal{O}_{1,\zeta},\mathcal{O}_{1,\zeta}) \times \operatorname{Tor}_{\Lambda}^{0}(\widetilde{K}_{\mathbf{f}}^{\bullet},\mathcal{O}_{1,\zeta})$$

$$\to \operatorname{Tor}_{\Lambda}^{1}(\widetilde{K}_{\mathbf{f}}^{\bullet},\mathcal{O}_{1,\zeta})$$

$$\to \ker \theta \otimes \mathcal{O}_{1,\zeta}.$$

The relation of the derived Sen action with the classical modular forms comes from the following.

**Lemma 3.2.** For a primitive  $p^r$ -th root of unity  $\zeta$ , we have natural isomorphisms

$$\ker \theta \otimes \mathcal{O}_{1,\zeta} \cong H^0(X_1(Np^r),\omega)_{\mathbb{Z}_p[\zeta]}[\lambda_{f_{1,\zeta}}],$$

$$\operatorname{coker} \theta \otimes \mathcal{O}_{1,\zeta} \cong H^1(X_1(Np^r)\omega)_{\mathbb{Z}_p[\zeta]}[\lambda_{f_{1,\zeta}}],$$

where  $H^*(X_1(Np^r), \omega)_{\mathbb{Z}_p[\zeta]}$  is a lattice of  $H^*(X_1(Np^r)_{\mathbb{Q}_p[\zeta]}, \omega)$  given by the specialization of  $H^0(\omega)$  or  $H^1(\mathcal{O})$  of [Cai18a].

*Proof.* This follows from the control theorem [Cai18a, Theorem 1.2.1], [Cai18b, Theorem 1.2.4], and the interpretation of  $N_{\mathbf{f}}$  as the higher Hida theory [BP22], interpolating  $H^1(X_1(Np^r)_{\mathbb{Z}_p[\zeta]}, \omega^k)$ .

# 4. The p-adic analogue of the Harris–Venkatesh conjecture

We formulate the p-adic analogue of the Harris–Venkatesh conjecture [HV19]. We fix an embedding  $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$  throughout this section.

**Conjecture 4.1** (p-adic Harris-Venkatesh conjecture). Let  $(N, \underline{p}) = 1$ . Let  $f \in S_1(\Gamma_1(Np), C)$  be a normalized cuspidal Hecke eigen-new-form. Let  $\rho_f : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$  be the Galois representation associated to f, and let H be the number field cut out by  $\operatorname{Ad}^0 \rho_f$ . We let

$$U_f := \operatorname{Hom}_{\overline{\mathbb{Q}}[\operatorname{Gal}(H/\mathbb{Q})]}(\operatorname{Ad}^0 \rho_f, \mathcal{O}_H^{\times} \otimes_{\mathbb{Z}} \overline{\mathbb{Q}}),$$

which is a 1-dimensional  $\overline{\mathbb{Q}}$ -vector space. Let  $U_f^\vee:=\operatorname{Hom}_{\overline{\mathbb{Q}}}(U_f,\overline{\mathbb{Q}})$ . Consider the homomorphism  $U_f^\vee\to\operatorname{Ext}^1_{C[1+p\mathbb{Z}_p]}(C,C)$  given by  $\varphi\mapsto\frac{\varphi(u_f)}{\log_p(u_f)}\log_p$  for  $u_f\in U_f$  (the definition is independent of the choice of  $u_f$ ), where  $\log_p\in\operatorname{Ext}^1_{C[1+p\mathbb{Z}_p]}(C,C)$  is the element corresponding to the p-adic logarithm  $\log_p\in\operatorname{Hom}(1+p\mathbb{Z}_p,C)$ . Then, the derived diamond action

$$\operatorname{Ext}^1_{C[1+p\mathbb{Z}_p]}(C,C)\times H^0(X_1(Np)_C,\omega)\to H^1(X_1(Np)_C,\omega)$$

restricts to

$$U_f^{\vee} \times H^0(X_1(Np)_{\overline{\mathbb{Q}}}, \omega) \to H^1(X_1(Np)_{\overline{\mathbb{Q}}}, \omega)$$

along the homomorphism  $U_f^{\vee} \to \operatorname{Ext}^1_{C[1+p\mathbb{Z}_n]}(C,C)$ .

## REFERENCES

- [BP21] George Boxer and Vincent Pilloni. Higher Coleman Theory, 2021.
- [BP22] George Boxer and Vincent Pilloni. Higher Hida and Coleman theories on the modular curve. Épijournal Géom. Algébrique, 6:Art. 16, 33, 2022.
- [Cai18a] Bryden Cais. The geometry of Hida families I: Λ-adic de Rham cohomology. *Math. Ann.*, 372(1-2):781–844, 2018.
- [Cai18b] Bryden Cais. The geometry of Hida families II:  $\Lambda$ -adic ( $\varphi$ ,  $\Gamma$ )-modules and  $\Lambda$ -adic Hodge theory. *Compos. Math.*, 154(4):719–760, 2018.
- [CG18] Frank Calegari and David Geraghty. Modularity lifting beyond the Taylor-Wiles method. *Invent. Math.*, 211(1):297–433, 2018.
- [Fon04] Jean-Marc Fontaine. Arithmétique des représentations galoisiennes *p*-adiques. Number 295, pages xi, 1–115. 2004. Cohomologies *p*-adiques et applications arithmétiques. III.
- [GV18] S. Galatius and A. Venkatesh. Derived Galois deformation rings. Adv. Math., 327:470-623, 2018.
- [Hor23] Aleksander Horawa. Motivic action on coherent cohomology of Hilbert modular varieties. *Int. Math. Res. Not. IMRN*, (12):10439–10531, 2023.
- [HV19] Michael Harris and Akshay Venkatesh. Derived Hecke algebra for weight one forms. *Exp. Math.*, 28(3):342–361, 2019.

- [KR23] Chandrashekhar Khare and Niccolò Ronchetti. Derived Hecke action at p and the ordinary p-adic cohomology of arithmetic manifolds. *Amer. J. Math.*, 145(6):1631–1694, 2023.
- [Oh22] Gyujin Oh. Coherent cohomology of Shimura varieties, motivic cohomology, and archimedean L-packets, Preprint, 2022.
- [Oht95] Masami Ohta. On the p-adic Eichler-Shimura isomorphism for  $\Lambda$ -adic cusp forms.  $\mathcal{J}$ . Reine Angew. Math., 463:49–98, 1995.
- [Pan22] Lue Pan. On locally analytic vectors of the completed cohomology of modular curves. *Forum Math. Pi*, 10:Paper No. e7, 82, 2022.
- [Pil24] Vincent Pilloni. Faisceaux equivariants sur  $\mathbb{P}^1$  et faisceaux automorphes. Ann. Fac. Sci. Toulouse Math. (6), 33(4):1155–1213, 2024.
- [Ven19] Akshay Venkatesh. Derived Hecke algebra and cohomology of arithmetic groups. *Forum Math. Pi*, 7:e7, 119, 2019.