SUPERRIGIDITY WITH MAPPING CLASS GROUP TARGET VIA JORDAN DECOMPOSITION

GYUJIN OH

ABSTRACT. In this short note, we reprove the super-rigidity of homomorphisms from $\mathrm{SL}_n(\mathbb{Z})$ to a mapping class group, a weaker version of [FM98], using Steinberg's algebraic proof of super-rigidity in [Ste85].

CONTENTS

1.	Lemmas on Nielsen-Thurston decomposition	1
2.	Proof of superrigidity of $\mathrm{SL}_n(\mathbb{Z})$ with mapping class group target	4
Ref	ferences	5

The goal of this note is to prove the "super-rigidity of $SL_n(\mathbb{Z})$ with mapping class group target" in the sense of [FM98] (see Theorem 2.1 for a precise statement that we prove) using a very soft argument utilizing the interplay between the Jordan decomposition in $SL_n(\mathbb{Z})$ and the Nielsen–Thurston decomposition in the mapping class group. Even though the said super-rigidity result can now be proved in various ways, we believe the method of proof presented in this note is still interesting.

1. Lemmas on Nielsen-Thurston decomposition

We first prove some lemmas on Nielsen–Thurston decomposition, emphasizing the viewpoint that this is the mapping class group analogue of Jordan decomposition. We freely use the definitions of [FM12].

Proposition 1.1 ([FM12, Corollary 13.3]). Let $f \in \operatorname{Mod}(S_{g,n})$ be a mapping class, and let $\{c_1, \cdots, c_m\}$ be its canonical reduction system. Let R_1, \cdots, R_m be tubular neighborhoods of c_1, \cdots, c_m , respectively, and R_{m+1}, \cdots, R_{m+p} be the closures of the connected components of $S_{g,n} - \bigcup_{i=1}^m R_i$. Then, there is a representative ϕ of f that permutes R_i . Therefore, there is a positive integer k > 0 such that $\phi^k(R_i) = R_i$ for all i.

Let $\eta_i : \operatorname{Mod}(R_i) \to \operatorname{Mod}(S_{g,n})$ be the natural map. Then, for $1 \le i \le m$, there is a power of Dehn twist $f_i \in \operatorname{Mod}(R_i)$, and for $m < i \le m+p$, there is a pseudo-Anosov element $f_i \in \operatorname{Mod}(R_i)$, such that

$$f^k = \prod_{i=1}^{m+p} \eta_i(f_i).$$

Theorem 1.2 (Ivanov, [Iva92, Corollary 1.8]). For $f \in \text{Mod}(S_{g,n})[m]$ with $m \geq 3$, the integer k in Proposition 1.1 can be taken to be 1.

Note that $\operatorname{Mod}(S_{g,n})$ acts linearly on $H^1(S_{g,n},\mathbb{Z})$, and $f \in \operatorname{Mod}(S_{g,n})[m]$ means that f acts trivially on $H^1(S_{q,n}, \mathbb{Z}/m\mathbb{Z})$.

Definition 1.3. For $f \in \text{Mod}(S_{g,n})[m]$, $m \geq 3$, we define f_s, f_u as

$$f_u = \prod_{i=1}^{m} \eta_i(f_i),$$

$$f_s = \prod_{i=m+1}^{m+p} \eta_i(f_i),$$

using the notation of Proposition 1.1.

By definition, f_u is a multitwist (i.e. a product of powers of mutually commuting Dehn twists), and $f_u f_s = f_s f_u$. The notation mimics that of the Jordan decomposition.

Lemma 1.4. Let $m \geq 3$. If $x, y \in \text{Mod}(S_{g,n})[m]$ commute with each other (i.e. xy = yx), then x_u, y_u, x_s, y_s all commute with each other. Furthermore, $(xy)_u = x_u y_u = y_u x_u$, and $(xy)_s = x_s y_s = x_s y_s$ $y_s x_s$.

Proof. Since $xyx^{-1} = y$, $x \operatorname{CRS}(y) = \operatorname{CRS}(xyx^{-1}) = \operatorname{CRS}(y)$. Therefore, there is large $N \gg 0$ such that each curve $c \in CRS(y)$ is fixed by x^N . This implies that c is in a maximal reduction system of x^N , so c does not intersect (up to isotopy) any curve in CRS(x).

Let

$$CRS(x) = \{c_1, \dots, c_m, c_{m+1}, \dots, c_{m+a}\}, \quad CRS(y) = \{c_1, \dots, c_m, c'_{m+1}, \dots, c'_{m+b}\},\$$

where $CRS(x) \cap CRS(y) = \{c_1, \dots, c_m\}$ is the set of common isotopy classes. For notational simplicity, we denote $c'_i = c_i$ for $1 \le i \le m$. Then,

$$x_u = \prod_{i=1}^{m+a} T_{c_i}^{n_i}, \quad y_u = \prod_{i=1}^{m+b} T_{c_i'}^{n_i'},$$

where T_c is the Dehn twist along c. The argument in the previous paragraph shows that any pair of curves in $S:=\{c_1,\cdots,c_{m+a},c'_{m+1},\cdots,c'_{m+b}\}$ does not intersect (up to isotopy). Therefore, the Dehn twists $T_{c_1},\cdots,T_{c_{m+a}},T_{c'_{m+1}},\cdots,T_{c'_{m+b}}$ all commute with each other. This implies that $x_u y_u = y_u x_u.$

Let us now fix more notations. Let R_i (R'_i , respectively) be a tubular neighborhood of c_i (c'_i , respectively), and let $R_{m+a+1}, \dots, R_{m+p}$ ($R'_{m+b+1}, \dots, R'_{m+q}$, respectively) be the closures of the connected components of $S_{g,n} - \bigcup_{i=1}^{m+a} R_i (S_{g,n} - \bigcup_{i=1}^{m+b} R_i', \text{ respectively})$. For $1 \leq i \leq m+p$ $(1 \le i \le m+q, \text{ respectively}), \text{ let } \eta_i : \text{Mod}(R_i) \to \text{Mod}(S_{q,n}) \ (\eta_i' : \text{Mod}(R_i') \to \text{Mod}(S_{q,n}),$ respectively) be the natural map. Let

$$x_s = \prod_{i=m+a+1}^{m+p} \eta_i(x_i) \qquad \left(y_s = \prod_{i=m+b+1}^{m+q} \eta_i'(y_i), \text{ respectively}\right).$$

Here, the element $x_i \in \operatorname{Mod}(R_i)$ for $m+a+1 \le i \le m+p$ ($y_i \in \operatorname{Mod}(R_i')$ for $m+b+1 \le i \le m+p$ m+q, respectively), is either the identity or pseudo-Anosov.

As x fixes both CRS(x) and CRS(y), S is a reduction system for x, and also for y by symmetry. Therefore, for $m + a + 1 \le i \le m + p$, x_i fixes the set

$$S_i := \{ c'_j \in \operatorname{CRS}(y) \setminus \operatorname{CRS}(x) \mid c'_j \subset R_i \}.$$

Therefore, by the Nielsen–Thurston classification, if $S_i \neq \emptyset$, x_i cannot be pseudo-Anosov, so x_i has to be the identity. This immediately implies that x_s and y_u have different supports, so they commute, and similarly for x_u and y_s .

We now prove that $x_s y_s = y_s x_s$. Let

$$\operatorname{Supp}(x_s) := \bigcup_{m+a+1 \le i \le m+p, \ x_i \ne \operatorname{id}} R_i, \qquad \operatorname{Supp}(y_s) := \bigcup_{m+b+1 \le i \le m+q, \ y_i \ne \operatorname{id}} R'_i.$$

We claim that

$$\operatorname{Supp}(x_s) \cap \operatorname{Supp}(y_s) = \bigcup_{R_i = R'_j, \ m+a+1 \le i \le m+p, \ m+b+1 \le j \le m+q} R_i.$$

Suppose that there are $m+a+1 \le i \le m+p$ and $m+b+1 \le j \le m+q$ such that $R_i \cap R'_j \ne \emptyset$, $x_i \ne \text{id}$ and $y_j \ne \text{id}$. As $x_i \ne \text{id}$, none of the boundary curves of R'_j is contained in R_i . This implies that $R_i \subset R'_j$. By symmetry, $R_i \supset R'_j$, so this implies that $R_i = R'_j$. In this case, all the factors in the canonical decompositions in x or y other than x_i and y_j have the supports disjoint from $R_i = R'_j$. Thus, xy = yx implies that $x_iy_j = y_jx_i$. Outside $\operatorname{Supp}(x_s) \cap \operatorname{Supp}(y_s)$, either x_i or y_j is the identity, so $x_iy_j = y_jx_i$. All in all, this implies that $x_sy_s = y_sx_s$.

Now note that, over $R_i = R'_j$, $x_i y_j$ is pseudo-Anosov; this is because $x_i y_j = y_j x_i$ is in the centralizer of x_i . Therefore, $x_u y_u$ is a multitwist, and $x_s y_s$ is the product of pseudo-Anosov elements over subsurfaces. Thus, $xy = (x_u y_u)(x_s y_s)$ is the decomposition of $xy = (xy)_u(xy)_s$.

The following is analogous to [Ste85, (1), pg. 340].

Lemma 1.5. Let $m \ge 3$. If $x, y, z \in \text{Mod}(S_{g,n})[m]$ are such that [x, y] = z (here $[x, y] = xyx^{-1}y^{-1}$ is the commutator) and that z commutes with x, y. Then, the following holds.

- (1) $[x_u, y] = z_u$.
- (2) $[x, y_s] = z_s$.
- (3) $[x_u, y_s] = 1$.
- (4) $z_s^N = 1$ for some N.

Proof.

- (1) Note that $xyx^{-1} = zy = yz$, so $y^{-1}xy = zx$. Since $CRS(y^{-1}xy) = y^{-1}CRS(x)$, $(y^{-1}xy)_u = y^{-1}x_uy$, which implies that $y^{-1}x_uy = (xz)_u = x_uz_u$ by Lemma 1.4.
- (2) Note that $xyx^{-1} = zy$. Since $CRS(xyx^{-1}) = xCRS(y)$, $(xyx^{-1})_s = xy_sx^{-1}$, which implies that $xy_sx^{-1} = (zy)_s = z_sy_s$ by Lemma 1.4.
- (3) Since z_u commutes with both x_u and y, one can apply (2) to (1) and obtain (3).
- (4) This will follow if we show that $x^N y_s x^{-N} = y_s$ for some N. Firstly, as x permutes CRS(y), x^N fixes CRS(y) elementwise for some N. Thus, without loss of generality, we may assume that x fixes CRS(y) elementwise. As y, z_s commute with each other by Lemma 1.4, we may also assume without loss of generality that z_s fixes CRS(y) elementwise.

Now let $\operatorname{CRS}(y) = \{c_1, \cdots, c_m\}$, R_1, \cdots, R_m be tubular neighborhoods of c_1, \cdots, c_m , respectively, and let R_{m+1}, \cdots, R_{m+p} be the closures of the connected components of $S_{g,n} - \bigcup_{i=1}^m R_i$. Let $y_s = \prod_{i=m+1}^{m+p} \eta_i(y_i)$, where $y_i \in \operatorname{Mod}(R_i)$ and $\eta_i : \operatorname{Mod}(R_i) \to \operatorname{Mod}(S_{g,n})$. We may also assume that x fixes each of R_{m+1}, \cdots, R_{m+p} . For $m+1 \le i \le m+p$, let $x_i \in \operatorname{Mod}(R_i)$ be the restriction of x to R_i , and $x_i \in \operatorname{Mod}(R_i)$ be the restriction of x to $x_i \in \operatorname{Mod}(R_i)$. Then, $x_i \in \operatorname{Mod}(R_i)$ and $x_i \in \operatorname{Mod}(R_i)$ be the restriction of x to $x_i \in \operatorname{Mod}(R_i)$. We claim that

 $x_i^{l_i}y_ix_i^{-l_i}=y_i$ for some $l_i>0$. If the claim is true, then taking N to be the lcm of all l_i 's for $m+1 \le i \le m+p$ and $z_i \ne id$ will give the desired result.

If z_i is pseudo-Anosov, by the result of McCarthy [McC82, Theorem 1], a power of y_i is a power of z_i . Thus, taking a large enough power of x_i , one has $x_i^{n_i}y_ix_i^{-n_i}=y_i^{m_i}$ for some $n_i > 0, m_i \neq 0$. By Lemma 1 of op. cit., $m_i = \pm 1$, so we may take $l_i = 2n_i$ and the Claim is indeed true.

2. Proof of superrigidity of $\mathrm{SL}_n(\mathbb{Z})$ with mapping class group target

Theorem 2.1. Let $m, n \geq 3$ and $\varphi : \mathrm{SL}_n(\mathbb{Z}) \to \mathrm{Mod}(S)[m]$ be a homomorphism. Then, φ has finite image.

Proof. By [Ste85], $SL_n(\mathbb{Z})$ is generated by $x_{ij} = I + E_{ij}$, $i \neq j$, subject to the following relations.

- $[x_{ij}, x_{kl}] = x_{il}$ if $i \neq l, j = k$,
- $[x_{ij}, x_{kl}] = 1$, if $i \neq l, j \neq k$, $(x_{12}x_{21}^{-1}x_{12})^4 = 1$.

Let $\varphi(x_{ij}) =: a_{ij} \in \operatorname{Mod}(S)[m]$. Let $b_{ij} = (a_{ij})_u$. Then, the b_{ij} 's satisfy the relations

- $[b_{ij}, b_{kl}] = b_{il}$ if $i \neq l, j = k$,
- $[b_{ij}, b_{kl}] = 1$ if $i \neq l, j \neq k$.

We claim the following.

Claim. For all $i \neq j$, $b_{ij} = 1$.

To prove the Claim, without loss of generality, after reindexing, it suffices to prove $b_{32} = 1$. Note that we have the relation

$$b_{31}b_{12}b_{31}^{-1} = b_{12}b_{32} = b_{32}b_{12}.$$

Let $b_{12} = \prod_{i=1}^s T_{c_i}^{p_i}$, where T_{c_i} is the Dehn twist along c_i . Then, $b_{31}b_{12}b_{31}^{-1} = \prod_{i=1}^s T_{b_{31}(c_i)}^{p_i}$. Thus, $b_{32}=b_{31}b_{12}b_{31}^{-1}b_{12}^{-1}=\prod_{i=1}^sT_{b_{31}(c_i)}^{p_i}\prod_{i=1}^sT_{c_i}^{-p_i}$ commutes with both b_{12} and b_{31} . Note that this expression expresses b_{32} as a multitwist, as $b_{31}b_{12}b_{31}^{-1}$ and b_{12}^{-1} commute with each other. Thus, for any $1 \le i, j \le s$, $i(b_{31}(c_i), c_j) = 0$.

Let $b_{31} = \prod_{i=1}^t T_{d_i}^{q_i}$. If $b_{32} \neq 1$, then there is $1 \leq x_1 \leq s$, $1 \leq y_1 \leq t$ such that $i(c_{x_1}, d_{y_1}) \neq 0$. As b_{31} and $b_{32} = \prod_{i=1}^{s} T_{b_{31}(c_i)}^{p_i} \prod_{i=1}^{s} T_{c_i}^{-p_i}$ commute, this implies that there is $1 \le x_2 \le s$ such that $b_{31}(c_{x_2})=c_{x_1}$ and $p_{x_2}=p_{x_1}$. Note that by the definition of $x_2, x_2 \neq x_1$. This implies that c_{x_2} is not fixed by b_{31} , or there is some $1 \le y_2 \le t$ such that $i(c_{x_2}, d_{y_2}) \ne 0$. We can thus inductively define $1 \le x_{\alpha} \le s$, $\alpha = 1, 2, 3, \cdots$, such that $b_{31}(c_{x_{\alpha}}) = c_{x_{\alpha-1}}$. Therefore, there is some $N \gg 0$ such that $b_{31}^N(c_{x_1}) = c_{x_1}$, which is a contradiction as $CRS(b_{31}^N) = CRS(b_{31})$. Therefore, $b_{32} = 1$, which proves the Claim.

From the Claim, we now know that $a_{ij} = (a_{ij})_s$ for all $i \neq j$. By Lemma 1.5(4), for each $i \neq j$, a_{ij} is finite order. This implies that there is a large $N\gg 0$ such that $\varphi(x_{ij})^N=1$ for all $i\neq j$. This implies that $\ker(\varphi)$ contains x_{ij}^N for all N. As the congruence subgroup $\Gamma(N) \subset \mathrm{SL}_n(\mathbb{Z})$ is the normal subgroup generated by x_{ij}^N 's, $\ker(\varphi) \supset \Gamma(N)$, which implies that φ is of finite image.

REFERENCES

- [FM98] Benson Farb and Howard Masur. Superrigidity and mapping class groups. Topology, 37(6):1169-1176, 1998.
- [FM12] Benson Farb and Dan Margalit. *A primer on mapping class groups*, volume 49 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, 2012.
- [Iva92] Nikolai V. Ivanov. *Subgroups of Teichmüller modular groups*, volume 115 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI, 1992. Translated from the Russian by E. J. F. Primrose and revised by the author.
- [McC82] John McCarthy. Normalizers and centralizers of pseudo-Anosov mapping classes, 1982.
- [Ste85] Robert Steinberg. Some consequences of the elementary relations in SL_n . In *Finite groups—coming of age* (*Montreal, Que., 1982*), volume 45 of *Contemp. Math.*, pages 335–350. Amer. Math. Soc., Providence, RI, 1985.

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027 *E-mail address*: gyujinoh@math.columbia.edu