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Abstract. In this short note, we reprove the super-rigidity of homomorphisms from SLn(Z) to

a mapping class group, a weaker version of [FM98], using Steinberg’s algebraic proof of super-

rigidity in [Ste85].
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The goal of this note is to prove the “super-rigidity of SLn(Z) with mapping class group target”

in the sense of [FM98] (see Theorem 2.1 for a precise statement that we prove) using a very soft

argument utilizing the interplay between the Jordan decomposition in SLn(Z) and the Nielsen–

Thurston decomposition in the mapping class group. Even though the said super-rigidity result

can now be proved in various ways, we believe the method of proof presented in this note is still

interesting.

1. Lemmas on Nielsen–Thurston decomposition

We �rst prove some lemmas on Nielsen–Thurston decomposition, emphasizing the viewpoint

that this is the mapping class group analogue of Jordan decomposition. We freely use the de�ni-

tions of [FM12].

Proposition 1.1 ([FM12, Corollary 13.3]). Let f ∈ Mod(Sg,n) be amapping class, and let {c1, · · · , cm}
be its canonical reduction system. Let R1, · · · , Rm be tubular neighborhoods of c1, · · · , cm, respec-
tively, and Rm+1, · · · , Rm+p be the closures of the connected components of Sg,n − ∪mi=1Ri. Then,
there is a representative φ of f that permutes Ri. Therefore, there is a positive integer k > 0 such
that φk(Ri) = Ri for all i.

Let ηi : Mod(Ri) → Mod(Sg,n) be the natural map. Then, for 1 ≤ i ≤ m, there is a power of
Dehn twist fi ∈ Mod(Ri), and form < i ≤ m+p, there is a pseudo-Anosov element fi ∈ Mod(Ri),
such that

fk =

m+p∏
i=1

ηi(fi).

Theorem 1.2 (Ivanov, [Iva92, Corollary 1.8]). For f ∈ Mod(Sg,n)[m] with m ≥ 3, the integer k
in Proposition 1.1 can be taken to be 1.
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Note that Mod(Sg,n) acts linearly on H1(Sg,n,Z), and f ∈ Mod(Sg,n)[m] means that f acts

trivially on H1(Sg,n,Z/mZ).

De�nition 1.3. For f ∈ Mod(Sg,n)[m], m ≥ 3, we de�ne fs, fu as

fu =
m∏
i=1

ηi(fi),

fs =

m+p∏
i=m+1

ηi(fi),

using the notation of Proposition 1.1.

By de�nition, fu is a multitwist (i.e. a product of powers of mutually commuting Dehn twists),

and fufs = fsfu. The notation mimics that of the Jordan decomposition.

Lemma 1.4. Let m ≥ 3. If x, y ∈ Mod(Sg,n)[m] commute with each other (i.e. xy = yx), then
xu, yu, xs, ys all commute with each other. Furthermore, (xy)u = xuyu = yuxu, and (xy)s = xsys =
ysxs.

Proof. Since xyx−1 = y, xCRS(y) = CRS(xyx−1) = CRS(y). Therefore, there is large N � 0
such that each curve c ∈ CRS(y) is �xed by xN . This implies that c is in a maximal reduction

system of xN , so c does not intersect (up to isotopy) any curve in CRS(x).

Let

CRS(x) = {c1, · · · , cm, cm+1, · · · , cm+a}, CRS(y) = {c1, · · · , cm, c′m+1, · · · , c′m+b},
where CRS(x) ∩ CRS(y) = {c1, · · · , cm} is the set of common isotopy classes. For notational

simplicity, we denote c′i = ci for 1 ≤ i ≤ m. Then,

xu =
m+a∏
i=1

T nici , yu =
m+b∏
i=1

T
n′i
c′i
,

where Tc is the Dehn twist along c. The argument in the previous paragraph shows that any pair

of curves in S := {c1, · · · , cm+a, c
′
m+1, · · · , c′m+b} does not intersect (up to isotopy). Therefore,

the Dehn twists Tc1 , · · · , Tcm+a , Tc′m+1
, · · · , Tc′m+b

all commute with each other. This implies that

xuyu = yuxu.

Let us now �x more notations. Let Ri (R′i, respectively) be a tubular neighborhood of ci (c′i,
respectively), and let Rm+a+1, · · · , Rm+p (R′m+b+1, · · · , R′m+q, respectively) be the closures of

the connected components of Sg,n − ∪m+a
i=1 Ri (Sg,n − ∪m+b

i=1 R
′
i, respectively). For 1 ≤ i ≤ m + p

(1 ≤ i ≤ m + q, respectively), let ηi : Mod(Ri) → Mod(Sg,n) (η′i : Mod(R′i) → Mod(Sg,n),

respectively) be the natural map. Let

xs =

m+p∏
i=m+a+1

ηi(xi)

(
ys =

m+q∏
i=m+b+1

η′i(yi), respectively

)
.

Here, the element xi ∈ Mod(Ri) for m+ a+ 1 ≤ i ≤ m+ p (yi ∈ Mod(R′i) for m+ b+ 1 ≤ i ≤
m+ q, respectively), is either the identity or pseudo-Anosov.

As x �xes both CRS(x) and CRS(y), S is a reduction system for x, and also for y by symmetry.

Therefore, for m+ a+ 1 ≤ i ≤ m+ p, xi �xes the set

Si := {c′j ∈ CRS(y)\CRS(x) | c′j ⊂ Ri}.
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Therefore, by the Nielsen–Thurston classi�cation, if Si 6= ∅, xi cannot be pseudo-Anosov, so xi
has to be the identity. This immediately implies that xs and yu have di�erent supports, so they

commute, and similarly for xu and ys.
We now prove that xsys = ysxs. Let

Supp(xs) :=
⋃

m+a+1≤i≤m+p, xi 6=id

Ri, Supp(ys) :=
⋃

m+b+1≤i≤m+q, yi 6=id

R′i.

We claim that

Supp(xs) ∩ Supp(ys) =
⋃

Ri=R′j , m+a+1≤i≤m+p, m+b+1≤j≤m+q

Ri.

Suppose that there arem+a+ 1 ≤ i ≤ m+p andm+ b+ 1 ≤ j ≤ m+ q such thatRi∩R′j 6= ∅,
xi 6= id and yj 6= id. As xi 6= id, none of the boundary curves of R′j is contained in Ri. This

implies that Ri ⊂ R′j . By symmetry, Ri ⊃ R′j , so this impies that Ri = R′j . In this case, all the

factors in the canonical decompositions in x or y other than xi and yj have the supports disjoint

from Ri = R′j . Thus, xy = yx implies that xiyj = yjxi. Outside Supp(xs) ∩ Supp(ys), either xi
or yj is the identity, so xiyj = yjxi. All in all, this implies that xsys = ysxs.

Now note that, over Ri = R′j , xiyj is pseudo-Anosov; this is because xiyj = yjxi is in the cen-

tralizer of xi. Therefore, xuyu is a multitwist, and xsys is the product of pseudo-Anosov elements

over subsurfaces. Thus, xy = (xuyu) (xsys) is the decomposition of xy = (xy)u(xy)s. �

The following is analogous to [Ste85, (1), pg. 340].

Lemma 1.5. Letm ≥ 3. If x, y, z ∈ Mod(Sg,n)[m] are such that [x, y] = z (here [x, y] = xyx−1y−1

is the commutator) and that z commutes with x, y. Then, the following holds.
(1) [xu, y] = zu.
(2) [x, ys] = zs.
(3) [xu, ys] = 1.
(4) zNs = 1 for some N .

Proof.
(1) Note that xyx−1 = zy = yz, so y−1xy = zx. Since CRS(y−1xy) = y−1 CRS(x),

(y−1xy)u = y−1xuy, which implies that y−1xuy = (xz)u = xuzu by Lemma 1.4.

(2) Note that xyx−1 = zy. Since CRS(xyx−1) = xCRS(y), (xyx−1)s = xysx
−1

, which

implies that xysx
−1 = (zy)s = zsys by Lemma 1.4.

(3) Since zu commutes with both xu and y, one can apply (2) to (1) and obtain (3).

(4) This will follow if we show that xNysx
−N = ys for someN . Firstly, as x permutes CRS(y),

xN �xes CRS(y) elementwise for some N . Thus, without loss of generality, we may

assume that x �xes CRS(y) elementwise. As y, zs commute with each other by Lemma

1.4, we may also assume without loss of generality that zs �xes CRS(y) elementwise.

Now let CRS(y) = {c1, · · · , cm}, R1, · · · , Rm be tubular neighborhoods of c1, · · · , cm,

respectively, and let Rm+1, · · · , Rm+p be the closures of the connected components of

Sg,n − ∪mi=1Ri. Let ys =
∏m+p

i=m+1 ηi(yi), where yi ∈ Mod(Ri) and ηi : Mod(Ri) →
Mod(Sg,n). We may also assume that x �xes each of Rm+1, · · · , Rm+p. For m + 1 ≤ i ≤
m+ p, let xi ∈ Mod(Ri) be the restriction of x to Ri, and zi ∈ Mod(Ri) be the restriction

of z to Ri. Then, yi and zi commute with each other, and xiyix
−1
i = yizi. We claim that
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xlii yix
−li
i = yi for some li > 0. If the claim is true, then taking N to be the lcm of all li’s

for m+ 1 ≤ i ≤ m+ p and zi 6= id will give the desired result.

If zi is pseudo-Anosov, by the result of McCarthy [McC82, Theorem 1], a power of yi is

a power of zi. Thus, taking a large enough power of xi, one has xnii yix
−ni
i = ymii for some

ni > 0,mi 6= 0. By Lemma 1 of op. cit., mi = ±1, so we may take li = 2ni and the Claim

is indeed true.

�

2. Proof of superrigidity of SLn(Z) with mapping class group target

Theorem 2.1. Let m,n ≥ 3 and ϕ : SLn(Z) → Mod(S)[m] be a homomorphism. Then, ϕ has
�nite image.

Proof. By [Ste85], SLn(Z) is generated by xij = I +Eij , i 6= j, subject to the following relations.

• [xij, xkl] = xil if i 6= l, j = k,

• [xij, xkl] = 1, if i 6= l, j 6= k,

• (x12x
−1
21 x12)

4 = 1.

Let ϕ(xij) =: aij ∈ Mod(S)[m]. Let bij = (aij)u. Then, the bij’s satisfy the relations

• [bij, bkl] = bil if i 6= l, j = k,

• [bij, bkl] = 1 if i 6= l, j 6= k.

We claim the following.

Claim. For all i 6= j, bij = 1.

To prove the Claim, without loss of generality, after reindexing, it su�ces to prove b32 = 1. Note

that we have the relation

b31b12b
−1
31 = b12b32 = b32b12.

Let b12 =
∏s

i=1 T
pi
ci

, where Tci is the Dehn twist along ci. Then, b31b12b
−1
31 =

∏s
i=1 T

pi
b31(ci)

. Thus,

b32 = b31b12b
−1
31 b
−1
12 =

∏s
i=1 T

pi
b31(ci)

∏s
i=1 T

−pi
ci

commutes with both b12 and b31. Note that this

expression expresses b32 as a multitwist, as b31b12b
−1
31 and b−112 commute with each other. Thus,

for any 1 ≤ i, j ≤ s, i(b31(ci), cj) = 0.

Let b31 =
∏t

i=1 T
qi
di

. If b32 6= 1, then there is 1 ≤ x1 ≤ s, 1 ≤ y1 ≤ t such that i(cx1 , dy1) 6= 0.

As b31 and b32 =
∏s

i=1 T
pi
b31(ci)

∏s
i=1 T

−pi
ci

commute, this implies that there is 1 ≤ x2 ≤ s such that

b31(cx2) = cx1 and px2 = px1 . Note that by the de�nition of x2, x2 6= x1. This implies that cx2 is

not �xed by b31, or there is some 1 ≤ y2 ≤ t such that i(cx2 , dy2) 6= 0. We can thus inductively

de�ne 1 ≤ xα ≤ s, α = 1, 2, 3, · · · , such that b31(cxα) = cxα−1 . Therefore, there is some N � 0
such that bN31(cx1) = cx1 , which is a contradiction as CRS(bN31) = CRS(b31). Therefore, b32 = 1,

which proves the Claim.

From the Claim, we now know that aij = (aij)s for all i 6= j. By Lemma 1.5(4), for each i 6= j,
aij is �nite order. This implies that there is a large N � 0 such that ϕ(xij)

N = 1 for all i 6= j.
This implies that ker(ϕ) contains xNij for all N . As the congruence subgroup Γ(N) ⊂ SLn(Z)

is the normal subgroup generated by xNij ’s, ker(ϕ) ⊃ Γ(N), which implies that ϕ is of �nite

image. �
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