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This note will freely assume the familiarity with the materials of [ANT].

• We tried to make both class �eld theories as formal consequences of class formation ax-

ioms. Thus, for the global class �eld theory, we mainly follow the approach of [AT] (with

certain simpli�cations as we only aim to prove it for number �elds), although we also used

the analytic inputs for the proof of the Second Inequality, as it is culturally more useful

to know about L-functions.

• For the local existence theorem, we chose to use Lubin–Tate theory. We tried to emphasize

a theme of Explicit class field theory.

• For the CM theory, we completely avoid the use of algebraic geometry, and follow the

complex analytic proofs of the two Main Theorems in [Deu]. A clearer exposition for the

�rst theorem can be found in [Lan], and to a certain extent, [Cox]. We were unable to �nd
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a complete account of a complex analytic proof of the Second Main Theorem written in

English (apart from an English translation of [Deu]), which we provide here.

Part 1. Class �eld theory

1. Ramification of local fields

We say a little more about rami�cation of local �elds. This is to state �ner properties of the

local Artin reciprocity map, and how it also compares the notion of “rami�cation” on both sides.

De�nition 1.1 (Local conductor). Let K/L be a �nite extension of local �elds. Let p ⊂ OL be

the maximal ideal. Then, the (local) conductor of K/L, denoted fK/L, is de�ned as

fK/L :=

{
0 if O×L = NK/L(O×K)

min{n ≥ 1 : 1 + pn ⊂ NK/L(O×K)} otherwise.

The slogan is that the conductor detects how deeply ramified the extension is. In par-

ticular, you should think in a way that NK/L(O×K) smaller = K/L more rami�ed.

Proposition 1.2. Let K/L be an unramified �nite extension of local �elds. Then, fK/L = 0.

Proof. Let π be a uniformizer of L. As K/L is unrami�ed, π is also a uniformizer of K . We do

several reductions.

Consider the map NK/L(O×K) ↪→ O×L � l×, where l is the residue �eld of L and the second

map is reduction mod π map. What is the image of this map? It’s easy to see that, if x ∈ OK , then

NK/L(x) (mod π) ≡ Nk/l(x (mod π)), where k is the residue �eld of K . This follows basically

from that OK is free over OL (as OL is a DVR so a PID). Therefore, the image of this map is

precisely Nk/l(k
×). I claim that this is equal to l×. Let l = Fpn . Then k = Fpnm for some m ≥ 1.

Then k× is cyclic of order pnm − 1 and l× is cyclic of order pn − 1. Let a ∈ k× be a primitive

root (i.e. a multiplicative generator). Then, a
pnm−1
pn−1 ∈ l×, and it is a multiplicative generator of

l×. Now note that Nk/l(a) =
∏

σ∈Gal(k/l) σ(a), but every element of Gal(k/l) is a power of Frk/l,

which sends x to xp
n
. Thus,

Nk/l(a) = a · apn · ap2n · · · ap(m−1)n

= a1+pn+···+p(m−1)n

= a
pnm−1
pn−1 ,

which is as observed above is a primitive root of l. Therefore, Nk/l(k
×) contains a primitive root

of l, so contains the whole l×. Thus, to prove that NK/L(O×K) = O×L , it su�ces to show that

NK/L(O×K) ⊃ 1 + πOL, or a stronger statement that NK/L(1 + πOK) ⊃ 1 + πOL.

We claim that it actually su�ces to show that

(
NK/L(1 + πbOK)

)
· (1+πb+1OL) = 1+πbOL

for every b ≥ 1 (namely, for any 1 + πbx for x ∈ OL, there exist 1 + πby ∈ 1 + πbOK and

1 + πb+1z ∈ 1 + πb+1OL such that NK/L(1 + πby) · (1 + πb+1z) = 1 + πbx). This is because by

induction we have

1 + πOL = (1 + π2OL) ·NK/L(1 + πOK) = (1 + π3OL) ·NK/L(1 + π2OK) ·NK/L(1 + πOK)

= · · · = (1 + πb+1OL) ·NK/L(1 + πbOK) · · ·NK/L(1 + πOK).
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This means concretely that, for any 1 + πx ∈ 1 + πOL, there exist y1, y2, · · · ∈ OK such that, for

any b ≥ 1,

1 + πx ≡ NK/L((1 + πy1)(1 + π2y2) · · · (1 + πbyb)) (mod πb+1).

Now note that the sequence {cn}, with cn = (1 + πy1)(1 + π2y2) · · · (1 + πnyn), is a Cauchy

sequence inOK , so it converges (by completeness ofK) to some element c ∈ K (or even better

in 1 + πOK), and 1 + πx = NK/L(c), which is what we want.

Now we prove

(
NK/L(1 + πbOK)

)
·(1+πb+1OL) = 1+πbOL for every b ≥ 1. Let x ∈ OK , and

let h(X) be the characteristic polynomial of the multiplication-by-x matrix mx : K → K (as an

endomorphism of an L-vector spaceK), which is of the form h(X) = Xd+ad−1X
d−1 + · · ·+a0,

where d = [K : L] and ad−1, · · · , a1, a0 ∈ OL. Then, g(X) = Xd + πbad−1X
d−1 + · · · +

πb(d−1)a1X + πbda0 is the characteristic polynomial of the multiplication-by-πbx. Then, g(1) =
NK/L(1 − πbx). Note that g(1) ≡ 1 + πbad−1 (mod πb+1). As ad−1 = −TrK/L(x), we see that(
NK/L(1 + πbOK)

)
· (1 + πb+1OL) = 1 + πbOL if we prove that TrK/L(OK) = OL. Note that

TrK/L(OK) ⊂ OL is an OL-submodule, it su�ces to prove that TrK/L(OK) contains an element

that is not in πOL. By the similar reason as above, TrK/L(x) (modπ) = Trk/l(x (mod π)). Thus,

everything will follow if we show that Trk/l(k) 6= 0. Note that Trk/l(x) = x+xp
n

+ · · ·+qp(m−1)n
,

so it is in particular a polynomial of degree p(m−1)n
, which has at most (m− 1)n roots in k. This

implies that Trk/l : k → l is not zero, as desired. �

Proposition 1.3. Let K/L be a tamely ramified �nite extension of local �elds. Then, fK/L ≤ 1.

Recall thatK/L is tamely rami�ed if (eK/L, p) = 1 (p is the characteristic of the residue �elds

of the local �elds).

Proof. By transitivity of the norms, if we take K/K0/L the maximal unrami�ed subextension of

K/L, then NK/L(O×K) = NK0/L(NK/K0(O×K)). Using this, one can easily reduce to showing the

Proposition for K/K0, i.e. we can assume that K/L is totally tamely ramified. We thus need

to show that in this case NK/L(1 + πKOK) ⊃ 1 + πLOL where πK , πL are uniformizers of K,L,

respectively. As NK/L(1 + πLOL) = (1 + πLOL)eK/L , it follows from the fact that any element

of 1 + πLOL has an eK/L-th root in 1 + πLOL by Hensel’s lemma (which needs (eK/L, p) = 1).

More precisely, for a ∈ 1 + πLOL, let f(X) = XeK/L − a. Then f ′(X) = eK/LX
eK/L−1

, so

f ′(X) is not zero mod πL. In particular, f(X) (modπL) = XeK/L − 1 is separable. Therefore,

f(X) = (X − 1)g(X) mod πL, where (X − 1, g(X)) = 1 in kL[X]. Now using Hensel’s lemma,

there is a root of f(X) inOL which is congruent to 1 mod πL, which is exactly what we want. �

The rami�cation group we learned before is, more precisely, called to be in lower number-

ing.

De�nition 1.4 (Rami�cation groups in lower numbering). LetK/L be a �nite Galois extension of

local �elds, and let πK ∈ K be a uniformizer. For i ≥ −1 an integer, de�ne the i-th ramification

group in lower numbering Gal(K/L)i ≤ Gal(K/L) (or just Gi) as

Gi := {σ ∈ Gal(K/L) | σα ≡ α (mod πi+1
K ) for all α ∈ OK}.

We call G0 the inertia subgroup and G1 the wild inertia subgroup.
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More generally, for s ≥ −1 a real number, we de�ne Gs := Gdse. This de�nition will come

handy later when we de�ne the rami�cation groups in upper numbering.

This de�nition behaves, quite obviously, very well with subgroups. Namely, if you have a

subextensionK/K ′/L, then Gal(K/K ′) ≤ Gal(K/L), and Gal(K/K ′)∩Gal(K/L)i = Gal(K/K ′)i.
However, this is not really what we want in view of in�nite Galois theory; the in�nite Galois the-

ory requires a compatibility with respect to quotients, not subgroups. And it is in general not

true that lower numbering is compatible with quotients of Galois group. However, if you renum-

ber the ramification groups, then the rami�cation group becomes compatible with quotients.

De�nition 1.5 (Rami�cation groups in upper numbering). Let K/L be a �nite Galois extension

of local �elds, and let G = Gal(K/L) = G−1 ⊃ G0 ⊃ G1 ⊃ · · · be the rami�cation groups in

lower numbering, as de�ned above. De�ne

φK/L(s) :=

∫ s

0

dx

[G0 : Gx]
.

This is a piecewise linear strictly increasing continuous function φK/L : [−1,∞) → [−1,∞).

Therefore, we can de�ne its inverseψK/L : [−1,∞)→ [−1,∞) (i.e. ψK/L◦φK/L = φK/L◦ψK/L =
id). We de�ne, for t ≥ −1, the t-th ramification group in upper numbering asGt := GψK/L(t)

(i.e. GφK/L(s) = Gs).

This is such a weird de�nition; for lower numbering, the “jumps” of rami�cation groups hap-

pen at integers (i.e. if Gx 6= Gx+ε for ε > 0 small, then x is an integer), but such jumps for upper

numbering seem to happen at real numbers (or if you think a bit you realize the jumps happen

at rational numbers, but still not necessarily integers). But there are surprising properties of

rami�cation groups in upper numbering.

Proposition 1.6. IfK/L/M is a tower of �nite Galois extension of local �elds, and if t ≥ −1, then
the image of Gal(K/M)t via the quotient map Gal(K/M)� Gal(L/M) is precisely Gal(L/M)t.
In particular, for an in�nite Galois extension X/Y of local �elds and t ≥ −1, we can de�ne

Gal(X/Y )t := lim←−
Z/Y �nite Galois subextension ofX/Y

Gal(Z/Y )t.

Proof. Omitted (tedious but elementary). �

Proposition 1.7. LetK/L/M be a tower of �nite Galois extensions of local �elds. Then φK/M(s) =
φL/M(φK/L(s)).

Proof. Omitted; Exercise. �

Theorem 1.8 (Hasse–Arf theorem). LetK/L be a �nite abelian Galois extension. Then, the jumps
of rami�cation groups Gal(K/L)t in upper numbering happen at integers. Namely, if t ≥ −1 is
such that Gal(K/L)t 6= Gal(K/L)t+ε for arbitrarily small number ε > 0, then t ∈ Z.

We will later see how the Hasse–Arf theorem can prove the local Kronecker–Weber theorem.
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Exercise 1.1. Compute the jumps of rami�cation groups in upper numbering of Gal(Q3(ζ9)/Q3)
and check that the jumps happen at integers.

Now we see a surprising connection between the conductor and the rami�cation groups.

Theorem 1.9. Let K/L be a �nite abelian extension of degree > 1. Then,

fK/L = min{n ∈ Z : Gal(K/L)n = {1}}.

This will follow from the local class �eld theory.

2. Statements of the local class field theory

The information about rami�cation in the previous section gives a hint to the following con-

nections:

size of NK/L(O×K)↔ conductor fK/L ↔ rami�cation subgroups Gal(K/L)t in upper numbering.

The local class �eld theory gives a connection between the �rst and the third entries. The lo-

cal class �eld theory consists of two parts, the Artin reciprocity law and the local existence

theorem. The Artin reciprocity law gives a connection between two totally di�erent kinds of

objects.

Theorem 2.1 (Local Artin reciprocity). Let L be a local �eld. Then, there is a unique continuous
homomorphism, called the local Artin map

ArtL : L× → Gal(Lab/L),

satisfying the following properties.

(1) For any �nite abelian subextension K/L of Lab/L, the local Artin map composed with the
natural map Gal(Lab/L)→ Gal(K/L) de�nes a continuous homomorphism

ArtK/L : L× → Gal(K/L),

which is surjective with kernel NK/L(K×). In particular, there is an isomorphism

L×/NK/L(K×) ∼= Gal(K/L).

(2) IfK/L is unrami�ed, for any uniformizer πL ∈ L×,

ArtK/L(πL) = FrK/L .

(3) If K/L is a �nite extension of local �elds, the following diagram commutes, where the right
vertical arrow is the restriction to Lab.

K×

NK/L

��

ArtK // Gal(Kab/K)

res

��
L×

ArtL

// Gal(Lab/L)

6



(4) If K/L is a �nite extension of local �elds, the following diagram commutes, where the right
vertical arrow is the transfer map V : Gal(L/L)ab → Gal(K/K)ab.

K×
ArtK // Gal(Kab/K)

L×
ArtL

//
?�

OO

Gal(Lab/L)

V

OO

De�nition 2.2 (Transfer homomorphism). Let H ≤ G be a �nite index subgroup (each G,H
may or may not be in�nite). The transfer homomorphism V : Gab → Hab

is de�ned as

follows. Let [G : H] = n, and let us take coset representatives of G/H , so that G = ∪ni=1xiH
for x1, · · · , xn ∈ G. For g ∈ G and 1 ≤ i ≤ n, gxi ∈ xji(g)hi(g) for some 1 ≤ ji(g) ∈ n and

hi(g) ∈ H . Then we de�ne V (g) :=
∏n

i=1 hi(g) in Hab
.

Proposition 2.3. The transfer homomorphism indeed de�nes a group homomorphism.

Proof. Omitted (tedious but elementary). You will see this homomorphism appearing more natu-

rally in the context of group (co)homology. �

For example, in the case of K = Qp, we have

Q×p = pZ × Z×p ,

Gal(Qab
p /Qp) = Gal(Qnr

p /Qp)×Gal(Qp(ζp∞)/Qp) = Ẑ× Z×p ,

by the local Kronecker–Weber theorem. The local Artin reciprocity ArtQp is then

ArtQp : Z× Z×p → Ẑ× Z×p ,

where Z → Ẑ is the natural map and Z×p → Z×p is the inverse; for more details, see [ANT,

Example 15.1].

The local Artin reciprocity ArtQp is almost an isomorphism, except the di�erence between Z
and Ẑ. This is actually the case for all ArtK .

De�nition 2.4. Let M be a topological group. The profinite completion M̂ is de�ned as

M̂ := lim←−
M�Q, Q �nite

Q.

The pro�nite completion M̂ is regarded as a topological group, endowed with the inverse limit

topology, with each �nite quotient Q having the discrete topology (i.e. any subset of Q is open).

There is a natural map M → M̂ from de�nition of the inverse limit. We call M profinite if

M → M̂ is an isomorphism of topological groups.

For a rational prime p ∈ Z, a pro�nite group M is called pro-p if every �nite quotient of M
is a p-group (i.e. of order a power of p).
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Example 2.5. (1) For any Galois extension (maybe in�nite) K/L, Gal(K/L) with its topol-

ogy is a pro�nite group.

(2) Ẑ is a pro�nite group.

(3) Zp is a pro-p group.

Lemma 2.6. A pro�nite group is compact, Hausdor�, and totally disconnected (i.e. every connected
component is a singleton). Conversely, a compact, Hausdor�, totally disconnected topological group
is a pro�nite group.

Proof. Exercise. �

Theorem 2.7 (Local existence theorem). Let L be a local �eld. There exists an inclusion-reversing
one-to-one correspondence,{

Open �nite index subgroups of L×
}
↔ {Finite abelian extensions of L} ,

where the maps in both directions are given by

H 7→ (Lab)ArtL(H),

NK/L(K×)←[ K/L.

If L is of characteristic 0, the adjective “open” is unnecessary.
Thus, if L is of characteristic 0, the local Artin reciprocity map ArtL : L× → Gal(Lab/L)

becomes an isomorphism of topological groups after passing to the pro�nite completion:

ArtL : L̂×
∼−→ Gal(Lab/L).

From this, already we have some information about the rami�cation.

Corollary 2.8. Let K/L be a �nite abelian extension of local �elds.

(1) We have
eK/L = [O×L : NK/L(O×K)].

(2) The extensionK/L is unrami�ed if and only if fK/L = 0.

(3) The extensionK/L is tamely rami�ed if and only if fK/L ≤ 1.

Proof. (1) You may �nd the proof at [ANT, Corollary 15.15].

(2) Obvious from (1).
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(3) Suppose that K/L is tamely rami�ed. Note that

O×L ⊃ 1 + πLOL ⊃ 1 + π2
LOL ⊃ · · · ,

is a �ltration of subgroups, where πL is a uniformizer ofL. Note that 1+πLOL ∼= OL as an

additive topological group, so it is a pro-p group. On the other hand,O×L/(1+πLOL) ∼= l×,

where l is the residue �eld of L, so in particular this index is coprime to p. So we have

again a �ltration of subgroups

O×L ⊃ (1 + πLOL) ·NK/L(O×K) ⊃ (1 + π2
LOL) ·NK/L(O×K) ⊃ · · · ,

where this now stabilizes after a �nitely many steps. Now any subquotient that is not the

�rst subquotient must be a p-group, but also it is a subquotient ofO×L/NK/L(O×K), which is

of order coprime to p. Therefore, all subquotients after the �rst subquotient must be trivial.

Thus, (1+πLOL) ·NK/L(O×K) = NK/L(O×K), which implies thatNK/L(O×K) ⊃ 1+πLOL,

or fK/L ≤ 1. The converse direction is immediate.

�

We will later see that the local Artin reciprocity precisely works as we expected with rami�-

cation subgroups.

Theorem 2.9. Let K/L be a �nite abelian extension of local �elds, and let n ≥ 1. Then,

ArtK/L(1 + πnLOL) = Gal(K/L)n,

where πL is a uniformizer of L. More precisely, ArtK/L gives rise to an isomorphism

1 + πnLOL
(1 + πnLOL) ∩NK/L(O×K)

∼−→ Gal(K/L)n.

3. (Co)homology of groups

The construction and the proof of local Artin reciprocity law will follow a very general frame-

work using group cohomology, where the same framework will be used for the proof of global

class �eld theory.

3.1. G-modules. We are interested in the following situation. Let G be a group (not necessarily

abelian). Then a G-module is an abelian group (=Z-module) with a left G-action. This is the

same as a left Z[G]-module, where Z[G] is the group ring

Z[G] = {
∑
g∈G

ag[g] : ag ∈ Z, only nonzero for �nitely many g},

where the multiplication is given by [gh] = [g][h]. Note that this is a ring with unity but not

necessarily commutative (commutative if and only ifG is abelian). A homomorphism betweenG-

modules (I will use the words G-morphism or G-homomorphism for such a homomorphism)

is a homomorphism of abelian groups which respects the G-actions on the source and the target.

For twoG-modulesM,N , the set ofG-morphisms is denoted HomG(M,N) (or HomZ[G](M,N)),

and it is naturally an (additive) abelian group. Let ModG be the category of G-modules.
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Example 3.1. Two typical examples of G-modules are Z (with the trivial G-action) and Z[G]
(with the obvious left G-action). The trivial G-module Z can be also thought as Z = Z[G]/I
where I is the two-sided ideal of Z[G] generated by the elements of the form [g] − 1 for g ∈ G.

This ideal I is called the augmentation ideal.

Proposition 3.2. The category ModG is an abelian category, i.e. the kernel and the cokernel exist
and have desired properties.

Proof. This follows from that (left) G-modules are the same as left Z[G]-modules. �

Recall that there are notions of injective modules and projective modules from homolog-

ical/commutative algebra (see Wikipedia for example for the de�nitions). One way to say is that

I is injective if Hom(·, I) is exact (P is projective if Hom(P, ·) is exact, respectively).

De�nition 3.3. An abelian category C is called to have enough injectives (enough projec-

tives, respectively) if, for every object X ∈ Ob(C), there exists an injective morphism X ↪→ I
into an injective module I (a surjective morphism P � X from a projective module P , respec-

tively).

Given an abelian category C with enough injectives and an objectX ∈ Ob(C), you can always

�nd an injective resolution X → I•, which is an exact sequence

0→ X → I0 → I1 → I2 → · · · ,

which may or may not extend inde�nitely to the right, where each of I0, I1, · · · is an injective

module.

Similarly, given an abelian category C with enough projectives and an object X ∈ Ob(C),

you can always �nd an projective resolution P• → X , which is an exact sequence

· · · → P2 → P1 → P0 → X → 0,

which may or may not extend inde�nitely to the left, where each of P0, P1, · · · is a projective

module.

Proposition 3.4. The category ModG has enough projectives and injectives.

Proof. This follows from that (left) G-modules are the same as left Z[G]-modules. �

Example 3.5. A free G-module is a direct sum of copies of Z[G], namely

⊕
i∈I Z[G] for some

index set I (note that I may be in�nite). Any free G-module is a projective G-module. In

practice, when you look for projective G-modules, most of the time you look for free G-modules

(e.g. when you �nd a projective resolution).

To �nd an example of injective G-modules, we introduce useful tools of constructing G-

modules.

De�nition 3.6. Let H ≤ G be a subgroup. The induction is a functor IndGH : ModH → ModG
that is de�ned by

IndGHM := HomZ[H](Z[G],M),
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where the G-action is given by (g · ϕ)(α) = ϕ(αg−1) for ϕ : Z[G] → M and g ∈ G. The

coinduction (or compact induction) is a functor coIndGH : ModH → ModG de�ned by

coIndGHM := Z[G]⊗Z[H] M,

where the left Z[G]-module structure is given naturally by the tensor product. The restriction

is a functor ResGH : ModG → ModH that sends a G-module M into itself, M , regarded as an

H-module (which is certainly possible as H ≤ G).

Remark 3.7 (Ind vs. coInd). As you will see below, oftentimes IndGHM and coIndGHM turn

out to be isomorphic. Some references therefore do not bother to distinguish between IndGH and

coIndGH . However, they are not isomorphic in a natural way (i.e. not functorial in M ), and in

representation theory it is ultimately important to distinguish the two.

The following are true; many of them are abstract nonsenses.

Theorem 3.8. Let H ≤ G be a subgroup.

(1) (Frobenius reciprocity) ForM ∈ Ob(ModG) and N ∈ Ob(ModH),

HomH(ResGHM,N) ∼= HomG(M, IndGH N).

The identi�cation is natural, i.e. is functorial inM and N .

(2) (Frobenius reciprocity) ForM ∈ Ob(ModH) and N ∈ Ob(ModG),

HomG(coIndGHM,N) ∼= HomH(M,ResGH N).

The identi�cation is natural, i.e. is functorial inM and N .

(3) Suppose that H is a finite index subgroup of G. Then, for any H-moduleM ,

IndGHM
∼= coIndGHM.

(4) LetM be a projective H-module. Then, coIndGHM is a projective G-module.

(5) LetM be an injective H-module. Then, IndGHM is an injective G-module.

(6) The functors IndGH , coIndGH and ResGH are exact.

(7) Let M be a projective (injective, respectively) G-module. Then, ResGHM is a projective (in-
jective, respectively) H-module.

Proof. (1), (2) are consequences of tensor-hom adjunction (you have to be careful about left vs.

right actions). (4), (5) are consequences of (1), (2). For example, if M is projective, coIndGHM
is projective, as HomG(coIndGHM,−) = HomH(M,ResGH(−)) is exact; HomH(M,−) is exact

by the projectivity of M , and ResGH is exact by (1) and (2). For (6), we use the fact that Z[G] is

a projective H-module, as it is the same as coIndGH Z[H], and Z[H] is a projective H-module.

11



Then, IndGH being exact is precisely the property of Z[G] being a projective Z[H]-module, and

coIndGH being exact follows from the general abstract nonsense that projective modules are flat

(i.e. the functor of taking a tensor product with a �xed projective module is exact). From (6),

(7) follow easily from the Frobenius reciprocities, just how (4) and (5) follow from the Frobenius

reciprocities.

Really the nontrivial (non-abstract-nonsense) part is (3). Let φ0 : M → IndGH(M) be an

H-morphism de�ned by

φ0(m)(g) =

{
gm if g ∈ H
0 otherwise.

This φ0 ∈ HomH(M,ResGH IndGH(M)) corresponds to φ ∈ HomG(coIndGHM, IndGHM) (which

exists regardless of the assumption). On the other hand, there is a map ψ : IndGHM → coIndGHM
given by

ψ(f) =
∑

g∈G/H

g ⊗ f(g−1).

Note that here we use that G/H is of �nite order. It is now left as an exercise to the reader that

• ψ is well-de�ned,

• ψ is a G-morphism,

• and φ and ψ are inverses to each other.

�

Example 3.9. Using Theorem 3.8(5), we can now construct many injective G-modules. Firstly,

when G is a trivial group, what is an injective G-module, or what is an injective Z-module? It

turns out that an abelian group = Z-module is injective if and only if it is divisible; i.e., any

element is divisible by any nonzero element. Standard examples of divisible groups are Q and

Q/Z. We can then say that IndG{1}M for a divisible group M is an injective G-module.

3.2. Group (co)homology: de�nition. As ModG has enough injectives/projectives, we can

take right/left derived functors of left/right exact functors. We derive the following two particular

functors.

De�nition 3.10 (G-invariants). For M ∈ Ob(ModG), we de�ne

MG := {m ∈M : gm = m for all g ∈ G}.

In other words, MG = HomZ[G](Z,M).

De�nition 3.11 (G-coinvariants). For M ∈ Ob(ModG), we de�ne

MG := M/〈gm−m : g ∈ G,m ∈M〉.

In other words, MG = M/IM = Z⊗Z[G] M (I is the augmentation ideal, see Example 3.1).

12



By de�nition, the G-invariants functor is left exact, and the G-coinvariants functor is right

exact.

De�nition 3.12 (Group cohomology/homology). Let H i(G,−) : ModG → ModZ be the right

derived functor of the G-invariants functor (−)G : ModG → ModZ, called the i-th group co-

homology. Similarly, let Hi(G,−) : ModG → ModZ be the left derived functor of the G-

coinvariants functor (−)G : ModG → ModZ, called the i-th group homology.

By the similar reason, the ExtiZ[G] and Tor
Z[G]
i exist, and

H i(G,M) = ExtiZ[G](Z,M), Hi(G,M) = Tor
Z[G]
i (Z,M).

Therefore, there are two major ways to compute the group (co)homology:

• For H i(G,M):

– Take a projective resolution P• → Z of Z, and compute the i-th homology of the

complex

HomZ[G](P0,M)→ HomZ[G](P1,M)→ HomZ[G](P2,M)→ · · · .

– Take an injective resolution M → I• of M , and compute the i-th homology of the

complex

HomZ[G](Z, I0)→ HomZ[G](Z, I1)→ HomZ[G](Z, I2)→ · · · .

• For Hi(G,M):

– Take a projective resolution P• → Z of Z, and compute the i-th cohomology of the

complex

· · · → P2 ⊗Z[G] M → P1 ⊗Z[G] M → P0 ⊗Z[G] M.

– Take a projective resolution P• →M of M , and compute the i-th cohomology of the

complex

· · · → Z⊗Z[G] P2 → Z⊗Z[G] P1 → Z⊗Z[G] P0.

Remark 3.13 (Acyclic resolutions). A posteriori, you can instead use an acyclic resolution

to compute the group cohomology. Recall that M ∈ Ob(ModG) is acyclic if H i(G,M) = 0
for i > 0. Then, instead of an injective resolution, you may use an acyclic resolution M → A•

(meaning that 0→M → A0 → A1 → · · · is an exact sequence, with eachAi acyclic) to compute

H i(G,M). This is useful as injective modules are weird (unlike projective or acyclic modules).

Abstract nonsense pays you o�:

Theorem 3.14.
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(1) The group cohomologyH•(G,−) and the group homologyH•(G,−) have the expected prop-
erties, most notably H0(G,−) = (−)G, H0(G,−) = (−)G, and the long exact sequence
associated with a short exact sequence of G-modules.

(2) (Shapiro’s lemma) For H ≤ G, and forM ∈ Ob(ModH), we have

H i(G, IndGHM) = H i(H,M),

Hi(G, coIndGHM) = Hi(H,M).

The identi�cations are functorial inM .

(3) For any Z-moduleM , IndG{1}M is an acyclic G-module.

Proof.

(1) This is an immediate consequence of the two functors being derived functors.

(2) Let M → I• be an injective resolution of M . Then, as IndGH is exact and sends injectives

to injectives (Theorem 3.8), IndGH(M)→ IndGH(I•) is an injective resolution of IndGH(M).

By Frobenius reciprocity, the complex

HomZ[G](Z, IndGH(I0))→ HomZ[G](Z, IndGH(I1))→ HomZ[G](Z, IndGH(I2))→ · · · ,

is the same as

HomZ[H](Z, I0)→ HomZ[H](Z, I1)→ HomZ[H](Z, I2)→ · · · ,

using the fact that ResGH Z = Z. Thus H i(G, IndGHM) and H i(H,M) are computed by

the same complex.

Similarly, let P• → M be a projective resolution of M . Then, as coIndGH is exact and

sends projectives to projectives, coIndGH(P•) → coIndGH(M) is a projective resolution of

coIndGH(M). The complex

· · · → Z⊗Z[G] coIndGH(P2)→ Z⊗Z[G] coIndGH(P1)→ Z⊗Z[G] coIndGH(P0),

is just

· · · → Z⊗Z[G] (Z[G]⊗Z[H] P2)→ Z⊗Z[G] (Z[G]⊗Z[H] P1)→ Z⊗Z[G] (Z[G]⊗Z[H] P0),

which is the same (because Z⊗Z[G] Z[G] = Z) as

· · · → Z⊗Z[H] P2 → Z⊗Z[H] P1 → Z⊗Z[H] P0.

Therefore, Hi(G, coIndGHM) and Hi(H,M) are computed by the same complex.

(3) By Shapiro’s lemma, it su�ces to show thatM is an acyclicZ-module, i.e. H i({1},M) = 0
for i > 0. On the other hand, as Z is a projective Z-module, H i({1},M) = ExtiZ(Z,M)
must be zero if i > 0 (0→ Z→ Z→ 0 is a projective resolution).
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�

A general abstract nonsense gives you a further functoriality in chainging both G and M .

Note that the change of G is a di�erent direction than the change of M for H i(G,M) (i.e. “con-

travariant in G”).

Theorem 3.15. Let α : G′ → G be a group homomorphism, and letM ∈ Ob(ModG) andM ′ ∈
Ob(ModG′). Suppose that we have a homomorphism β : M → M ′ as abelian groups. Suppose
further that β respects the group actions via α: namely, if g ∈ G′,m ∈M , we have

β(α(g) ·m) = g · β(m).

Then, there is a natural transformation between two derived functors H i(G,M) → H i(G′,M ′),
extending the map H0(G,M)→ H0(G′,M ′) given byMG → (M ′)G

′ .

Proof. This is a general abstract nonsense in homological algebra; you just check that the setup

indeed gives a map MG → (M ′)G
′
. �

From this, we get several new useful functors.

De�nition 3.16 (Restriction). Let H ≤ G be a subgroup and M ∈ Ob(ModG). Then, the action

of G on M is surely compatible with the action of H on M (or more precisely ResGHM ). Thus

the functoriality gives a homomorphism called the restriction homomorphism,

Res : H i(G,M)→ H i(H,ResGHM).

Exercise 3.1. Check that Res : H i(G,M)→ H i(H,ResGHM) coincides with the composition

H i(G,M)→ H i(G, IndGH ResGHM)
∼−→ H i(H,ResGHM),

where the �rst map comes from the natural G-morphism M → IndGH ResGHM corresponding to

the identity in HomH(ResGHM,ResGHM) = HomG(M, IndGH ResGHM), and the second map is

the Shapiro’s lemma.

De�nition 3.17 (In�ation). Let H E G be a normal subgroup. For a G-module M , G/H
naturally acts on MH

. Using the maps G → G/H and MH → M , we obtain the inflation

homomorphism

Inf : H i(G/H,MH)→ H i(G,M).

Another perspective you can get from this functoriality is that sometimes you can give a

natural group action on H i(G,M). Let’s say you consider H0(G,M) = MG
. Then, obviously

theG-action on it is trivial. However, ifM is aG-module andH E G is a normal subgroup, then

H0(H,M) = MH
has a natural action of G/H . This extends to H i(H,M).

De�nition 3.18. Let H E G be a normal subgroup, and M be a G-module. Then, for g ∈ G,

we obtain an action g· : H i(H,M) → H i(H,M) given by the funtoriality via α : H → H ,

h 7→ g−1hg and β : M →M , m 7→ gm. One can check (exercise!) that this map is the identity if

g ∈ H . Thus, this gives rise to a left G/H-action on H i(H,M).

15



Exercise 3.2. Show that the H-action on H i(H,M) is trivial.

Exercise 3.3. Show that, if H E G, the image of Res : H i(G,M) → H i(H,ResGHM) is inside

H i(H,ResGHM)G/H .

There is one more functor which does not �t into the above regime but rather comes from

the coincidence coInd ∼= Ind when H ≤ G is of �nite index.

De�nition 3.19 (Corestriction). Suppose that H ≤ G is a finite index subgroup. Let M be a

G-module. Then the corestriction homomorphism is de�ned as the composition

Cor : H i(H,ResGHM)
∼−→ H i(G, IndGH ResGHM)→ H i(G,M),

where the �rst map is the Shapiro’s lemma, and the second map comes from the G-morphism

IndGH ResGHM →M given by

(ϕ : Z[G]→M) 7→
∑

g∈G/H

gϕ([g−1]).

One can check that this map is well-de�ned, i.e. does not depend on the choice of a representative

for each coset of G/H . Note that, on H0
, Cor is the norm map,

MH →MG, m 7→
∑

g∈G/H

gm.

Lemma 3.20. Suppose that H ≤ G is a �nite index subgroup, and let M be a G-module. Then,
Cor ◦Res is the same as multiplying by [G : H] on H i(G,M).

Proof. This comes from the fact that the compositionM → IndGH ResGHM →M of the two maps

appearing in the de�nitions of Cor and Res is multiplication by [G : H], namely m ∈ M is �rst

sent toϕ : Z[G]→M that sends g 7→ gm, and is then sent to

∑
g∈G/H g ·(g−1m) =

∑
g∈G/H m =

[G : H]m. �

Corollary 3.21. If G is a �nite group of order m, then for any i > 0, mH i(G,M) = 0 for any
G-moduleM .

Proof. This follows from Lemma 3.20 applied to H = {1} and the fact that H i({1},−) is zero for

any i > 0. �

Finally, as expected for cohomology, there is a notion of cup product.

De�nition 3.22. LetM,N ∈ Ob(ModG), and considerM⊗ZN as aG-module where the action

is given by g(m⊗ n) = gm⊗ gn. Then, there is a unique bi-Z-linear pairing

∪ : Hr(G,M)×Hs(G,N)→ Hr+s(G,M ⊗N),

which is functorial in both M and N , satisfying several properties, such as the following.

(1) When r = s = 0, the pairing is the obvious map MG ⊗NG → (M ⊗N)G.
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(2) (x ∪ y) ∪ z = x ∪ (y ∪ z).

(3) x ∪ y = (−1)rsy ∪ x when x ∈ Hr(G,M), y ∈ Hs(G,N), after identifying M ⊗N with

N ⊗M .

(4) Res(x ∪ y) = Res(x) ∪ Res(y).

(5) Cor(x ∪ Res y) = Cor(x) ∪ y.

(6) Inf(x ∪ y) = Inf(x) ∪ Inf(y).

3.3. Group (co)homology: practice. The main computational way of approaching group (co)homology

is to use a very particular projective (free, in fact) resolution of Z.

De�nition 3.23. For r ≥ 0, let Pr be the free Z-module with basis (g0, · · · , gr) for g0, · · · , gr ∈
G, with a G-action given by g(g0, · · · , gr) = (gg0, · · · , ggr). It is easy to see that Pr is a free

Z[G]-module. Let dr : Pr → Pr−1 be a G-morphism de�ned by

dr(g0, · · · , gr) =
r∑
i=0

(−1)i(g0, · · · , ĝi, · · · , gr),

where the notation means that gi is omitted from the tuple in the summand.

It is a tedious yet elementary exercise to check that

· · · → Pr
dr−→ Pr−1 → · · · → P2

d2−→ P1
d1−→ P0

ε−→ Z→ 0,

is a projective resolution of Z, where ε : P0 → Z is the map that sends (g) 7→ 1 for each

g ∈ G. Using this, we can compute the group cohomology (there is a similar description for

group homology but we don’t bother to write).

Proposition 3.24. Let M ∈ Ob(ModG). An r-cochain of G with values in M is any function
ϕ : Gr → M , and let Cr(G,M) be the (additive) abelian group of r-cochains of G with values in
M . Let dr : Cr(G,M)→ Cr+1(G,M) be de�ned by

(drϕ)(g1, · · · , gr+1) :=

g1ϕ(g2, · · · , gr+1) +
r∑
j=1

(−1)jϕ(g1, · · · , gj−1, gjgj+1, gj+2, · · · , gr+1) + (−1)r+1ϕ(g1, · · · , gr).

Let Zr(G,M) = ker dr (the group of r-cocycles) and Br(G,M) = im dr−1 (the group of r-
coboundaries). Then, Hr(G,M) ∼= Zr(G,M)

Br(G,M)
.

Proof. This is really just computing Hr(G,M) using the projective resolution P• → Z, but using

the fact that a morphism in HomG(Pr,M) is determined by its values at (1, g1, g1g2, · · · , g1g2 · · · gr+1).

�

Using this, we have a more concrete description of certain things.
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Example 3.25. The �rst cohomology H1(G,M) is computed as
B1(G,M)
Z1(G,M)

. Let’s see what they

parametrize:

B1(G,M) = {ϕ : G→M : ϕ(gh) = gϕ(h) + ϕ(g)},
Z1(G,M) = {ϕ : G→M : there is a ∈M such that ϕ(g) = ga− a for all g ∈ G}.

Often the elements of B1(G,M) are called crossed homomorphisms because the equation

ϕ(gh) = gϕ(h) + ϕ(g) looks like some weird variant of a condition of being a homomorphism.

In fact, if the action ofG onM is trivial, then this shows thatH1(G,M) = HomGrp(G,M) is the

set of group homomorphisms G→M (notice that M is always an abelian group by de�nition).

Example 3.26. Given a short exact sequence ofG-modules 0→ A→ B → C → 0, we can now

describe what the connecting morphism Hr(G,C) → Hr+1(G,A) is concretely. Namely, if you

have an r-cocycle ϕ : Gr → C representing an element of Hr(G,C), then you can certainly lift

elementwise to obtain an r-cochain ϕ̃ : Gr → B. By taking arbitrary lifts, it ruins the condition

of vanishing after applying dr, but at least you know drϕ = 0, so drϕ̃ : Gr+1 → B is an (r + 1)-

cochain whose values after projecting to C will vanish. Therefore, it follows that drϕ̃ has values

in A, so drϕ̃ : Gr+1 → A is an (r + 1)-cochain with values in A. As dr+1 ◦ dr = 0, this implies

that drϕ̃ ∈ Zr+1(G,A), which represents an element in Hr+1(G,A). It is a routine check that

this map Hr(G,C)→ Hr+1(G,A) does not depend on any choices we made.

Example 3.27. We can describe the cup product using cocycles as follows. Let m ∈ Hr(G,M)
and n ∈ Hs(G,N) be represented by cocycles ϕ and ψ, respectively. Then, m∪ n is represented

by the cocycle

(g1, · · · , gr+s) 7→ ϕ(g1, · · · , gr)⊗ g1 · · · grψ(gr+1, · · · , gr+s).

Using cochains, we can show the following.

Proposition 3.28 (In�ation-restriction exact sequence). Let H E G be a normal subgroup, and
let A be a G-module. Then,

0→ H1(G/H,AH)
Inf−→ H1(G,A)

Res−−→ H1(H,A),

is exact. More generally, if furthermore one knows that H1(H,A) = H2(H,A) = · · · = H t(H,A)
for some t ≥ 2, then

0→ H t(G/H,AH)
Inf−→ H t(G,A)

Res−−→ H t(H,A),

is exact.

Proof. Exercise (the statement about H1
can be easily shown using 1-cocycles, and the second

statement follows from general properties of the cohomology functor). �

Remark 3.29 (Hochschild–Serre spectral sequence). This result looks a bit arbitary. A better

way to think about this is as a consequence of the Hochschild–Serre spectral sequence

Ep,q
2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A).
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This is not actually that mysterious. The statement that “there is a spectral sequence converging

to something” means something like the following (there are much more complicated versions of

this, but at least in this setup, it’s explained as follows).

• A spectral sequence is a whole package of data.

– For each n ≥ 0, there is an n-th page of a spectral sequence Ep,q
n , for each p, q ≥ 0

nonnegative integers.

– Each n-th page also comes equipped with natural maps (di�erentials) dp,qn : Ep,q
n →

Ep+n,q−n+1
n . At each Ep,q

n , there is an arrow coming out of it (dp,qn ) and an arrow

coming into it (dp−r,q+r−1
n ), and two arrows form a complex (i.e. dp,qn ◦dp−r,q+r−1

n = 0).

Taking the homology at that (p, q)-th entry will give you the (p, q)-th entry of the

next page, Ep,q
n+1.

• Many spectral sequences are written in the form

Ep,q
2 ⇒ Ep+q

∞ .

This means the following.

– Going from Ep,q
n to Ep,q

n+1, you cut down certain parts (taking subquotients). That the

spectral sequence converges means that eventually this stabilizes, i.e. there is some

N � 0 such that Ep,q
N = Ep,q

N+1 = · · · . Sometimes you say that the spectral sequence

degenerates at n-th page, which means that N can be taken to be n.

– Let Ep,q
∞ be the stabilized Ep,q

n for large enough n. Then, Em
∞ is an object with a

�ltration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ Fm ⊂ Fm+1 = Em
∞,

such that, for 0 ≤ i ≤ m, F i+1/F i ∼= Em−i,i
∞ .

Under this, the in�ation-restriction exact sequence is an immediate consequence. Namely,H1(G,A) =
E1
∞. So, it sits in an exact sequence,

0→ E1,0
∞ → H1(G,A)→ E0,1

∞ → 0.

We see that E1,0
2 = H1(G/H,H0(H,A)) = H1(G/H,AH), and E0,1

2 = H0(G/H,H1(H,A)) =
H1(H,A)G/H . So let’s see how E1,0

∞ and E0,1
∞ may be di�erent from E1,0

2 and E0,1
2 .
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• The di�erential from E1,0
n lands below the horizontal axis (when n ≥ 2), which clearly

vanishes. The di�erential to E1,0
n comes from E1−n,n−2

n , so if n ≥ 2, this is to the left of

the vertical axis, so this also vanishes. This implies that E1,0
2 = E1,0

3 = · · · = E1,0
∞ .

• The di�erential toE0,1
n comes from the left of the vertical axis (when n ≥ 1), which clearly

vanishes. The di�erential from E0,1
n lands at En,2−n

n , so this is right on the horizontal axis

when n = 2, and will land below the horizontal axis when n ≥ 3. Thus, E0,1
3 = ker(d0,1

2 :
E0,1

2 → E2,0
2 ) = E0,1

4 = · · · = E0,1
∞ .

So we actually have an exact sequence

0→ E1,0
2 → H1(G,A)→ E0,1

2

d0,1
2−−→ E2,0

2 ,

or

0→ H1(G/H,AH)→ H1(G,A)→ H1(H,A)G/H
d0,1

2−−→ H2(G/H,AH).

It is a fun exercise to check that the �rst two maps are indeed Inf and Res (although it requires

the knowledge of how spectral sequences are built). The di�erential d0,1
2 is sometimes called the

transgression. The second part of the statement of the in�ation-restriction exact sequence is

also a fun exercise which I will leave it to the reader.

We also have a very easy description of H1(G,Z).

Proposition 3.30. We have H1(G,Z) ∼= Gab, the abelianization of G.

Proof. We have a short exact sequence 0 → I → Z[G] → Z → 0, so from this we have a long

exact sequence

· · · → H1(G,Z[G])→ H1(G,Z)→ H0(G, I)→ H0(G,Z[G])→ H0(G,Z)→ 0.

As Z[G] is projective, Hi(G,Z[G]) = 0 for i > 0. Thus, we have an exact sequence

0→ H1(G,Z)→ I/I2 → Z[G]/I → Z→ 0.

As Z[G]/I → Z is an isomorphism, we have H1(G,Z) ∼= I/I2
. We claim that I/I2 ∼= Gab

. Let

G→ I/I2
be a map de�ned by g 7→ [g]− 1. Then, it is a group homomorphism, as

[gh]− 1 = ([g]− 1)([h]− 1) + ([g]− 1) + ([h]− 1) ≡ ([g]− 1) + ([h]− 1) (mod I2).

As I/I2
is an abelian group (additively), this map factors through Gab → I/I2

. This map is

quite obviously surjective (any element of I is a Z-linear combination of elements of the form

[g]−1). To show it is injective, we form another homomorphism in the other direction. Consider

I → Gab
de�ned by

∑
g∈G ng[g] 7→ gng , which is quite obviously a group homomorphism. Note

that ([g]− 1)([h]− 1) is sent to ghg−1h−1 = id, so I2
is in the kernel of this map, giving a group

homomorphism I/I2 → G/G2
. And it is easy to see that Gab → I/I2 → Gab

is identity, as

g 7→ [g]− 1 7→ g. Therefore, Gab → I/I2
is injective, thus bijective, as desired. �
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We also describe a very useful technique called the dimension shi�ing.

Theorem 3.31 (Dimension shifting). Let M be a G-module. Then, there are exact sequences of
G-modules,

0→ I ⊗ZM → coIndG{1}M →M → 0,

where the map coIndG{1}M →M sends [g]⊗m 7→ m, and

0→M → IndG{1}M → HomZ(I,M)→ 0,

where the mapM → IndG{1}M sendsm 7→ ([g] 7→ m). From this, we have, for n ≥ 1,

Hn(G,HomZ(I,M)) ∼= Hn+1(G,M), Hn(G, I ⊗ZM) ∼= Hn+1(G,M).

Proof. The short exact sequences come from applying ⊗ZM and HomZ(−,M) to the exact se-

quence

0→ I → Z[G]→ Z→ 0,

which actually give you exact sequences, as Z is an acyclic Z-module. The remaining statements

come from Shapiro’s lemma (that Hn(G, IndG{1}M) = 0 and Hn(G, coIndG{1}M) = 0). �

When G is a cyclic group, Z has a particularly easy projective resolution.

Example 3.32. If G = Z, then Z[G] can be regarded as Z[X±1]. Then, Z has a projective reso-

lution

0→ Z[X±1]
×(X−1)−−−−→ Z[X±1]→ Z→ 0.

This implies that H i(Z,M) = 0 for i > 1. Furthermore, any Z[Z]-module M is an abelian group

plus a group automorphism X : M →M , so

H0(Z,M) = MX=1, H1(Z,M) = M/〈Xm−m : m ∈M〉.

Similarly, Hi(Z,M) = 0 for i > 1, and

H0(Z,M) = M/〈Xm−m : m ∈M〉, H1(Z,M) = MX=1.

Example 3.33. When G = Z/nZ, then Z[G] can be regarded as Z[X]/(Xn − 1). Then, Z has a

projective resolution

· · · → Z[X]/(Xn − 1)
×(Xn−1+Xn−2+···+1)−−−−−−−−−−−−−→ Z[X]/(Xn − 1)

×(X−1)−−−−→ Z[X]/(Xn − 1)→ Z→ 0,

where the two maps alternate inde�nitely. Note that a G-module M is an abelian group plus a

group homomorphism X : M →M such that Xn = id. Then,

H i(Z/nZ,M) =


MX=1

if i = 0
ker(Xn−1+Xn−2+···+1:M→M)

im(X−1:M→M)
if i > 0 is odd

MX=1

im(Xn−1+Xn−2+···+1:M→M)
if i > 0 is even.
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Similarly,

Hi(Z/nZ,M) =


M

im(X−1:M→M)
if i = 0

ker(Xn−1+Xn−2+···+1:M→M)
im(X−1:M→M)

if i > 0 is even

MX=1

im(Xn−1+Xn−2+···+1:M→M)
if i > 0 is odd.

Note that the cohomology and homology groups have a lot in common in these cases. We

will see that it is not a coincidence.

4. Galois cohomology

4.1. Tate cohomology. In this subsection, we assume that G is a finite group. In this case,

given a G-module M , there is a very special operator called the norm map N : M →M , given

by m 7→
∑

g∈G gm. A funny thing is that the image of N is actually inside MG
, and anything

in IM (recall that I ⊂ Z[G] is the augmentation ideal) is killed by N . Therefore, we have a

homomorphism

N : H0(G,M)→ H0(G,M).

This gives a connecting bridge between the end of the homology and the end of the cohomology,

and we can now “stitch together” the cohomology and the homology into one, called the Tate

cohomology.

De�nition 4.1 (Tate cohomology groups). LetG be a �nite group, and letM be aG-module. We

de�ne the r-th Tate cohomology Hr
T (G,M) as

Hr
T (G,M) =


Hr(G,M) if r > 0

coker(N : MG →MG) if r = 0

ker(N : MG →MG) if r = −1

H−r−1(G,M) if r < −1.

Theorem 4.2 (Long exact sequence of Tate cohomology groups). Let G be a �nite group, and
let 0 → A → B → C → 0 be a short exact sequence of G-modules. Then, there is a long exact
sequence,

· · · → Hr
T (G,A)→ Hr

T (G,B)→ Hr
T (G,C)→ Hr+1

T (G,A)→ Hr+1
T (G,B)→ Hr+1

T (G,C)→ · · · ,

extending inde�nitely to both sides.

Proof. The only care is required at around r = −1, 0 where we are stitching the ends of the two

long exact sequences (homology and cohomology), and veri�cation is very easy. �

Tate cohomology really behaves like cohomology, and the tools of cohomology extend to

Tate cohomology groups as well. Note that, as G is �nite, we don’t have to distinguish between

coinduction and induction, so we will just use induction for simplicity.
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• (Dimension shi�ing) Let M be a G-module. Then,

H i
T (G, IndG{1}M) = 0,

for all i ∈ Z. We already know this for i 6= 0,−1. We also know that H0(G, IndG{1}M) =

H0(G, IndG{1}M) = M by Shapiro’s lemma. We see thatN : M →M in this case is given

by the map m 7→ 1 ⊗ m 7→
∑

g∈G g ⊗ m 7→ m, so it is in fact an isomorphism. Thus,

H−1
T (G, IndG{1}M) = H0

T (G, IndG{1}M) = 0.

From this and the long exact sequence of Tate cohomology groups, we have

H i
T (G,HomZ(I,M)) ∼= H i+1

T (G,M), H i
T (G, I ⊗ZM) ∼= H i−1

T (G,M),

for all i ∈ Z. These will be useful for extending tools of cohomology to Tate cohomology.

• (Shapiro’s lemma) Let H ≤ G be a subgroup, and let M be an H-module. Then,

H i
T (G, IndGHM) = H i

T (H,M).

This follows from Shapiro’s lemma for i ≥ 1 and dimension shifting for general i ∈ Z.

• (Restriction) For H ≤ G and M ∈ Ob(ModG), there is a restriction map

Res : H i
T (G,M)→ H i

T (H,ResGHM),

which is now an easy consequence of Shapiro’s lemma and Frobenius reciprocity.

• (Corestriction) For H ≤ G and M ∈ Ob(ModG), there is a corestriction map

Cor : H i
T (H,ResGHM)→ H i

T (G,M),

which exists again by Shapiro’s lemma and Frobenius reciprocity.

• (Cup product) For M,N ∈ Ob(ModG), we have a bi-Z-linear pairing

H i
T (G,M)×Hj

T (G,N)→ H i+j
T (G,M ⊗N),

satisfying the same kinds of properties the cohomological cup product satis�es.

We give a concrete description of Cor and Res for certain degrees of Tate cohomology groups.

Proposition 4.3. Let G be a �nite group and H ≤ G. LetM be a G-module.

(1) The map Cor : H0
T (H,M) → H0

T (G,M) is induced by the map MH → MG, m 7→∑
g∈G/H gm.

(2) The map Res : H−1
T (G,M) → H−1

T (H,M) is induced by the map MG → MH , m 7→∑
g∈G/H g

−1m.
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(3) The map Cor : H−2
T (H,Z)→ H−2

T (G,Z) is the map Hab → Gab.

(4) The map Res : H−2
T (G,Z) → H−2

T (H,Z) is the transfer homomorphism V : Gab →
Hab (see De�nition 2.2).

Proof. Omitted (standard). �

Lemma 4.4. Let G be a �nite group of orderm. Then, for any G-moduleM , mH i
T (G,M) = 0. If

M is �nitely generated as an abelian group, then H i
T (G,M) is a �nite abelian group.

Proof. Similar to the cohomology case, the �rst statement follows from the fact that Cor ◦Res =
m, now at all degrees of Tate cohomology. For the second statement, notice that H i

T (G,M) is,

either by cochain or chain, a �nitely generated abelian group. As the Tate cohomology group is a

�nitely generated abelian group annihilated by a nonzero integer, it is a �nite abelian group. �

Just like before, the Tate cohomology has more structures whenG is a �nite cyclic group. Let

G = Z/nZ, and let M be a G-module. This means that there is an automorphism X : M → M
such thatXn = 1. LetN : M →M be de�ned byXn−1 +Xn−2 + · · ·+ 1. Then, by our previous

computation,

H i
T (G,M) =

{
ker(X−1:M→M)

im(N :M→M)
if i is even

ker(N :M→M)
im(X−1:M→M)

if i is odd.

This shows that H i
T (G,M) is periodic with period 2. In fact, given a choice of a generator

u ∈ H2
T (G,Z), the cup-product with u gives an isomorphism ∪u : H i

T (G,M)
∼−→ H i+2

T (G,M),

x 7→ x ∪ u.

So what is H2
T (G,Z)? Note that we have a short exact sequence 0 → Z → Q → Q/Z → 0,

so we have an exact sequence

· · · → H1(G,Q)→ H1(G,Q/Z)→ H2(G,Z)→ H2(G,Q)→ · · · .

AsQ is divisible, by our computation,H1(G,Q) = H2(G,Q) = 0. Thus,H2
T (G,Z) = H2(G,Z) =

H1(G,Q/Z) = HomGrp(G,Q/Z) ∼= 1
n
Z/Z. Taking a generator of H2

T (G,Z) is the same as tak-

ing a generator ofG, as we can take an element of HomGrp(G,Q/Z) that sends a taken generator

to
1
n

.

Using the periodicity of Tate cohomology for �nite cyclic groups, we can de�ne a numerical

invariant:

De�nition 4.5 (Herbrand quotient). LetG = Z/nZ andM be aG-module. Then, the Herbrand

quotient is the rational number de�ned by

h(M) :=
#H0

T (G,M)

#H−1
T (G,M)

.

Lemma 4.6. Let G = Z/nZ. If 0 → A → B → C → 0 is a short exact sequence of G-modules,
then we have h(B) = h(A)h(C).

Proof. This follows from the long exact sequence of Tate cohomology and the periodicity. �
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Lemma 4.7. Let G = Z/nZ and letM be a G-module which is also a �nite abelian group. Then,
h(M) = 1.

Proof. Note that H0
T (G,M) and H−1

T (G,M) are the cokernel and the kernel of the same map

N : MG → MG
. Thus, h(M) = 1 if we show that #MG = #MG

. This follows again from the

fact that MG and MG
are the cokernel and the kernel of the same map M →M , m 7→ gm−m,

where g ∈ G is a chosen generator of G. �

4.2. Cohomology of pro�nite groups. For the group cohomology H i(G,M), we may ulti-

mately want to put a pro�nite group into G. For this, we need to take topology into account.

This is especially tricky because category of topological groups often fail to be abelian (when

you take kernels and cokernels, what topology should you give to them?). For our purpose, we

restrict the scope to very particular kinds of modules.

De�nition 4.8 (Discrete G-modules). Let G be a pro�nite group. Let M be a G-module, �rstly

without consideration of any topology. We say thatM is a discreteG-module if the action map

G×M →M is continuous whenM is endowed with the discrete topology. Equivalently, M is a

discrete G-module if M = ∪H≤G open subgroupM
H

. Another equivalent condition is that, for every

m ∈M , {g ∈ G : gm = m} ≤ G is an open subgroup.

Example 4.9. LetG = Gal(K/L) for a Galois extensionK/L (possibly in�nite). Then,G acts on

various objects such as K , K×, OK (if it makes sense), O×K (if it makes sense), etc. As stabilizer

of any element x ∈ K is Gal(K/L(x)), and as L(x)/L is a �nite extension, Gal(K/L(x)) ≤
Gal(K/L) is an open subgroup. Thus, this means that all these G-modules are discrete.

As you don’t have to worry too much about giving topology on the modules when they are

discrete, the following holds.

Theorem 4.10. Let G be a pro�nite group. Then, the category of discrete G-modules is an abelian
category with enough injectives.

Therefore, by abstract nonsense, one can right-derive a left-exact functor, and obtain the r-th
cohomology functor Hr(G,M) for any discrete G-module M . This cohomology fortunately has

more concrete descriptions.

Theorem 4.11. Let G be a pro�nite group, and let M be a discrete G-module. Then, Hr(G,M)
can be computed in two di�erent ways.

(1) Let Cr
cts(G,M) be the space of continuous r-cochains of G with values in M , i.e. ϕ :

Gr →M that is continuous. Then, the di�erentials are de�ned as usual, and de�neZr
cts(G,M)

(continuous r-cocycles) and Br
cts(G,M) (continuous r-coboundaries). Then,

Hr(G,M) ∼=
Zr

cts(G,M)

Br
cts(G,M)

.

(2) The in�ation morphisms give rise to a direct system {Hr(G/H,MH)} running over all open
normal subgroups of H , and

Hr(G,M) ∼= lim−→
HEG open normal

Hr(G/H,MH).
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The proofs are omitted. Using these descriptions, we may still de�ne things like Cor,Res, Inf
and cup products.

Corollary 4.12. Let G be a pro�nite group, and let M be a discrete G-module. Then, for r > 0,
Hr(G,M) is a torsion group.

Proof. Any element of Hr(G,M) comes from Hr(G/H,MH) for some open normal subgroup

H E G, which is necessarily of �nite index, so the element is annihilated by #(G/H), thus

torsion. �

4.3. Galois cohomology. We now compute the cohomology of Galois groups of �elds.

Proposition 4.13 (Additive group case). LetK/L be a Galois extension of �elds (may be in�nite).
Then, Hr(Gal(K/L), K) = 0 for r ≥ 1.

Proof. As Hr(Gal(K/L), K) = lim−→K/M/L, M/L �nite Galois

Hr(Gal(M/L),M), the general case fol-

lows from the �nite extension case. So, assume that K/L is a �nite Galois extension. Then, by

normal basis theorem, there is x ∈ K such that {σ(x) : σ ∈ Gal(K/L)} is an L-basis of K .

This implies that K ∼= Ind
Gal(K/L)
{1} xL as Gal(K/L)-modules. This implies that K is an acyclic

Gal(K/L)-module, which is what we want. �

More interesting is when the module is the multiplicative group; this is actually the main part

of proving local class �eld theory.

Theorem4.14. LetK/L be aGalois extension of �elds (may be in�nite). Then,H1(Gal(K/L), K×) =
0.

Proof. Again, as above, it su�ces to assume that K/L is a �nite Galois extension. Let G =
Gal(K/L) for simplicity. Let f : G → K× be a 1-cocycle. Note that the Galois automorphisms

of G are all linearly independent as functions over K . This implies that, as a function on K , the

function x 7→
(∑

g∈G f(g)g
)
x is not identically zero, as f(g) 6= 0. Let y ∈ K× be the point

where z :=
∑

g∈G f(g)gy 6= 0. Then, for h ∈ G,

hz =
∑
g∈G

hf(g) · hgy =
∑
g∈G

f(h)−1f(hg) · hgy = f(h)−1
∑
g′∈G

f(g′) · g′y = f(h)−1z.

Thus, f(h) = z · h(z)−1
, which implies that f is a 1-coboundary. �

Corollary 4.15 (Hilbert’s Theorem 90). Let K/L be a �nite cyclic extension with a generator
g ∈ Gal(K/L). Suppose that x ∈ K× is such that NK/L(x) = 1. Then, there exists y ∈ K× such
that x = y/gy.

Proof. By our computation of cohomology of �nite cyclic groups,H1(Gal(K/L), K×) = ker(gn−1+
· · · + 1)/ im(g − 1), where Gal(K/L) = Z/nZ. As this group is zero, this exactly implies what

we want. �
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Computation of H2(Gal(K/L), K×), however, is much more complicated, and is in fact the

main content of the local class �eld theory, when K,L are local �elds.

De�nition 4.16 (Brauer groups). LetK/L be a Galois extension of �elds (may be in�nite). Then,

Br(K/L) := H2(Gal(K/L), K×) is called the relative Brauer group of K/L. If K = L, we

write Br(L) instead of Br(L/L) and call it the Brauer group of L.

We have the following computation.

Proposition 4.17. Let K be a local �eld.

(1) Let L/K be an unrami�ed extension (possibly in�nite). Then, Hr(Gal(L/K),O×L ) = 0 for
all r > 0.

(2) Let L/K be a �nite unrami�ed extension. Then, Br(L/K) ∼= 1
[L:K]

Z/Z.

(3) We have Br(Knr/K) ∼= Q/Z.

Proof. (1) As this is a direct limit of �nite level cohomology groups of the same form, we may

assume that L/K is a �nite extension. Then, L/K is cyclic. Unraveling what we need to

show, we need to show that NL/K : O×L → O
×
K is surjective, and that if NL/K(x) = 1 for

x ∈ O×L then x = gy/y for some y ∈ O×K , where g ∈ Gal(L/K) is a generator. These are,

respectively, Proposition 1.2 and Hilbert’s Theorem 90.

(2) Consider the short exact sequence

0→ O×L → L×
vL−→ Z→ 0,

where vL : L× → Z is the normalized discrete valuation. By (1), we see thatH2(Gal(L/K), L×)
H2(vL)−−−−→

H2(Gal(L/K),Z) is an isomorphism. Now it comes from the computation of Galois co-

homology of cyclic groups; namely

H2(Gal(L/K), L×)
H2(vL)−−−−→ H2(Gal(L/K),Z)

∼←− H1(Gal(L/K),Q/Z) ∼= Hom(G,Q/Z)
f 7→f(FrL/K)
−−−−−−−→ 1

[L : K]
Z/Z.

(3) This follows from (2).

�

De�nition 4.18 (Invariant map). From the proof of Proposition 4.17, we constructed a canonical

isomorphism

invL/K : Br(L/K)
∼−→ 1

[L : K]
Z/Z, invKnr/K : Br(Knr/K)

∼−→ Q/Z,

for a local �eld K and a �nite unrami�ed extension L/K . These are called the invariant map.

Lemma 4.19. The invariant maps have the following compatibilities with changing �elds.
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(1) Let K be a local �eld, and let L1 ⊃ L2 be unrami�ed extensions of K . Then, the following
diagram commutes,

Br(L2/K)
invL2/K//

Inf
��

Q/Z

Br(L1/K)
invL1/K

// Q/Z.

(2) Let L/K be a �nite extension of local �elds of degree n (not necessarily unrami�ed). Then,
the following diagram commutes,

Br(Knr/K)
Res //

invKnr/K

��

Br(Lnr/L)

invLnr/L

��
Q/Z ×n

// Q/Z.

Proof. Omitted (easy). �

The core content of the local class �eld theory is that in fact the same description of relative

Brauer group holds for any Galois extensions.

Theorem 4.20. Let K be a local �eld. Then, there is a canonical isomorphism

invK : Br(K)→ Q/Z.

For L/K a �nite Galois extension of degree n (not necessarily unramified), we have a canonical
isomorphism

invL/K : Br(L/K)→ 1

n
Z/Z.

The proof of this will come later (just for the sake of clarity; if we wanted we can prove it

now), after we review how certain cohomological statements like this deduce class �eld theory

abstractly. For example, for a �nite Galois extension L/K of local �elds, the inverse of the local

Artin reciprocity map Art−1
L/K : Gal(L/K)ab → K×/NL/K(L×) is de�ned as the cup product

with the canonical generator of Br(L/K) = H2(Gal(L/K), L×), which gives rise to an isomor-

phism

Gal(L/K)ab = H−2
T (Gal(L/K),Z)

∼−→ H0
T (Gal(L/K), L×) = K×/NL/K(L×).

5. Class formations

From the previous section, we saw a hint of the idea that the reciprocity law part of the local

class �eld theory follows from the Galois cohomology of things like K×, O×K .
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Remark 5.1. The existence theorem part of the class �eld theory is not a cohomological conse-

quence. The cohomological considerations can go up to the construction of reciprocity law which

is continuous. On the other hand, the existence theorem is about the reciprocity law, after cer-

tain modi�cation (such as passing to the pro�nite completion), being an isomorphism. Thus,

the extra step that the existence theorem gives is that certain two topologies on the multiplicative

group are the same, which is proved by showing that there are “�elds with small enough norm

groups.”

The key is the following abstract theorem.

Theorem 5.2 (Tate’s theorem). Let G be a �nite group, and let C be a G-module. Suppose that for
all subgroups H ≤ G, the following are true.

• H1(H,C) = 0.

• H2(H,C) ∼= Z/|H|Z.

Then, the cup product with a generator a ∈ H2(G,C) ∼= Z/|G|Z gives an isomorphismHr
T (G,Z)

∼−→
Hr+2
T (G,C) for every r ∈ Z. In fact, the cup product with Res(a) ∈ H2(H,C) gives an isomor-

phism Hr
T (H,Z)

∼−→ Hr+2
T (H,C) for every H ≤ G, r ∈ Z.

Proof. Choose a 2-cocycle ϕ representing a. Note that the cocycle condition implies that

gϕ(h, i) + ϕ(g, hi) = ϕ(gh, i) + ϕ(g, h).

The idea is to construct an exact sequence of G-modules

0→ C → C(ϕ)→ I → 0,

where I is the augmentation ideal. The construction is as follows. As a Z-module, C(ϕ) =
C ⊕

⊕
g∈G,g 6=1 Zxg. The action of G on C(ϕ) is the same as the action of G on C on the C-part,

and given by

gxh = xgh − xg + ϕ(g, h),

where x1 = ϕ(1, 1); this matches with the action of G on ϕ(1, 1): gϕ(1, 1) = ϕ(g, 1). It is

easy to check that this de�nes a G-action on C(ϕ). There is a G-morphism C(ϕ) → I given by

xg 7→ [g]− 1 and the entirety of C is sent to 0. Thus C(ϕ) indeed �ts into the exact sequence of

the form we wrote above.

The virtue of consideringC(ϕ) is that, whenϕ is considered asϕ ∈ C2(G,C(ϕ)), it is actually

a 2-coboundary, as ϕ = dx, x ∈ C1(G,C(ϕ)), de�ned by x(g) = xg; we can check this as

dx(g, h) = gx(h)− x(gh) + x(g) = gxh − xgh + xg = ϕ(g, h).

This implies that the mapH2(G,C)→ H2(G,C(ϕ)) sends a to 0. As a generatesH2(G,C), this

implies that the map H2(G,C) → H2(G,C(ϕ)) itself is zero. As Cor ◦Res = [G : H] for any

H ≤ G, Res(a) generates H2(H,C) for any H ≤ G. Therefore, for any H ≤ G, by the same

logic, H2(H,C)→ H2(H,C(ϕ)) is zero. We have a long exact sequence

0 = H1(H,C)→ H1(H,C(ϕ))→ H1(H, I)→ H2(H,C)
0−→ H2(H,C(ϕ))→ H2(H, I),
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where the �rst term is zero because of our assumption. Note that H2(H, I) = 0, because after

applying the long exact sequence to 0→ I → Z[G]→ Z→ 0, we haveH2(H, I) ∼= H1(H,Z) =
HomGrp(H,Z) = 0, as Z[G] is an acyclic H-module. Furthermore, H1(H, I) ∼= H0

T (H,Z) =
Z/|H|Z. Therefore, it follows that H1(H,C(ϕ)) = H2(H,C(ϕ)) = 0 by order considerations.

Now we claim that Hr
T (H,C(ϕ)) = 0 for any H ≤ G and r ∈ Z. This follows from the

following lemma.

Lemma 5.3. Let G be a �nite group, and letM be a G-module. If H1(H,M) = H2(H,M) = 0
for every H ≤ G, then Hr

T (H,M) = 0 for all H ≤ G and r ∈ Z.

Proof. It su�ces to show that Hr
T (G,M) = 0 for all r ∈ Z. We make the initial reduction. Let

H ≤ G. For a prime p, let Hp be a Sylow p-subgroup of H . Note that Cor ◦Res = [H : Hp], so

any element x ∈ Hr
T (H,M) of p-power order is sent to a non-identity element as long as x 6= 1.

Therefore, Res : Hr
T (H,M)p → Hr

T (Hp,M) is injective, whereHr
T (H,M)p is the p-primary part

of Hr
T (H,M). So we only need to show the statement for p-subgroups H ≤ G. In particular, we

may assume that G is a p-group to start with, for some prime p. In particular, we may assume

that G is solvable.

Now we can deduce this from the cyclic case, which is certainly a consequence of the peri-

odicity of Tate cohomology. We use an induction on |G|. There exists a proper normal subgroup

H E G where G/H is cyclic. By induction hypothesis, Hr
T (H,M) = 0 for all r ∈ Z. By the

in�ation-restriction exact sequence, we have exact sequences

0→ Hr(G/H,MH)→ Hr(G,M)→ Hr(H,M),

for all r ≥ 1. As H1(G,M) = H2(G,M) = 0, H1(G/H,MH) = H2(G/H,MH) = 0, so

by the periodicity of Tate cohomology for the cyclic group G/H , Hr
T (G/H,MH) = 0 for all

r ∈ Z. Therefore, Hr(G,M) = 0 for all r ≥ 1. To use the dimension shifting argument, we

need to show that I⊗ZM satis�es the conditions of the Lemma. If you check, the only thing you

need to show is H0
T (G,M) = 0. Suppose x ∈ MG

. Then, as H0
T (G/H,MH) = 0 by induction

hypothesis, there is y ∈MH
such that

∑
g∈G/H gy = x. As H0

T (H,M) = 0, there is z ∈M such

that

∑
h∈H hz = y. This means that

∑
g∈G gz = x, which implies that H0

T (G,M) = 0, which

�nishes the proof. �

Therefore, by Lemma, Hr
T (H,C(ϕ)) = 0 for any H ≤ G and r ∈ Z. Therefore, by the long

exact sequence of Tate cohomology, we have an isomorphism Hr−1
T (H, I)

∼−→ Hr
T (H,C). Again,

we already know that there is an isomorphism Hr−2
T (H,Z)

∼−→ Hr−1
T (H, I), so composing this,

we get an isomorphism Hr−2
T (H,Z)

∼−→ Hr
T (H,C). You can show that this the cup product with

Res(a) by using cocycles. Or, by naturality of the process, it su�ces to show that the image of

1 ∈ H0
T (H,Z) via this isomorphsim is Res(a) ∈ H2

T (H,C). First, 1 is sent to a 1-cocycle in

C1(H, I), h 7→ [h] − 1. Then, this is sent to a 2-cocycle in C2(H,C), h 7→ dx, which is exactly

ϕ, as observed above, which is exactly what we wanted. �

Using Tate’s theorem, we know exactly what we want to prove the reciprocity law in an ab-

stract setting. The package that we need to form a class �eld theory is called the class formation.

De�nition 5.4 (Class formation). A class formation is the following package of data.
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• A base field F , and an algebraic closure F of F . Let G = Gal(F/F ). In this context,

every �nite extension of F is regarded as a subextension of the ambient algebraic closure

F . For a �nite extension K/F , let GK = Gal(F/K).

• A discrete G-module A. For a �nite extension K/F , let AK = AGK .

• For any Galois extensionL/K between �nite extensions of F , we demand two conditions:

Axiom 1. H1(Gal(L/K), AL) = 0;

Axiom 2. there is an isomorphism invL/K : H2(Gal(L/K), AL)
∼−→ 1

[L:K]
Z/Z called the invari-

ant map, compatible with in�ation and restriction in the following way: if M/L/K
is a tower of Galois extensions between �nite extensions ofK , the following diagrams

commute,

H2(Gal(L/K), AL) �
� Inf //

invL/K ∼
��

H2(Gal(M/K), AM)

invM/K∼
��

1
[L:K]

Z/Z � � x 7→x
// 1
[M :K]

Z/Z

H2(Gal(M/K), AM)
Res // //

invM/K ∼
��

H2(Gal(M/L), AM)

invM/L∼
��

1
[M :K]

Z/Z
x 7→[L:K]x

// // 1
[M :L]

Z/Z,

Also, from Axiom 2, we may form the direct limitH2(Gal(F/K), A) = lim−→L/K �nite Galois

H2(Gal(L/K), AL),

where the transition maps are in�ation maps. This inherits the invariant map

invK : H2(Gal(F/K), A)
∼−→ Q/Z.

Finally, given a Galois extension L/K of �nite extensions of F , uL/K := inv−1
L/K

(
1

[L:K]

)
∈

H2(Gal(L/K), AL) is called the fundamental class.

Remark 5.5. From Axiom 1 of the class formation, the in�ation-restriction exact sequence al-

ready implies that the in�ation map Inf : H2(Gal(L/K), AL) → H2(Gal(M/K), AM) is injec-

tive. Also, from the construction, the following are obvious.

• If L/K is a Galois extension between �nite extensions of F , then H2(Gal(L/K), AL) ⊂
H2(Gal(F/K), A) is sent via invK isomorphically to

1
[L:K]

Z/Z.

• If L/K is a �eld extension between �nite extensions of F , there is a restriction map Res :
H2(Gal(F/K), A)→ H2(Gal(F/L), A), and the following diagram commutes,

H2(Gal(F/K), A)
Res //

invK ∼
��

H2(Gal(F/L), A)

invL∼
��

Q/Z
x 7→[L:K]x

// Q/Z.
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• For a Galois M/K of �nite extensions of F and for an intermediate �eld M/L/K ,

Res(uM/K) = uM/L, Cor(uM/L) = [L : K]uM/K .

Furthermore, if L/K is Galois, Inf(uL/K) = [M : L]uM :K .

Example 5.6. We will see shortly thatQ×p as a discrete Gal(Qp/Qp)-module is a class formation;

what’s left is to prove Theorem 4.20.

In the number �eld case, the discrete Gal(Q/Q)-module that gives rise to a class formation

is called the idele class group.

From Tate’s theorem, the following is easy.

Theorem 5.7 (Abstract reciprocity law). Suppose that we are given a class formation. Then, for
any Galois extension L/K of �nite extensions of F , the cup product with uL/K gives rise to an
isomorphism

Hr
T (Gal(L/K),Z)

∼−→ Hr+2
T (Gal(L/K), AL),

for any r ∈ Z. In particular, when r = −2, this gives rise to the isomorphism

Gal(L/K)ab ∼−→ AK/NL/K(AL),

where NL/K : AL → AK is de�ned by x 7→
∑

g∈G gx. The inverse
1 of this isomorphism

recL/K : AK/NL/K(AL)
∼−→ Gal(L/K)ab,

is called the (relative) reciprocity map2.
Furthermore, the reciprocity map has the following compatibility: ifM/K is a Galois extension

between �nite extensions of F , and if M/L/K is an intermediate extension, then the following
diagrams commute,

AK/NM/K(AM)
recM/K//

��

Gal(M/K)ab

V
��

AL/NM/L(AM) recM/L
// Gal(M/L)ab

AL/NM/L(AM)
recM/L //

NL/K
��

Gal(M/L)ab

��
AK/NM/K(AM) recM/K

// Gal(M/K)ab,

where the left vertical arrow of the left square is induced from the natural inclusion AK ↪→ AL, the
right vertical arrow of the left square is the transfer homomorphism (De�nition 2.2), and the right
vertical arrow of the right square is induced from the natural inclusion Gal(M/L) ↪→ Gal(M/K).

Proof. This follows from Tate’s theorem and the relationship between the fundamental classes

and Res and Cor (and how Res and Cor behave on H−2
T and H0

T , Proposition 4.3). �

1
Note that this is the direction of the local Artin reciprocity map; in general the treatment is clearer when you

take the isomorphism in this direction.

2
Historically this was called the norm-residue symbol, and denoted as a 7→ (a, L/K).
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To obtain the absolute version of the reciprocity map, we abuse the notation and denote the

composition of recL/K with the natural quotient map AK � AK/NL/K(AL) also by recL/K :
AK � Gal(L/K)ab

. We need another compatibility of reciprocity maps:

Proposition 5.8. LetM/L/K be a tower of Galois extensions of �nite extensions of F . Then, the
following diagram commutes,

AK
recM/K//

recL/K %%

Gal(M/K)ab

��
Gal(L/K)ab,

where the vertical map is induced from the natural surjection Gal(M/K)� Gal(L/K).

Proof. This does not immediately follow from the cohomological considerations, as we have not

seen a cohomological way of de�ning the map Gal(M/K)ab → Gal(L/K)ab
. On the other

hand, there is a very useful criterion of telling which elements correspond to each other via the

reciprocity map.

Lemma 5.9. Let L/K be a Galois extension between �nite extensions of F , and let a ∈ AK and
σ ∈ Gal(L/K). Then, recL/K(a) = σ in Gal(L/K)ab if and only if, for every character χ ∈
HomGrp(Gal(L/K),Q/Z), the equality

invK(a ∪ δχ) = χ(σ),

holds. Here, δ : HomGrp(Gal(L/K),Q/Z) = H1(Gal(L/K),Q/Z)
∼−→ H2(Gal(L/K),Z).

The Proposition immediately follows from this Lemma, so we are left with proving this

Lemma.

Proof of Lemma 5.9. By de�nition, recL/K(a) = σ in Gal(L/K)ab
if and only if a = uL/K ∪ ζσ,

where ζσ ∈ H−2
T (Gal(L/K),Z) = H1(Gal(L/K),Z) = Gal(L/K)ab

is the class corresponding

to σ. We use the following lemma.

Lemma 5.10. Let G be a �nite group. Then, the cup product

H−2
T (G,Z)×H2

T (G,Z)→ H0
T (G,Z) = Z/|G|Z,

is given by
ζσ ∪ δχ = |G|χ(σ),

for σ ∈ G and χ ∈ HomGrp(G,Q/Z). In particular, an element ofH−2
T (G,Z) is determined by the

values of its cup products with the elements of H2
T (G,Z).

Proof. Note that δχ is represented by a 2-cocycle δχ : G2 → Z, given by

δχ(g, h) := s(χ(g)) + s(χ(h))− s(χ(gh)),
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where s : Q/Z→ Q is a set-theoretic section of the quotientQ� Q/Z (as χ(g)+χ(h) = χ(gh)
mod Z, δχ(g, h) is an integer). Unraveling the de�nitions, the cup product ζσ ∪ δχ is the class of∑

τ∈G δχ(τ, σ) ∈ Z in H0
T (G,Z) = Z/|G|Z. Because of the formula for δχ, we have∑

τ∈G

δχ(τ, σ) = |G|s(χ(σ)) ∈ Z.

The last statement follows from the fact that HomGrp(G,Q/Z) is the dual of Gab
and is in par-

ticular of the same order as Gab = H−2
T (G,Z). �

By Lemma 5.10, a = uL/K ∪ ζσ if and only if a ∪ δχ = uL/K [L : K]χ(σ) for all χ ∈
HomGrp(Gal(L/K),Q/Z). As invL/K is an isomorphism, this holds if and only if invK(a∪δχ) =

1
[L:K]

[L : K]χ(σ) = χ(σ) for all χ ∈ HomGrp(Gal(L/K),Q/Z), which is what we want. �

�

From Proposition 5.8, we can take the inverse limit over all �nite Galois extensions L/K and

obtain the (absolute) reciprocity map

recK : AK → Gal(K/K)ab.

This has the similar compatibility as recL/K which we don’t bother to write down. One also has

some information about the norm groups as follows.

Theorem 5.11. Suppose we’re given a class formation. LetK be a �nite extension of F .

(1) (Norm limitation theorem) For any �nite extension L/K , if L/M/K is the maximal
abelian subextension of L/K , then

NL/K(AL) = NM/K(AM).

In particular, NL/K(AL) only depends on the Galois closure of L/K .

(2) (Uniqueness theorem) If L1, L2/K are �nite abelian extensions, then

NL1/K(AL1) = NL2/K(AL2) ⇔ L1 = L2.

Proof. (1) It is clear that NL/K(AL) ⊂ NM/K(AM). Take a large Galois extension L′/K that

contains L. Let G = Gal(L′/K) and H = Gal(L′/L). Then, Gal(L′/M) = [G,G]H ,

as M is the maximal abelian extension over K contained in L. We have the following

commutative diagram

AL
NL/K //

recL′/L
��

AK

recL′/K
��

AK

recM/K

��
1 // H/H ′ // G/G′ // G/G′H // 1,
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where the bottom row is an exact sequence of abelian groups. Suppose x ∈ NM/K(AM).

Then, recL′/K(x) ∈ G/G′ is sent to 1 ∈ G/G′H . Therefore, there is an element h ∈ H/H ′
whose image in G/G′ is the same as recL′/K . As recL′/L is surjective, there is y ∈ AL
such that recL′/K(x) = recL′/K(NL/K(y)). Thus, x and NL/K(y) are o� by an element

in ker recL′/K = NL′/K(AL′) ⊂ NL/K(AL). As NL/K(y) ∈ NL/K(AL), this implies that

x ∈ NL/K(AL), which is what we want.

(2) The reverse direction is obvious. For the forward direction, letL = L1L2, which is abelian

over K . Then, under recL/K : AK/NL/K(AL)
∼−→ Gal(L/K), NLi/K(ALi)/NL/K(AL)

correspond to Gal(L/Li) ⊂ Gal(L/K) for i = 1, 2. Therefore, this means L1 = L2.

�

Thus, we know exactly what kind of extra statement we need to prove to prove the existence

theorem.

Theorem 5.12 (Abstract existence theorem). Suppose we’re given a class formation. Suppose that
the class formation further satis�es the following condition.

(*)

For any �nite extension K/F and any open �nite index subgroup U ≤ AK ,
there exists a �nite extension L/K such that NL/K(AL) ⊂ U .

Then, the existence theorem holds: for any �nite extension K/F and any �nite index subgroup
U ≤ AK , there exists a (unique) �nite abelian extension L/K such that NL/K(AL) = U .

Proof. By (*), there exists a �nite extensionM/K such thatNM/K(AM) ⊂ U . By the abstract reci-

procity law and the norm limitation theorem, AK/NM ′/K(AM ′) ∼= Gal(M ′/K), where M ′/K is

the maximal abelian subextension ofM/K . LetL be the �xed �eld of the subgroup of Gal(M ′/K)
corresponding to U/NM ′/K(AM ′). By the compatibility of reciprocity maps and norms, it follows

that NL/K(AL) = U . Uniqueness is exactly the uniqueness theorem. �

6. Adeles and ideles

To de�ne the class formation for the global case (e.g. number �elds), we need to use adeles

and ideles. Before starting, we �x the terminology.

De�nition 6.1 (Global �elds). A global field is a �eld K which is a �nite extension of either

Q or Fq(T ). Here, Fq(T ) is the �eld of rational functions in one variable with coe�cients in the

�nite �eld Fq. When K is a �nite extension of Q, we call it a number field. When K is a �nite

extension of Fq(T ), we call it a function field.

Remark 6.2 (On the subtleties of the function �elds). There are several extra di�culties whenK
is a function �eld. Firstly, K is not perfect; Fq(T 1/q)/Fq(T ) is a purely inseparable extension of

degree q. When discussing the Galois theory of F , one must only consider separable extensions.

The absolute Galois group of F is the Galois group of the maximal separable extension Ksep

over K . Furthermore, there is a subtle issue with the topology of a pro�nite group (e.g. there are

�nite index subgroups that are not open). In this section, we will often give proofs only in the

case when K is a number �eld (i.e. charcateristic 0).
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Global class �eld theory concerns describing Gal(Ksep/K)ab
of a global �eld K . We want

something that captures the arithmetic of the class group of K for AK . There is another extra

feature you would want, that the local and global class �eld theories are compatible with each

other in some way, under the name of local-global compatibility. Remember however that the

class group Cl(K) is de�ned using fractional ideals of K . Ideles are invented as alternatives to

ideals that are expressed as elements but also exhibit clear connection with local �elds.

De�nition 6.3 (Places of a global �eld). A place or a prime v of a global �eld K is an equiv-

alence class of absolute values on K . Equivalently, it is either a maximal ideal of OK (called a

nonarchimedean prime or a finite place) or an embedding K ↪→ C (called an archimedean

prime or an infinite place); in the latter case, which happens only if K is a number �eld, an

embedding K ↪→ C is considered equivalent to its complex conjugate.

Let Kv be the completion of K with respect to an absolute value corresponding to v. If v is

nonarchimedean, let pv ⊂ OK be the corresponding prime ideal (so that Kv = Frac(OK,pv)). Let

ordv : K×v → Z be the normalized discrete valuation of the cdvf Kv; namely, after choosing a

uniformizer πv ∈ Kv, ordv(uπ
m
v ) = m for any m ∈ Z, u ∈ O×Kv .

If v is archimedean, Kv = R if the corresponding embedding is real, and Kv = C if complex.

De�nition 6.4 (Normalized absolute values). For a local �eld L, there is a preferred way to

normalize an absolute value (among the ones in the same equivalence class).

• If L is a p-adic �eld, then |x| := 1
(#l)ord(x) (and |0| := 0), where l is the residue �eld of L

(which is a �nite �eld), and ord : L× → Z is the normalized discrete value as above (i.e.

scaled such that ord is surjective).

• If L = R, then |x| is the usual absolute value.

• If L = C, then |x| is the square of the complex absolute value.

If K is a global �eld, and if v is a place of K , then let | · |v be the normalized absolute value on K
restricted from that of Kv under the natural inclusion K ↪→ Kv.

We will see shortly (see Lemma 6.13) why this normalization is a useful thing to do.

De�nition 6.5 (Ideles). An idele is a collection of elements (αv), where αv ∈ K×v for each place

v of K , such that for all but �nitely many places v, αv ∈ O×Kv .
3

The ideles form a multiplicative

group called the idele group IK .

We are regarding real/complex embddings also as primes, which is an important feature of

the global class �eld theory. One reason why we have αv ∈ O×Kv for all but �nitely primes v is

because we can think of a surjective homomorphism IK � JK (JK is the multiplcative group of

fractional ideals of K), de�ned as follows,

IK � JK , (αv) 7→
∏

v nonarchimedean

pordv(αv)
v .

3
If v is archimedean, there is no good analogue of OKv

, so this statement is vacuous in that case. This is �ne

because we can always allow �nitely many exceptions, and there are �nitely many archimedean primes of K .
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Note that the requirement that αv ∈ O×Kv for all but �nitely many v’s is precisely the one that

makes the above product a �nite product (i.e. ordv(αv) = 0 for all but �nitely many v’s).

Composing this with the quotient map JK � Cl(K), we get a surjective homomorphism

IK � Cl(K). Clearly we see that (αv) ∈ IK is in the kernel of IK � Cl(K) if there is an

element α ∈ K× such that each αv came from α by the embedding K ↪→ Kv.

De�nition 6.6 (Idele class group). For any α ∈ K×, we can naturally associate (αv) ∈ IK , where

for each v, αv is the image of α by the natural embedding K ↪→ Kv; this is well-de�ned as, given

α ∈ K×, ordv(α) = 0 for all but �nitely many v. Any such idele is called a principal idele. This

de�nes a natural injective homomorphism K× ↪→ IK , and the quotient CK := IK/K
×

is called

the idele class group.

There is, therefore, a surjective homomorphism CK � Cl(K). It is the idele class group that

we will use for the class formation; AK = CK .

To discuss the topology on IK andCK , we need to �rst discuss the additive analogue of ideles.

De�nition 6.7 (Adeles). An adele is a collection of elements (αv), where αv ∈ Kv for each place

v of K , such that for all but �nitely many places v, αv ∈ OKv . The adeles form a ring, called the

adele ring AK .

Historically, the word “idele” appeared �rst, and the word “adele” was introduced as an abbre-

viation of “additive idele.” There should technically be accents (idèles, adèles), but many people

drop the accents when they write (they are arti�cially made words anyway).

The idele group and the adele ring are related as IK = A×K (the unit group).

We now talk about the topologies of AK and IK , which are a bit annoying.

De�nition 6.8. The ring of finite adeles
4 A∞K consists of adeles (αv) where αv = 1 for all

archimedean primes v. More generally, if S is a �nite set of places of K , then ASK consists adeles

(αv) where αv = 1 for all v ∈ S.

We also de�ne AK,S , the ring of S-adeles, to consist of adeles (αv) where αv ∈ OKv for all

finite places
5 v not contained in S. In other words, S-adeles are the adeles where you only

allow the primes in S to show up in the denominators. Similarly, A∞K,S , the ring of finite S-

adeles, consists of �nite adeles (αv) where αv ∈ OKv for all �nite places v /∈ S. By de�nition,

AK,S does not change if you include/exclude some in�nite places from S.

The topology of AK as a topological (additive) group is generated by the subsets of the form∏
v∈S Uv ×

∏
v/∈S OKv , where S is a �nite set of places of K , and, for each v ∈ S, Uv ⊂ Kv is

an open subset. This also makes AK a topological ring (i.e. the multiplication is continuous).

The topologies of A∞K , AK,S , A∞K,S are induced from AK as the subspace topology; note that the

induced subspace topology on AK,S =
∏

v∈S or v in�nite
Kv ×

∏
v/∈S and v �nite

OKv is the product

topology.

One may de�ne similar subgroups of IK as above, namely I∞K := IK∩A∞K , IK,S := IK∩AK,S ,

ISK := IK ∩ ASK .

The topology of IK = A×K is not the subspace topology induced fromA×K . Rather, IK is given

the topology as the multiplicative group of the topological ring AK ; namely, you also want to

4
The notation∞ means that we are putting the set of all in�nite places as a superscript.

5
As noted earlier, OKv

doesn’t make sense when v is an in�nite place.
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take into account that the multiplicative inverse map IK → IK is continuous. For that matter,

you use the injective (multiplicative) homomorphism IK
x 7→(x,x−1)−−−−−−→ AK × AK and use the sub-

space topology induced by this homomorphism. Equivalently, the topology of IK as a topological

(multiplicative) group generated by the subsets of the form

∏
v∈S U

′
v ×

∏
v/∈S O

×
Kv

, where S is a

�nite set of places of K , and, for each v ∈ S, U ′v ⊂ K×v is an open subset
6

. The topologies of I∞K ,

IK,S , I∞K,S are induced from IK as the subspace topology.

Example 6.9. We have A∞Q = Ẑ⊗Z Q, or in other words lim−→n≥1

1
n
Ẑ (also as topological spaces),

and therefore AQ = A∞Q × R (also as topological spaces).

As I said, the class formation we will use for the global class �eld theory will satisfyAK = CK .

To de�ne A, we need to know how CK changes as we change K .

Proposition 6.10. Let L/K be a �nite extension of global �elds.

(1) There is a natural inclusion AK ↪→ AL, (αv) 7→ (α′w), where α′w := αv ∈ Kv ⊂ Lw for w|v.
This restricts to a natural inclusion IK ↪→ IL, and induces an injection CK ↪→ CL.

(2) The natural inclusion in (1) gives rise to an isomorphism AK ⊗K L
∼−→ AL where AK is

regarded as a K-vector space via the natural inclusion K ↪→ AK . In particular, if L/K is
Galois, then σ ∈ Gal(L/K) acts on AL = AK ⊗K L naturally as the identity on the �rst
factor and as σ on the second factor of the tensor product.

(3) For L/K �nite Galois, AGal(L/K)
L = AK , IGal(L/K)

L = IK , and C
Gal(L/K)
L = CK .

Proof. (1) Only the last part is the nontrivial part, where it follows from L× ∩ IK = K×,

which follows from L ∩ AK = K by (2).

(2) This follows from Kv ⊗K L ∼=
∏

w|v Lw.

(3) Only C
Gal(L/K)
L = CK requires an explanation. Note that we have a short exact sequence

of Gal(L/K)-modules

1→ L× → IL → CL → 1,

which gives rise to a long exact sequence

1→
(
L×
)Gal(L/K) → I

Gal(L/K)
L → C

Gal(L/K)
L → H1(Gal(L/K), L×)→ · · · .

By Theorem 4.14, this becomes 1 → K× → IK → C
Gal(L/K)
L → 1, which implies that

C
Gal(L/K)
L = CK .

�

6
Note that Kv is a topological field, so that the topology we have for Kv is also continuous with respect to the

inverse map; in particular, the topology on K×v is the subspace topology.
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De�nition 6.11. Let F be a global �eld. We de�ne C := lim−→K/F �nite

CK , where the transition

maps are the natural inclusions. It has a natural continuous Gal(F sep/F )-action that makes it a

discrete Gal(F sep/F )-module (as CK = CGal(F sep/K)
).

Note that this does not mean that the natural topology on C is the discrete topology; this

was not the case even in the local case. To have knowledge of the topology of C or CK , we �rst

want to understand how K× sits inside IK , or on a related note, how K sits inside AK ; note that

K is a global �eld, so a priori there is no preferred topology on K .

Proposition 6.12. The subspace topology induced on K ⊂ AK (K× ⊂ IK , respectively) is the
discrete topology.

Proof. The key ingredient is the following easy observation.

Lemma 6.13 (Product formula). Let α ∈ K×. Then,
∏

v |α|v = 1.

Proof. Note that the product written above is actually a �nite product, as |αv| = 1 for all but

�nitely many places v. We also note that the formula is quite obvious when K = Q; any rational

number can be written as r = ±
∏

p p
np

for rational primes p (where np = 0 for all but �nitely

many p’s), and

|r|v =

{
p−np if v = p

|r| =
∏

p p
np

if v =∞.

We would like to reduce the general statement to the case of Q. Let v be a place of Q (either a

rational prime or∞). Then, K ⊗Q Qv =
∏

w|vKw, running over all places w of K over v. We

claim that, for any x ∈ K×,

∏
w|v |x|w = |NK/Q(x)|v; note that proving the claim will �nish

the proof. We �rst note that, from the decomposition K ⊗Q Qv =
∏

w|vKw, |NK/Q(x)|v =∏
w|v |NKw/Qv(x)|. As any absolute value extends uniquely over a �nite extension of local �elds,

we have |x|w = |NKw/Qv(x)|, which �nishes the proof of the claim. �

Now we go back to the original Proposition. AsAK is a topological (additive) group, it su�ces

to construct an open neighborhood 0 ∈ U ⊂ AK such that U ∩K = {0}. Given Lemma 6.13, if

we take U =
∏

w �nite
OKw ×

∏
w in�nite

{x ∈ Kw : |x| < 1}, then any element (αw) ∈ U satisfy∏
w |αw| < 1, unless (αw) = 0, which implies that U ∩K = {0}, as desired.

For IK , note that the topology of IK is induced as the subspace topology from IK
x 7→(x,x−1)−−−−−−→

AK × AK . So the subspace topology of K× ⊂ IK is induced as the subspace topology from

K×
x 7→(x,x−1)−−−−−−→ AK ×AK . By the discreteness of K ⊂ AK , for any x ∈ K×, we may take an open

neighborhood x ∈ U ⊂ AK such that U ∩ K = {x}. Then, K× ∩ (U × AK) = {x}, so K× is

induced the discrete topology. �

We now de�ne the topologies on AK/K and CK = IK/K
×

to be the quotient topology,

i.e. the �nest topologies that make the quotient maps AK � AK/K and IK � IK/K
×

to be

continuous. Remember once again that the topologies onAK/K and CK play little role when we

take the cohomology of them.
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Proposition 6.14 (Compactness ofAK/K ; local compactness ofCK). For a global �eldK ,AK/K
is a compact group, and CK is a locally compact group; recall that a topological space is locally
compact if every point has a compact neighborhood (i.e., for all x, there is an open set U and a
compact set V such that x ∈ U ⊂ V ).

Example 6.15. Local �elds are locally compact (even R and C are locally compact), whereas the

rings of integers of nonarchimedean local �elds are compact (e.g. Qp is locally compact vs. Zp is

compact).

Proof of Proposition 6.14. For the �rst part, by Proposition 6.10, AK/K is a direct sum of copies of

AQ/Q, so it su�ces to show thatAQ/Q is compact. We note thatAQ � AQ/Q is continuous, and

it is surjective even if we restrict it to

∏
p Zp × [0, 1]; if you have (αv) ∈ AQ, then you may �rst

add a rational number to make the �nite part integral, and then you may add/subtract an integer

to make the in�nite part lie in [0, 1] while keeping the �nite part integral. As

∏
p Zp × [0, 1] is

compact, its continuous image AQ/Q is also compact.

For the second part, we already see that CK cannot be compact, as there is a surjective norm

map | · | : CK → R>0, (αv) 7→
∏

v |αv| (this is well-de�ned by Lemma 6.13), and R>0 is not

compact. However, this is the only source of non-compactness; if we let C1
K := ker(| · | : CK →

R>0), then we will show that C1
K is compact. This will show that CK is locally compact, as R>0

is locally compact.

The compactness of C1
K is omitted and left as an exercise. �

Exercise 6.1. Prove that C1
K is compact. The proof of this has a similar spirit as the proof of the

�niteness of class numbers.

Note that, for example, the �niteness of class numbers is a corollary of the fact that C1
K is

compact, as the natural quotient map C1
K → Cl(K) is continuous, and Cl(K) has the discrete

topology.

7. Statements of the global class field theory

The global class �eld theory is now easy to state, in terms of ideles. We will �rst state the idele

version, and then translate it into practically more useful version in terms of fractional ideals.

7.1. Idelic version of the global class �eld theory.

Theorem 7.1 (Global Artin reciprocity). Let F be a global �eld, and �x its separable closure F sep.
Let C = lim−→K/F �nite

CK be the collection of idele classes over a �nite extension over F . These form
a class formation; namely, it satis�es Axioms 1 and 2 of De�nition 5.4. More precisely, for a global
�eld L, there is a continuous homomorphism, called the global Artin map,

ArtL : CL → Gal(Lab/L),

satisfying the following properties.
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(1) For any �nite abelian subextensionK/L ofLab/L, the global Artin map induces a continuous
homomorphism

ArtK/L : CL → Gal(K/L),

which is surjective with kernel NK/L(CK). In particular, there is an isomorphism

CL/NK/L(CK) ∼= Gal(K/L).

(2) IfK/L is a �nite extension of global �elds, the following diagram commutes, where the right
vertical arrow is the restriction.

CK
ArtK //

NK/L

��

Gal(Kab/K)

res

��
CL

ArtL

// Gal(Lab/L).

(3) If K/L is a �nite extension of global �elds, the following diagram commutes, where the left
vertical arrow is the inclusion and the right vertical arrow is the transfer homomorphism.

CK
ArtK // Gal(Kab/K)

CL
ArtL

//
?�

OO

Gal(Lab/L).

V

OO

Moreover, the global Artin map and the local Artin maps at various places of L are compatible with
each other ( local-global compatibility) in the following sense.

(4) Let K/L be an abelian extension of global �elds. For each place v of L, choose a place w
of K over v, and we have a local Artin map ArtKw/Lv : L×v → Gal(Kw/Lv). Regarding
Gal(Kw/Lv) as a decomposition subgroup of Gal(K/L) (there is no issue of conjugacy as
Gal(K/L) is abelian), we obtain Artv : L×v → Gal(K/L) for each place v of L. If v is
unrami�ed in K , then Artv(O×Lv) = 1 (Proposition 1.2), so taking the product of Artv gives
a map Art′L : IL → Gal(K/L).

The conclusion is that Art′L(L×) = 1 and the induced map Art′L : CL → Gal(K/L) is
precisely the global Artin map.

These properties uniquely characterize ArtL.

Remark 7.2. It is important to also consider in�nite places, e.g. ArtR and ArtC, see [ANT] for

the details.

By our general discussions, we have the following corollaries for free.
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Corollary 7.3 (Norm limitation theorem). Let F be a global �eld. For any �nite extension L/K
of �nite extensions of F , and if L/M/K is the maximal abelian subextension of L/K , then

NL/K(CL) = NM/K(AM).

Corollary 7.4 (Uniqueness theorem). Let F be a global �eld. For any �nite abelian extensions
L1, L2/K of �nite extensions of F ,

NL1/K(CL1) = NL2/K(CL2) ⇔ L1 = L2.

Furthermore, this class formation also satis�es the extra condition we need for the existence

theorem.

Theorem 7.5 (Global existence theorem). Let F be a global �eld. Then, the class formation (F,C)
satis�es the condition (*) of Theorem 5.12. In particular, for any �nite extension K of F and for
any open �nite index subgroup U ≤ CK , there is a unique �nite abelian extension L/K such that
NL/K(CL) = U .

An easy corollary of the global existence theorem is the characterization of Gal(Kab/K) for

a number �eld K .

Corollary 7.6. LetK be a number �eld (i.e. a global �eld of characteristic 0). Then,Gal(Kab/K) ∼=
ĈK , the pro�nite completion of CK .

Proof. The content of the global existence theorem is a Galois-type correspondence{
Finite abelian

extensions of K

}
↔
{

Open �nite index

subgroups of CK

}
.

If K is of characteristic 0, the word “open” is unnecessary, and the corollary is the immediate

consequence of the above correspondence. �

Example 7.7. It is not di�cult to see thatCQ ∼=
∏

p rational prime
Z×p ×R>0, so ĈQ =

∏
p rational prime

Z×p ∼=
Ẑ× (there is no proper �nite index subgroup ofR>0). This is in accordance withQab =

⋃
n≥1Q(ζn)

so that Gal(Qab/Q) = lim←−n≥1
(Z/nZ)×.

7.2. Ideal theoretic version of the global class �eld theory. The above descriptions are a bit

too abstract, so let us translate the statements to those about ideal class groups or their variants, as

expressed in [ANT] (notations are slightly di�erent here to match with the adelic/idelic notation).

The idea is to describe certain �nite quotients of CK in more explicit terms; after all, the

global class �eld theory is about the �nite quotients of CK , and it su�ces to have a nice descrip-

tion of only certain �nite quotients of CK to characterize the global Artin reciprocity map (i.e.

description ofCK/U forU ≤ CK open �nite index subgroups generating the topology ofCK , not

necessarily all open �nite index subgroups). And we have observed that the class group Cl(K)
is a �nite quotient of CK ! We can similarly identify many other �nite quotients of CK with a

variant of the class group, called the ray class group.
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De�nition 7.8 (Modulus). Let K be a global �eld. A modulus m of K is a function m :
{primes of K} → Z≥0 such that m(p) = 0 for all but �nitely many primes p, m(p) = 0 or 1
if p is real, and m(p) = 0 if p is complex. Conventionally, one write m as m =

∏
p primes of K pm(p)

.

One can write m = mfm∞ where mf =
∏

p �nite primes of K pm(p)
and m∞ =

∏
p in�nite primes of K pm(p)

.

Given a modulus m, let S(m) be the �nite set of primes dividing m.

Given two moduli m, n, we say m divides n if m(p) ≤ n(p) for all primes p.

De�nition 7.9 (Ray class group). For a �nite set of primes/places S of K , let JSK be the (multi-

plicative) group of fractional ideals generated by the prime ideals not contained in S.

For a modulus m of K , let Km,1 be the set of a ∈ K× such that ordp(a − 1) ≥ m(p) for all

�nite p|m, and ap > 0 for all real p|m. This forms a (multiplicative) subgroup of K×, and for any

a ∈ Km,1
, the principal fractional ideal (a) is an element of J

S(m)
K . Therefore, there is a natural

embedding Km,1 ↪→ J
S(m)
K . The quotient Clm(K) := J

S(m)
K /Km,1

is called the ray class group

with modulus m.

Example 7.10. If m is the modulus where m(p) = 0 for all p, then Clm(K) = Cl(K). Such

modulus is called the empty modulus and denoted m∅.

It turns out that the ray class groups are �nite quotients of the idele class group, and they

altogether can recover the idele class group.

Proposition 7.11. Let K be a number �eld (for simplicity).

(1) If m is a modulus of K , the ray class group Clm(K) is a �nite abelian group.

(2) For a modulus m of K , let U(m) ⊂ IK be the open subgroup de�ned by

U(m) :=
∏

�nite p not dividing m

O×Kp
×

∏
in�nite p not dividing m

K×p ×
∏

�nite p|m

(1 + pm(p))×
∏

real p|m

R>0.

Then, IK/K×U(m) ∼= Clm(K). Equivalently, if U(m) ⊂ CK is the image of U(m) ⊂ IK �
CK , then U(m) ⊂ CK is an open �nite index subgroup such that CK/U(m) ∼= Clm(K).

(3) If m, n are two moduli of K such that m|n, then there is a natural map Cln(K)� Clm(K).
Under this, we have lim←−m modulus ofK

Clm(K) ∼= ĈK .

Proof. (1) follows naturally from the �niteness of class number and (2) and (3), as the di�erence

between U(m) and U(m∅) is �nite. Also, (3) follows easily from (2), so it remains to show (2).

Let ImK be the group of ideles (αp) such that ordp(αp− 1) ≥ m(p) for all �nite p|m and αp > 0

for all real p|m. Then, there is a natural surjective map ImK � J
S(m)
K , (αp) 7→

∏
p �nite

pordp(αp)
,

and the kernel is precisely U(m) ∩ Im. Furthermore, there is a natural embedding Km,1 ↪→ ImK ,

α 7→ (αp), and not only Km,1 ⊂ ker(ImK � Clm(K)), but also Clm(K) = J
S(m)
K / im(Km,1 →

ImK → J
S(m)
K ). From this, it follows that Clm(K) ∼= Im/Km,1(U(m) ∩ Im). Thus, (2) will follow if

we prove that the natural map ImK ↪→ IK induces an isomorphism ImK/K
m,1 ∼−→ IK/K

×
. Firstly,

as ImK ∩ K× = Km,1
, the map ImK/K

m,1 → IK/K
×

is injective. To show the surjectivity, it
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su�ces to show IK = ImK×. The content of this in concrete terms is as follows: suppose m is

a modulus, and suppose, for each p|m, we have αp ∈ K×p . Then, there exists α ∈ K×, such that

α ≡ αp (mod pm(p)) for all �nite p|m, and α, αp have the same sign for all real p|m. This follows

from the following theorem: namely, this shows that however many congruence conditions and

sign conditions you apply, there is an element in K× realizing them (as long as there are �nitely

many conditions).

Theorem 7.12 (Weak approximation theorem). Let F be a �eld, and let |·|1, · · · , |·|n be nontrivial
pairwise inequivalent absolute values on F . Let Fi be the topological space where the underlying set
is F and the topology is generated by | · |i. Then, inside the topological space F1 × · · · × Fn, the
diagonal subset F ⊂ F1 × · · · × Fn, namely those of the form (x, x, · · · , x) for x ∈ F , is a dense
subset.

Proof. This asks you to �nd, for any a1, · · · , an ∈ F and ε > 0, an element b ∈ K such that

|ai − b|i < ε. Note �rst that it is su�cient to �nd, for each 1 ≤ m ≤ n, an element cm ∈ F such

that |cm|m > 1 and |cm|i < 1 for all i 6= m. If there is such an element, then for N � 0, the

element

∑n
i=1

cNi
1+cNi

ai will be such an element, as

lim
N→∞

cNi
1 + cNi

=

{
1 with respect to | · |i
0 with respect to | · |j for any j 6= i.

Thus we are reduced, by rearranging indexes, to �nding an element c ∈ F such that |c|1 > 1
and |c|i < 1 for all i ≥ 2. We do an induction on n. If n = 2, this is basically the de�nition of

inequivalence of two absolute values | · |1 and | · |2. For general n, by induction hypothesis, we

can �rst �nd c′ ∈ F such that |c′|1 > 1 and |c′|i < 1 for all 2 ≤ i ≤ n − 1. If |c′|n < 1, then

we are already happy. If not, we can �nd b ∈ F such that |b|1 > 1 and |b|n < 1. Using this, if

|c′|n = 1, then forN � 0, c′Nbwill satisfy the condition, and if |c′|n > 1, then forN � 0,
c′N

1+c′N
b

will satisfy the condition. �

�

De�nition 7.13 (Ray class �eld). By the global existence theorem and Proposition 7.11, for a

global �eld K and a modulus m of K , there exists a �nite abelian extension K(m) of K such that

CK/NK(m)/K(CK(m)) ∼= Clm(K) (as �nite quotients of CK). This �eld K(m) is called the ray

class field of K for modulus m. In particular, if m = m∅, K(m∅) =: HK is called the Hilbert

class field. If on the other hand m is the product of all real places of K , then K(m) is called the

narrow class field.

We can now reformulate the global class �eld theory in terms of ray class �elds.

Theorem 7.14 (Ideal theoretic global class �eld theory). Let L/K be a �nite abelian extension of
global �elds. We de�ne the modulus fL/K ofK , called the (global) conductor of L/K , as fL/K(p) =
fLq/Kp for any prime q of L dividing p, where fLq/Kp is the local conductor (De�nition 1.1) when p is
a �nite prime, and fC/C = fR/R = 0, fC/R = 1, when p is an in�nite prime.
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(1) For any modulus m of K divisible by fL/K , L ⊂ K(m). For such m, we may de�ne the
global Artin map ArtmL/K : J

S(m)
K → Gal(L/K) as p 7→ Frp for any prime ideal p of K

not dividingm (this is well-de�ned as all prime ideals ofK rami�ed in L divide fL/K). Then,
ker ArtmL/K ⊃ Km,1, giving a natural surjective map ArtmL/K : Clm(K)� Gal(L/K).

(2) For any modulus m of K , there is a one-to-one incusion-reversing bijection

{Finite subgroups of Clm(K)} ↔ {Finite abelian extensions L/K with fL/K |m}.

Proof. This follows directly from the local-global compatibility and the de�nition of the local

conductor (and the fact that the global norm is a product of the local norms). �

This shows that K(m) is the maximal abelian extension of K with the “rami�cation bounded

by m.” For example, the Hilbert class �eld is the maximal abelian extension of K that is every-

where unramified (including in�nite places; an in�nite place is unrami�ed if the real places

stay real above), and the narrow class �eld is the maximal abelian extension of K that is finitely

everywhere unramified (i.e. all �nite primes are unrami�ed).

Theorem 7.15 (Principal ideal theorem). LetK be a global �eld, and let p ⊂ OK be a prime ideal.
Then, pOHK is a principal ideal in HK .

Proof. This statement follows from the compatibility of the global Artin maps with changing

�elds, i.e. we look at

CK
ArtK //

� _

��

Gal(Kab/K)

V
��

CHK ArtHK

// Gal(Hab
K /HK)

 Cl(K)
∼ //

��

Gal(HK/K)

V
��

Cl(HK) ∼
// Gal(HHK/HK).

Then this follows from a hard (yet elementary) group-theoretic fact that the transfer homomor-

phism V : Gab → Hab
is zero if H = [G,G]. �

Remark 7.16. One can show not just the quadratic reciprocity law but the n-ic reciprocity law

using the global class �eld theory; see [ANT] for more classical applications of ideal-theoretic

description of global class �eld theory.

Example 7.17. See [ANT, Exercise 16.2] for the full determination of the ray class �elds ofQ by

elementary considerations.

8. Kronecker–Weber theorems: Explicit class field theory for Q and Qp

Before wrapping up our proofs of global/local class �eld theories by verifying the class for-

mation axioms + ε, we start with a baby version, namely describing Qab
and Qab

p .

Theorem 8.1 (Kronecker–Weber theorem).

Qab =
⋃
n≥1

Q(ζn).
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Theorem 8.2 (Local Kronecker–Weber theorem).

Qab
p =

⋃
n≥1

Qp(ζn).

We will show how these follow from the elementary rami�cation theory. In fact, the deriva-

tion of local Kronecker–Weber theorem is related to the Lubin–Tate theory (which will be used

for a proof of local existence theorem).

Remark 8.3. The whole idea of describing Kab
by adjoining explicit elements (or, even better,

by adjoining units) falls under the name of Kronecker’s Jugendtraum. In the local case, this

is completely solved by the Lubin–Tate theory, which we will see in a few lectures. For number

�elds, we have such constructions for only certain types of number �elds; for example, the theory

of complex multiplication for imaginary quadratic �elds, which we will also see later. There is

not even a conjectural picture of what this should be for general number �elds. For example,

even a conjecture for the complex cubic �elds was not really known until 2023, see [BCG].

Lemma 8.4. The Kronecker–Weber theorem follows from the local Kronecker–Weber theorem.

Proof. Let K be a �nite abelian extension of Q. There are �nitely many primes p ∈ Z rami�ed

in K . Pick a prime p of K lying over p. Then, by the local Kronecker–Weber, Kp ⊂ Qp(ζnp) for

some np ≥ 1. Let ep = ordp(np) and let n =
∏

p p
ep

.

We claim that K ⊂ Q(ζn). This will follow if we prove that L = K(ζn) = Q(ζn). It is �rstly

obvious that L ⊃ Q(ζn). Let p ∈ Z be any prime tha rami�es in K , and let q be a prime of L
lying over p. Then, Lq ⊂ Qp(ζnp , ζn) = Qp(ζlcm(np,n)). Let Ip ⊂ Gal(Lq/Qp) ⊂ Gal(L/Q) be

the inertia subgroup of p in L. Let U := (Lq)Ip , which is the maximal unrami�ed subextension

of Lq/Qp. Then, as adjoining a prime-to-p-th power root of unity gives an unrami�ed extension,

Lq = U(ζpep ). Therefore, Ip ⊂ (Z/pepZ)×. Let I ≤ Gal(L/Q) be the subgroup generated by Ip
for primes p ∈ Z rami�ed in K . Then, |I| ≤

∏
p |Ip| ≤

∏
p φ(pep) = φ(n) = [Q(ζn) : Q]. On the

other hand, LI/Q is a �nitely everywhere unrami�ed; namely, for any prime number p ∈ Z, p is

unrami�ed in LI . By Minkowski’s theorem, LI = Q, which implies that [L : Q] = |I| ≤ [Q(ζn) :
Q], which implies that L = Q(ζn), as desired.

Theorem 8.5 (Minkowski’s theorem). If a number �eldK satis�es that every prime number p ∈ Z
is unrami�ed in K (or K/Q is finitely everywhere unramified), then K = Q.

Proof. You can use the Minkowski’s discriminant bound in a di�erent way. Namely, we know that,

if [K : Q] = n = r+2s, then each ideal class of Cl(K) has an integral ideal representative a such

that N(a) ≤ n!
nn

(
4
π

)s√| disc(K)|. As N(a) ≥ 1, we have

√
| disc(K)| ≥ nn

n!

(
π
4

)s ≥ nn

n!

(
π
4

)n/2
.

One can see that
nn

n!

(
π
4

)n/2
> 1 as long as n ≥ 2 (the expression increases as n increases).

Thus, if n ≥ 2, then | disc(K)| ≥ 2 has a prime factor, which makes K not �nitely everywhere

unrami�ed. Thus K = Q. �

�

Thus, it remains to prove the local Kronecker–Weber theorem. The key input is the Hasse–Arf

theorem.
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Theorem 8.6 (Hasse–Arf theorem). LetK/L be a �nite abelian extension of local �elds. Then, the
jumps of rami�cation groups Gal(K/L)t in upper numbering happen at integers. Namely, if t ≥ −1
is such that Gal(K/L)t 6= Gal(K/L)t+ε for arbitrarily small number ε > 0, then t ∈ Z.

Proof. Omitted. It is still elementary but requires some clever ideas. �

Proof of the local Kronecker–Weber theorem, Theorem 8.2. We letQcyc
p =

⋃
n≥1Qp(ζn) andQp(ζp∞) =⋃

n≥1Qp(ζpn). We already know Qnr
p =

⋃
(n,p)=1Qp(ζn), so Qcyc

p = Qnr
p Qp(ζp∞), and Qnr

p ∩
Qp(ζp∞) = Qp. Let K/Qp be a �nite abelian extension. Then, we have a short exact sequence

1→ Gal(KQcyc
p /Qcyc

p )→ Gal(KQcyc
p /Qp(ζp∞))→ Gal(Qcyc

p /Qp(ζp∞))→ 1.

Note that Gal(Qcyc
p /Qp(ζp∞)) ∼= Gal(Qnr

p /Qp) ∼= Ẑ, so it is a free pro-cyclic group. Therefore,

by taking a lift of a topological generator 1 ∈ Ẑ (namely, the closure of the group generated by

the element is everything; in this speci�c case, this says that Z ⊂ Ẑ is dense), this short exact

sequence splits. Therefore, taking the �xed �eld of this lift, we obtain a �eld extensionF/Qp(ζp∞)
such that F ∩Qcyc

p = Qp(ζp∞) and FQcyc
p = KQcyc

p . As Qcyc
p = Qp(ζp∞)nr

, F ∩Qcyc
p = Qp(ζp∞)

means that F/Qp(ζp∞) and F/Qp are totally rami�ed
7

. Note that KQcyc
p is abelian over Qp, so

F/Qp is also abelian.

We claim that F = Qp(ζp∞), which will prove the local Kronecker–Weber theorem, as then

KQcyc
p = FQcyc

p = Qcyc
p . This will follow from the following elementary computation of rami�-

cation subgroups.

Lemma 8.7. The jumps (in upper numbering) of rami�cation subgroups of Gal(Qp(ζp∞)/Qp) hap-
pen at all nonnegative integers (except at the 0-th rami�cation subgroupwhen p = 2). More precisely,
for every n ∈ Z≥0, ∣∣∣∣ Gal(Qp(ζp∞)/Qp)

n

Gal(Qp(ζp∞)/Qp)n+1

∣∣∣∣ =

{
p− 1 if n = 0

p if n ≥ 1.

Proof. By the Hasse–Arf theorem (and the compatibility of upper numbering with taking quo-

tients), we know that the jumps happen at some integers. Thus this boils down to calculating

the jumps of Gal(Qp(ζpm)/Qp) ∼= (Z/pmZ)× for each m ≥ 1. Note that we have an explicit

uniformizer π := ζpm − 1 ∈ Qp(ζpm) that we can use. Recall that, if we normalize v(π) = 1,

then v(p) = ϕ(pm) = pm−1(p − 1). For a ∈ (Z/pmZ)×, let σa ∈ Gal(Qp(ζpm)/Qp) be such

that σa(ζpm) = ζapm . Then σa(π) − π = ζpm(ζa−1
pm − 1). Note that ζa−1

pm − 1 =
∑a−1

i=1 π
i
(
a−1
i

)
,

so v(σa(π) − π) = 1 if p 6 |(a − 1). Now we can conclude what the rami�cation subgroups are

in the case of m = 1 as any a ∈ (Z/pZ)× and p|(a − 1) means a = 1 is the identity. Namely,

Gal(Qp(ζp)/Qp) = Gal(Qp(ζp)/Qp)0 ⊃ Gal(Qp(ζp)/Qp)1 = {1}.
If p|(a− 1), then ζa−1

pm − 1 ≡
∑

1≤i≤a−1,p|i π
i
(
a−1
i

)
(mod p). So unless

(
a−1
p

)
is divisible by p,

we can conclude that v(ζa−1
pm − 1) = p. One sees elementarily that, under the assumption that

7
For a possibly in�nite extension of local �elds K/L, we say K/L is totally rami�ed if the maximal unrami�ed

subextension is L.
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p|(a − 1),

(
a−1
p

)
is divisible by p i� p2|(a − 1). Now we can �nish the calculation in the case of

m = 2;

Gal(Qp(ζp2)/Qp)0 = (Z/p2Z)×,

Gal(Qp(ζp2)/Qp)1 = · · · = Gal(Qp(ζp2)/Qp)p−1 = {a ∈ (Z/p2Z)× : a ≡ 1 (mod p)},

Gal(Qp(ζp2)/Qp)p = · · · = {1}.

If p2|(a− 1), then ζa−1
pm − 1 ≡

∑
1≤i≤a−1,p2|i π

i
(
a−1
i

)
(mod p). We apply the same argument, and

the pattern is the same. One concludes that, for a general m, we have

Gal(Qp(ζpm)/Qp)0 = (Z/pm)×,

Gal(Qp(ζpm)/Qp)1 = · · · = Gal(Qp(ζpm)/Qp)p−1 = {a ∈ (Z/pmZ)× : a ≡ 1 (mod p)},

· · · ,

Gal(Qp(ζpm)/Qp)pi−1 = · · · = Gal(Qp(ζpm)/Qp)pi−1 = {a ∈ (Z/pmZ)× : a ≡ 1 (mod pi)},

· · · ,

Gal(Qp(ζpm)/Qp)pm−1 = · · · = {1}.

Now we compute the upper numbering. Note that the jumps (i.e. n such that Gal(Qp(ζpm)/Qp)n 6=
Gal(Qp(ζpm)/Qp)n+1) happen exactly at 0, p− 1, · · · , pm−1 − 1. We compute

φQp(ζpm )/Qp(p
i − 1) =

p− 1

p− 1
+

(p2 − 1)− (p− 1)

p(p− 1)
+ · · ·+ (pi − 1)− (pi−1 − 1)

pi−1(p− 1)
= i.

These computations altogether imply the Lemma. �

Why is this useful? It’s because these numbers are optimal!

Lemma 8.8. Let K/L be a totally rami�ed abelian extension. Let p ⊂ OL be the maximal ideal,
and let q be the order of the residue �eld of L. Then,∣∣∣∣ Gal(K/L)n

Gal(K/L)n+1

∣∣∣∣ ≤
{
q − 1 if n = 0

q if n ≥ 1.

Proof. Suppose �rst that K/L is �nite, and let π be a uniformizer of K . Then, we have a group

homomorphism

Gal(K/L)0 → F×q , σ 7→ σ(π)

π
(mod p).

This is a well-de�ned group homomorphism that does not depend on the choice of π, and the

kernel is exactly Gal(K/L)1, which implies that Gal(K/L)0/Gal(K/L)1 embeds into a subgroup

of F×q . For m ≥ 1, we have a similar group homomorphism

Gal(K/L)m → Fq, σ 7→ σ(π)

π
− 1 (mod πm+1),
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which is a well-de�ned group homomorphism that does not depend on the choice of π, and the

kernel is exactly Gal(K/L)m+1. Thus, Gal(K/L)m/Gal(K/L)m+1 embeds into a subgroup ofFq.
As we already know the jumps in upper numbering happen at integers by the Hasse–Arf theorem,

the Lemma follows, in the case when K/L is �nite. The case of in�nite extension follows from

the case of �nite extensions and the compatibility of upper numbering with taking quotients. �

Note that the compatibility of upper numbering with taking quotients imply that, for any

s ≥ 0,

Gal(Qp(ζp∞)/Qp)
s =

Gal(F/Qp)
s

Gal(F/Qp)s ∩Gal(F/Qp(ζp∞))
.

Thus, for n ≥ 0,∣∣∣∣ Gal(Qp(ζp∞)/Qp)
n

Gal(Qp(ζp∞)/Qp)n+1

∣∣∣∣ ≥ ∣∣∣∣ Gal(F/Qp)
n

Gal(F/Qp)n+1

∣∣∣∣ =

∣∣∣∣ Gal(Qp(ζp∞)/Qp)
n

Gal(Qp(ζp∞)/Qp)n+1

∣∣∣∣ ∣∣∣∣ Gal(F/Qp)
n ∩Gal(F/Qp(ζp∞))

Gal(F/Qp)n+1 ∩Gal(F/Qp(ζp∞))

∣∣∣∣ ,
which implies that

∣∣∣ Gal(F/Qp)n∩Gal(F/Qp(ζp∞ ))

Gal(F/Qp)n+1∩Gal(F/Qp(ζp∞ ))

∣∣∣ = 1, or Gal(F/Qp)
n∩Gal(F/Qp(ζp∞)) = Gal(F/Qp)

n+1∩
Gal(F/Qp(ζp∞)) for all n ≥ 0. As F/Qp is totally rami�ed, Gal(F/Qp(ζp∞)) ⊂ Gal(F/Qp) =
Gal(F/Qp)

0
. Therefore, for everyn, Gal(F/Qp(ζp∞)) ⊂ Gal(F/Qp)

n
. This implies that Gal(F/Qp(ζp∞)) =

{1}; if there is a nontrivial element, then this comes from some �nite layer, which should not be

contained in an N -th rami�cation group (in upper numbering) for a large enough N � 0. This

shows that F = Qp(ζp∞), as desired. �

Remark 8.9. The point of the above argument was that there was an explicit totally rami�ed ex-

tension that has optimal numbers for the rami�cation subgroups. For a more general local �eld, a

Lubin–Tate extension will do the job. In fact, one can use the same argument to derive the en-

tirety of the local class �eld theory from the Lubin–Tate theory without using any cohomological

arguments.

9. Local class field theory: verification of the class formation axioms

We now wrap up the proof of cohomological part of the local class �eld theory. We already

veri�ed Axiom 1 of the two class formation axioms (Theorem 4.14), and Axiom 2 is Theorem

4.20, which we prove here.

Proof of Theorem 4.20. We exhibit a proof that works for characteristic 0 local �elds.

LetL/K be a �nite Galois extension of local �elds of degreen, and letM/K be an unramified

extension of the same degree n. By Theorem 4.14 and the in�ation-restriction exact sequence,

we have two injective maps

Inf : Br(M/K) ↪→ Br(ML/K), Inf : Br(L/K) ↪→ Br(ML/K).

Note that we already know that Br(M/K) ∼= Z/nZ as M/K is unrami�ed. We will prove

Theorem 4.20 by showing that the images of two in�ation maps coincide in Br(ML/K); in this

way, we know that Br(L/K) not only is isomorphic to Z/nZ but also is canonically so via the

invariant map we borrow from Br(M/K).
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Firstly, we show that im(Inf : Br(L/K) ↪→ Br(ML/K)) ⊃ im(Inf : Br(M/K) ↪→ Br(ML/K)).

We may use the in�ation-restriction exact sequence

0→ Br(L/K)
Inf−→ Br(ML/K)

Res−−→ Br(ML/L),

so the claim is equivalent to ker(Res : Br(ML/K) → Br(ML/L)) ⊃ im(Inf : Br(M/K) ↪→
Br(ML/K)), or that the composition Br(M/K)

Inf−→ Br(ML/K)
Res−−→ Br(ML/L) is zero.

We �rst assume that L/K is totally rami�ed. Then, L/K and M/K are linearly disjoint,

and Gal(ML/L) ∼= Gal(M/K) by restricting to M . One can check easily by hand on the

level of cocycles that the composition map Br(M/K) → Br(ML/L) coincides with the map

H2(Gal(M/K),M×) → H2(Gal(ML/L),ML×), induced by the natural inclusion M× →
ML× and the canonical identi�cation Gal(M/K) ∼= Gal(ML/L). As Gal(M/K) ∼= Gal(ML/L)
is a �nite cyclic group, this map is the same as the corresponding map in H0

T by the periodicity.

Thus, we are reduced to showing that the natural map

K×/NM/K(M×)→ L×/NML/L(ML×),

is zero. We know what both sides are, as bothM/K andML/L are unrami�ed. Namely, both are

cyclic groups of order n generated by the respective uniformizers πK ∈ K and πL ∈ L. However

πK = uπnL for u ∈ O×L , as L/K is totally rami�ed. As O×L ⊂ NML/L(ML×), this implies that πK
is sent to zero by the map, which implies that the map is zero, as desired.

In the general case of L/K , take the maximal unrami�ed subextension U/K of L/K . Then,

naturally U/K is also a subextension of M/K (as M/K is the unrami�ed extension of degree

n). By again Theorem 4.14 and the in�ation-restriction exact sequence, by the in�ation map,

Br(U/K) embeds into both Br(M/K) and Br(L/K), and at least the composition Br(M/K)
Inf−→

Br(ML/K)
Res−−→ Br(ML/L) sends those coming from Br(U/K)

Inf−→ Br(M/K) to zero as the

composition Br(U/K)
Inf−→ Br(M/K)

Inf−→ Br(ML/K)
Res−−→ Br(ML/L) is the same as the

composition Br(U/K)
Inf−→ Br(L/K)

Inf−→ Br(ML/K)
Res−−→ Br(ML/L) and the latter com-

position goes through the in�ation-restriction exact sequence for ML/L/K . Now the veracity

of whether the composition Br(M/K)
Inf−→ Br(ML/K)

Res−−→ Br(ML/L) is zero or not can be

checked by sending coker(Inf : Br(U/K) → Br(M/K)) injectively into Br(M/U) which is

again the in�ation-restriction exact sequence. Namely, the claim for L/K follows from the claim

for L/U , which is totally rami�ed, which we already showed (this requires checking various

compatibilities which are left as an exercise to the reader).

Thus, we have shown one inclusion. To show the other inclusion, it su�ces to show that

# Br(L/K) ≤ n. Note that, if L/M/K is any subextension where M/K is Galois, then again

by Theorem 4.14 and the in�ation-restriction exact sequence, 0 → Br(M/K) → Br(L/K) →
Br(L/M) implies that # Br(L/K) ≤ # Br(M/K) Br(L/M). Thus, we can use an induction

on n and reduce proving # Br(L/K) ≤ n in the case when Gal(L/K) has no proper nontrivial

normal subgroup. However, by the consideration of the rami�cation subgroups, we know that the

Galois group of local �elds is always solvable. Thus, this means that we are reduced to proving

# Br(L/K) ≤ n when L/K is a cyclic Galois extension of prime degree.
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We now prove that # Br(L/K) = n when L/K is cyclic, which will �nish the proof of

Theorem 4.20. As now Gal(L/K) is cyclic, we can use the periodicity of Tate cohomology, and

in particular the Herbrand quotient. By Theorem 4.14, what we want to prove is the same as

h(L×) = n. Using the short exact sequence of Gal(L/K)-modules 1 → O×L → L×
ord−−→ Z → 0,

we have h(L×) = h(O×L )h(Z). We know H0
T (Gal(L/K),Z) = Z/nZ and H1

T (Gal(L/K),Z) =
HomGrp(Gal(L/K),Z) = 1, so h(Z) = n. Therefore, it su�ces to show that h(O×L ) = 1.

We show this in a few steps. By the normal basis theorem, there isx ∈ L such that {σ(x) : σ ∈
Gal(L/K)} is a K-basis of L. We may multiply x with a nonzero element in K , so we may as-

sume that x ∈ pOK , where p is the characteristic of the residue �eld of K (i.e. K is a �nite

extension of Qp). Let V :=
⊕

σ∈Gal(L/K)OKσ(x) ⊂ OL. Then, V as a Gal(L/K)-module is

isomorphic to Ind
Gal(L/K)
{1} OK , so V is acyclic. In particular, h(V ) = 1.

Now consider the exponential and the logarithm maps

exp : pOL → 1 + pOL, log : 1 + pOL → pOL,

de�ned as

exp(x) :=
∞∑
i=0

xi

i!
, log(1 + x) :=

∞∑
i=1

(−1)i−1x
i

i
.

Note that the divisibility constraints make sure that these in�nite sums converge and also that

exp ◦ log and log ◦ exp are identity maps. Therefore, pOL and 1+pOL are isomorphic as Gal(L/K)-

modules (log and exp give explicit isomorphisms in both ways). In particular, exp(V ) ⊂ 1 +

pOL ⊂ O×L is also acyclic, and h(exp(V )) = 1. Therefore, h(O×L ) = h(exp(V ))h
(
O×L

exp(V )

)
=

h
(
O×L

exp(V )

)
. Now

O×L
exp(V )

, as an abelian group, is a �nite abelian group, so H0
(

Gal(L/K),
O×L

exp(V )

)
andH0

(
Gal(L/K),

O×L
exp(V )

)
are also �nite abelian groups. Therefore, #H−1

T

(
Gal(L/K),

O×L
exp(V )

)
=

#H0
T

(
Gal(L/K),

O×L
exp(V )

)
as they are respectively the kernel and the cokernel of the same group

homomorphism N : H0

(
Gal(L/K),

O×L
exp(V )

)
→ H0

(
Gal(L/K),

O×L
exp(V )

)
between �nite abelian

groups of the same order (they are of the same order as they are respectively the cokernel and

the kernel of the same group homomorphism σ− 1 :
O×L

exp(V )
→ O×L

exp(V )
, where σ ∈ Gal(L/K) is a

generator). Therefore, h
(
O×L

exp(V )

)
= 1, which �nishes the proof. �

10. Lubin–Tate theory: Explicit class field theory for local fields

We are left with the “ε” of the local class �eld theory, namely the local existence theorem

(and how the local class �eld theory detects rami�cation on both sides). One may abstractly

verify (*), but rather than doing so, we show the local existence theorem by showing that there

is an Explicit class field theory for all local �elds. Namely, we can explicitly construct the

analogues of Qp(ζp∞) (which played an important role in the local Kronecker–Weber theorem)

for all local �elds. An idea is that Qp(ζp∞) is obtained by adjoining ζpm for m ≥ 1, which is a

solution to the equationXpm = 1. This has the special property thatXpm+1
= 1 is obtained from
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Xpm = 1 by plugging Xp
into Xpm = 1. Furthermore, the powers of ζpm form a multiplicative

group. A streamlined way of thinking about these facts is as follows.

• Let Qp be an algebraic closure of Qp and let mQp ⊂ OQp be the maximal ideal (i.e. any

element ofQp with positive valuation). Then, 1 +mQp is a multiplicative group. It’s more

natural to think of (1+mQp ,×) instead as mQp with a multiplication law x ·y = x+y+xy

(so that (1 + x)(1 + y) = 1 + (x+ y + xy)).

• Furthermore, there is a group homomorphism ψ : (1 + mQp ,×)→ (1 + mQp ,×) de�ned

by ψ(a) = ap. In terms of the other multiplication law (mQp , ·), the formula is ψ(x) =

(x+ 1)p − 1.

• The �eld Qp(ζp∞) is obtained by adjoining the roots of ψ ◦ ψ ◦ · · · ◦ ψ(x) = 0 (when ψ is

regarded as an endomorphism of (mQp , ·)).

We will see that this can be done in much general context, which is called the Lubin–Tate theory.

10.1. Formal group laws.

De�nition 10.1 (Formal group law). Let A be a commutative ring. Then a formal power series

in two variables F (X, Y ) ∈ A[[X, Y ]] is called a (commutative) formal group law if it behaves

like a formula for a multiplication law of an abelian group, whenever the formula makes sense,

and if it is not “too far from” the easiest formula X · Y 7→ X + Y . To be more precise, it has to

satisfy the following properties.

(1) F (X, Y ) ≡ X + Y (mod(X2, XY, Y 2)). In particular, F (0, 0) = 0, so you can put

F (X, Y ) as an argument into a formal power series (think about how you would com-

pose two formal power series).

(2) (associativity) As elements of A[[X, Y, Z]], F (X,F (Y, Z)) = F (F (X, Y ), Z).

(3) (commutativity) F (X, Y ) = F (Y,X).

(4) (identity) F (0, Y ) = Y , F (X, 0) = X .

(5) (inverses) There exists a unique i(X) ∈ A[[X]] such that F (X, i(X)) = 0 (necessarily

i(X) ∈ XA[[X]]).

Example 10.2. (1) F (X, Y ) = X+Y is a formal group law, called the additive group law.

(2) F (X, Y ) = X + Y +XY is a formal group law, called the multiplicative group law.

De�nition 10.3. The setup that we are interested in is when A = OK for a local �eld K (or an

algebraic extension of a local �eld, such as Knr
, K , Ksep

, etc.). If mK ⊂ OK is the maximal ideal,

then for a, b ∈ mK , the in�nite sum F (a, b) converges and de�nes an element of mK . Therefore,

given a formal group law F (X, Y ), it de�nes the structure of an abelian group over the set mK .

We denote the abelian group de�ned by this procedure as F (mK).
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De�nition 10.4 (Homomorphism between formal group laws). Continuing abstractly, given two

formal group laws F (X, Y ), G(X, Y ) ∈ A[[X, Y ]], one can axiomatize what it means for f(X) ∈
A[[X]] to de�ne a formula for a homomorphism from the group de�ned using F (X, Y ) to the

group de�ned using G(X, Y ). Namely, we call f(X) ∈ A[[X]] a homomorphism from F to G
if it satis�es

(1) f(0) = 0 (i.e. f(X) ∈ XA[[X]]),

(2) and, as elements of A[[X, Y ]], f(F (X, Y )) = G(f(X), f(Y )).

If F = G, we also call f an endomorphism of F . Using this, it also makes sense to de�ne what

it means for two formal group laws to be isomorphic.

Let Hom(F,G) be the set of all homomorphisms from F,G. This set has a natural abelian

group structure, de�ned by f + g := G(f(X), g(X)). This is a homomorphism from F to G as

G(f(F (X, Y )), g(F (X, Y ))) = G(G(f(X), f(Y )), G(g(X), g(Y )))

= G(G(f(X), g(X)), G(f(Y ), g(Y ))) = G((f + g)(X), (f + g)(Y )),

by the commutativity/associativity of G(X, Y ).

Let End(F ) be the set of all endomorphisms of F . In addition to the abelian group structure

de�ned above, it has a structure of a (not necessarily commutative) ring, de�ned by f ·g := f ◦g.

It is easy to see that End(F ) is closed under composition, and it gives rise to a ring structure as

f ◦ (g + h) = f ◦ g + f ◦ h and (f + g) ◦ h = f ◦ h+ g ◦ h (+ as de�ned above).

Exercise 10.1. Check this.

Example 10.5. (1) For the additive group law F (X, Y ) = X+Y , f(X) = aX for any a ∈ A
de�nes an endomorphism of F ;

f(F (X, Y )) = a(X + Y ) = F (aX, aY ) = F (f(X), f(Y )).

(2) For the multiplicative group law F (X, Y ) = X +Y +XY , f(X) = (X + 1)n− 1 for any

n ∈ N de�nes an endomorphism of F ;

f(F (X, Y )) = (XY+X+Y+1)n−1 = (X+1)n(Y+1)n−1 = (f(X)+1)(f(Y )+1)−1 = F (f(X), f(Y )).

(3) Actually, the example (2) also works for more general exponent n ∈ A, if we de�ne

f(X) = (X + 1)n − 1 as instead

∑∞
i=1

(
n
i

)
X i

, as long as we know

(
n
i

)
∈ A for every

i ≥ 1.

Exercise 10.2. If A = OK for (an algebraic extension of) a local �eld K , show that(
a
k

)
∈ OK for any a ∈ OK and k ∈ N.

Therefore, if A = OK , for the multiplicative group law F , there is an injective ring

homomorphism A → End(F ) (Exercise: check that this respects addition and multi-

plication); there are a lot of endomorphisms of End(F ). Having a group law with a big

endomorphism ring is what we are looking for in general; see also the CM theory later in

the course.
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Now we restrict our attention to the case when A = OK . Then, there is a surprising unique-

ness theorem for a formal group law with a particular type of an endomorphism and big endo-

morphism group.

Theorem10.6 (Lubin–Tate formal group law). LetK be a local �eld, whose residue �eld is the �nite
�eld Fq. Let π ∈ K be a uniformizer. Then, there is a formal group law F (X, Y ) ∈ OK [[X, Y ]],
unique up to isomorphism, satisfying the following conditions.

(1) There is an injective ring homomorphism [·] : OK → End(F ), such that [a] ≡ aX (modX2)
for every a ∈ OK . In particular, End(F ) is naturally an OK-algebra.

(2) The endomorphism [π] ∈ End(F ), a formal power series in one variable, satis�es the con-
gruence condition [π] ≡ Xq (mod π).

In fact, you can set [π] to be any formal power series inOK [[X]] satisfying [π] ≡ πX (modX2) and
[π] ≡ Xq (mod π). Namely, for any f(X) ∈ OK [[X]] satisfying these conditions, there is a unique
(on the nose, as a formal power series) formal group law Ff (X, Y ) ∈ OK [[X, Y ]] satisfying (1), (2)
(and Ff ∼= Fg for any choices of f, g satisfying these conditions). These formal group laws are called
the Lubin–Tate formal group laws.

Proof. A key is the following lemma.

Lemma 10.7. Let f(X), g(X) ∈ OK [[X]] be two formal power series satisfying the above two
congruence conditions (i.e. congruent to πX (modX2) and Xq (mod π)). Let a1, · · · , an ∈ OK .
Then, there exists a unique formal power series F (X1, · · · , Xn) ∈ OK [[X1, · · · , Xn]] in n vari-
ables, such that F (X1, · · · , Xn) = a1X1 + · · ·+ anXn + (higher order terms), and, as elements of
OK [[X1, · · · , Xn]],

f(F (X1, · · · , Xn)) = F (g(X1), · · · , g(Xn)).

Proof. The idea is simple. Namely, you inductively �nd the coe�cients for F . For example, what

are the second-order terms of F ? Suppose F (X1, · · · , Xn) =
∑n

i=1 aiXi +
∑

1≤i≤j≤n aijXiXj

for some unknown aij ∈ OK . Let f(X) =
∑∞

i=1 biX
i
, and g(X) =

∑∞
i=1 ciX

i
. Note that

b1 = c1 = π. Then, looking at the identity f(F (X1, · · · , Xn)) = F (g(X1), · · · , g(Xn)) modulo

third degree terms, we get

π(
n∑
i=1

aiXi +
∑

1≤i≤j≤n

aijXiXj) + b2(
n∑
i=1

aiXi)
2 =

n∑
i=1

ai(πXi + c2X
2
i ) +

∑
1≤i≤j≤n

aijπ
2XiXj.

The �rst order terms coincide, and comparing the second order terms, the coe�cients of XiXj

on both sides are

πaij + 2b2aiaj = aijπ
2,

if i < j, and

πaii + b2a
2
i = aic2 + aiiπ

2,
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if i = j. In any case, we are given an explicit formula for each aij , namely

aij =

{
2b2aiaj
π2−π if i < j
b2a2

i−aic2
π2−π if i = j.

So indeed you can �nd the second order terms explicitly. You may then convince yourself that

the formula for the n-th order term has πn−π as its denominator, so the formal power series can

be found uniquely. �

Using Lemma 10.7, given f(X) ∈ OK [[X]] such that f(X) ≡ πX (modX2) and f(X) ≡
Xq (mod π), one can �rst �nd a unique Ff (X, Y ) ∈ OK [[X, Y ]] such that f(Ff (X, Y )) =
Ff (f(X), f(Y )). One can use the same Lemma to show all the axioms for proving that Ff (X, Y )
is a formal group law. For example, the commutativity Ff (X, Y ) = Ff (Y,X) follows from

that both Ff (X, Y ) and Ff (Y,X) satisfy the same conditions of Lemma 10.7 so they must be

equal by the uniqueness. Similarly, the associativity Ff (X,Ff (Y, Z)) = Ff (Ff (X, Y ), Z) fol-

lows from Lemma 10.7 applied to f = g and a formal power series in three variables congruent

to X + Y + Z (mod higher order terms).

Showing the formal group law axioms is straightforward except the existence of inverse. For

that, we realize that we may apply Lemma 10.7 to f = g and a formal power series in one variable

congruent to−X (modX2). Namely, there is [−1]f ∈ OK [[X]] such that [−1]f ≡ −X (modX2)
and f([−1]f (X)) = [−1]f (f(X)). Then, [−1]f is the desired inverses map, as Ff (X, [−1]f (X))
is the unique formal power series congruent to 0 (modX2) and commute with f , i.e.

f(Ff (X, [−1]f (X))) = Ff (f(X), f([−1]f (X))) = Ff (f(X), [−1]f (f(X))),

so by uniqueness Ff (X, [−1]f (X)) = 0. This shows that Ff (X, Y ) de�nes a formal group law

which has f(X) ∈ End(F ). Furthermore, the same logic implies that, for each a ∈ OK , one can

�nd [a]f ∈ End(F ), and in particular [π]f = f(X) by the uniqueness part of Lemma 10.7. Thus,

this shows the existence and the uniqueness of Ff .

It remains to show that the isomorphism class of Ff is independent of choice of f(X). Let

Fπ = {g(X) ∈ OK [[X]] : g(X) ≡ πX (modX2), g(X) ≡ Xq (mod π)}.

We want to show that, for any f(X), g(X) ∈ Fπ, Ff ∼= Fg. By applying Lemma 10.7 to f, g
and a formal power series in one variable congruent to aX (modX2) for a ∈ OK , we see that

there is a unique [a]f,g(X) ∈ OK [[X]] for each a ∈ OK such that [a]f,g(X) ≡ aX (modX2) and

f([a]f,g(X)) = [a]f,g(g(X)). By the similar argument as above, this de�nes a homomorphism

[a]f,g : Fg → Ff . Furthermore, by applying the smae Lemma in a similar way, it is easy to

see that [a + b]f,g = [a]f,g +Ff [b]f,g for any a, b ∈ OK , where +Ff is the group law for Ff .

Also, for yet another h(X) ∈ Fπ, the similar reasoning shows [ab]h,f = [a]h,g ◦ [b]g,f for any

a, b ∈ OK . Therefore, we see that, for a ∈ O×K , [a]f,g and [a−1]g,f are inverses to each other, as

[1]f,f (X) = [1]g,g(X) = X by the same uniqueness reasoning. Thus, Ff ∼= Fg for any f, g ∈ Fπ
as desired. �

We will freely use the notations used in the proof of Theorem 10.6 (e.g. Fπ, Ff , [a]f ).
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10.2. Lubin–Tate extensions. Now we de�ne the Lubin–Tate extensions just like you de�ne

Qp(ζp∞) from the multiplicative formal group law over Qp.

Theorem 10.8 (Lubin–Tate extensions). Let π be a uniformizer of a local �eld K . Let f ∈ Fπ,
and let Ff be the corresponding Lubin–Tate formal group law (note that [π]f = f ). Let Ksep be the
separable closure of K , and let mKsep be the maximal ideal of OKsep .

(1) For n ≥ 1,

mKsep [f ◦n] := {a ∈ mKsep : f ◦n(a) :=f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(a) = 0},

is an OK-submodule of mKsep , and is isomorphic to OK/(πn).

(2) The �eldKπ,n := K(mKsep [f ◦n]), obtained by adjoining the elements ofmKsep [f ◦n] withK ,
is an algebraic extension of K , independent of choice of f ∈ Fπ.

(3) The �eld Kπ,n is a totally rami�ed �nite abelian extension over K , such that the action of
OK onmKsep [f ◦n] gives rise to an isomorphism (OK/(πn))×

∼−→ Gal(Kπ,n/K). The in�nite
extensionKπ :=

⋃
n≥1Kπ,n is an abelian extension where Gal(Kπ/K) ∼= O×K , and is called

the Lubin–Tate extension (with respect to the choice of a uniformizer π).

(4) For each n ≥ 1, π ∈ NKπ,n/K(K×π,n).

Proof. (1) First suppose the case f(X) = πX + Xq
, which is certainly an element of Fπ.

Then, f ◦n(X) is a degree qn polynomial, so the set mKsep [f ◦n] is a �nite set of order ≤ qn

by the fundamental theorem of algebra. We show that #mKsep [f ◦n] = qn by induction

on n. Suppose that #mKsep [f ◦(n−1)] = qn−1
. Then, mKsep [f ◦n] consists of elements a ∈

mKsep such that aq + πa ∈ mKsep [f ◦(n−1)]. Therefore, it su�ces to show that, for each

b ∈ mKsep [f ◦(n−1)], Xq + πX − b = 0 has q distinct roots. Let v : Ksep → Q be the

extension of the normalized valuation on K (so that v(π) = 1). If v(b) > 1, then f(b) =
πb + bq, so we have v(f(b)) = qv(b), · · · , v(f ◦(n−1)(b)) = qn−1v(b), which implies that

f ◦(n−1)(b) 6= 0. Therefore, v(b) ≤ 1, which means that the polynomial Xq + πX − b is

Eisenstein (overK(b)), so it is irreducible, and its q roots are distinct, as desired. Therefore,

#mKsep [f ◦n] = qn. It is easy to see that mKsep [f ◦n] is stable under the OK-action, and it

is a cyclic module generated by any element in mKsep [f ◦n]\mKsep [f ◦(n−1)], which implies

that it is isomorphic to OK/(πn) as an OK-module.

For a general g ∈ Fπ, note that [1]g,f : Ff → Fg gives rise to an isomorphism of for-

mal group laws, with the inverse given by [1]f,g : Fg → Ff . So [1]g,f : mKsep [f ◦n]
∼−→

mKsep [g◦n], and it’s easy to see that this respects the OK-action on both sides.

(2) As an element of mKsep [g◦n] is obtained by applying [1]g,f to an element of mKsep [f ◦n], and

as [1]g,f ∈ OK [[X]], any element of mKsep [g◦n] is contained inK(mKsep [f ◦n]). The reverse

logic gives the reverse containment, implying that K(mKsep [f ◦n]) = K(mKsep [g◦n]). We

know that K(mKsep [f ◦n]) is an algebraic extension for f(X) = πX +Xq
.
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(3) We choose f(X) = πX + Xq
. Let b1 be a nonzero root of f(X), and let bn be a root of

f(X) − bn−1 (inductively de�ned). Then bn ∈ mKsep [f ◦n]\mKsep [f ◦(n−1)]. On the other

hand, as noted above, f(X) − bn−1 is Eisenstein over K(bn−1), so K(bn)/K(bn−1) is a

totally rami�ed extension of degree q. Similarly, as b1 is a root of π+Xq−1
, which is again

Eisenstein, K(b1)/K is totally rami�ed of degree q − 1. Therefore, K(bn)/K is totally

rami�ed of degree qn−1(q − 1). This implies that [Kπ,n : K] ≥ qn−1(q − 1). On the other

hand, Kπ,n is the splitting �eld of f ◦n (by de�nition), and Kπ,n/K is Galois (f [n]
is easily

seen to be separable). As all group laws are de�ned over K , the action by any element

of Gal(Kπ,n/K) on the roots of f ◦n will preserve the OK-module structure. Therefore,

Gal(Kπ,n/K) ⊂ AutOK (mKsep [f ◦n]) = AutOK (OK/(πn)) = (OK/(πn))×, which implies

that [Kπ,n : K] ≤ qn−1(q − 1). Therefore, Kπ,n = K(bn−1) is totally rami�ed of degree

qn−1(q − 1), and we also obtain the description of the Galois group.

(4) Let f [n] := f
X
◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n− 1 times

. Then, f [n](bn) = 0. As v(bn) = 1
qn−1(q−1)

, the degree of the

minimal polynomial of bn over K is ≥ qn−1(q − 1), so it must be the case that f [n]
is

the minimal polynomial of bn over K . As the constant term of f [n]
is π, NKπ,n/K(bn) =

(−1)(q−1)qn−1
π. This shows that π ∈ NKπ,n/K(K×π,n) unless q = 2m and n = 1. In this

exceptional case, we rather have shown that−π is in the norm group. On the other hand,

in this case, Kπ,1/K is totally tamely rami�ed and −2 ∈ 1 + πOK , so by Proposition 1.3,

1− 2 = −1 is in the norm group NKπ,1/K(K×π,1). Therefore, π is still in the norm group.

�

Example 10.9. Let K = Qp and π = p. Then, there is a particularly nice choice of f ∈ Fπ:

f(X) = (X + 1)p − 1 = pX +
(
p
2

)
X2 + · · ·+Xp

. Then f ◦n(X) = (X + 1)p
n − 1, so mKsep [f ◦n]

consists of ζmpn − 1 for 1 ≤ m ≤ pn, and Kπ,n = Qp(ζpn).

Example 10.10. It is important to note thatKπ,n andKπ depend on the choice of π. For example,

let K = Q2. Then, just as computed above, when you choose π = 2 and n = 2, K2,2 = Q2(ζ4) =
Q2(
√
−1). On the other hand, when you choose π = −2 and n = 2, K−2,2 is the splitting �eld

of g ◦ g(X), where g(X) = −2X +X2
. Note that

g(g(X)) = g(X)(g(X)− 2) = X(X − 2)(X2 − 2X − 2) = X(X − 2)((X − 1)2 − 3),

so K−2,2 = Q2(
√

3). There are many ways to see that Q2(
√
−1) and Q2(

√
3) are di�erent;

for example, 3 /∈ NQ2(
√
−1)/Q2

(Q2(
√
−1)×), because x2 + y2 6= 3 for any x, y ∈ Z2 by mod 4

considerations, whereas obviously 3 ∈ NQ2(
√

3)/Q2
(Q2(
√

3)×).

10.3. Wrapping up the proof of the local class �eld theory. As promised, we will show that

the Lubin–Tate extension Kπ has the similar rami�cation properties as Qp(ζp∞).

Theorem10.11. The jumps (in upper numbering) of rami�cation subgroups ofGal(Kπ/K) happen
at all nonnegative integers (except at the 0-th rami�cation subgroup when q = 2). More precisely,
for every n ∈ Z≥0, ∣∣∣∣ Gal(Kπ/K)n

Gal(Kπ/K)n+1

∣∣∣∣ =

{
q − 1 if n = 0

q if n ≥ 1.
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Proof. The pattern is very similar to the computation of the rami�cation subgroups in the case of

Qp(ζp∞)/Qp. Note that Gal(Kπ,n/K) ∼= (OK/(πn))×, and this has natural subgroups Gal(Kπ,n/Kπ,m) =
{x ∈ (OK/(πn))× : x ≡ 1 (modπm)}. Also, we know that Kπ,n = K(bn) where bn ∈
mKsep [f ◦n]\mKsep [f ◦(n−1)] for a choice of f ∈ Fπ, and bn is a uniformizer of Kπ,n. We claim

that if σ ∈ Gal(Kπ,n/Kπ,m)\Gal(Kπ,n/Kπ,m+1), then v(σ(bn) − bn) = qm (where v(bn) = 1,

Kπ,0 = K). The same kind of computation as in the proof of local Kronecker–Weber theorem

will then give you the desired conclusion. The case of m = 0 follows from the fact that Kπ,1 is

the maximal tamely rami�ed subextension of Kπ by the degree reasons ([Kπ,1 : K] = q − 1 is

coprime to p, when q = pk for some prime number p).

Supposeσ ∈ Gal(Kπ,n/Kπ,m)\Gal(Kπ,n/Kπ,m+1). By using the identi�cation Gal(Kπ,n/K) ∼=
(OK/(πn))×, we see that σ corresponds to 1 +πmu for u ∈ O×K . Then σ(bn) = [1 +πmu]f (bn) =
Ff (bn, [π

mu]f (bn)) = Ff (bn, [u]f (bn−m)). Note that bn−m is a uniformizer of Kπ,n−m, and as [u]f
is invertible, [u]f (bn−m) is also a uniformizer of Kπ,n−m. In particular, as Kπ,n−m/Kπ,n is to-

tally rami�ed, v([u]f (bn−m)) = [Kπ,n−m : Kπ,n] = qm. Now note that Ff (X, Y ) = X + Y +
XYG(X, Y ) for some G(X, Y ) ∈ OK [[X, Y ]]. Therefore,

σ(bn)− bn = Ff (bn, [u]f (bn−m))− bn = [u]f (bn−m)+ bn[u]f (bn−m)G(bn, [u]f (bn−m))︸ ︷︷ ︸
divisible by bn · [u]f (bn−m)

.

Therefore, v(σ(bn)− bn) = v([u]f (bn−m)) = qm, as desired. �

Theorem 10.12 (Generalized local Kronecker–Weber theorem). For any uniformizer π ∈ K ,

Kab = KnrKπ.

Proof. The proof is exactly the same as the proof of the local Kronecker–Weber theorem. �

Remark 10.13. It is interesting to note that Kab
and Knr

does not depend on any choice but Kπ

does; we will see in the moment what this corresponds to on the norm group side.

We will now show that the Explicit class field theory, i.e. the generalized Kronecker–Weber

theorem, helps with clarifying the local class �eld theory. In fact, our goal is to show that we can

explicitly construct the local Artin reciprocity map. The key is the following lemma.

Lemma 10.14 (Lubin–Tate formal group laws become isomorphic over K̂nr
). Let K̂nr be the

completion8 of Knr. Then, for any uniformizers π, π′ ∈ K and f ∈ Fπ, f ′ ∈ Fπ′ , Ff and Ff ′
become isomorphic over K̂nr. More precisely, the following are true.

8
When you take an in�nite extension of a local �eld, it generally loses the completeness property. For example,

Knr
and Qp are not complete. Taking completion respects the original topology, so the in�nite Galois group stays

the same, e.g. Gal(K̂nr/K) ∼= Gal(Knr/K), Gal(Q̂p/Qp) ∼= Gal(Qp/Qp). The completion of the algebraic closure

of Qp, Q̂p, is also called Cp. It is not obvious but indeed true that the complete �eld Cp is also algebraically closed

(Cp is the completion of the algebraic closure, so a priori it is not clear whether Cp is algebraically closed, but in fact

it is). In some sense, Cp is the true p-adic analogue of the �eld of complex numbers C.
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(1) Let v : K̂nr → Z be continuously extended from v : Knr → Z and let OK̂nr = {x ∈
K̂nr : v(x) ≥ 0}. Then, the map OK̂nr → OK̂nr , b 7→ Frobq(b) − b, and the map
O×
K̂nr
→ O×

K̂nr
, b 7→ Frobq(b)/b, are surjective with the kernels equal to OK and O×K ,

respectively.

(2) Let π′ = uπ for u ∈ O×K , and let ε ∈ OK̂nr be such that Frobq(ε) = uε (which exists by (1)).
Then, there exists a unique power series ψε ∈ OK̂nr [[X]] satisfying the following conditions.

(a) ψε(X) ≡ εX (modX2).

(b) Frobq(ψε)(X) = ψε([u]f (X)), where Frobq acts on OK̂nr [[X]] coe�cientwise.

(c) Frobq(ψε)(f(X)) = g(ψε(X)).

(d) ψε(Ff (X, Y )) = Fg(ψε(X), ψε(Y )).

(e) ψε([a]f (X)) = [a]g(ψε(X)) for any a ∈ OK .

Thus, Ff and Fg are isomorphic over OK̂nr by ψε : Ff � Fg : ψε−1 .

Proof. (1) Let mKnr ⊂ OKnr and mK ⊂ OK be the maximal ideals. To show (1), it su�ces to

show that, for each n ≥ 1, the sequences

0→ OK/mn
K → OKnr/mn

Knr

b 7→Frobq(b)−b−−−−−−−−→ OKnr/mn
Knr → 0,

1→ (OK/mn
K)× → (OKnr/mn

Knr)×
b 7→Frobq(b)/b−−−−−−−→ (OKnr/mn

Knr)× → 1,

are exact, as OKnr = lim←−nOKnr/mn
Knr . We prove these by induction on n. In the case of

n = 1, the sequences are 0→ k → k
b 7→bq−b−−−−→ k → 0 and 1→ k× → k

× b7→bq−1

−−−−→ k
× → 1,

where k is the residue �eld of K (=residue �eld of Knr
), and they are obviously exact.

Assuming the sequences are exact for n− 1, we consider the diagrams

0 // OKnr/mKnr //

b 7→Frobq(b)−b
��

OKnr/mn
Knr

//

b 7→Frobq(b)−b
��

OKnr/mn−1
Knr

//

b 7→Frobq(b)−b
��

0

0 // OKnr/mKnr // OKnr/mn
Knr

// OKnr/mn−1
Knr

// 0,

1 // (1 + mn−1
Knr )/mn

Knr
//

��

(OKnr/mn
Knr)× //

b7→Frobq(b)/b

��

(OKnr/mn−1
Knr )× //

b 7→Frobq(b)/b

��

1

1 // (1 + mn−1
Knr )/mn

Knr
// (OKnr/mn

Knr)× // (OKnr/mn−1
Knr )× // 1.

What is the left vertical map of the second diagram? It sends 1 + x, x ∈ mn−1
Knr , to

Frobq(1+x)

1+x
= 1+Frobq(x)

1+x
. As (1 + x)(1 − x) = 1 − x2 ≡ 1 (modmKnr), the left ver-

tical map sends 1 + x to (1 + Frobq(x))(1 − x) = 1 + (Frobq(x) − x) (modmn
Knr).

Therefore, by the snake lemma, it follows that OKnr/mn
Knr

b 7→Frobq(b)−b−−−−−−−−→ OKnr/mn
Knr and
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(OKnr/mn
Knr)×

b7→Frobq(b)/b−−−−−−−→ (OKnr/mn
Knr)× are surjective, and the kernels are of the order

qn and q(qn−1 − qn−2) = qn − qn−1
, respectively. By comparing orders, we see that the

exact sequences are exact for n, as desired.

(2) We will inductively �nd the coe�cients forψε(X) =
∑∞

n=1 anX
n
; we already have a1 = ε.

Let [u]f (X) =
∑∞

n=1 bnX
n
, where b1 = u. Suppose that we know a1, · · · , an. Then, using

(b), comparing the coe�cients for Xn+1
, we have

Frobq(an+1) = an+1u+ (an expression using a1, · · · , an and bi’s).

Then, Frobq(an+1ε
−1) − an+1ε

−1 = (an expression using a1, · · · , an and bi’s), so de�-

nitely you can choose an+1 in the way that (a), (b) are satis�ed.

Let ψ be any formal power series that satis�es (a), (b). Let h(X) = Frobq(ψ)(f(ψ−1(X))),

where ψ−1(X) is the inverse of ψ(X) (i.e. ψ(ψ−1(X)) = ψ−1(ψ(X)) = X), which is pos-

sible asψ(X) ≡ εX (modX2). Note thath(X) = ψ([u]f (f(ψ−1(X)))) = ψ(f([u]f (ψ
−1(X)))).

As f(X) and [u]f (X) have coe�cients inOK , they are �xed by the action of Frobq. Thus,

Frobq(h)(X) = Frobq(ψ)(f([u]f (Frobq(ψ
−1)(X)))).

Note that Frobq(ψ)(X) = ψ([u]f (X)) implies that [u]f (Frobq(ψ
−1)(X)) = ψ−1(X), so

Frobq(h)(X) = Frobq(ψ)(f(ψ−1(X))) = h(X).

This implies that h(X) ∈ OK [[X]]. Note that h(X) ≡ Frobq(ε)πε
−1X = π′X (modX2)

and h(X) ≡ Frobq(ψ)(ψ−1(X)q) ≡ Frobq(ψ)(ψ−1(Xq)) ≡ Xq (modmK), so h ∈ Fπ′ .
Then, it is easy to see that ψε(X) := [1]g,h(ψ(X)) satis�es (a), (b), (c). Using Lemma

10.7, one can also easily show that ψε(Ff (ψ
−1
ε (X), ψ−1

ε (Y ))) satis�es the same character-

izing properties as Ff (X, Y ), and that ψε([a]f (ψ
−1
ε (X))) satis�es the same characterizing

properties as [a]g, so ψε satis�es (4) and (5).

�

Theorem 10.15 (Explicit local class �eld theory via Lubin–Tate extensions). Let K be a local
�eld, and let π ∈ K be a uniformizer. Then, the local Artin map ArtK : K× → Gal(Kab/K) is the
same as the map

fπ : K× = πZ ×O×K → Gal(Knr/K)×Gal(Kπ/K) = Gal(Kab/K),

where the two maps πZ → Gal(Knr/K)
∼−→ Gal(k/k) (k is the residue �eld of K , #k = q) and

O×K
∼−→ Gal(Kπ/K) are the maps π 7→ Frobq (i.e. Frobq ∈ Gal(k/k) sending x 7→ xq) and the

inverse of the OK-action map, i.e. u 7→ [u−1]f (for any f ∈ Fπ), respectively. In particular, fπ
does not depend on the choice of π.

Proof. By Theorem 10.8(4), we know that ArtK(π) is trivial when sent to Gal(Kab/K)� Gal(Kπ/K),

and is Frobq ∈ Gal(Knr/K) when sent to Gal(Knr/K)� Gal(Knr/K). Therefore, ArtK(π) =
fπ(π).
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Let π′ ∈ K be another uniformizer. We want to show that ArtK(π′) = fπ(π′). As we know

that they are both sent to Frobq ∈ Gal(Knr/K) via Gal(Kab/K) � Gal(Knr/K), we only

need to show that fπ(π′) is sent to 1 via Gal(Kab/K) � Gal(Kπ′/K). Let g ∈ Fπ′ and ψε :

Ff → Fg be an isomorphism over K̂nr
constructed in Lemma 10.14(2). It su�ces to show that

fπ(π′)(ψε(b)) = ψε(b) for every b ∈ mKsep [f ◦n], n ≥ 1. Note that fπ(π′) = fπ(u) ◦ fπ(π). As

fπ(π) acts trivially on b ∈ Kπ and acts as Frobq on Knr
, fπ(π)(ψε(b)) = Frobq(ψε)(b), as ψε has

coe�cients inOK̂nr . Therefore, fπ(π′)(ψε(b)) = fπ(u)(Frobq(ψε)(b)). As fψ acts trivially onKnr

and acts as [u−1]f on b ∈ Kπ, we have

fπ(π′)(ψε(b)) = fπ(u)(Frobq(ψε)(b)) = Frobq(ψε)([u
−1]f (b)) = ψε([u]f ([u

−1]f (X))) = ψε(X),

as desired. This implies that ArtK(π′) = fπ(π′) for any uniformizer π′ ∈ K . As any element of

K× is of the form π′πm for some uniformizer π′ and m ∈ Z, this implies that ArtK = fπ. �

Remark 10.16. We see that the choice of π is re�ected on the norm group side as the dependency

of the splitting K× = πZ × O×K on the choice of π. Namely, there is a short exact sequence

1 → O×K → K×
v−→ Z → 0 that does not depend on any choice, but this sequence splits, and

the choice of a splitting is the same as the choice of a uniformizer π, and ultimately the choice of

K× = πZ ×O×K .

The construction of the local Artin reciprocity gives you a very clean description of the norm

groups of the Lubin–Tate extensions.

Corollary 10.17. Let K be a local �eld, and π ∈ K be a uniformizer. Then NKπ,n/K(K×π,n) =

πZ × (1 + πnOK). In particular, for uniformizers π, π′ ∈ K , Kπ = Kπ′ implies that π = π′.

Proof. The former statement is immediate from the construction of the local Artin reciprocity.

The latter follows from that πZ =
⋃
n≥1NKπ,n/K(K×π,n) =

⋃
n≥1NKπ′,n/K

(K×π′,n) = π′Z. �

Now we can �nish all the unproved claims about the local class �eld theory.

Proof of Theorem 2.7, the Local Existence Theorem. The Local Existence Theorem is equivalent to

saying that ArtK restricted to O×K is sent isomorphically onto the inertia Gal(Kab/Knr) ⊂
Gal(Kab/K), which is obvious from Theorem 10.15. �

Proof of Theorem 2.9, on the relation between rami�cation and local Artin map. This follows from

the calculation of the upper numbering rami�cation subgroups of Kπ (Theorem 10.11) and the

fact that rami�cation subgroups only care about inertia subgroup (so indi�erent to unrami�ed

extensions). �

11. Analytic preliminaries for the proof of the global class field theory

The proof of the class formation axioms for global �elds (let’s focus on number �elds) is much

more convoluted. In fact, the two class formation Axioms will be proved simultaneously by much

more indirect methods. A rough outline is as follows.
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Step 1. ForL/K a �nite cyclic Galois extension of number �elds, we will show that the Herbrand

quotient h(CL) = [L : K]. This implies the First Inequality of global class �eld theory,

#H2(Gal(L/K), CL) ≥ [L : K].

Step 2. Using the analytic theory of L-functions, we will show that, for a �nite Galois extension

L/K of number �elds, the Second Inequality of global class �eld theory,

#H0
T (Gal(L/K), CL) ≤ [L : K].

This implies that H1(Gal(L/K), CL) = 0 and #H2(Gal(L/K), CL) = [L : K] for �nite

cyclic extensions L/K of number �elds.

Step 3. One shows that H1(Gal(L/K), CL) = 0 for just �nite cyclic extensions L/K implies the

full Axiom 1 (i.e. the same holds for any �nite Galois extensions).

Step 4. Using the Brauer group of number �elds, we will show the full Axiom 2. This will prove

the reciprocity law and the local-global compatibility.

Step 5. As usual, one proves ε more to prove the existence theorem.

The Second Inequality is arguably the most serious input in the proof of global class �eld theory.

Although there is a purely algebraic proof, we will deduce this in a more classical way by using

the analytic theory of L-functions.

11.1. L-functions.

De�nition 11.1 (Multiplicative characters of local �elds). Let F be a local �eld. A (multiplica-

tive) character of F× is a continuous homomorphism ψ : F× → C×. It is called unitary if the

image of ψ lands in S1 ⊂ C× (the subgroup of complex numbers of norm 1). It is called unram-

ified if ψ factors through the normalized absolute value (see De�nition 6.4) | · | : F× → |F×|.
Namely, if F is nonarchimedean, ψ is unrami�ed if ψ(O×F ) = 1; if F = R, ψ is unrami�ed if

ψ(±1) = 1; if F = C, ψ is unrami�ed if ψ(S1) = 1.

The following are easy.

Lemma 11.2. Let F be a local �eld.

(1) Every character χ of F× is of the form χ = η| · |t for some unitary character η of F× and
t ∈ C. The real part σ := Re(t) is uniquely determined by χ and is called the exponent of
χ.

(2) Every character of R× is equal to χa,t : R× → C× de�ned by χa,t(x) = x−a|x|t for a unique
pair of a ∈ {0, 1} and t ∈ C.

(3) Every character of C× is equal to χa,b,t : C× → C× de�ned by χa,b,t(z) = z−az−b|z|t for a
unique triple of a, b ∈ Z with min(a, b) = 0 and t ∈ C.
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Proof. Easy; Exercise. �

De�nition 11.3 (Hecke characters). Let K be a global �eld. A Hecke character (also called an

idele class character) is a continuous homomorphism χ : CK → C×. Equivalently, a Hecke

character is a continuous homomorphism χ : IK → C× that is trivial on K× ⊂ IK . For a place

v of K , let χv = χ|K×v , which gives a multiplicative character χv : K×v → C× of K×v .

A Hecke character χ : CK → C× is unitary if its image is in S1 ⊂ C×.

A Dirichlet character is a Hecke character of �nite order, i.e. when the image is a �nite

group. By Proposition 7.11(3), any Dirichlet character χ must factor through CK → Clm(K) for

some modulus m. The largest such modulus m is called the conductor of χ, and denoted fχ.

Lemma 11.4. Let K be a global �eld. Then, any Hecke character χ is of the form η| · |t for some
unitary Hecke character η and t ∈ C (for the de�nition of | · | : CK → R>0, see the proof of
Proposition 6.14). The real part σ := Re(t) is uniquely determined by χ and is called the exponent
of χ.

Proof. We have χ = χ
|χ| |χ|. �

Example 11.5. In analytic number theory, one often calls a character of (Z/mZ)× a Dirichlet

character mod m. This �ts into the general de�nition of Dirichlet character de�ned here, for

K = Q, as we already saw that CQ = Ẑ× ×R>0. Therefore, a character (Z/mZ)× → C× can be

regarded as a �nite order character of CQ by CQ = Ẑ× × R>0 � Ẑ× � (Z/mZ)× → C×. One

may see that, if you started with a primitive Dirichlet character (i.e. a character of (Z/mZ)×

that does not come from a character of (Z/nZ)× for some smaller n|m), then the corresponding

�nite order Hecke character has the conductor m∞.

An L-function of something is a holomorphic function that contains a lot of information

about that thing. The de�nition of the L-function of a character is as follows.

De�nition 11.6 (Local L-factor). Let F be a local �eld, and let χ be a character of F×. Then, the

local L-factor L(s, χ) is a holomorphic function in variable s, de�ned as

L(s, χ) :=


1

1−χ(π)q−s
if F is nonarchimedean (uniformizer π, residue �eld Fq), χ is unrami�ed

1 if F is nonarchimedean, χ is rami�ed

π−
t+s
2 Γ
(
t+s
2

)
if F = R, χ = χa,t

2(2π)−(t+s)Γ(t+ s) if F = C, χ = χa,b,t.

Here, Γ(s) is the Gamma function, Γ(s) =
∫∞

0
ts−1e−tdt (or rather its analytic continuation).

This de�nition is somewhat mysterious, and will be justi�ed a few lectures later. It is easy to

observe that L(s, χ| · |t) = L(s+ t, χ).

Theorem 11.7 (Analytic continuation and functional equation of Hecke L-functions). Let K be
a global �eld, and let χ be a Hecke character of K of exponent σ.
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(1) (Euler product9) Then, the in�nite product

L(s, χ) :=
∏

v place ofK

L(s, χv),

converges and de�nes a holomorphic function on {s ∈ C : Re(s) > 1− σ}.

(2) (Analytic continuation) This admits an analytic continuation as a meromorphic function
(called the Hecke L-function of χ) de�ned on the whole complex plane s ∈ C. In fact, this
analytic continuation is entire unless χ = | · |t, in which case simple poles appear at s = −t
and s = 1− t.
We also de�ne Lf (s, χ) :=

∏
v �nite place ofK L(s, χv) and call it (or rather its analytic contin-

uation) the finite part of the Hecke L-function of χ.

(3) (Functional equation) Let χ−1 be the inverse of χ (i.e. χ−1(x) = 1
χ(x)

). Then,

ε(s, χ) :=
L(s, χ)

L(1− s, χ−1)
,

is a nowhere vanishing entire function on s ∈ C, called the global ε-factor. In fact, the
global ε-factor is given by an explicit in�nite product (Euler product) of local terms, called
the local ε-factors:

ε(s, χ) =
∏

v place ofK

ε(s, χv).

In general, ε(s, χv) = aebs for some a, b ∈ C. Also, if v is a �nite place at which χv is
unramified, ε(s, χv) = 1 (so the above in�nite product is actually a �nite product).

Remark 11.8 (Dirichlet L-functions). Let χ be a Dirichlet character. In particular, the exponent

σ = 0, and χ can be regarded as a character of a ray class group Clm(K) for some modulus m.

By absolute convergence, if Re(s) > 1, one can alternatively write Lf (s, χ) as

Lf (s, χ) =
∏

p⊂OK prime ideal

(1 + χ(p)N(p)−s + χ(p)2N(p)−2s + · · · ) =
∏

a⊂OK ideal

χ(a)

N(a)s
,

which is perhaps a more familiar de�nition of a Dirichlet L-function. Here N(a) := #OK/a
(see [ANT]).

This is a much much more general version of the analytic continuation and the functional

equation of the Riemann zeta function. One can of course give a similar proof as the Riemann zeta

function case, but this can all simultaneously be proved very cleanly using Fourier analysis over

the adeles (?!) and is generally called the Tate’s thesis. We will prove Theorem 11.7 following

the Tate’s thesis later in the course. It does not use class �eld theory, so we will just assume

Theorem 11.7 at the moment (alternatively, we only need the analytic inputs for Dirichlet L-

functions for the proof of Second Inequality, and you can de�nitely elementarily prove the

analytic continuation and functional equation for Dirichlet L-functions).

9
An Euler product is a general term that refers to an in�nite product running over each place of a global �eld.
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Example 11.9. Let K = Q and χ be trivial (i.e. χ(x) = 1 for all x ∈ CQ). Then, the Euler

product in Theorem 11.7 is

Lf (s, χ) =
∏

p prime number

1

1− p−s
, L(s, χ) = Lf (s, χ)π−

s
2 Γ
(s

2

)
.

Thus, Lf (s, χ) is the Riemann zeta function ζ(s) and L(s, χ) is the completed Riemann zeta

function ξ(s). The functional equation for the Riemann zeta function is ξ(s) = ξ(1 − s) (so the

global ε-factor is just 1).

11.2. Analytic inputs: nonvanishing of Lf (1, χ) and analytic class number formula. We

record the two main sources of the “analytic input.” The �rst is

Theorem 11.10 (Nonvanishing ofLf (1, χ)). If χ is a nontrivial Dirichlet character of a global �eld
K , then Lf (1, χ) 6= 0.

We will not prove this here. This can be proved purely analytically right away (e.g. see [CF,

VIII.2]). Alternatively, one can deduce this from a softer fact after showing (*) for the global

existence theorem (!). For example, after showing (*), one can show Theorem 11.10 (when K is a

number �eld) from the analytic class number formula, which is the second “analytic input”.

De�nition 11.11 (Dedekind zeta function). LetK be a number �eld. The Dedekind zeta func-

tion is

ζK(s) :=
∑
a⊂OK

1

N(a)s
,

a priori de�ned only for Re(s) > 1.

Theorem 11.12 (Analytic class number formula). Let K be a number �eld. Then, the Dedekind
zeta function ζK(s) has an analytic continuation to a meromorphic function on the whole complex
plane s ∈ C, with only simple pole at s = 1. Furthermore, the residue at s = 1 is given by

lim
s→1

(s− 1)ζK(s) =
2r(2π)sRKhK

#µK
√
| disc(K)|

,

where:

• r is the number of real embeddings of K , enumerated as σ1, · · · , σr,

• s is the number of complex-conjugate pairs of complex embeddings of K , enumerated as
{σr+1, σr+1}, · · · , {σr+s, σr+s},

• hK = # Cl(K) is the class number of K ,

• µK is the (necessarily �nite) group of roots of unity in K ,
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• RK is the regulator of K , de�ned as

RK =

∣∣∣∣∣∣∣∣∣∣∣∣
det


log |σ1(u1)| log |σ1(u2)| · · · log |σ1(ur+s−1)|
· · · · · · · · · · · ·

log |σr(u1)| log |σr(u2)| · · · log |σr(ur+s−1)|
2 log |σr+1(u1)| 2 log |σr+1(u2)| · · · 2 log |σr+1(ur+s−1)|

· · · · · · · · · · · ·
2 log |σr+s−1(u1)| 2 log |σr+s−1(u2)| · · · 2 log |σr+s−1(ur+s−1)|



∣∣∣∣∣∣∣∣∣∣∣∣
,

where u1, · · · , ur+s−1 ∈ O×K is a fundamental system of units of K , i.e. O×K = µK ×
uZ1 × · · · × uZr+s−1 (this is the Dirichlet’s unit theorem).

Namely, you can express a certain product of Lf (s, χ)’s using the Dedekind zeta function

ζL(s) for an abelian extension L of K , and (*) will guarantee that every Lf (s, χ) appears in some

such expression. The fact that there is a simple pole at s = 1 implies that Lf (s, χ) for χ 6= 1 does

not vanish at s = 1. We won’t also prove this. The proof of the analytic class number formula is

certainly “less heavy lifting” than the proof of Theorem 11.10.

11.3. Primes in arithmetic progressions. It is a classical topic taught in elementary analytic

number theory that the non-vanishing of Lf (1, χ) for χ 6= 1 implies the Dirichlet’s theorem

on primes in arithmetic progressions, namely that there are in�nitely many prime numbers

congruent to a (modn) for any (a, n) = 1 (see [ANT, Exercise 18.2]). In fact, the proof says

that the prime numbers are equally distributed among each congruence class a(modn) with

(a, n) = 1 in an appropriate sense. One can deduce a similar conclusion in the current context.

De�nition 11.13 (Dirichlet density). Let S be a set of prime ideals of K (i.e. �nite primes). If

there exists δ ≥ 0 such that

(∑
p∈S

1
N(p)s

)
− δ log 1

s−1
is bounded as s ∈ R approaches s = 1

from the right, then we say that δ := δ(S) and S has Dirichlet density δ.

Lemma 11.14. The set of all prime ideals of K has Dirichlet density 1.

Proof. Note that, for Re(s) > 1 (everything is absolutely convergent so we can freely change the

order of summation),

log ζK(s) = −
∑

p prime ideal

log(1−N(p)−s) =
∑
m≥1

∑
p prime ideal

(−1)m
N(p)−ms

m
.

It is easy to see that

∑
m≥2

∑
p prime ideal

(−1)mN(p)−ms

m
is bounded above by an absolute constant.

Namely, this is obviously bounded by

∑
m≥2

∑
p prime ideal

N(p)−m =
∑

p prime ideal

1
N(p)2 · N(p)

N(p)−1
≤

2
∑

p prime ideal

1
N(p)2 , and for each rational prime p ∈ Z, there are at most [K : Q] many prime ideals

of K dividing p, so this is bounded by 2[K : Q]
∑

p prime number

1
p2 < 2[K : Q]

∑
n≥1

1
n2 = π2[K:Q]

3
.

So, log ζK(s) and

∑
p prime ideal

1
N(p)s

is o� by at most this constant. By the analytic class number

formula (Theorem 11.12), ζK(s) has a simple pole at s = 1, so this implies that log ζK(s)− log 1
s−1

is bounded as s ∈ R approaches s = 1 from the right. This shows that the set of all prime ideals

of K has Dirichlet density 1. �

66



The following is the generalization of the Dirichlet’s theorem on primes in arithmetic pro-

gressions.

Theorem 11.15 (Prime ideals in arithmetic progressions). Let K be a global �eld and m be a
modulus ofK . Let a ∈ Clm(K) be an element. Then, the set of prime ideals p ofK such that p does
not divide m and [p] = a in Clm(K) has Dirichlet density 1

# Clm(K)
.

Proof. The same argument as in Lemma 11.14 shows that, for any Dirichlet character χ of con-

ductor m,

logLf (s, χ)−
∑

p prime ideal not dividing m

χ(p)

N(p)s
,

is bounded as s ∈ R approaches s = 1 from the right. We now use the elementary identity that

∑
χ character of Clm(K)

χ(p)χ−1(a) =

{
# Clm(K) if [p] = a

0 if [p] 6= a.

Thus,

1

# Clm(K)

 ∑
χ Dirichlet character of modulus dividing m

χ−1(a) logLf (s, χ)

− ∑
p prime ideal not dividing m, [p] = a in Clm(K)

1

N(p)s
,

is bounded as s ∈ R approaches s = 1 from the right. By the nonvanishing of Lf (1, χ) for χ 6= 1
and Lemma 11.14, we see that ∑

χ Dirichlet character of modulus dividing m

χ−1(a) logLf (s, χ)

− log
1

s− 1
,

is bounded as s ∈ R approaches s = 1 from the right. This gives the desired conclusion. �

Example 11.16. Applying this to K = Q and m = n∞, we recover the density statement for

prime numbers ≡ a(modn); recall that Clm(Q) = Gal(Q(ζn)/Q) = (Z/nZ)×, and a prime

number p gives rise to a class p ∈ (Z/nZ)×. This is why Theorem 11.15 is a generalization of the

Dirichlet’s theorem on primes in arithmetic progressions.

Remark 11.17 (On the notion of density). The notion of Dirichlet density is somewhat arti�cial.

More natural notion of density ofS (called the natural density) is limn→∞
#{p prime ideals in S, N(p)≤n}

#{p prime ideals, N(p)≤n} .

It is indeed true that the above theorems hold even if you replace the Dirichlet density with

the natural density, but the proof requires a further argument; a set with natural density δ has

Dirichlet density δ (this again requires the analytic class number formula), but the converse is

not necessarily true. One general tool you could use is the Tauberian theorem, which gives an

asymptotic of

∑
m≤n am as n → ∞ from the behaviour of the holomorphic function

∑∞
m=1

am
ms

as Re(s)→ 1+
.
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11.4. Density of splitting primes, and the Second Inequality of global class �eld theory.
The density theorem we discussed in the previous subsection happened in the ray class group.

There is an analogous density theorem in the other side of the class �eld theory, on the Galois side.

A type of set of prime ideals whose measure we are interested in is: given a �nite Galois extension

of L/K and a conjugacy class C ⊂ Gal(L/K), the set of prime ideals p ⊂ OK unrami�ed in L
and Frp = C. We will see that we have an expected answer, that the Frobenii of prime ideals are

equally distributed among the elements of Gal(L/K). This is called the Chebotarev density

theorem. This will follow as a consequence of global class �eld theory, so we are not proving it

here.

A small special case of the Chebotarev density theorem, however, can be proved here, and will

yield the so-called Second Inequality of global class �eld theory which is a crucial ingredient

for the ultimate proof of the global class �eld theory. Note that, retaining the above paragraph’s

notations, asking Frp = id is exactly the same as asking p to split completely inL. More generally,

if L/K is a �nite extension and M/K is its Galois closure, then for a prime ideal p ⊂ OK that is

unrami�ed in L, it is automatically unrami�ed in M (this is because M is the compositum of all

conjugates of L in M , and p is unrami�ed in any conjugate of L), and p splitting completely in

L is equivalent to p splitting completely in M (by the same reasoning), so p splits completely in

L if and only if Frp ∈ Gal(M/K) is the identity. We can now see why the following statement is

a special case of the Chebotarev density theorem.

Proposition 11.18. Let L/K be a �nite extension of number �elds, and let M/K be its Galois
closure. Then, the set of prime ideals ofK splitting completely in L has Dirichlet density 1

[M :K]
.

Proof. By the paragraph right before this, we may assume that L/K is already Galois to start

with. Let S be the set of prime ideals of K splitting completely in L, and let T be the set of

prime ideals of L lying over those in S. Let U be the set of prime ideals q ⊂ OL such that it is

unrami�ed over K and its residue �eld OL/q is a prime �eld (i.e. Fp for a prime number p, not

a prime power). Then, U ⊂ T ; for q ∈ U , if p = q ∩ OK , then f(q|p) = 1 because there is no

possibility for a residue �eld extension because OL/q is as small as possible; as e(q|p) = 1 by

de�nition and L/K is Galois, p splits completely in L.

I claim that U has Dirichlet density 1. Assuming this, the statement easily follows. Namely, as

U has Dirichlet density 1, T must have Dirichlet density 1. This means

∑
q∈T

1
N(q)s

− log
(

1
s−1

)
is

bounded as s ∈ R appraches to s = 1 from the right. The sum can be written as

∑
p∈S
∑

q|p
1

N(q)s
.

However, as each p ∈ S splits completely in L, there are exactly [L : K] many q dividing p, and

N(q) = N(p) for all such q|p. Therefore, this means [L : K]
∑

p∈S
1

N(p)s
− log

(
1
s−1

)
is bounded

as s ∈ R approaches s = 1 from the right, or that S has Dirichlet density
1

[L:K]
.

Now we are left with proving the claim. As there are only �nitely many rami�ed primes, it

su�ces to prove the following.

Lemma 11.19. Let K be a number �eld. Then, the set B of prime ideals p of K whose absolute
residue degree10 is > 1 has Dirichlet density 0.

10
For a prime ideal p of K , the absolute residue degree is f(p|p), where p ∈ Z is a prime number such that

pZ = p ∩ Z. For example, p has absolute residue degree 1 precisely when OK/p is a �nite �eld of prime order.
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Proof. Note that, for every prime number p ∈ Z, there are at most [K : Q] many prime ideals of

K dividing p. Also, for p ∈ N(p) with p|p for a prime number p ∈ Z, N(p) = pf(p|p) ≥ p2
. Thus,

∑
p prime number

∑
p∈B,p|p

1

N(p)
≤

∑
p prime number

[K : Q]

p2
≤

∞∑
n=1

[K : Q]

n2
,

which is absolutely convergent. Thus, we may rearrange the sum on the left, and deduce that∑
p∈B

1
N(p)

is absolutely convergent. This implies that the Dirichlet density of B is 0. �

�

Combining the two statements, we are now ready to prove the Second Inequality.

Theorem 11.20 (Second Inequality). Let L/K be a �nite Galois extension of number �elds, and
let m be a modulus of K . Recall that S(m) is the set of primes dividing m. Let S ′(m) be the set of
primes of L lying over those in S(m). Then,

[J
S(m)
K : Km,1NL/K(J

S′(m)
L )] ≤ [L : K],

whereNL/K : J
S′(m)
L → J

S(m)
K is the ideal norm, i.e. NL/K(q) = pf(q|p) for a prime ideal q of L lying

over a prime ideal p of K .

Proof. Note that the left hand side is the index [Clm(K) : H] whereH is the image of J
S′(m)
L

NL/K−−−→
J
S(m)
K � Clm(K). By Theorem 11.15, the set A of prime ideals p of K coprime to m such that

[p] ∈ H ⊂ Clm(K) has Dirichlet density
1

[Clm(K):H]
. Let B be the set of prime ideals p of K that

is coprime to m and splits completely in L. By Proposition 11.18, B has Dirichlet density
1

[L:K]
.

Note that if a prime ideal p ofK coprime to m splits completely in L, then for any prime ideal

q of L lying over p, NL/K(q) = p. Therefore, B ⊂ A. This implies that
1

[Clm(K):H]
≥ 1

[L:K]
, which

is equivalent to the Second Inequality. �

Corollary 11.21 (Second Inequality, Cohomological Version). Let L/K be a �nite Galois ex-
tension of number �elds. Then,

#H0
T (Gal(L/K), CL) ≤ [L : K].

Proof. Note that NL/K(CL) is a �nite index subgroup of CK , so it in particular contains U(m) for

some modulus m. Then for this modulus this follows from the Second Inequality in the original

form. �

Remark 11.22. There is an algebraic proof (i.e. not using any analytic tools) of the Second

Inequality due to Chevalley, e.g. [Mil, VII.6] (in loc. cit., only the case of L/K cyclic of prime

degree is proved, but we will see that this is enough for the veri�cation of class formation axioms).
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12. Global class field theory: verification of the class formation axioms + ε

12.1. Relaxing the class formation axioms. Recall the two Axioms for the class formation in

our setup.

Axiom 1. For any �nite Galois extension L/K of number �elds, H1(Gal(L/K), CL) = 0.

Axiom 2. For any �nite Galois extension L/K of number �elds, there is the invariant map

invL/K : H2(Gal(L/K), CL)
∼−→ 1

[L : K]
Z/Z,

compatible with in�ation and restriction.

We only have the Second Inequality, which says about the upper bound on the order of H0
T .

This is very far from Axiom 2, because

• it is about H0
T and not H2

(although if L/K is cyclic then H0
T = H2

by periodicity),

• it is about the order and not the group structure,

• and it only gives an upper bound.

So we might say that the Second Inequality gives an extremely small part of Axiom 2 for cyclic

extensions. We want to leverage onto this. The �rst observation is as follows.

Lemma 12.1. Axiom 1 of the class formation axioms is equivalent to:

Axiom 1’. For any �nite cyclic extension L/K of number �elds, H1(Gal(L/K), CL) = 0.

Proof. It is obvious that Axiom 1 implies Axiom 1’. Conversely, Axiom 1’ implies thatH1(Gal(L/K), CL) =
0 for any �nite solvable extensionL/K , because you can �nd a �nite �ltrationL = K0/K1/ · · · /Kn =
K where each Ki/Ki+1 is cyclic, and then use the in�ation-restriction exact sequence

0→ H1(Gal(Ki+1/K), CKi+1
)→ H1(Gal(Ki/K), CKi)→ H1(Gal(Ki/Ki+1), CKi) = 0,

to inductively show that H1(Gal(Ki/K), CKi) = 0 for all i.
To go from solvable to general �nite Galois, we use a similar technique as in the proof of

Tate’s theorem (Theorem 5.2), that we use p-Sylow groups. Namely, the same argument shows

that, for any �nite group G and a G-module M , if we choose a p-Sylow subgroup Gp for every

prime number p (we only need to do this for �nitely many prime numbers p), then

Res : Hr
T (G,M)→

∏
p prime number

Hr
T (Gp,M),

is injective. Applying this to our setup, given a �nite Galois extension L/K , we can choose

L/Kp/K for any prime number p such that Gal(L/Kp) ≤ Gal(L/K) is a p-Sylow subgroup. As

L/Kp is solvable (any p-group is solvable!), Axiom 1’ implies thatH1(Gal(L/Kp), CL) = 0. The

above observation then implies that H1(Gal(L/K), CL) = 0, which is Axiom 1. �

70



Remark 12.2. The above proof shows that, if we wish, we can further reduce to checkingH1 = 0
for �nite cyclic extensions of prime degree, a small improvement which we won’t take advantage

of.

What is interesting about this relaxation is that we can use Herbrand quotient. Namely, sup-

pose we care only about computing the order in the cyclic case. By the Second Inequality,

we already know that #H0
T (Gal(L/K), CL) = #H2

T (Gal(L/K), CL) ≤ [L : K]. In addi-

tion to this, if we show that the Herbrand quotient h(CL) = [L : K], then this will simulta-

neously show that #H1
T (Gal(L/K), CL) = 1 and #H2

T (Gal(L/K), CL) = [L : K], because

[L : K] ≥ #H2
T (Gal(L/K), CL) = h(CL)#H1

T (Gal(L/K), CL) ≥ h(CL) = [L : K], so the

equality is achieved everywhere! We can summarize our �ndings as follows.

Lemma 12.3. Axiom 1 and Axiom 2 of the class formation axioms, for F = Q and A = C :=
lim←−K number �eld

CK , are implied by the following rather di�erent set of Axioms.

• (First Inequality11) For a �nite cyclic extension L/K of number �elds,

h(CL) = [L : K].

• (Second Inequality) For a �nite Galois extension L/K of number �elds,

#H0
T (Gal(L/K), CL) ≤ [L : K].

• (“Big Regular Part”12) For a Galois extension of number �eldsL/K , there exists a subgroup
H2(Gal(L/K), CL)reg ⊂ H2(Gal(L/K), CL), whose elements are called regular, and a
homomorphism

invL/K,reg : H2(Gal(L/K), CL)reg → Q/Z,

such that im(invL/K,reg) ⊃ 1
[L:K]

Z/Z. This map interacts with Inf and Res in an ex-
pected way. Namely, given a subextension L/M/K , Res on H2 of CL restricts to Res :
H2(Gal(L/K), CL)reg → H2(Gal(L/M), CL)reg, and given a tower of Galois extensions
L/M/K , Inf on H2 restricts to Inf : H2(Gal(M/K), CM)reg → H2(Gal(L/K), CL)reg.
Furthermore, the following diagrams commute,

H2(Gal(L/K), CL)reg
Res //

invL/K,reg

��

H2(Gal(L/M), CL)reg

invL/M,reg

��
Q/Z

x 7→[M :K]x
// Q/Z.

H2(Gal(M/K), CM)reg
Inf //

invM/K,reg

��

H2(Gal(L/K), CL)reg

invL/K,reg

��
Q/Z x 7→x

// Q/Z.
11

This statement is called an inequality because this implies that #H2(Gal(L/K), CL) ≥ [L : K] for cyclic

extensions L/K .

12
This is not a standard terminology (there is no standard short name for this result).
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Proof. By the Second Inequality and the periodicity, for a �nite cyclic extension L/K , we

see that #H2
T (Gal(L/K), CL) ≤ [L : K]. By the paragraph preceding this, together with

the First Inequality, we obtain that #H1(Gal(L/K), CL) = 1 (which is Axiom 1’). and

#H2(Gal(L/K), CL) = [L : K]. By Lemma 12.1, we have Axiom 1. Now that we have Ax-

iom 1, we have the in�ation-restriction exact sequence for H2
. By the exactly same argument

as in Lemma 12.1, we see that #H2(Gal(L/K), CL) ≤ [L : K] for any �nite solvable extension

L/K . Furthermore, we know that Res : H2(Gal(L/K), CL) →
∏

p prime
H2(Gal(L/Kp), CL) is

injective, where Gal(L/Kp) ≤ Gal(L/K) is a Sylow p-group, by the solvable case, we know that

#H2(Gal(L/K), CL) ≤
∏
p

#H2(Gal(L/Kp), CL) ≤
∏
p

[L : Kp] = [L : K],

which shows that #H2(Gal(L/K), CL) ≤ [L : K] for any �nite Galois extension L/K . On the

other hand, the “Big Regular Part” implies that #H2(Gal(L/K), CL) ≥ #H2(Gal(L/K), CL)reg ≥
# im(invL/K,reg) ≥ [L : K]. Therefore, we know that

[L : K] ≥ #H2(Gal(L/K), CL) ≥ #H2(Gal(L/K), CL)reg ≥ # im(invL/K,reg) ≥ [L : K],

so the equality is realized everywhere. This implies thatH2(Gal(L/K), CL) = H2(Gal(L/K), CL)reg,

and invL/K,reg is an isomorphism onto
1

[L:K]
Z/Z. The two commutative diagrams ensure that

the invariant map we have satis�es the compatibilities required in Axiom 2. This �nishes the

proof. �

Remark 12.4. The above proof shows that, if we wish, we can relax the First Inequality and the

Second Inequality to checking them only for �nite cyclic extensions of prime degree, a small

improvement which we won’t take advantage of.

We have already obtained the Second Inequality (Corollary 11.21), so we are left with ob-

taining the First Inequality and the “Big Regular Part”.

12.2. The First Inequality of global class �eld theory. Let L/K be a �nite cyclic extension

of number �elds. We want to compute the Herbrand quotient h(CL). The �rst guess is to use the

short exact sequence

1→ L× → IL → CL → 1,

and use the Herbrand quotients of L× and IL. However, if you try to calculate, you will realize

quickly that the Herbrand quotient of L× does not exist because the Galois cohomology groups

are in�nite.

Example 12.5. Let L = Q(i) and K = Q. Then, H0
T (Gal(L/K), L×) = Q×/NQ(i)/Q(Q(i)×).

However, you know that a prime number is a norm from Q(i) if and only if it is either 2 or

≡ 1 (mod 4). Therefore, you see that

H0
T (Gal(L/K), L×) = {±1} ×

∏
p prime number ≡3 (mod 4)

Z/2Z,

which is an in�nite group.
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However, there is a surprising consequence of the �niteness of class number.

Lemma 12.6. Let L be a number �eld. Then, there exists a �nite set of places S of L, including all
in�nite places of L, such that IL = IL,SL

×.

Proof. Recall that IL,S is the group of ideles whose v-components are inO×Lv for all v /∈ S. Namely,

IL,S =
∏

v/∈S O
×
Lv
×
∏

v∈S L
×
v . Note that, in terms of the notation introduced in Proposition 7.11,

U(m∅) = IL,S∞ , where S∞ is the set of all in�nite places of L, and m∅ is the empty modulus (see

Example 7.10). Therefore, Cl(L) = IL/IL,S∞L
×

, which is a �nite group, by the �niteness of class

number. Therefore, there are �nitely many ideles α1, · · · , αn ∈ IL that generate IL/IL,S∞L
×

. For

each idele αi, there are only �nitely many places v of L at which |αi|v 6= 1. Gathering all such

places for each αi and adding to S∞, we obtain a �nite set of places S where IL,S 3 α1, · · · , αn.

Therefore, IL/IL,SL
× = 1, or IL = IL,SL

×
. �

Therefore, we have a short exact sequence

1→ L× ∩ IL,S → IL,S → CL → 1.

Note that L× ∩ IL,S = O×L,S (i.e. x ∈ L× such that |x|v = 1 for all v /∈ S, or equivalently, the

prime ideal factorization of (x) only involves primes appearing in S). Now I claim that h(IL,S)
and h(O×L,S) are �nite numbers

13

, so that we can compute h(CL) from this short exact sequence.

Proposition 12.7. Let L/K be a �nite Galois extension of number �elds. Let S be a �nite set of
places of K that contains all in�nite places of K and all places which ramify in L. Let T be the set
consisting of all places of L that lies over S. Then,

h(IL,T ) =
∏
v∈S

[Lw : Kv],

where the notation means that, for each v ∈ S, we choose any place w of L that lies over v (the
degree [Lw : Kv] is independent of the choice of such w as L/K is Galois).

Proof. This follows from the computations of the cohomology of local �elds. Namely,

H i(Gal(L/K), IL,T ) = H i

(
Gal(L/K),

∏
w/∈T

O×Lw ×
∏
w∈T

L×w

)

=
∏
v/∈S

H i

Gal(L/K),
∏
w|v

O×Lw

×∏
v∈S

H i

Gal(L/K),
∏
w|v

L×w

 .

For each place v of K , choose w|v. Then, because L/K is Galois, any other w′|v arises as a con-

jugate of w, so

∏
w|v L

×
w = Ind

Gal(L/K)
Gal(Lw/Kv) L

×
w , and

∏
w|vO

×
Lw

= Ind
Gal(L/K)
Gal(Lw/Kv)O

×
Lw

. By Shapiro’s

13
We already know h(O×L,S) is a �nite number by Lemma 4.4 because O×L,S is a �nitely generated abelian group

(Theorem 12.9, Dirichlet’s unit theorem for S-units).
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lemma, we have

∏
v/∈S

H i

Gal(L/K),
∏
w|v

O×Lw

×∏
v∈S

H i

Gal(L/K),
∏
w|v

L×w


=
∏
v/∈S

H i(Gal(Lw/Kv),O×Lw)×
∏
v∈S

H i(Gal(Lw/Kv), L
×
w).

By de�nition, if v /∈ S, this means v is unrami�ed in L. Thus, Lw/Kv is unrami�ed, so by

Proposition 4.17(1), H i(Gal(Lw/Kv),O×Lw) = 0 for i > 0 whenever v /∈ S. Therefore, we have

H i(Gal(L/K), IL,T ) =
∏
v∈S

H i(Gal(Lw/Kv), L
×
w).

By Theorem 4.14 and Theorem 4.20,

H1(Gal(L/K), IL,T ) = 1, H2(Gal(L/K), IL,T ) ∼=
∏
v∈S

1

[Lw : Kv]
Z/Z.

This gives the desired result. �

We record one consequence of the above proof, which is the Galois cohomology of the ideles.

Corollary 12.8. Let L/K be a �nite Galois extension of number �elds. Then,

H1(Gal(L/K), IL) = 1, H2(Gal(L/K), IL) ∼=
⊕

v places ofK

Br(Lw/Kv) ∼=
⊕

v places ofK

1

[Lw : Kv]
Z/Z,

where the notation means that, for each place v of K , we choose any place w of L that lies over v.

Proof. This follows from a byproduct of the above proof,

H1(Gal(L/K), IL,T ) = 1, H2(Gal(L/K), IL,T ) ∼=
∏
v∈S

1

[Lw : Kv]
Z/Z,

and taking the direct limit over S by making S larger and larger. Note that the direct sum appears

as we are taking a direct limit (“union”), so any element in the direct limit must have nonzero

entries at only �nitely many places. �

Now we are reduced to computing the Herbrand quotient of unit group. We �rstly record the

Dirichlet’s unit theorem for S-units.

Theorem 12.9 (Dirichlet’s unit theorem for S-units). LetK be a number �eld, and let S be a �nite
set of places of K including all in�nite places of K . Then,

O×K,S ∼= µK × Z#S−1.
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This is very much a direct consequence of the usual Dirichlet’s unit theorem (it is a special case

of the above statement when S is just the set of all in�nite places ofK , in which case #S = r+s
in the usual notation), whose proof you may �nd in [ANT]. More precisely, as in the proof of the

usual Dirichlet’s unit theorem, you consider the following map,

ιK,S : O×K,S → R#S, x 7→ (log |x|v)v∈S.

By the product formula, its image lies in the hyperplane H ⊂ R#S
de�ned by

H := {(tv)v∈S :
∑
v∈S

tv = 0}.

Then, as in the case of Dirichlet’s unit theorem, the image ιK,S(O×K,S) is a lattice in H , and

ker ιK,S = (O×K,S)tors = µK .

Using this gadget, we are now ready to prove the following.

Proposition 12.10. Let L/K be a �nite cyclic extension of number �elds, and let S be a �nite set
of places of K containing all in�nite places. Let T be the set of all places of L lying over those in S.
Then,

h(O×L,T ) =
1

[L : K]

∏
v∈S

[Lw : Kv],

where the notation means that, for each v ∈ S, we choose any place w of L that lies over v.

Proof. We consider the map ιL,T : O×L,T → R#T
de�ned above. Note that this map is Gal(L/K)-

equivariant (i.e. ιL,T is compatible with the action of Gal(L/K) on the source and the target),

if you de�ne the action of Gal(L/K) on R#T
by permuting the coordinates (i.e. the action of

σ ∈ Gal(L/K) is that the v-component is sent to the σv-component). The sum-zero hyper-

plane H ⊂ R#T
is obviously stable under the Gal(L/K)-action, and so is the image ιL,T (O×L,T ),

which is a lattice in H . Consider the lattice L ⊂ R#T
generated by ιL,T (O×L,T ) and the vector

(1, 1, · · · , 1) ∈ R#T
. Then, L is stable under the Gal(L/K)-action (as (1, · · · , 1) is obviously

stable under permutation of coordinates), so you may consider L as a Gal(L/K)-module. Then,

L = ιL,T (O×L,T )⊕ Z as Gal(L/K)-modules, so h(L) = h(O×L,T )h(Z) = [L : K]h(O×L,T ). There-

fore, it su�ces to show that h(L) =
∏

v∈S[Lw : Kv].
Now the key is the following lemma.

Lemma 12.11. Let G be a �nite cyclic group, and V be a R[G]-module which is also a �nite-
dimensional R-vector space. Let L1, L2 ⊂ V be lattices that are stable under the G-action. Then,
h(L1) = h(L2).

Proof. Let dimR V = d andG ∼= Z/nZ. Abstractly this means that L1, L2 are Z[G]-modules such

that L1 ⊗Z R ∼= L2 ⊗Z R as R[G]-modules. Let Li,Q := Li ⊗Z Q, which is a Q[G]-module. As G
is a �nite cyclic group, it is generated by a single element. Thus, upon choosing a basis of Li,Q,

this being a Q[G]-module means that there is a d× d invertible matrix Ti with coe�cients in Q
(or Ti ∈ GLd(Q)) such that T ni = id. As L1,Q ⊗Q R ∼= L2,Q ⊗Q R as R[G]-modules, this means

that, based on the choice of basis on both L1,Q, L2,Q, there is an d × d invertible matrix M with
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coe�cients inR (orM ∈ GLd(R)) such thatMT1 = T2M . Consider the real vector space of d×d
matrices with real coe�cients, regarded as Rd2

, with coordinates (x11, · · · , xdd), and consider

the subspace S ⊂ Rd2
such that the matrix (xij)1≤i,j≤n satis�es (xij)1≤i,j≤nT1 = T2(xij)1≤i,j≤n.

This means that xij’s satisfy a system of linear equations where the coe�cients are all rational

numbers. Therefore, S has a basis v1, · · · , vm such that, for each vi, all coordinates of vi are

rational numbers. Any element of S is expressed as

∑m
i=1 yivi, yi ∈ R. Then, the determinant

of the matrix (xij)1≤i,j≤n is expressed as a polynomial in y1, · · · , ym with rational coe�cients,

which we denote P (y1, · · · , ym) ∈ Q[y1, · · · , ym]. The fact that there is M ∈ GLd(R) such that

MT1 = T2M means that there are real numbers r1, · · · , rm ∈ R such that P (r1, · · · , rm) 6= 0.

Therefore, the set of solutions {P (y1, · · · , ym) = 0} ⊂ S is a proper closed subset (as P is

continuous). As {(y1, · · · , ym) : yi ∈ Q} ⊂ S is dense, this implies that there are q1, · · · , qm ∈ Q
such that P (q1, · · · , qm) 6= 0. Therefore, there exists a d × d invertible matrix N with rational

coe�cients such that NT1 = T2N . This implies that L1,Q ∼= L2,Q as Q[G]-modules. Now, by

scaling the isomorphism, it is easy to see that there is an isomorphism f : L1,Q
∼−→ L2,Q of

Q[G]-modules such that f(L1) ⊂ L2 (take a random isomorphism, see what vectors you get by

sendingL1, clear the denominators, and multiply the isomorphism by the common denominator).

This implies that there is an injective G-module homomorphism f : L1 → L2 whose cokernel is

necessarily a �nite abelian group (becauseL1, L2 are lattices of the same vector space). Therefore,

h(L2) = h(L1)h(coker f) = h(L1). �

Therefore, by Lemma 12.11, we can compute h(L) by computing h(L′) for any lattice L′ ⊂
R#T

that is compatible under the Gal(L/K)-action. One particular choice is Z#T ⊂ R#T
, which

is clearly preserved under the permutation of coordinates. Note that, as Gal(L/K)-modules,

Z#T =
⊕
v∈S

Ind
Gal(L/K)
Gal(Lw/Kv) Z,

(again w is chosen for each v ∈ S), so h(Z#T ) =
∏

v∈S h(Ind
Gal(L/K)
Gal(Lw/Kv) Z) =

∏
v∈S[Lw : Kv] by

Shapiro’s lemma. This �nishes the proof. �

Corollary 12.12 (First Inequality). Let L/K be a �nite cyclic extension of number �elds. Then,

h(CL) = [L : K].

Proof. Let S be a �nite set of primes of K containing all in�nite places of K and all places which

ramify in L. Let T be the set of all places of L lying over those in S. After possibly enlarging

S, we may assure that IL = IL,TL
×

by Lemma 12.6. Then, by Proposition 12.7 and Proposition

12.10, the short exact sequence 1→ O×L,T → IL,T → CL → 1 implies that

h(CL) =
h(IL,T )

h(O×L,T )
=

∏
v∈S[Lw : Kv]

1
[L:K]

∏
v∈S[Lw : Kv]

= [L : K].

�

We have thus established the First Inequality and the Second Inequality. Note that, by the

proof of Lemma 12.3, this means that Axiom 1 is established by now.
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12.3. Brauer groups of number �elds. Similar to the local case, we also use the Brauer group

of global �elds. The starting point is the following.

Corollary 12.13. Let L/K be a �nite Galois extension of number �elds. Then, we have the exact
sequence

0→ Br(L/K)→
⊕

v places ofK

Br(Lw/Kv)→ H2(Gal(L/K), CL),

where the notation means that, for each place v of K , we choose any place w of L that lies over v.
By taking the direct limit over L (with Inf being transition maps), we have the exact sequence

0→ Br(K)→
⊕

v places ofK

Br(Kv)→ H2(Gal(Q/K), C).

Proof. This follows from the short exact sequence 1→ L× → IL → CL → 1, Corollary 12.8, and

Axiom 1, which is now known because of the First Inequality (Corollary 12.12) and the Second

Inequality (Corollary 11.21). The latter statement follows from the fact that taking direct limit

is left exact. �

We actually precisely know what the cokernel of the map Br(K) →
⊕

v places of K Br(Kv),

which is the �nal ingredient for the proof of the (reciprocity law part of the) global class �eld

theory.

Theorem 12.14 (“Global Invariant Zero”
14

). Let K be a number �eld. Then, the composition

Br(K)→
⊕

v places ofK

Br(Kv)
⊕v invKv−−−−−→ Q/Z,

is zero.
Similarly, for a Galois extension of number �elds L/K , the composition

Br(L/K)→
⊕

v places ofK

Br(Lw/Kv)
⊕v invLw/Kv−−−−−−−→ 1

[L : K]
Z/Z,

is zero, where the notation means that, for each place v of K , we choose any place w of L that lies
over v.

We �rst explain why this is important.

Theorem 12.15. The “Global Invariant Zero” implies the “Big Regular Part”.

Proof. We de�ne H2(Gal(Q/K), C)reg := im(H2(Gal(Q/K), I) → H2(Gal(Q/K), C)), where

I = lim−→L/K �nite

IL. On a �nite level,

H2(Gal(L/K), CL)reg := {α ∈ H2(Gal(L/K), CL) : ∃M/L/K Galois s.t.

14
This is not a standard terminology (there is no standard short name for this result).
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Inf(α) ∈ im(H2(Gal(M/K), IM)→ H2(Gal(M/K), CM))}.

We de�ne invL/K,reg : H2(Gal(L/K), CL)reg → Q/Z as follows. Let α ∈ H2(Gal(L/K), CL)reg,

and let M/L/K be Galois such that Inf(α) comes from β ∈ H2(Gal(M/K), IM). Then, you can

take the sum of local invariants of β as the de�nition of invL/K,reg(α). This on one hand does

not depend on the choice of β, because im(H2(Gal(M/K), IM) → H2(Gal(M/K), CM)) is

the cokernel of H2(Gal(M/K),M×)→ H2(Gal(M/K), IM), which, by the “Global Invariant

Zero” (Theorem 12.14), has a well-de�ned map to
1

[M :K]
Z/Z ⊂ Q/Z. This on the other hand does

not depend on the choice of M , as the local invariants stay the same even after further in�ation.

As im(H2(Gal(L/K), IL) → H2(Gal(L/K), CL)) ⊂ H2(Gal(L/K), CL)reg admits a surjective

invariant map to
1

[L:K]
Z/Z, this implies that im(invL/K,reg) ⊃ 1

[L:K]
Z/Z. It is an easy exercise to

check that invL/K,reg interacts in an expected way with Res and Inf by using the same properties

for the local invariants. �

Thus, what is only left for the reciprocity law part of the global class �eld theory is to show

the “Global Invariant Zero”.

Proof of “Global Invariant Zero”, Theorem 12.14. As the absolute Brauer group is a direct limit

of the relative Brauer groups, it su�ces to show the statement for the relative case. We now

divide the proof into several pieces.

Step 1. Reducing to K = Q.

Note that we know that the local invariants are not changed by Inf and Cor. Thus, if

we take a large enough number �eld M/L/K where M/Q is Galois, then, for any α ∈
Br(L/K), the sum of local invariants of α is the same as that of Inf(α) ∈ Br(M/K),

which is the same as that of Cor(Inf(α)) ∈ Br(M/Q). Therefore, it su�ces to prove the

case when K = Q.

Step 2. Proof when L/Q is cyclic.

We use the notation of Lemma 5.9. Note that, as Gal(L/Q) is cyclic,H0
T (Gal(L/Q), L×) ∼=

H2
T (Gal(L/Q), L×), so obviously every element of Br(L/Q) is written as a ∪ δχ for

a ∈ Q× and χ ∈ HomGrp(Gal(L/Q),Q/Z). This description is nice, because �rstly

a ∪ δχ ∈ Br(L/Q) is sent to a ∪ δχp ∈ Br(Lvp/Qp), where vp is a place of L that

divides p, and a ∈ Q× gives rise to a ∈ Q×p and χ ∈ HomGrp(Gal(L/Q),Q/Z) 7→
χp ∈ HomGrp(Gal(Lvp/Qp),Q/Z) as Gal(Lvp/Qp) ⊂ Gal(L/Q). Then, by Lemma 5.9,

invLvp/Qp(a∪δχp) = δp(ArtLvp/Qp(a)). We want to show that

∑
p invLvp/Qp(a∪δχp) = 0.

For this, it su�ces to show that

∏
p ArtLvp/Qp(a) = 1 as an element of Gal(L/Q) (here,

ArtLvp/Qp(a) ∈ Gal(Lvp/Qp) ⊂ Gal(L/Q)). Note that, by Proposition 5.8, the relative

local reciprocity map is compatible under enlarging the larger �eld. As L/Q is cyclic, it

is abelian, so by the Kronecker–Weber theorem (Theorem 8.1, which we already proved!),

we may enlarge L and reduce to checking this when L = Q(ζn) is a cyclotomic �eld.

By Theorem 10.15, we know explicitly what the Artin local reciprocity map is. Using this,

we know an explicit recipe of what ArtQp(ζn)/Qp(a) is as an element of Gal(Q(ζn)/Q) ∼=
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(Z/nZ)×; if a = pepu for someu ∈ Z×p and ifn = pfpm for (p,m) = 1, then ArtQp(ζn)/Qp(a) ∈
(Z/nZ)× is the congruence class that is ≡ pep (modm) and ≡ u−1 (mod pfp).

Exercise 12.1. Convince yourself that this is the correct recipe.

We want to show that

∏
p ArtQp(ζn)/Qp(a) = 1. As the left hand side is multiplicative in a,

it su�ces to show this when either a = q is a prime number or a = −1. Let n =
∏k

i=1 p
fi
i ,

and consider (Z/nZ)× ∼= (Z/pf1

1 Z)× × · · · × (Z/pekk Z)×, and write a class in (Z/nZ)× as

(c1, · · · , ck) in accordance with the decomposition. Then, if either a = −1 or a = q for a

prime number q 6= p1, · · · , pk, we have

ArtQp(ζn)/Qp(a) =


(1, 1, · · · , a−1︸︷︷︸

i-th entry

, · · · , 1) if p = pi

(a, a, · · · , a) if p = a (in the case of a = −1, this is meant to be p =∞)

(1, 1, · · · , 1) if p 6= p1, · · · , pk, a.

Thus, it is apparent that

∏
p ArtQp(ζn)/Qp(a) = 1 in these cases. On the other hand, if

a = pi, then

ArtQp(ζn)/Qp(pi) =



(pi, pi, · · · , 1︸︷︷︸
i-th entry

, · · · , pi) if p = pi

(1, 1, · · · , p−1
i︸︷︷︸

j-th entry

, · · · , 1) if p = pj , j 6= i

(1, 1, · · · , 1) if p 6= p1, · · · , pk.

Thus, again

∏
p ArtQp(ζn)/Qp(pi) = 1 in these cases. These altogether proves the “Global

Invariant Zero” for L/Q cyclic.

Step 3. Reducing the problem to an elementary number theory problem.

Now we want to prove that, for any �nite Galois L/Q and α ∈ Br(L/Q),∑
p rational prime

invLv/Qp(α) = 0,

where v is chosen to be any place in L over p (here, a rational prime means either a prime

number or∞). As taking in�ation does not change the local invariants, we may check this

by possibly enlarging the �eld. Suppose that there is a cyclic �eld extension M/Q such

that Inf(α) ∈ Br(ML/Q) satis�es that Res(Inf(α)) ∈ Br(ML/M) is zero. Then, this

means that Inf(α) ∈ ker(Res : Br(ML/Q)→ Br(ML/M)). By the in�ation-restriction,

this is the same as Inf(α) ∈ im(Inf : Br(M/Q) → Br(ML/Q)). As again the in�ation

does not change the local invariants, and as we have shown the “Global Invariant Zero”

for M in Step 2, this will �nish the “Global Invariant Zero” for α. Therefore, we will

be done if we can �nd, for each α ∈ Br(L/Q), a cyclic �eld extension M/Q such that

Res(Inf(α)) = 0 in Br(ML/M).
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What do we concretely need for M? Note that invLv/Qp(α) 6= 0 for �nitely many places

p of Q (p can be∞). For such a place p, let dp be the denominator of invLv/Qp(α). Sup-

pose that M/Q is a cyclic extension such that, for each place p with invLv/Qp(α) 6= 0,

dp divides [Mw : Qp], where w is any place in M dividing p. We claim that this choice

of M will satisfy Res(Inf(α)) = 0 in Br(ML/M). To check this, note that by Corollary

12.13, Br(ML/M) →
⊕

w place of M Br((ML)w′/Mw) is injective, where for each place

w of M , any place w′ of ML above w is chosen. Therefore, it su�ces to show that

inv(ML)w′/Mw(Res(Inf(α))) = 0 for all places w of M . However, we know that

inv(ML)w′/Mw(Res(Inf(α))) = [Mw : Qp] inv(ML)w′/Qp(Inf(α)) = [Mw : Qp] invLv/Qp(α),

where w is the place of M that w′′ divides, v is the place of L that w′′ divides, and p
is the place of Q that w′′ divides. This is always zero, as either invLv/Qp(α) = 0 or

[Mw : Qp] invLv/Qp(α) is an integer (which is equivalent to zero mod 1). This implies

that Res(Inf(α)) = 0 if you �nd such an M .

Step 4. Finishing the proof.

Thus, the problem becomes an elementary number theory problem.

Lemma 12.16. Let p1, · · · , ph be distinct places of Q, and let r1, · · · , rh ∈ N be integers,
with the restriction that ri ∈ {1, 2} if pi = ∞. Then, there exists a cyclic extension M/Q
such that, for every 1 ≤ i ≤ h and every place v ofM dividing pi, [Mv : Qpi ] is divisible by
ri.

Proof. It is annoying to think about the in�nite place, but the condition on the in�nite

place will be always satis�ed if we �nd M which is totally complex (i.e. all archimedean

embeddings are complex embeddings). So, we will assume that all p1, · · · , ph are �nite

prime numbers, and instead �ndM that is a totally complex number �eld. We may arrange

pi’s so that p1 < · · · < ph. Let lcm(r1, · · · , rh) =
∏s

i=1 `
νi
i be the prime factorization (so

`1, · · · , `s are distinct primes). Note that, if p is a prime number and (n, p) = 1, then

[Qp(ζn) : Qp] = ord(p (modn)), and in particular ord(p (modn)) ≥ logp(n).

Let T > ph be a big integer. For 1 ≤ i ≤ s, let xi ≥ `
νi
i (`i−1)

logT (`i)
be a positive integer (i.e.

logT (`xii ) ≥ `νii (`i−1)). Then, as Gal(Q(ζ`xii )/Q) ∼= (Z/`xii Z)× ∼= (Z/`xi−1
i Z)× (Z/(`i−

1)Z), there is a cyclic subextension Q(ζ`xii )/Mi/Q such that [Mi : Q] = `xi−1
i (there are

many such cyclic extensions inside Q(ζ`xii ), and we just choose one). For 1 ≤ j ≤ h, for

any place v of Mi dividing pj ,

[(Mi)v : Qpj ] ≥
[Qpj(ζ`xii ) : Qpj ]

`i − 1
=

ord(pj (mod `xii ))

`i − 1
≥

logpj(`
xi
i )

`i − 1
≥ logT (`xii )

`i − 1
≥ `νii .

As M1, · · · ,Ms are cyclic extensions of Q with coprime degrees, their compositum C =
M1 · · ·Ms is also cyclic. Furthermore, as each [(Mi)v,Qpj ] is a divisor of [Mi : Q], which

is a power of `i, [Cv′ : Qpj ] =
∏s

i=1[(Mi)vi : Qpj ] where v′, v1, · · · , vs are places of
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C,M1, · · · ,Ms dividing pj . Therefore, for each 1 ≤ j ≤ h, [Cv′ : Qpj ] is divisible by

lcm(r1, · · · , rh), so in particular by rj .

Now the only issue is whether C is totally complex or not. If lcm(r1, · · · , rh) is odd, then

we may just take the compositum ofC withQ(i) and get a totally complex cyclic extension

satisfying the same properties (this works because [C : Q] is odd). If lcm(r1, · · · , rh) is

even, then by our convention p1 = 2. Then, in the process of choosing M1, it does not

matter which maximal cyclic subextension of Q(ζ2x1 ) we choose. We can in particular

always make x1 larger so that x1 ≥ 3, and take M1 = Q(ζ2x1 − ζ−1
2x1 ). The claim is:

For any N ≥ 3, Q(ζ2N − ζ−1
2N

) is a totally complex cyclic extension of Q of degree 2N−2
.

Let F1 = Q(ζ2N ) and F2 = Q(ζ2N − ζ−1
2N

). We know that Gal(F1/Q) ∼= (Z/2NZ)×. We

claim that Gal(F1/F2) is the order 2 subgroup generated by 2N−1−1; indeed (2N−1−1)2 =
22N−2−2N+1 ≡ 1 (mod 2N) as 2N−2 ≥ N . This is because the element σ ∈ Gal(F1/Q)
corresponding to 2N−1 − 1 acts on ξ := ζ2N − ζ−1

2N
as

σ(ξ) = ζ2N−1−1
2N

− ζ−(2N−1−1)

2N
= ζ2N−1−1

2N
− ζ2N−1+1

2N
= −ζ−1

2N
+ ζ2N = ξ.

As [F1 : F2] ≤ 2 (ζ2N is a root of a quadratic polynomial over F2), this implies that

Gal(F1/F2) = 〈2N−1 − 1〉. Now among any archimedean embedding of F1, you see

that ξ is never a real number, so F2 is a totally complex number �eld. Furthermore, let

H := ker((Z/2NZ)× → (Z/4Z)×), which is a cyclic group ((Z/2NZ)× is not cyclic, but

(Z/2NZ)× ∼= (Z/2N−2Z) × {±1}, so given any element u ∈ (Z/2NZ)× of order 2N−2
,

you may take ±u to make it an element of H). As H · 〈2N−1 − 1〉 = (Z/2NZ)× (as

2N−1 − 1 ≡ −1 (mod 4)), this implies that H ↪→ (Z/2NZ)× � (Z/2NZ)×

〈2N−1−1〉 = Gal(F2/Q) is

an isomorphism, so F2/Q is cyclic. Thus, by taking M1 as above, we can guarantee that

C is totally complex if lcm(r1, · · · , rh) is even. This �nishes the proof. �

Thus we are done! �

Remark 12.17. In the above proof, we did not actually need the Kronecker–Weber theorem in

Step 2, because the extensionM constructed in Step 4 is a cyclic extension which is a subextension

of a cyclotomic �eld. So provingL/Q for cyclic extension which is a subextension of a cyclotomic

�eld in Step 2 is enough.

Corollary 12.18. The pair F = Q and A = C is a class formation. Therefore, the global Artin
reciprocity (Theorem 7.1) holds.

Proof. We proved the First Inequality (Corollary 12.12), the Second Inequality (Corollary

11.21), and the “Big Regular Part” (Theorem 12.14 + Theorem 12.15). Therefore Lemma 12.3

gives you the veri�cation of class formation axioms.

Now that we know (Q, C) is a class formation, we can use Lemma 5.9 to also establish the

local-global compatibility, because the invariant of an idele class is by construction the sum of

the local invariants of its local components. �
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Corollary 12.19 (Fundamental Exact Sequence). The maps in “Global Invariant Zero” form
short exact sequences, i.e.

0→ Br(K)→
⊕

v places ofK

Br(Kv)
⊕v invKv−−−−−→ Q/Z→ 0,

0→ Br(L/K)→
⊕

v places ofK

Br(Lw/Kv)
⊕v invLw/Kv−−−−−−−→ 1

[L : K]
Z/Z→ 0,

are exact.

Proof. The proof of Lemma 12.3 show that the sum of local invariants map gives you an identi-

�cation of the cokernel of the global Brauer group with the direct sum of local Brauer groups.

Thus we get the result. �

12.4. Global existence theorem. Thus, we only need to show the global existence theorem

(Theorem 7.5), for which we need to show (*).

Proof of the global existence theorem, Theorem 7.5. As we know, we need to show the statement

(*): for a number �eld K and an open subgroup U ≤ CK of �nite index, there exists a �nite

extension L/K such that NL/K(CL) ≤ U . We will show (*) by induction on the number of

divisors of [CK : U ].
There is nothing to prove if [CK : U ] = 1 (take L = K), so the base cases are when [CK : U ]

is a prime number. Before proving the base cases, let us �rst explain the induction step. Suppose

that we have K and U ≤ CK with [CK : U ] = N which has D divisors, and suppose we

know (*) for any K ′ and U ′ ≤ CK′ with the number of divisors of [CK′ : U ′] less than D. If

N is a prime, this is a base case. If not, then you can �nd a subgroup U � V � CK . By the

induction hypothesis, V ⊃ NL/K(CL) for some �nite extension L/K . LetN := NL/K(CL). Take

W = N−1
L/K(N ∩ U) ⊂ CL. Then,

[CL : W ] = [N : N ∩ U ] = [UN : U ],

which clearly divides [V : U ]. Therefore, by the induction hypothesis, there exists a �nite exten-

sion M/L such that W ⊃ NM/L(CM). Then,

U ⊃ N ∩ U = NL/K(W ) ⊃ NL/K(NM/L(CM)) = NM/K(CM),

as desired.

Thus, we only need to prove (*) for the base cases when [CK : U ] = p is a prime number. One

observation is that we can always enlarge the �eld K . Suppose there is a counterxample to (*)

for the prime index case so that there is [CK : U ] = p where U does not contain any NL/K(CL).

Then, for any L/K , if we take U ′ := N−1
L/K(U ∩ NL/K(CL)), then by the similar computations

as above, [CL : U ′] = [UNL/K(CL) : U ] which divides [CK : U ] = p, so it is either p or 1.

However, as U does not contain NL/K(CL), UNL/K(CL) 6= U , so [CL : U ′] = p. If L and U ′ is

not a counterexample to (*), then there exists M/L such that NM/L(CM) ⊂ U ′, which means

NM/K(CM) = NL/K(NM/L(CM)) ⊂ NL/K(U ′) = U ∩NL/K(CL) ⊂ U,
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which contradicts with the assumption that K and U give rise to a counterexample. Using this

observation, we may reduce the problem to the cases where K ⊃ Q(ζp).

Now we only need to prove (*) for [CK : U ] = p a prime number and K ⊃ Q(ζp). By

Lemma 12.6, we may �nd a �nite set S of places of K , containing all in�nite places of K , such

that IK = K×IK,S . We may always enlarge S such that S also contains all places of K above

p. Let J ⊂ IK be the preimage of U ≤ CK under the projection IK � CK . Then, as J ≤
IK is open, by possibly enlarging S, we may ensure that J contains a subgroup of the form∏

v∈S{1} ×
∏

v/∈S O
×
Kv

. Moreover, as J ⊂ IK is of index p, IpK ⊂ J . This implies that, for any

place v of K , (K×v )p ⊂ J . This implies that

J ⊃ WS :=
∏
v∈S

(K×v )p ×
∏
v/∈S

O×Kv .

Note that, asK ⊃ Q(ζp), by the Dirichlet’s theorem for S-units (Theorem 12.9),O×K,S/(O
×
K,S)p ∼=

(Z/pZ)#S
. Therefore, if we de�ne L to be obtained from K by adjoining all p-th roots of u ∈

O×K,S , then [L : K] = ps andL/K is Galois (becauseK ⊂ Q(ζp)). More concretely, ifu1, · · · , u#S−1

is a fundamental system of S-units, then L = K(ζpN , u
1/p, · · · , u1/p

#S−1) for some N > 0 (so that

ζpN−1 = ζp
pN
∈ K). By the global Artin reciprocity (Theorem 7.1), CK/NL/K(CL) ∼= (Z/pZ)#S

.

We claim that NL/K(IL) ⊃ WS . To show this, we need to show that, for v ∈ S, (K×v )p ≤
NL/K(IL), and for v /∈ S, O×Kv ⊂ NL/K(IL).

• For v ∈ S: note that for any place w of L over v, NLw/Kv(L
×
w) ⊂ NL/K(IL). By the

local Artin reciprocity (Theorem 2.1), K×v /NLw/Kv(L
×
w) ∼= Gal(Lw/Kv) (L/K is abelian

to start with). As Gal(Lw/Kv) is a subgroup of Gal(L/K), Gal(Lw/Kv) has exponent p.

Therefore, (K×v )p ⊂ NLw/Kv(L
×
w) ⊂ NL/K(IL).

• For v /∈ S: note that v is unrami�ed in L. This is because disc(L/K) divides the discrim-

inant computed using a power basis of ζpN , u
1/p
1 , · · · , u1/p

#S−1, which divides a product of

powers of discriminants computed using {1, · · · , ζp−1
pN
}, {1, · · · , u(p−1)/p

1 }, · · · , {1, · · · , u(p−1)/p
#S−1 },

respectively, and each such discriminant has prime ideal factors of those in S because ui’s

are S-units (namely, disc(1, · · · , u(p−1)/p
i ) = ±NL/Q(pu

(p−1)/p
i ), and S contains all primes

dividing p). This implies that, for v /∈ S, O×Kv ⊂ NL/K(IL) by Proposition 1.2.

These imply thatNL/K(IL) ⊃ WS , so in particularNL/K(CL) ⊃ K×WS/K
×

. Note thatNL/K(CL)
is of index p#S

inside CK . We claim that [CK : K×WS/K
×] = p#S

, which will show that

NL/K(CL) = K×WS/K
×

. This will imply that NL/K(CL) = K×WS/K
× ⊂ K×J/K× = U ,

proving the base cases for (*).

Thus our only remaining task is to prove that [CK : K×WS/K
×] = p#S

. From the exact

sequence 1→ O×K,S → IK,S → CK → 1, and as WS ⊂ IK,S , we have a short exact sequence

1→
O×K,S

O×K,S ∩WS

→ IK,S
WS

→ CK
K×WS/K×

→ 1.

So we can compute [CK : K×WS/K
×] by computing the orders of the other two groups in the

short exact sequence.
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• For #
O×K,S

O×K,S∩WS
: I claim that O×K,S ∩WS = (O×K,S)p. This will show that

O×K,S
O×K,S ∩WS

=
O×K,S

(O×K,S)p
∼= (Z/pZ)#S,

so that [O×K,S : O×K,S ∩WS] = p#S
.

One inclusion is clear; it is obvious that (O×K,S)p ⊂ O×K,S ∩ WS . Conversely, if y ∈
O×K,S ∩WS , I claim that y is a global p-th power (if so, its p-th root will necessarily be an

element of O×K,S). This is the same as showing K(y1/p) = K . Let L = K(y1/p). Then,

L/K is Galois (as K ⊃ Q(ζp)), every place v ∈ S splits completely in L, and every place

v /∈ S is unrami�ed in L (because every place over p is already contained in S). Let T
be the set of all places of L over S. Then, by Proposition 1.2, NL/K(IL,T ) = IK,S . As

IK,S → CK is surjective, this implies thatNL/K(CL) = CK . By the local Artin reciprocity

(Theorem 2.1), this implies that L = K , as desired.

• For #
IK,S
WS

: note that quite obviously

IK,S
WS

=

∏
v∈SK

×
v ×

∏
v/∈S O

×
Kv∏

v∈S(K×v )p ×
∏

v/∈S O
×
Kv

=
∏
v∈S

K×v
(K×v )p

.

I claim that [K×v : (K×v )p] = p2

|p|v .

– If v is real, then K ⊃ Q(ζp) means that this is possible only if p = 2. Then [K×v :

(K×v )p] = [R×/(R×)2] = 2 = 22

|2|v .

– If v is complex, then [K×v : (K×v )p] = [C× : (C×)p] = 1 = p2

|p|v .

– If v is a �nite place not above p, then note thatK×v
∼= πZv×(OKv/(πv))××(1+πvOKv),

where πv ∈ Kv is a uniformizer. As 1 +πvOKv is pro-`, where ` ∈ Z a prime number

which v divides, 1 + πvOKv = (1 + πvOKv)p. Furthermore, as ζp ∈ Kv, this implies

that p|`− 1, and
(OKv/(πv))×

((OKv/(πv))×)p
∼= Z/pZ. Therefore, [K×v : (K×v )p] = p2 = p2

|p|v .

– If v is a �nite place above p, let e = e(Kv/Qp) and f = f(Kv/Qp). Then
1+πvOKv

(1+πvOKv )p
=

πvOKv
pπvOKv

∼= OKv/pOKv , so [1 + πvOKv : (1 + πvOKv)p] = #(OKv/pOKv) = pef .

Moreover, (OKv/(πv))× = F×
pf

, and as ζp ∈ K , this implies that f ≥ 2. Therefore,

F×
pf
/(F×

pf
)p ∼= Z/pZ. Therefore, [K×v : (K×v )p] = pef+2

. Note on the other hand that

p2

|p|v = p2

|πv |ev
= p2

p−ef
= pef+2

, so they are the same.

This implies that

[IK,S : WS] =
∏
v∈S

p2

|p|v
=

p2#S∏
v∈S |p|v

= p2#S,

as S contains all places of K above p.
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Thus

[CK : K×WS/K
×] =

[IK,S : WS]

[O×K,S : O×K,S ∩WS]
=
p2#S

p#S
= p#S,

and we are done! �

This concludes the proof of the global class �eld theory. Before we move on to the next

topic, we record the Galois analogue of Theorem 11.15, and a generalization of Proposition 11.18:

Chebotarev density theorem!

Theorem 12.20 (Chebotarev density theorem). Let L/K be a �nite Galois extension of number
�elds, and let C ⊂ Gal(L/K) be a conjugacy class. Then, the set of prime ideals p of K such that p
is unrami�ed in L and Frp = C has Dirichlet density |C|

|Gal(L/K)| in the set of all prime ideals of K .

Proof. If L/K is abelian, then this is literally Theorem 11.15; namely, we choose a modulus m
such that K(m) ⊃ L, and then this set is (up to a �nite di�erence) the set of prime ideals of

K whose class in Clm(K) lands in C + H where H ≤ Clm(K) corresponds to Clm(K)/H ∼=
CK/NL/K(CL) ∼= Gal(L/K). This has density, by Theorem 11.15,

1
[Clm(K):H]

= 1
|Gal(L/K)| (note

that C is a singleton if L/K is abelian).

In general, let σ ∈ C, and let M = L〈σ〉. Then L/M is a cyclic extension of order f , where f
is the order of σ. Now we set several sets of primes.

• Let T be the set of prime ideals p of K such that p is unrami�ed in L and Frp = C in

Gal(L/K).

• Let T ′ be the set of prime ideals q of M such that q is unrami�ed in L, Frq = σ in

Gal(L/M) and f(q|q∩OK) = 1. By the abelian case as done above, the Dirichlet density

of T ′ is 1
f

.

• Let T ′′ be the set of prime ideals P of L such that P is unrami�ed over K and FrP = σ
in Gal(L/K).

Note that T ′′ → T ′, P 7→ P∩OM , is a well-de�ned map, as f(P|P∩OK) = f = f(P|P∩OM)
which implies that f(P ∩ OM |P ∩ OK) = 1. We claim that T ′′ → T ′ is injective and its image

misses only �nitely many primes of T ′. It is injective because f(P|P ∩ OM) = f implies that

P ∩ OM is inert in L, so that P is the only prime in L above P ∩ OM . Furthermore, if q ∈ T ′ is
such that q is unrami�ed over K , then the order of σ being f means q is inert in L, so we take P
of L lying over q, then FrP in Gal(L/M) is FrP in Gal(L/K) raised to the power of f(P|q) = 1,

which means FrP in Gal(L/K) is just σ. Note that for P ∈ T ′′, N(P) = N(P ∩ OM)f , so

∑
P∈T ′′

1

N(P)s/f
− 1

f
log

(
1

s− 1

)

is bounded as s→ 1 from the right.

85



We now construct another map T ′′ → T , P 7→ P ∩ OK . Note that it is quite obviously

surjective, and each element in T is hit by exactly
[L:K]
f |C| elements in T ′′ (there are

[L:K]
f

primes in

L above a prime in T ). Again, for P ∈ T ′′, N(P) = N(P ∩ OK)f , so

[L : K]

f |C|
∑
p∈T

1

N(p)s
=
∑
P∈T ′′

1

N(P)s/f
.

Therefore, ∑
p∈T

1

N(p)s
− |C|

[L : K]
log

(
1

s− 1

)
,

is bounded as s→ 1 from the right. This is exactly what we wanted. �

Corollary 12.21. LetK be a number �eld, and letL1, L2/K be �nite extensions ofK . Let S(Li/K)
be the set of primes of K that split completely in Li. Suppose that L1 is Galois over K .

(1) Then, L1 ⊂ L2 if and only if S(L1/K) contains S(L2/K) − S for a �nite subset S ⊂
S(L2/K), where S(L2/K) is the set of prime ideals p of K such that p is unrami�ed in L2

and f(q|p) = 1 for some prime ideal p of L2 lying over K .

(2) Then, L2 ⊂ L1 if and only if S(L2/K) contains S(L1/K) − S for a �nite subset S ⊂
S(L1/K).

Proof. (1) The forward direction is obvious. For the reverse direction, letN be a Galois exten-

sion ofK containing bothL1 andL2. We want to show that Gal(N/L2) ⊂ Gal(N/L1). Let

σ ∈ Gal(N/L2). Let p be a prime ideal of K unrami�ed in N such that Frp in Gal(N/K)
is the conjugacy class of σ. Let P be a prime of N such that FrP = σ in Gal(N/K). Let

P′ = P ∩OL2 . Then, for α ∈ OL2 , α = σ(α) ≡ αN(p) (modP′). Therefore, f(P′|p) = 1.

Therefore, p ∈ S(L2/K). Therefore, there are in�nitely many primes p of K unrami�ed

in N such that Frp in Gal(N/K) is the conjugacy class of σ such that it splits completely

in L1. We choose such p. Then let P be a prime of N lying over such p such that FrP = σ
in Gal(N/K). Then FrP∩OL1

= σ|L1 in Gal(L1/K). However as p splits completely in

L1, σ|L1 = 1. Therefore, σ ∈ Gal(N/L1), for any σ ∈ Gal(N/L2), which implies that

L1 ⊂ L2.

(2) The forward direction is obvious. For the reverse direction, let N be the Galois closure of

L2. Then S(N/K) = S(L2/K). Note that S(L1/K) = S(L1/K). Therefore this case is

(1) for L1 = N and L2 = L1. This implies that N ⊂ L1, which implies L2 ⊂ L1.

�

Part 2. The theory of complex multiplication

All instances of Explicit class field theory we have seen so far are all of the form as, given

a �eld K , describing Kab
by adjoining explicit elements. Furthermore, these explicit elements

have been torsion elements in some group where the multiplication law is given by some explicit
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polynomial/power series. Furthermore, the group had a large endomorphism ring containing

OK , so that it becomes an OK-module. We will show that a similar story exists when K is an

imaginary quadratic �eld, where the corresponding group is given by a so-called “elliptic curve

with complex multiplication”. As this course does not assume a prior knowledge of algebraic

geometry, we try to develop the theory as elementarily as possible.

13. Lattices in C (or, in other words, elliptic curves over C)

13.1. Elliptic functions for lattices in C (=elliptic curves over C).

De�nition 13.1 (Lattices in C = elliptic curves over C). A la�ice (or an elliptic curve over

C) Λ ⊂ C is a free rank 2 abelian subgroup which discretely sits inside C (i.e. the subspace

topology on Λ given by Λ ⊂ C is the discrete topology). A fundamental parallelogram of Λ is

a parallelogram formed by z, z+ω1, z+ω2, z+ω1 +ω2 for some z ∈ C and a Z-basis ω1, ω2 ∈ Λ
(Warning: there are many fundamental parallelograms for a given lattice).

Two lattices (=elliptic curves over C) Λ1,Λ2 ⊂ C are isomorphic if there exists a complex

number c ∈ C× such that Λ2 = cΛ1. An isogeny between two lattices (=elliptic curves over C)

Λ1,Λ2 ⊂ C is a homomorphism f : Λ1 → Λ2 where there is c ∈ C× such that f(x) = cx. The

degree of an isogeny f : Λ1 → Λ2 is deg f := # coker f . Given two lattices (=elliptic curves

over C) Λ1,Λ2 ⊂ C, let

Hom(Λ1,Λ2) := {isogenies Λ1 → Λ2} ∪ {0}.

It is easy to check that the addition of complex numbers gives an additive abelian group structure

on Hom(Λ1,Λ2). Two lattices (=elliptic curves over C) Λ1,Λ2 ⊂ C are called isogenous if there

is an isogeny from Λ1 to Λ2, i.e. if Hom(Λ1,Λ2) 6= 0.

For a lattice (=elliptic curve overC) Λ ⊂ C, End(Λ) := Hom(Λ,Λ) further has a commutative

ring structure, where the multiplication is given by the multiplication of complex numbers, or

equivalently, the composition of isogenies. Given f ∈ End(Λ), we de�ne deg f := # coker f
(and deg 0 = 0). This de�nes a multiplicative homomorphism deg : End(Λ)→ Z≥0. It is easy to

see that, if f(x) = cx for c ∈ C×, then deg f = |c|2.

Example 13.2. (1) If Λ ⊂ C is any lattice (=elliptic curve over C), for n ∈ N, there is an

isogeny [n] : Λ → Λ given by [n](x) = nx. Its degree is deg[n] = n2
. This implies that

there is a natural ring homomorphism Z n7→[n]−−−→ End(Λ).

(2) Let K be an imaginary quadratic �eld, and choose an embedding ι : K ↪→ C. Then

ι(OK) ⊂ C is a lattice (=elliptic curve over C). For each α ∈ OK\{0}, there is an isogeny

[α] : ι(OK) → ι(OK) given by [α](ι(x)) = ι(α)ι(x). Its degree is deg[α] = NK/Q(α).

This implies that there is a natural ring homomorphism OK
α 7→[α]−−−→ End(ι(OK)).

We want to classify lattices in C (=elliptic curves over C) up to isomorphism. Let Λ ⊂ C be

a lattice (=elliptic curve over C), and choose a basis v1, v2 ∈ Λ. Then, we can multiply Λ with

v−1
1 so that v1 = 1. We may thus assume that Λ = Z⊕ Zτ for some τ ∈ C. The requirement of

Λ being a lattice means that τ /∈ R (Exercise: check this). Furthermore, by possibly replacing τ
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with −τ , we may only consider τ ∈ C with Im(τ) > 0. Let H = {τ ∈ C : Im(τ) > 0}, which

is called the upper half plane. The observation so far means that the map of sets

H→ {lattices in C (=elliptic curves over C)}/isomorphisms, τ 7→ Z⊕ Zτ,

is surjective. What are the �bers of this map?

Proposition 13.3. Let SL2(Z) be the group of 2×2 matrices with integer entries with determinant
1. There is an action of SL2(Z) on H given by(

a b
c d

)
· τ :=

aτ + b

cτ + d
.

Furthermore, for τ1, τ2 ∈ C, two lattices (=elliptic curves over C) Z ⊕ Zτ1,Z ⊕ Zτ2 ⊂ C are
isomorphic if and only if there exists γ ∈ SL2(Z) such that τ1 = γ · τ2.

Proof. See the proof of [ANT, Theorem 10.22]. The calculations in loc. cit. carry over in our setup

in the same way. �

So we know that we have an isomorphism of sets,

SL2(Z)\H ∼−→ {lattices in C (=elliptic curves over C)}/isomorphisms, τ 7→ Z⊕ Zτ.

This is nice, but the set SL2(Z)\H is still a bit mysterious, so it will be desirable to have more

structures.

Remark 13.4. One way to proceed is to realize SL2(Z)\H as a Riemann surface, which in fact

has a complex algebraic structure whose de�ning equations can be taken even over Q15

. Such a

Riemann surface obtained in this way is called a modular curve. As, again, we do not assume

algebraic geometry in this course, we use a di�erent perspective.

Another remark is that one can always move a chosen τ ∈ H by the action of SL2(Z) so that

you �nd a unique representative in the fundamental domain

F = {z ∈ H : −1/2 ≤ Re(z) ≤ 1/2 and |z| ≥ 1, and if Re(z) > 0, |z| > 1}.

Namely, for any τ ∈ H, SL2(Z)τ ∩ F is a singleton. For the proof, see [ANT, Theorem 10.28].

This is also useful for other purposes (see [ANT, §10] for example).

There is a holomorphic function j : H → C such that j(τ1) = j(τ2) if and only if τ1, τ2 give

rise to the isomorphic lattices (=elliptic curves over C), and this speci�c function is called the

j-function. Along the way, we will also see a hint of how to really see C modulo a lattice as an

algebraic curve
16

, i.e. the graph of a polynomial equation in two variables.

15
In general, given a complex algebraic structure, there are a lot of ways to �nd its de�ning equations over Q (if

there is one). Namely, for example, the algebraic sets of points {(x, y) ∈ C2 : y = 2x2} and {(x, y) ∈ C2 : y = x2}
are “isomorphic over C” because you get y = 2x2 from y = x2 after putting

√
2x 7→ x, but they are “not isomorphic

over Q” because this substitution

√
2x 7→ x is not allowed in the realm of Q-coe�cients. In fact, however, the

modular curve has in some sense a “canonical” way of being de�ned over Q, called the canonical model, and this

notion is very much related to the Main Theorem of complex multiplication we will see in a moment.

16
The terminology of “curve” may be confusing. We are following the calculus-like
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De�nition 13.5 (Weierstrass ℘-function). Let Λ ⊂ C be a lattice (=elliptic curve over C). Then,

for z /∈ Λ, we de�ne the Weierstrass ℘-function

℘(z) :=
1

z2
+

∑
λ∈Λ\{0}

(
1

(z − λ)2
− 1

λ2

)
.

Lemma 13.6. For a lattice Λ ⊂ C (=elliptic curve over C), ℘(z) de�nes a meromorphic function in
C where the poles are at z ∈ Λ, where all the poles are of order 2. Furthermore, ℘(z) is periodic for
the translation by any element in Λ, i.e. ℘(z) = ℘(z + λ) for any λ ∈ Λ.

Similarly, its derivative ℘′(z) = −2
∑

λ∈Λ
1

(z−λ)3 is a meromorphic function in C where the
poles are at z ∈ Λ (all the poles are of order 3), periodic for the translation by any element in Λ, i.e.
℘′(z) = ℘′(z + λ) for any λ ∈ Λ.

Proof. It is easy to see that the in�nite sum converges uniformly absolutely on any compact set

away from Λ, so it de�nes a holomorphic function on C\Λ. It also has order 2 poles at every

z ∈ Λ as the in�nite sum de�ning ℘(z)− 1
(z−λ)2 is uniformly absolutely convergent on a compact

set around λ. The sum is unchanged if you translate by an element in Λ, so ℘(z) is periodic in Λ.

The same logic applies to ℘′(z). �

This means that ℘(z) is an elliptic function.

De�nition 13.7 (Elliptic function). Let Λ ⊂ C be a lattice (=elliptic curve over C). An ellip-

tic function for Λ is a meromorphic function f(z) for z ∈ C such that f(z) is periodic with

translation by Λ, i.e. f(z + λ) = f(z) for any λ ∈ Λ.

De�nition 13.8 (Eisenstein series). Let Λ ⊂ C be a lattice (=elliptic curve over C). For k ≥ 2,

the Eisenstein series is de�ned as

G2k :=
∑

λ∈Λ\{0}

1

λ2k
.

We may want to write G2k(Λ) to indicate its dependency on Λ. It is elementary to check that

G2k(cΛ) = c−2kG2k(Λ) for c ∈ C×.

You may also see this as a holomorphic function G2k : H → C, τ 7→ G2k(τ) which is the

in�nite sum for the lattice (=elliptic curve over C) Z⊕ Zτ .

Remark 13.9. The reason why we only take even powers is because the in�nite sum is trivially

zero for odd powers (if λ ∈ Λ,−λ ∈ Λ). The Eisenstein seriesG2k(τ) is an example of a modular

form (of weight 2k and level 1).

The following is an algebraic geometry in disguise.

Proposition 13.10. Let Λ ⊂ C be a lattice (=elliptic curve over C).

(1) Then, ℘(z) satis�es a di�erential equation,

(℘′(z))2 = 4(℘(z))3 − g2℘(z)− g3,

where g2 = 60G4, and g3 = 140G6.
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(2) Any elliptic function p(z) for Λ is expressed as a rational function in ℘(z) and ℘′(z). If p(z)
is holomorphic outside Λ, it is expressed as a polynomial in ℘(z) and ℘′(z). Namely, ifE (H ,
respectively) is the ring of elliptic functions (the ring of elliptic functions holomorphic outside
Λ), then H ∼= C[X, Y ]/(Y 2 − (4X3 − g2X − g3)) and E = Frac(H).

If p(z) is furthermore even (i.e. p(z) = p(−z)), then you only need to use ℘(z) to express
p(z) as above.

(3) If f ∈ End(Λ) is x 7→ cx for c ∈ C× (i.e. cΛ ⊂ Λ), then ℘(cz) is expressed as a rational
function in ℘(z). Conversely, if c ∈ C× is such that ℘(cz) is expressed as a rational function
in ℘(z), then cΛ ⊂ Λ.

(4) For the rational function appearing in (3), you may take ℘(cz) = A(℘(z))
B(℘(z))

for A(X), B(X) ∈
C[X] such that degA = degB + 1 = deg f .

Proof. (1) Just by expanding the in�nite sum formally into Laurent series, we obtain the Lau-

rent series expansion of ℘(z) at z = 0,

℘(z) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2z
2n.

This implies that ℘′(z) has the Laurent series expansion at z = 0

℘′(z) = − 2

z3
+
∞∑
n=1

(2n+ 1)2nG2n+2z
2n−1.

Thus, (℘′(z))2
has the Laurent series expansion at z = 0

(℘′(z))2 =
4

z6
− 4

z3
· (6G4z + 20G6z

3) + (holomorphic part, vanishing at z = 0)

=
4

z6
− 24G4

z2
− 80G6 + (holomorphic part, vanishing at z = 0).

Similarly, 4(℘(z))3 − g2℘(z)− g3 has the Laurent series expansion at z = 0

4(℘(z))3 − g2℘(z)− g3

=
4

z6
+

12

z4
(3G4z

2 + 5G6z
4)− g2

z2
− g3 + (holomorphic part, vanishing at z = 0)

=
4

z6
+

36G4 − 60G4

z2
+ (60G6 − 140G6) + (holomorphic part, vanishing at z = 0)

=
4

z6
− 24G4

z2
− 80G6 + (holomorphic part, vanishing at z = 0).

Therefore, (℘′(z))2 − (4(℘(z))3 − g2℘(z) − g3) is a meromorphic function with possi-

ble poles at Λ, periodic in Λ and is actually holomorphic and vanishing at z = 0. By
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periodicity, this function is holomorphic everywhere. By periodicity, the values of this

function are taken at a compact domain (e.g. fundamental parallelogram), so in particular

bounded. Therefore, by Liouville’s theorem, this function is a constant function. As we

know its value at z = 0 is zero, this function is zero, proving the identity (the di�erence

is everywhere zero).

(2) If p(z) is an even elliptic function holomorphic outside Λ, its Laurent series expansion at

z = 0 would look like

∑∞
n=M a2nz

2n
for M ∈ Z. If M ≥ 0, then by Liouville’s theorem,

p(z) is constant. If M < 0, then you may inductively �nd a polynomial q(X) ∈ C[X]
such that q(℘(z)) and p(z) has the matching tail of Laurent series expansion; for exam-

ple, p(z) − a2M℘(z)−M would have a lower order pole at z = 0, and you can continue

the process until you eliminate all poles. This implies that again p(z) is expressed as a

polynomial in ℘(z).

Now let p(z) be an elliptic function holomorphic outside Λ. As any function is a sum of

an even function and an odd function, we only need to show that an odd elliptic function

holomorphic outside Λ can be expressed as a polynomial in ℘(z) and ℘′(z). By using

the same strategy as above, we can eliminate any odd-order poles of order ≥ 3. For the

simple pole, we claim that there is actually no elliptic function with just a simple pole at

each λ ∈ Λ. This is because, if we let Λ = Zτ1⊕Zτ2, if you compute the contour integral∫
S
f(z)dz along a parallelogram S with four vertices

±τ1±τ2
2

, then this would be equal to

2πi times the residue of the simple pole, but the two parallel sides of S are in di�erent

directions for S, so

∫
S
f(z)dz = 0, contradicting the assumption that f(z) has a simple

pole at z = 0 and nowhere else outside Λ.

The above two paragraphs and (1) show that there is a surjective map C[X, Y ]/(Y 2 −
(4X3−g2X−g3))� H ,X 7→ ℘(z), Y 7→ ℘′(z). As any element ofC[X, Y ]/(Y 2−(4X3−
g2X−g3)) is uniquely expressed as a0(X)+Y a1(X) for a0(X), a1(X) ∈ C[X], if there is

a0(X)+Y a1(X) in the kernel of the surjective mapC[X, Y ]/(Y 2−(4X3−g2X−g3))�
H , then a0(℘(z))+℘′(z)a1(℘(z)) = 0, or a0(℘(z)) = −℘′(z)a1(℘(z)). As a0(℘(z)) is even

and −℘′(z)a1(℘(z)) is odd, this means that a0 = a1 = 0. Therefore, the surjective map

C[X, Y ]/(Y 2 − (4X3 − g2X − g3))� H is an isomorphism.

If p(z) is an elliptic function, it has �nitely many poles up to translation by Λ = Zτ1⊕Zτ2.

Let z0, · · · , zn be the poles of p(z) (up to translation by Λ), with multiplicitiesm0, · · · ,mn.

Suppose that we manually include z0 = 0, in the list of poles by allowingm0 to be possibly

0. Then, the function

q(z) = p(z)
n∏
i=1

(℘(z)− ℘(λ))mi ,

is an elliptic function whose poles are only at Λ. This is because ℘(z)−℘(λ) is an elliptic

function whose poles are only at Λ, and has at least a simple zero at z = λ, so multiplying∏n
i=1(℘(z) − ℘(λ))mi with p(z) will cancel out all non-Λ poles (it may introduce more

zeros, but that is �ne). Thus, q(z) is a polynomial in ℘(z) and ℘′(z). Therefore, p(z) is a
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rational function in ℘(z) and ℘′(z). It is clear that if p(z) is even then you don’t need to

use ℘′(z) because q(z) will be an even elliptic function holomorphic outside Λ.

(3) If cΛ ⊂ Λ, then ℘(cz) is de�nitely an even elliptic function, so by (2), ℘(cz) is expressed

as a rational function in ℘(z). Conversely, if ℘(cz) is expressed as a rational function in

℘(z), this means that ℘(cz) is an elliptic function, i.e. ℘(cz) = ℘(c(z + λ)) for λ ∈ Λ.

Therefore, by scaling cz to z, we have ℘(z) = ℘(z + cλ) for λ ∈ Λ. As ℘(z) has poles

only at z ∈ Λ, this means that cλ ∈ Λ. Therefore, cΛ ⊂ Λ.

(4) Let us take A(X), B(X) so that A,B have no common factors (=common zeros, as C is

algebraically closed). Note that there is a double pole of ℘(cz) at z = 0. On the other

hand, the order of a pole of A(℘(z)) at z = 0 is 2 degA, and similarly the order of a pole

of B(℘(z)) at z = 0 is 2 degB. Thus, 2 = 2 degA− 2 degB, or degA = degB + 1.

Note also that ℘(cz) satis�es ℘
(
c
(
z + λ

c

))
= ℘(cz + λ) = ℘(cz), so it is actually invari-

ant under translation by a �ner lattice (=elliptic curve over C)
1
c
Λ. In particular, inside

a fundamental parallelogram of Λ, there are deg f di�erent poles, and all poles are dou-

ble poles. Therefore, the number of poles of ℘(cz) in a fundamental parallelogram of Λ
(counted with multiplicities) is 2 deg f . On the other hand, A(℘(z)) has only one pole at

z = 0, of order 2 degA, in a fundamental parallelogram of Λ containing z = 0. Also,

B(℘(z)) has only one pole at z = 0, of order 2 degB, in the same fundamental par-

allelogram, and by the argument principle, there are 2 degB many zeros (counted with

multiplicities) in the same fundamental parallelogram. Thus, if A(℘(z)) and B(℘(z)) do

not share a common zero, then the number of poles of
A(℘(z))
B(℘(z))

counted with multiplicities

will be 2 degA − 2 degB + 2 degB = 2 degA. This will then show that degA = deg f .

However, if A(℘(z)) = B(℘(z)) = 0, then ℘(z) will be a common zero of A(X) and

B(X), which do not exist by our assumption. Thus, degA = deg f .

�

Remark 13.11. Given a lattice Λ ⊂ C (=elliptic curve over C), we can now give an algebraic

equation de�ning C/Λ, which is as a topological manifold a 2-torus. Consider the map

C/Λ− {0} → C2, z 7→ (℘(z), ℘′(z)).

Its image is contained in {(x, y) ∈ C2 : y2 = 4x3 − g2x − g3} ⊂ C2
by Proposition 13.10(1).

It turns out that the induced map C/Λ − {0} → {(x, y) ∈ C2 : y2 = 4x3 − g2x − g3} is a

biholomorphism, i.e. bijective, holomorphic, and its inverse is also holomorphic. You can add

the “point at in�nity” ∞ in a certain way and let 0 ∈ C/Λ be sent to ∞, so that C/Λ is, as a

“complex manifold”, isomorphic to {(x, y) ∈ C2 : y2 = 4x3 − g2x − g3} ∪ {∞}, which is a

complex curve de�ned by a polynomial equation, a complex algebraic curve. The equation

y2 = 4x3 − g2x− g3 is a typical equation that de�nes an elliptic curve.

13.2. j-invariants of lattices in C (=elliptic curves over C).
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De�nition 13.12 (j-invariant). We may think of g2 = 60G4 and g3 = 140G6 as a holomorphic

function on H. The j-function j : H→ C is a function de�ned as

j(τ) := 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
.

Given a lattice Λ ⊂ C (=elliptic curve overC), isomorphic to Z⊕Zτ , we de�ne the j-invariant of

the lattice (=elliptic curve over C) as j(τ). Similarly, for a lattice (=elliptic curve over C) Λ ∈ C,

j(Λ) is de�ned using the same formula with g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ). It is

elementary to check that j(Λ) = j(cΛ) for any c ∈ C×.

Remark 13.13. There is a good reason why you want to put 1728 in the de�nition of j-function,

which we will see a bit later.

Proposition 13.14.

(1) The j-function is a holomorphic function, i.e. g2(τ)3 − 27g3(τ)2 6= 0 for τ ∈ H.

(2) The j-function is invariant under the SL2(Z)-action on H. Namely, for γ ∈ SL2(Z) and
τ ∈ H, j(γ · τ) = j(τ). In particular, the j-invariant of a lattice (=elliptic curve over C) is
well-de�ned.

(3) Conversely, for τ1, τ2 ∈ H, j(τ1) = j(τ2) if and only if τ1 = γτ2 for some γ ∈ SL2(Z).

(4) The j-function de�nes a bijective holomorphic function j : SL2(Z)\H ∼−→ C.

(5) For any a, b ∈ C such that a3−27b2 6= 0, there exists a lattice (=elliptic curve overC) Λ ⊂ C
such that g2(Λ) = a and g3(Λ) = b.

Proof. (1) By Proposition 13.10(1), X = ℘(z) is a root of a cubic polynomial 4X3− g2X − g3

if ℘′(z) = 0. Let ω1, ω2 ∈ Λ be a Z-basis. Then, there are three points, λ = ω1

2
,
ω2

2
,
ω1+ω2

2
,

in C, up to translation by Λ, such that λ /∈ Λ but 2λ ∈ Λ. At those points λ, using that

℘(z) is an even function, we have

℘(z + λ) = ℘(−z − λ) = ℘(−z − λ+ 2λ) = ℘(−z + λ).

Therefore, if you take the power series expansion at z = λ, then the power series will be

even, so ℘′(λ) = 0. Consider the function f(z) = ℘(z)−℘(λ). This is also a holomorphic

function periodic in Λ, that has double poles at z ∈ Λ (and no other poles) and double

zeros at z ∈ λ + Λ (because f(λ) = 0 and f ′(λ) = 0). By the residue theorem, this

implies that there are no more zeros. In particular, ℘(λ) is distinct from any other value

of ℘ as long as it is not the translate by Λ. Therefore, ℘
(
ω1

2

)
, ℘
(
ω2

2

)
, ℘
(
ω1+ω2

2

)
are three

distinct numbers. As 4X3 − g2X − g3 has at most three roots, these numbers are exactly

the three roots. Now the expression g3
2 − 27g2

3 is
1
16

of the discriminant of the polynomial

4X3 − g2X − g3, so we know that

g3
2−27g2

3 =
1

16

(
℘
(ω1

2

)
− ℘

(ω2

2

))2
(
℘
(ω1

2

)
− ℘

(
ω1 + ω2

2

))2(
℘
(ω2

2

)
− ℘

(
ω1 + ω2

2

))2

6= 0.
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(2) For this, we clarify what we meant by that the the Eisenstein series G2k is a modular

form of weight 2k and level 1. This means that, for any γ =

(
a b
c d

)
∈ SL2(Z), G2k(γ ·

τ) = (cτ + d)2kG2k(τ). To prove this, we use that SL2(Z) as a group is generated by

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
. It is easy to check that showing G2k(γ · τ) = (cτ +

d)2kG2k(τ) only needs to be checked for generators of SL2(Z). Thus, we only need to

show that G2k(τ + 1) = G2k(τ), and G2k

(
− 1
τ

)
= τ 2kG2k(τ). The �rst relation is obvious

as Z⊕ Zτ = Z⊕ Z(τ + 1), so the sum de�ning the Eisenstein series is the same for both

lattices (=elliptic curves over C). For the second relation, we note that Z ⊕ Z
(
− 1
τ

)
=

Z ⊕ Z
(

1
τ

)
= 1

τ
(Z⊕ Zτ), so you get the same sum for G2k

(
− 1
τ

)
as G2k(τ) except that

you multiply every term by
1
1

τ2k

= τ 2k
, which gives the desired relation.

This implies the SL2(Z)-invariance of the j-function, because, for γ =

(
a b
c d

)
,

j(γ · τ) = 1728
(cτ + d)12g2(τ)3

(cτ + d)12g2(τ)3 − 27(cτ + d)12g3(τ)2
= 1728

g2(τ)3

g2(τ)3 − 27g3(τ)2
= j(τ).

(3) If j(τ) = j(τ ′), it’s easy to see that this means
G4(τ)3

G6(τ)2 = G4(τ ′)3

G6(τ ′)2 . You may �nd λ ∈ C such

that λ4G4(τ ′) = G4(τ) and λ6G6(τ) = G6(τ). This means that the two lattices (=elliptic

curves over C) Λ1 := Z⊕Zτ ′ and Λ2 := λ(Z⊕Zτ) give rise to the same in�nite sum G4

and G6.

Let ℘Λ1(z) and ℘Λ2(z) be the Weierstrass ℘-function obtained by using the two lattices

(=elliptic curves over C) Λ1,Λ2. By the proof of Proposition 13.10(1), we see that the

Laurent series expansion at z = 0 of ℘Λ1(z) and that of ℘Λ2(z) coincide up to the z4
-term.

Moreover, by di�erentiating the di�erential equation in Proposition 13.10(1), we obtain

2℘′(z)℘′′(z) = 12℘′(z)(℘(z))2 − g2℘
′(z),

or

℘′′(z) = 6℘(z)2 − g2/2.

This means that, by comparing the Laurent series expansion on both side,

6

z4
+
∞∑
n=1

(2n+ 1)2n(2n− 1)G2n+2z
2n−2 = 6

(
1

z2
+
∞∑
n=1

(2n+ 1)G2n+2z
2n

)2

− 30G4.

Comparing the coe�cients, we get the identities

z−4
-term: 6 = 6,

1-term: 6G4 = 36G4 − 30G4,

z2
-term: 60G6 = 60G6,
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z2n
-term, n ≥ 2: (2n+3)(2n+2)(2n+1)G2n+4 = 12(2n+3)G2n+4+6

n−2∑
i=0

(2i+3)(2n−2i+1)G2i+4G2n−2i.

The �rst three equations are obviously identities, and the last equation is, after rearrang-

ing,

(n− 1)(2n+ 3)(2n+ 5)

3
G2n+4 =

n−2∑
i=0

(2i+ 3)(2n− 2i+ 1)G2i+4G2n−2i for n ≥ 2,

and the coe�cient on the left hand side is not zero for n ≥ 2. In particular, every G2n,

n ≥ 2, is determined by G4 and G6 via a recurrence relation. This implies that ℘Λ1(z)
and ℘Λ2(z) have the same Laurent expansion at z = 0, which means ℘Λ1(z) = ℘Λ2(z). As

they have the same set of poles, this implies that Λ1 = Λ2.

We claim that Z⊕Zτ ′ = λ(Z⊕Zτ) for some λ ∈ C× implies that τ ′ = γ · τ for some τ ∈
SL2(Z). If Z⊕Zτ ′ = λ(Z⊕Zτ), 1 = λ(cτ+d) and τ ′ = λ(aτ+b) for a, b, c, d ∈ Z. Then,

τ ′ = τ ′

1
= aτ+b

cτ+d
. As τ ′ and 1 are not real multiples of one another,

(
a b
c d

)
has nonzero

determinant. By doing this the other way around, we see that τ = a′τ ′+b′

c′τ ′+d′
for a′, b′, c′, d′ ∈

Z, which implies that

(
a b
c d

)
∈ GL2(Z). As Z× = {±1}, det

(
a b
c d

)
= ±1. On

the other hand, one can check that, if det

(
a b
c d

)
= −1, then Im

((
a b
c d

)
· τ
)
< 0.

Therefore,

(
a b
c d

)
∈ SL2(Z), as desired.

(4) By (3), we know that j : SL2(Z)\H → C is injective. Thus what we really need to show

is that j is surjective. By Open Mapping Theorem of complex analysis, we know that

j(H) ⊂ C is an open subset. To conclude that j(H) = C, it su�ces to show that j(H) is

also a closed subset of C as C is connected. Suppose that τ1, τ2, · · · is a sequence of points

inH such that j(τ1), j(τ2), · · · converge to some w ∈ C. We may translate τi’s by SL2(Z)
so that we can put τi ∈ F , the fundamental domain (Remark 13.4).

Before we proceed, we need to know one more qualitative fact about j(τ). Note that

g2(τ) = 60
∑

m,n∈Z,(m,n)6=(0,0)

1

(m+ nτ)4
= 60

(
2
∞∑
m=1

1

m4
+

∑
n,m∈Z,n 6=0

1

(m+ nτ)4

)
.

In this expression, the second sum goes to 0 as Im τ → +∞. Therefore, limIm τ→+∞ g2(τ) =

120ζ(4) = 120π
4

90
= 4π4

3
. Similarly,

g3(τ) = 140
∑

m,n∈Z,(m,n)6=(0,0)

1

(m+ nτ)6
= 140

(
2
∞∑
m=1

1

m6
+

∑
n,m∈Z,n 6=0

1

(m+ nτ)6

)
,
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and by the same reason, limIm τ→+∞ g3(τ) = 280ζ(6) = 280 π6

945
= 8π6

27
(for the values of

ζ(2n), see for example [ANT, Example 18.18]). In fact, the convergence of the function as

Im τ → +∞ is another requirement for g2(τ) and g3(τ) to be modular forms.

Anyhow, the denominator of j(τ) goes to (4π4/3)3 − 27(8π6/27)2 = 0 as Im τ → +∞.

This implies that |j(τ)| → ∞ as Im τ → +∞. This means that Im τ1, Im τ2, · · · remains

bounded below a certain bound M . Therefore, τi ∈ F ∩ {τ ∈ H : Im(τ) < M} ⊂
{x + yi ∈ H : x ∈ [−1/2, 1/2], y ∈ [1/2,M ]}. Therefore, the in�nite sequence τ1, · · ·
has a limit point τ ′ inside this box. By the continuity of j, j(τ ′) = w. This shows that

j(H) ⊂ C is closed.

(5) By (4), there exists τ ∈ H such that j(τ) = 1728 a3

a3−27b2
. This implies that

g2(τ)3

g3(τ)2 = a3

b2
.

This implie that there exists c ∈ C× such that g2(τ) = c4a and g3(τ) = c6b. Then the

lattice (=elliptic curve over C) c(Z⊕ Zτ) will do the job.

�

Remark 13.15. The quotient SL2(Z)\H =: Y (1) is an example of the modular curves. Even

though Proposition 13.14(4) tells you that j function is a bijection between SL2(Z)\H and C, it

does not quite identify SL2(Z)\HwithC as a complex manifold, because the action of SL2(Z) on

H is not free. There are two reasons for this problem, one easy and one subtle. The easy reason

is that

(
−1 0
0 −1

)
acts trivially on the whole H. However, even though you consider the action

of PSL2(Z) := SL2(Z)/

{
±
(

1 0
0 1

)}
onH, the action is not free, which is a more subtle source

of the problem. For example,(
0 −1
1 0

)
· i =

−1

i
= i,

(
−1 −1
1 0

)
· e2πi/3 =

−e2πi/3 − 1

e2πi/3
= −1− e−2πi/3 = e2πi/3.

In fact, these are the only two points in the fundamental domain F (see Remark 13.4) with a

nontrivial stabilizer in PSL2(Z).

Exercise 13.1. Verify this claim. More precisely, show that, if τ ∈ F is such that the stabilizer of

τ in PSL2(Z) is not trivial, then τ = i or τ = e2πi/3
. Show that the stabilizer of i in PSL2(Z) is

the order 2 cyclic group

〈(
0 −1
1 0

)〉
, and the stabilizer of e2πi/3

in PSL2(Z) is the order 3 cyclic

group

〈(
−1 −1
1 0

)〉
.

The easy reason can be resolved by taking the quotient of H by a slightly smaller subgroup

of SL2(Z) (basically any subgroup that does not contain

(
−1 0
0 −1

)
), but the subtle reason can

never be resolved by this trick. This is a manifestation of a very subtle fact that the modular

curves are actually (complex) orbifolds, or in algebraic geometry language, (complex) alge-

braic stacks.
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As we will see, the j-function is a remarkable holomorphic function that is crucial for the

Explicit class field theory for imaginary quadratic �elds.

13.3. Lattices in C (=elliptic curves over C) with complex multiplication. We saw in the

previous section that, given a lattice (=elliptic curve over C) Λ ⊂ C, End(Λ) is a commutative

ring that contains Z in it. We also saw an example where End(Λ) is bigger than Z, equal to OK
for an imaginary quadratic �eld K .

De�nition 13.16 (Lattices inC (=elliptic curves overC) with complex multiplication). Let Λ ⊂ C
be a lattice (=elliptic curve over C). We say that Λ has complex multiplication (or CM) if

End(Λ) 6= Z.

The reason why we call it to have complex multiplication is because the shape of End(Λ) is

extremely restricted, so that if End(Λ) 6= Z, then it has to be not too far from the ring of integers

of an imaginary quadratic �eld. This is because End(Λ) has a lot more structures than expected.

Lemma 13.17. Let Λ,Λ′ ⊂ C be lattices (=elliptic curves over C).

(1) Let f : Λ → Λ′, x 7→ cx, be an isogeny. Then, its dual f̂ : Λ′ → Λ, given by x 7→ deg f
c
x,

is also an isogeny. In particular, two lattices (=elliptic curves over C) being isogenous is an
equivalence condition. If Λ = Λ′, this map gives a ring involution (i.e. a ring homomorphism
which is an involution) ·̂ : End(Λ)→ End(Λ) called the Rosati involution.

(2) For n ∈ Z, [̂n] = [n].

(3) For f ∈ Hom(Λ,Λ′), deg f = deg f̂ , f ◦ f̂ = [deg f ] in End(Λ′) and f̂ ◦ f = [deg f ] in
End(Λ).

(4) Let the trace of f ∈ End(Λ) be de�ned as tr f := f + f̂ . Then, tr f ∈ Z ⊂ End(Λ).

(5) Let End0(Λ) = End(Λ)⊗Z Q. Then, End0(Λ) is either Q or an imaginary quadratic �eld.

(6) If End0(Λ) = Q, then End(Λ) = Z.

(7) If End0(Λ) = K is an imaginary quadratic �eld, then End(Λ) ⊂ K is, as a Z-module, a
free rank 2 Z-module. In this case, we say that Λ has complex multiplication by the
ring End(Λ).

Proof. (1) The statement is invariant under replacing c and Λ′ by cd and dΛ′ for any d ∈ C×. In

particular, we may assume that c = 1, i.e. Λ ⊂ Λ′ is just a sublattice. Then, deg f = #Λ′

Λ
,

so multiplying by deg f will kill anything in this quotient, i.e. x 7→ (deg f)x sends an

element in Λ′ to an element in Λ, which makes it an isogeny. This also shows the re�exivity

of the relation of two lattices (=elliptic curves overC) being isogenous despite the apparent

asymmetry in the de�nition.

If Λ = Λ′, then deg f = |c|2, so the dual isogeny f̂ is x 7→ deg f
c
x = cx. Therefore, it is

clear that taking the dual isogeny is an involution.
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(2) Obvious.

(3) Obvious from (1) and (2).

(4) Obvious.

(5) Suppose that f : Λ → Λ, x 7→ cx, is an isogeny. We may scale Λ so that Λ = Z ⊕ Zτ
for some τ ∈ H. Then, x 7→ cx being an isogeny means that c, cτ ∈ Z ⊕ Zτ . Therefore,

c = m + nτ and cτ = a + bτ . Combining, we obtain mτ + nτ 2 = a + bτ , or nτ 2 +
(m − b)τ − a = 0. This implies that τ is a solution to a quadratic polynomial in Q[X].
Therefore, Q(τ) is either Q or a quadratic �eld. As τ ∈ H, τ is not real, so Q(τ) is either

Q or an imaginary quadratic �eld. As End(Λ) is naturally a subring of Q(τ), this implies

that End0(Λ) is also a subring of Q(τ). Thus, we get the result.

(6) Let us scale Λ so that Λ = Z ⊕ Zτ . If x 7→ cx, c ∈ Q, is a self-isogeny of Λ, this means

that c, cτ ∈ Λ. However, as Im(τ) > 0, c ∈ Λ means that c ∈ Z. Therefore, End(Λ) ⊂ Z.

As Z ⊂ End(Λ), we get the result.

(7) Let us scale Λ so that Λ = Z ⊕ Zτ . If x 7→ cx is a self-isogeny of Λ, then certainly

c ∈ Z⊕Zτ . Therefore, End(Λ) is a Z-submodule of Z⊕Zτ . This implies that End(Λ) is

a free Z-module of rank ≤ 2. As there exists highly divisible large enough N � 0 such

that N,Nτ ∈ End(Λ), this implies that the rank of End(Λ) is ≥ 2, so exactly 2.

�

By Lemma 13.17, for a lattice (=elliptic curve overC) Λ ⊂ C, we know that either End(Λ) = Z
is or End(Λ) is a free rank 2 Z-submodule of an imaginary quadratic �eld, or an order in an

imaginary quadratic �eld.

De�nition 13.18 (Order). Given aQ-algebraK of �nite dimension as aQ-vector space, an order

O inK is a subring ofK that is a freeZ-module rank dimQK . Equivalently, it is a subringO ⊂ K
which is �nitely generated as a Z-module, and K = O ⊗Z Q.

Lemma 13.19. LetK be an imaginary quadratic �eld. IfO ⊂ K is an order, thenO = Z+NOK
for N = [OK : O] ∈ N. In particular, any order O is contained in OK (making OK the maximal
order in K). We call N the conductor of the order O.

Proof. We �rst show that O ⊂ OK . Let α ∈ O. If α ∈ Z, then obviously α ∈ OK . If not,

then, Z[α] ⊂ O is a Z-submodule, so it is a free Z-module of rank exactly 2 (it is ≥ 2 because it

contains Z⊕ Zα, it is ≤ 2 because it is contained in O). Let β1, β2 be a Z-basis of Z[α]. Then, β1

and β2 are Z-linear combinations of certain powers of α. Let αN be the power of α with a larger

exponent than any powers of α appearing in β1, β2. Then, αN = m1β1 + m2β2 for m1,m2 ∈ Z.

This means that α is a root of a monic polynomial with integer coe�cients, so α is an algebraic

integer, or α ∈ OK . This shows that O ⊂ OK .

Now let N = [OK : O]. Then, NOK ⊂ O. Therefore, Z + NOK ⊂ O. Now it su�ces to

show that [OK : Z + NOK ] = N . Note that [OK : NOK ] = N2
, so it su�ces to show that

[Z+NOK : NOK ] = N . But this is obvious because
Z+NOK
NOK

= Z
Z∩NOK

= Z
NZ . We are done. �
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We now know quite precisely what can possibly be End(Λ) for a lattice (=elliptic curve over

C) Λ ⊂ C. We also know that, for “most” lattices (=elliptic curves over C), End(Λ) = Z, because,

if you scale to express Λ = Z ⊕ Zτ for τ ∈ H, End(Λ) 6= Z if and only if τ is an imaginary

quadratic number, and almost all complex numbers are even transcendental. So a lattice (=elliptic

curve over C) having complex multiplication is quite a special property
17

.

We may then ask – given an order O ⊂ K in an imaginary quadratic �eld, what are the

lattices (=elliptic curves over C) Λ having complex multiplication by O (i.e. End(Λ) = O)? It is

quite clear that End(O) = O, but there can be other possibilities, because Λ need not have a ring

structure. It turns out that there is a very precise description of the list of Λ’s realizing the given

O as their endomorphism algebras, and, in particular, the list is �nite! From here we start to see

a connection between the lattices (=elliptic curves over C) with complex multiplication and the

class �eld theory of an imaginary quadratic �eld.

De�nition 13.20 (Proper O-ideal). Let O be an order in an imaginary quadratic �eld K . For an

ideal a ⊂ O, let

O(a) := {α ∈ K : αa ⊂ a}.

By de�nition, O ⊂ O(a), and O(a) = End(a) when a is seen as a lattice in C (=elliptic curve

over C), so O(a) is also an order in K by Lemma 13.19. An O-ideal a is a proper O-ideal

if O(a) = O. Similarly, a fractional O-ideal b ⊂ K (i.e. a �nitely generated O-submodule) is a

proper fractionalO-ideal ifO(b) := {α ∈ K : αb ⊂ b} is equal toO. Again,O(b) = End(b)
when b is seen as a lattice in C (=elliptic curve over C), so O(b) is an order in K .

Example 13.21. Not all ideals of an order are proper. For example, let K = Q(
√
−3). Then,

OK = Z
[

1+
√
−3

2

]
, so thatO = Z[

√
−3] is the order of conductor 2 inK . Let a = (2, 1+

√
−3) ⊂

O be an ideal of O. Then, we see that O(a) = OK 6= O, because
1+
√
−3

2
∈ O(a).

Remark 13.22. The failure of some ideals being proper is related to the fact that an order is not

necessarily a Dedekind domain (speci�cally, not normal; for example, [ANT, Lemma 6.9] does

not hold for orders). In particular, all ideals of the maximal orderOK are proper, asOK is normal

(by de�nition, for an ideal a ⊂ OK , O(a) = aa−1 = OK).

De�nition 13.23 (Ideal norm). Let O be an order in an imaginary quadratic �eld K , and let

a ⊂ O be an O-dieal. Then, the ideal norm of b is N(a) := [O : a]. More generally, for a

fractional O-ideal b ⊂ K , which is always of the form λa for some λ ∈ K× and a ⊂ O an

O-ideal, N(b) := NK/Q(λ)N(a), which can be easily seen to be well-de�ned.

Remark 13.24. The norm is not necessarily multiplicative, which is also another manifestation

of the fact that fractional O-ideals are not neceesarily invertible. It is however multplicative for

proper (i.e. invertible) fractional O-ideals.

Lemma 13.25. LetO be an order in an imaginary quadratic �eldK , and let a ⊂ K be a fractional
O-ideal. Then, a is a proper fractional O-ideal if and only if a is an invertible O-ideal (i.e. there is
a fractional O-ideal b ⊂ K such that ab = O).

17
Imaginary quadratic numbers in H are therefore sometimes called special points, or CM points.
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Proof. Let a be an invertible fractional O-ideal. Then, there is a fractional O-ideal b ⊂ K such

that ab = O. If α ∈ O(a), then αO = αab ⊂ ab = O, which implies that α ∈ O. Thus,

O(a) ⊂ O, which implies that O(a) = O, or a is proper.

Conversely, let a ⊂ K be a proper fractional O-ideal. We may multiply a by an appropriate

element in K so that we may assume that a ⊂ O (being proper or being invertible is invariant

under multiplication by an element in K).

Let a be the O-ideal obtained by applying the nontrivial Galois element of Gal(K/Q) on

a; this is an O-ideal as O = O (every order is of the form Z + NOK for N ∈ N). We claim

that aa = (N(α)) (the principal ideal of O generated generated by N(α)). Then, a−1 := 1
N(α)

a

will give you the inverse, making a invertible. Let α, β ∈ a be a Z-basis. Let τ = β
α

, so that

a = α(Z ⊕ Zτ), and O = O(a) = O(Z ⊕ Zτ). Let aX2 + bX + c be the minimal polynomial

of τ over Z, so that a, b, c ∈ Z, with a > 0 and gcd(a, b, c) = 1. Note that aτ ∈ O(Z ⊕ Zτ).

Therefore, O ⊃ Z⊕Zaτ . If γ ∈ O(Z⊕Zτ), γ, γτ ∈ Z⊕Zτ , so in particular Z⊕Zτ ⊃ O. This

implies that O = Z⊕ Za′τ for a′|a. If a′τ ∈ O(Z⊕ Zτ), then a′τ 2 ∈ Z⊕ Zτ . As a2X + bX + c
is the minimal polynomial of τ , a′ = a. Therefore, O = Z⊕ Zaτ . So,

N(a) = [O : a] = [Z⊕ Zaτ : α(Z⊕ Zτ)] =
[Z⊕ Zaτ : α(Z⊕ Zaτ)]

[α(Z⊕ Zτ) : α(Z⊕ Zaτ)]
=
NK/Q(α)

a
.

Consider aa, which is the Z-module generated by {αα, αβ, βα, ββ} = NK/Q(α){1, τ, τ , ττ}.
Note that ττ = c

a
and τ + τ = − b

a
, so aa is the Z-module generated by NK/Q(α){1, τ, b

a
, c
a
} =

N(a){a, aτ, b, c}. As {a, b, c} generate Z, we see that aa = N(a)(Z⊕Zaτ) = N(a)O = (N(a)).

�

De�nition 13.26 (Ring class group). Let O be an order in an imaginary quadratic �eld. Let

Cl(O), called the ring class group ofO, be the group of proper (=invertible) fractionalO-ideals

modulo the principal ideals in O.

Proposition 13.27. Let O be an order in an imaginary quadratic �eld. There is a one-to-one cor-
respondence

Cl(O)↔ {lattices Λ ⊂ C (=elliptic curves over C) with End(Λ) = O}/isomorphisms,

a 7→ a ⊂ C.

Proof. The only remaining veri�cation is, if Λ ⊂ C is a lattice (=elliptic curve over C) with

End(Λ) = O, then Λ = λa for λ ∈ C× and a an O-ideal. You may take λ ∈ C× so that

λ−1Λ ⊂ O. So we just assume that Λ ⊂ O. Then O(Λ) = O by de�nition, and Λ is an O-ideal

as Λ is stable under multiplication by an element in O. �

Example 13.28. As all fractional ideals of OK are invertible, Cl(OK) = Cl(K).

We may guess that the ring class groups, just like the (ray) class groups, are natural objects

in the idele/ideal side of the global class �eld theory. In particular, it must arise as a quotient of

the ray class group of a certain modulus. This is in fact true.
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Theorem 13.29 (Ring class groups and ray class groups). LetK be an imaginary quadratic �eld,
and let O = Z+NOK be the order in K of conductor N .

(1) An O-ideal a ⊂ O is said to be coprime to N if a + NO = O. Then, this is equivalent to
that N(a) is coprime to N .

(2) Any O-ideal coprime to the conductor N is a proper O-ideal.

(3) The ring class group Cl(O) is generated by theO-ideal classes of theO-ideals coprime to the
conductor N . More precisely,

Cl(O) ∼=
{fractional O-ideals coprime to N}

{principal fractional ideals αO where NK/Q(α) ∈ Q is coprime to N}
,

where a fractional O-ideal coprime to N is a fractional ideal of the form a
b
where a, b are

O-ideals coprime to N .

(4) Any OK-ideal a ⊂ OK coprime to N gives rise to an O-ideal a ∩ O ⊂ O coprime to
N . Conversely, any O-ideal a ⊂ O coprime to N gives rise to an OK-ideal aOK ⊂ OK
coprime to N . This gives a one-to-one correspondence between the OK-ideals coprime to N
and the O-ideals coprime to N . Accordingly, Cl(O) ∼= J

S(N)
K /KN,O, where S(N) is the set

of places ofK dividingN , andKN,O is the subgroup ofK× generated by α ∈ OK such that
α ≡ a (modNOK) for some a ∈ Z with gcd(a,N) = 1.

(5) ConsiderN as a modulus inK (note thatK has no real place, so there is no in�nite modulus
to worry about). There is a natural quotient map ClN(K) � Cl(O) with kernel (Z/NZ)×

(principal ideals generated by the integers coprime to N ). In particular, the ring class group
Cl(O) is �nite.

Proof. (1) Note that a + NO = O is equivalent to that multiplication by N is surjective on

O/a, which is equivalent to the order of O/a being coprime to N .

(2) Let a be an O-ideal coprime to N . Let α ∈ O(a) ⊂ OK . Then αa ⊂ a, so in particular

αO = α(a+NO) ⊂ a+NαO ⊂ a+NOK = O. This implies that α ∈ O, soO(a) ⊂ O,

which means that a is a proper O-ideal.

(3) We �rst show that, for every proper O-ideal b ⊂ O, there is a fractional O-ideal a ⊂ K
coprime to N such that ba−1

is a principal fractionalO-ideal (recall that a is invertible by

(2), so a−1
makes sense). Let p1, · · · , pn ⊂ O be the prime ideals of O containing either

NO or b; there are �nitely many such prime ideals as both NO and b are of �nite index

in O. In particular, if p ⊂ O is a prime ideal not equal to any pi, then bOp = Op.

We claim that, even at pi, bOpi = βiOpi for some βi ∈ K× (i.e. b is locally principal
18

);

this is not obvious because Opi now is not necessarily a PID (remember, for the ring of

integers case, we used that a local Dedekind domain is a discrete valuation ring, thus a

18
In fact, the converse is true, that a locally principal ideal is invertible. See [Neu, Proposition I.12.4].
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PID). Indeed, as bb−1 = O, which means that 1 =
∑r

i=1 xiyi for xi ∈ b, yi ∈ b−1
. Note

that each xiyi ∈ O by de�nition, and as the sum of x1y1, · · · , xryr is 1, not all of them, as

elements ofOp, are contained in the maximal ideal pOp ofOp. After rearranging, suppose

that x1y1 as an element ofOp is not contained in pOp. AsOp is still a local ring, x1y1 ∈ O×p .

Then, for any x ∈ bOpi , xy1 ∈ bb−1Opi = Opi , and xy1(x1y1)−1x1 ∈ x1Opi , which shows

tat bOpi ⊂ x1Opi . As x1 ∈ b, this in fact implies that bOpi = x1Opi , as desired.

We now let qi ⊂ OK be any maximal ideal containing piOK . By the Weak Approximation

Theorem (Theorem 7.12), there exists β ∈ K× such that |β − βi|qi < |β|qi (to apply the

Weak Approximation Theorem, think of this condition as |β−1
i − β−1|qi < |β−1

i |qi ; it is

�nding an element of the diagonal close to the point (β−1
1 , · · · , β−1

n )) for all 1 ≤ i ≤ n.

We claim that a = β−1b does the job; i.e. β−1b is a fractional O-ideal coprime to N , or

β−1bOpi = Opi for every 1 ≤ i ≤ n. Note that β−1bOpi = β−1βiOpi , so it su�ces to

show that β−1βi is a unit in Opi . By construction, |1− β−1βi|qi < 1, so β−1βi is a unit in

OK,qi . Note that qi∩O ⊃ pi, so it is in fact qi∩O = pi, because qi∩O 6= O (i.e. qi cannot

contain O). This implies that OK,qi is the integral closure of Opi in K . This implies that

O×K,qi ∩ Opi = O×pi , so in particular β−1βi is a unit in Opi .

What we proved so far is that there is a natural surjection

{fractional O-ideals coprime to N}� Cl(O).

Certainly any principal fractional idealαOwithNK/Q(α) coprime toN is contained in the

kernel. Conversely, if αO is a principal fractional ideal coprime to N , then it is invertible,

so by Remark 13.24, its norm is also coprime to N , which is equal to NK/Q(α).

(4) For anOK-ideal a ⊂ OK coprime toN ,O/a∩O ↪→ OK/a is injective. AsNOK ⊂ O, and

as multiplying by N is invertible onOK/a, it means thatO/a∩O → OK/a is surjective.

Therefore, N(a) = N(O ∩ a), so a ∩ O is an O-ideal coprime to N .

Conversely, for an O-ideal a ⊂ O coprime to N , we have

aOK +NOK = (a +NO)OK = OOK = OK ,

which means that aOK is coprime to N .

To show that these are inverses to each other, we �rst show that, given anO-ideal a ⊂ O
coprime to N , aOK ∩O = a. Obviously aOK ∩O ⊃ a. For the other inclusion, note that

aOK ∩ O = (aOK ∩ O)(a +NO) ⊂ a +NaOK ⊂ a + aO = a.

We then show that, given anOK-ideal a ⊂ OK coprime toN , (a∩O)OK = a. Obviously

(a ∩ O)OK ⊂ a. For the other inclusion, note that

a = aO = a(a ∩ O +NO) ⊂ (a ∩ O)OK +Na ⊂ (a ∩ O)OK + a ∩ O = (a ∩ O)OK ,

because obviously Na ⊂ a and Na ⊂ NOK ⊂ O. This shows that the two operations

are inverses to each other.
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Finally, to show that Cl(O) ∼= J
S(N)
K /KN

, it su�ces to show that, for α ∈ OK , α ≡
a (modNOK) for some a ∈ Zwith gcd(a,N) = 1 if and only ifα ∈ O and gcd(NK/Q(α), N) =
1, which is almost by the de�nition of the conductor obvious.

(5) This follows from (4) and the �niteness of the ray class group.

�

De�nition 13.30 (Ring class �eld). Let K be an imaginary quadratic �eld, and letO be an order

in K . Then, the ring class field K(O) is the abelian extension of K which, by the global Artin

reciprocity, corresponds to Cl(O) as the natural quotient of the idele class group CK (because

it is the natural quotient of the ray class group ClN(K), where N is the conductor of O). By

de�nition, Gal(K(O)/K) ∼= Cl(O), and K(O) is the sub�eld of the ray class �eld K(N) where

Gal(K(N)/K(O)) ∼= (Z/NZ)×.

14. Modular functions

14.1. Modular functions for SL2(Z). For the Explicit class field theory for imaginary qua-

dratic �elds, we need to develop some theory of modular functions, which are meromorphic

modular forms of weight 0.

De�nition 14.1 (Congruence subgroups). For N ≥ 1, we de�ne certain �nite index subgroups

of SL2(Z) as follows.

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (modN)

}
.

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (modN), a, d ≡ 1 (modN)

}
.

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : b, c ≡ 0 (modN), a, d ≡ 1 (modN)

}
.

Obviously, Γ(N) ≤ Γ1(N) ≤ Γ0(N) ≤ SL2(Z).

A �nite index subgroup Γ ≤ SL2(Z) is a congruence subgroup if Γ ⊃ Γ(N) for some

N ≥ 1.

Remark 14.2. As the de�nition suggests, there are �nite index subgroups of SL2(Z) that are not

congruence subgroups.

De�nition 14.3 (Modular functions). Let Γ ≤ SL2(Z) be a congruence subgroup. A modular

function for Γ is a meromorphic function f : H→ C that satis�es the following.

• For γ ∈ Γ, f(τ) = f(γ · τ).

• “As τ escape to in�nity, f(τ) is meromorphic”.

We explain in detail what this means.
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– Firstly, this includes the statement that f(τ) is meromorphic as Im τ → +∞, which is

reminiscent of what we analyzed about j(τ) above. LetN(Z) =

{(
1 n
0 1

)
: n ∈ Z

}
≤

SL2(Z), and let NΓ := N(Z) ∩ Γ. Note that as Γ is a congruence subgroup, Γ ⊃

Γ(M) for some M ≥ 1, and Γ(M) ∩ N(Z) =

{(
1 Mn
0 1

)
: n ∈ Z

}
, so NΓ ={(

1 M ′n
0 1

)
: n ∈ Z

}
for someM ′|M . This implies that

(
1 M ′

0 1

)
∈ Γ, so f(τ) =

f(τ + M ′). Therefore, if you consider the map H → D×, τ 7→ e2πiτ/M ′
, where

D× := {0 < |z| < 1}, then f factors through this map, and therefore gives rise to a

holomorphic map onD×. Then, f(τ) being meromorphic as Im τ → +∞means that

the corresponding holomorphic function on D× has a pole at z = 0, and the Fourier

expansion of f(τ) at∞ is of the form

f(τ) =
∞∑
n=K

anq
n, q = e

2πiτ
M′ ,

for some K ∈ Z (i.e. the Laurent series in q has a �nite meromorphic tail). This is

called the q-expansion of f(τ) at∞.

– A cusp is an element of P1
Q := Q∪ {∞}. The same formula for the action of SL2(Z)

on H applies to P1
Q (where, for q ∈ Q,

(
a b
c d

)
· q = “

aq+b
cq+d

” = ∞ if cq + d = 0, and(
a b
c d

)
· ∞ = “

a∞+b
c∞+d

” = a
c
, which is∞ if c = 0). Note that SL2(Z) acts transitively

on P1
Q. Two cusps q1, q2 ∈ P1

Q are Γ-equivalent if q1 = γ · q2 for γ ∈ Γ.

For each cusp q ∈ P1
Q, you may choose γq ∈ SL2(Z) such that q = γq · ∞. If

f : H→ C satis�es f(τ) = f(γ · τ) for γ ∈ Γ, then if we let fq(τ) := f(γq · τ), then

fq(γ · τ) = fq(τ) if γ ∈ γ−1
q Γγq. Note that γ−1

q Γγq is also a congruence subgroup as

Γ(N) is a normal subgroup of SL2(Z).

Now, this requirement of meromorphic as τ escape to in�nity is actually fq(τ) being

meromorphic as Im τ → +∞ for every q ∈ P1
Q. Note that you only need to check one

cusp per a Γ-equivalence class of cusps. As P1
Q/Γ is a �nite set (reason: P1

Q/ SL2(Z)
is just a singleton, and [SL2(Z) : Γ] is �nite), this is a �nite check.

Clearly, if Γ′ ≤ Γ, a modular function for Γ is automatically a modular function for Γ′.

Lemma 14.4. The j-function is a modular function for SL2(Z). Its q-expansion is j(τ) = q−1 +
744 + 196884q + · · · ∈ Z[[q]](q−1).

This is the reason why we put 1728 in the de�nition of j; we want the coe�cients of the

q-expansion to be in Z, and the lowest order term to be just q−1
.

Proof. We �rst compute the q-expansions ofG4(τ) andG6(τ); indeed, they have a slightly di�er-

ent transformation formula for the action of SL2(Z), but the extra factor is just 1 when you act
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by any element in N(Z), so there are by the same reason the q-expansions of G4 and G6. Note

that, for k ≥ 2, we have

G2k(τ) = 2ζ(2k) + 2
∑
m≥1

∑
n∈Z

1

(mτ + n)2k
= 2ζ(2k) + 2

∑
m≥1

f2k(mτ),

where f2k(z) =
∑

n∈Z
1

(z+n)2k . As f2k(z) = f2k(z + 1), it should also have a Fourier expansion,

as Im z → +∞. As limIm z→+∞ f2k(z) = 0, this implies that f2k(z) =
∑∞

m=1 ame
2πimz

. Each

coe�cient am can be computed by

am =

∫ 1+Ni

Ni

f2k(z)e−2πimzdz, N > 0.

As 2k ≥ 4, the sum is absolutely convergent and we have

am =

∫ 1+Ni

Ni

(∑
n∈Z

e−2πimz

(z + n)2k

)
dz =

∑
n∈Z

∫ 1+Ni

Ni

e−2πimz

(z + n)2k
dz

=
∑
n∈Z

∫ 1+n+Ni

n+Ni

e−2πimz

z2k
dz =

∫ ∞+Ni

−∞+Ni

e−2πimz

z2k
dz.

Let IM,N :=
∫M+Ni

−M+Ni
e−2πimz

z2k dz, so that am = limM→+∞ IM,N . Consider the contour integral

1

2πi

∫
SX,M,N

e−2πimz

z2k
dz =

1

2πi

(∫ −M+Ni

M+Ni

+

∫ −M−Xi
−M+Ni

+

∫ M−Xi

−M−Xi
+

∫ M+Ni

M−Xi

)
e−2πimz

z2k
dz,

where SX,M,N is the rectangle with four corners −M + Ni, M + Ni, −M − Xi, M − Xi for

M,N,X > 0 (counterclockwise). By the residue theorem,

1

2πi

∫
SX,M,N

e−2πimz

z2k
dz =

(−2πim)2k−1

(2k − 1)!
= −(2πi)2k−1m2k−1

(2k − 1)!
.

Therefore,

IM,N =
(2πi)2km2k−1

(2k − 1)!
+

(∫ −M−Xi
−M+Ni

+

∫ M−Xi

−M−Xi
+

∫ M+Ni

M−Xi

)
e−2πimz

z2k
dz.

We claim that am = limN→+∞ IM,N = (2πi)2km2k−1

(2k−1)!
. For this, we give a bound on the other three

integrals appearing in the above expression.

• For z on the vertical line connecting−M −Xi and−M +Ni, i.e. for z = −M + yi with

−X ≤ y ≤ N , we have ∣∣∣∣e−2πimz

z2k

∣∣∣∣ =
e2πmy

|z|2k
≤ e2πmN

M2k
,

so ∣∣∣∣∫ −M−Xi
−M+Ni

e−2πimz

z2k
dz

∣∣∣∣ ≤ (N +X)
e2πmN

M2k
.
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• For z on the horizontal line connecting M −Xi and −M −Xi, i.e. for z = x−Xi with

−M ≤ x ≤M , we have∣∣∣∣e−2πimz

z2k

∣∣∣∣ =
e−2πmX

|z|2k
≤ e−2πmX

X2k
,

so ∣∣∣∣∫ M−Xi

−M−Xi

e−2πimz

z2k
dz

∣∣∣∣ ≤ 2M
e−2πmX

X2k
.

• For z on the vertical line connecting M − Xi and M + Ni, i.e. for z = M + yi with

−X ≤ y ≤ N , we have ∣∣∣∣e−2πimz

z2k

∣∣∣∣ =
e2πmy

|z|2k
≤ e2πmN

M2k
,

so ∣∣∣∣∫ M+Ni

M−Xi

e−2πimz

z2k
dz

∣∣∣∣ ≤ (N +X)
e2πmN

M2k
.

Therefore, ∣∣∣∣IM,N −
(2πi)2km2k−1

(2k − 1)!

∣∣∣∣ ≤ 2(N +X)
e2πmN

M2k
+ 2M

e−2πmX

X2k
.

Let X = M . Then,∣∣∣∣IM,N −
(2πi)2km2k−1

(2k − 1)!

∣∣∣∣ ≤ 2(N +M)
e2πmN

M2k
+ 2M

e−2πmM

M2k
.

The right hand side goes to 0 as M → +∞, so this implies that am = (2πi)2km2k−1

(2k−1)!
, as desired.

This implies that

f2k(z) =
∞∑
m=1

(2πi)2km2k−1

(2k − 1)!
e2πimz.

Therefore,

G2k(τ) = 2ζ(2k) + 2
∑
m≥1

∞∑
j=1

(2πi)2kj2k−1

(2k − 1)!
e2πijmτ = 2ζ(2k) + 2

(2πi)2k

(2k − 1)!

∞∑
r=1

σ2k−1(r)e2πirτ ,

where σ2k−1(r) =
∑

d|r d
2k−1

. Therefore,

g2(τ) = 60G4(τ) =
4π4

3
+ 120

(2πi)4

3!

∞∑
r=1

σ3(r)e2πirτ =
4π4

3
+ 320π4

∞∑
r=1

σ3(r)e2πirτ ,

g3(τ) = 140G6(τ) =
8π6

27
+ 280

(2πi)6

5!

∞∑
r=1

σ5(r)e2πirτ =
8π6

27
− 448π6

3

∞∑
r=1

σ5(r)e2πirτ .
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In particular, g2(τ) = 4π4

3
(1 + 240qP (q)) and g3(τ) = 8π6

27
(1 − 504qQ(q)) for q = e2πiτ

and

P (X), Q(X) ∈ Z[[X]] with P (0) = Q(0) = 1. Therefore,

j(τ) = 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
= 1728

64π12

27
(1 + 240qP (q))3

64π12

27
(1 + 240qP (q))3 − 64π12

27
(1− 504qQ(q))2

= 1728
(1 + 240qP (q))3

(1 + 240qP (q))3 − (1− 504qQ(q))2
.

To show that the Laurent series expansion of j(τ) is in Z[[q]](q−1) with the �rst term starting

with q−1
, what we need to show is that

(1 + 240qP (q))3 − (1− 504qQ(q))2

1728
= q + · · · ∈ Z[[q]].

Note that

(1 + 240qP (q))3 − (1− 504qQ(q))2

1728

=
(1 + 720qP (q) + 172800q2P (q)2 + 13824000q3P (q)3)− (1− 1008qQ(q) + 254016q2Q(q)2)

1728

= q
5P (q) + 7Q(q)

12
+ 100q2P (q)2 + 8000q3P (q)3 − 147q2Q(q)2.

We know that P (0) = Q(0) = 1 and as the q-term only appears in the �rst part of the above

expression, we know that the q-series for the above expression starts with q + · · · . To show that

the above expression has integer coe�cients, we need to show that the coe�cients of 5P (q) +
7Q(q) are divisible by 12, or the coe�cients of 5(P (q)−Q(q)) are divisible by 12. Thus, we want

to show that P (q) ≡ Q(q) (mod 12). This is the same as σ3(n) ≡ σ5(n) (mod 12). As σk(n) is

multiplicative (i.e. σk(mn) = σk(m)σk(n) as long as gcd(m,n) = 1), we only need to show the

congruence when n is a prime power, n = ps. Thus we want to show that 1 + p3 + · · · + p3s ≡
1 + p5 + · · ·+ p5s (mod 12) for any s ≥ 1 and prime p. By Chinese Remainder Theorem, we need

to show this for (mod 3) and (mod 4) separately.

• For (mod 3): if p = 3, then 1 + p3 + · · ·+ p3s ≡ 1 ≡ 1 + p5 + · · ·+ p5s (mod 3). If p 6= 3,

then p2 ≡ 1 (mod 3), so p3t ≡ p5t (mod 3) for any t ≥ 0.

• For (mod 4): if p = 2, then 1 + p3 + · · ·+ p3s ≡ 1 ≡ 1 + p5 + · · ·+ p5s (mod 4). If p 6= 2,

then p2 ≡ 1 (mod 4), so p3t ≡ p5t (mod 4) for any t ≥ 0.

I will leave to the reader checking that the next terms of the q-expansion of j(τ) after q−1
are

q−1 + 744 + 196884q + · · · . �

Theorem 14.5. The modular functions for SL2(Z) are precisely the rational functions in j(τ). In
other words, the �eld of modular fuctions for SL2(Z), denoted K(Y (1)), is given by K(Y (1)) =
C(j).

Among those, the modular functions for SL2(Z) that are holomorphic on H are precisely the
polynomials in j(τ). Namely, the ring of modular functions for SL2(Z) holomorphic on H, denoted
O(Y (1)), is given by O(Y (1)) = C[j].
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Proof. It is clear that a rational function in j(τ) is a modular function for SL2(Z). Conversely,

suppose that you are given a modular function f(τ) for SL2(Z). Suppose that f(τ) has a q-
expansion with some meromorphic tail, starting with aNq

−N
forN > 0. Then, you may consider

f(τ) − aNj(τ)N , which is a modular function with the meromorphic tail of the q-expansion

starting with a lower order term. By repeating this, we may assume that the q-expansion of

f(τ) has no meromorphic tail. This means that there is C ∈ C such that limIm τ→+∞ f(τ) = C .

This implies that f(τ) has no poles in the region {Im τ > B} for some B � 0. This implies

that there are only �nitely many poles of f(τ) up to SL2(Z)-action, as such poles must appear

in the box {x + yi ∈ H : x ∈ [−1/2, 1/2], y ∈ [1/2, B]} and there are only �nitely many

poles of a meromorphic function in a compact set in C. Let z1, · · · , zm be the poles of f(τ) up to

SL2(Z)-action, of order n1, · · · , nm. Then, we consider

f(τ)
m∏
i=1

(j(τ)− j(zi))ni .

Note that j(τ) is holomorphic on the whole H, so this function is now holomorphic on H. On

the other hand, this process introduces yet another meromorphic tail of the q-expansion at∞.

We then go through the same reduction as above to eliminate the meromorphic tail of the q-
expansion (which does not introduce new poles in H, as j(τ) is holomorphic on H). Thus we

arrive at a modular function f(τ) which is holomorphic onH and has no meromorphic tail in its

q-expansion. But this implies that f(τ) is bounded, as limIm τ→+∞ f(τ) = C ′ for some C ′ ∈ C,

and the rest of the values are realized by f(τ) for some τ in the box [−1/2, 1/2] × [1/2, B′] as

above for some B′ � 0. Therefore, by Liouville’s theorem, f(τ) is a constant function, which is

obviously a rational function in j(τ). It is clear from the proof that we also showed that a modular

function for SL2(Z) holomorphic on H is a polynomial in j(τ). �

Remark 14.6 (Canonical model of the modular curve Y (1); for those who know algebraic geom-

etry). This implies that the modular curve Y (1) in the algebraic geometry context can be de�ned

as the a�ne line A1
C = SpecC[j] where you treat j just as a symbol representing a variable of a

polynomial. Furthermore, you can give a Q-model of Y (1) by dictating that SpecQ[j] =: Y (1)Q
is “the cannocial model” of Y (1) over Q. You can even try to do this with Z instead of Q; for the

modular curve Y (1), it turns out that this is the correct thing to do
19

, but in general you need to

ask yourself what is the meaning of “canonical model over Z”.

14.2. Modular functions for Γ0(N). Now we consider a variant of j(τ).

De�nition 14.7. For N ∈ N, let jN(τ) := j(Nτ).

Proposition 14.8. The function jN(τ) : H→ C is a modular function for Γ0(N).

Proof. Note that Nτ =

(
N 0
0 1

)
· τ (we only talked about the action of SL2(Z) on H, but really

any 2×2 matrix with real entries and positive determinant acts onH by the same formula). Thus,

19
Someone may argue otherwise and may want to exclude 2, 3, i.e. it’s a correct thing to do over Z[1/6]. This

is related to the fact that the action of PSL2(Z) on H is not free at precisely the orbits of i and e2πi/3 where the

stabilizers are of order 2 and 3, respectively.
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for γ ∈ Γ0(N) and τ ∈ H,

Nγ · τ =

((
N 0
0 1

)
γ

(
N−1 0

0 1

))
Nτ.

Therefore, we show that jN(γ · τ) = jN(τ) if we show that

(
N 0
0 1

)
γ

(
N−1 0

0 1

)
∈ SL2(Z). If

we let γ =

(
a b
Nc d

)
, then

(
N 0
0 1

)(
a b
Nc d

)(
N−1 0

0 1

)
=

(
Na Nb
Nc d

)(
N−1 0

0 1

)
=

(
a Nb
c d

)
.

This is obviously in SL2(Z) (determinant 1 is obvious because we are conjugating). To see if jN(τ)
is meromorphic at the cusps, we �rst enumerate all Γ0(N)-equivalence classes of the cusps. This

is the same as asking the representatives of the set of right cosets Γ0(N)\ SL2(Z). Let

C(N) =

{(
a b
0 d

)
: ad = N, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1

}
.

We claim that a right coset of Γ0(N) in SL2(Z) is of the form [γ] :=

((
N 0
0 1

)−1

SL2(Z)γ

)
∩

SL2(Z) for a unique γ ∈ C(N). Note �rst that such a set is stable under the action of Γ0(N) from

the left; if

(
N 0
0 1

)−1

Aγ ∈ [γ] forA ∈ SL2(Z), then for anyM ∈ Γ0(N), as

(
N 0
0 1

)
M

(
N 0
0 1

)−1

∈

SL2(Z),

M

(
N 0
0 1

)−1

Aγ =

(
N 0
0 1

)−1
((

N 0
0 1

)
M

(
N 0
0 1

)−1
)
Aγ ∈ [γ].

Furthermore, if

(
N 0
0 1

)−1

A1γ,

(
N 0
0 1

)−1

A2γ ∈ [γ], then

((
N 0
0 1

)−1

A1γ

)((
N 0
0 1

)−1

A2γ

)−1

=

(
N 0
0 1

)−1

A1A
−1
2

(
N 0
0 1

)
∈ Γ0(N),

as Γ0(N) =

(
N 0
0 1

)−1

SL2(Z)

(
N 0
0 1

)
∩ SL2(Z). This implies that [γ] is a right Γ0(N)-coset.

Now the claim is that, given any

(
a b
c d

)
∈ SL2(Z), you may �nd a unique γ ∈ C(N) such

that there is M ∈ SL2(Z) such that M

(
Na Nb
c d

)
= γ. Firstly we show that we can make

it an upper traingular matrix. This is the same as asking whether there exist z, w ∈ Z with
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gcd(z, w) = 1 such that Naz +wc = 0. Let M = gcd(c,N). Then we let z = c
M

and w = −N
M
a.

As gcd(a, c) = 1 and gcd
(
c
M
, N
M

)
= 1, we have gcd(z, w) = 1, as desired. Now we �nd x, y ∈ Z

such that xw − yz = 1we have(
x y
z w

)(
Na Nb
c d

)
=

(
A B
0 D

)
,

where by the determinant consideration we have AD = N . By possibly negating x, y, z, w,

we can assure that A,D > 0. Now by multiplying further on the left, we may perform a row

operation of adding a multiple of one row to another, so we may assure that 0 ≤ B < D. We also

have gcd(A,B,D) = 1 as otherwise the original matrix

(
Na Nb
c d

)
would also have a nontrivial

common divisor among its entries, which is impossible as gcd(c, d) = 1. We have thus shown

that there is some γ ∈ C(N). The only thing we are left with showing for the right cosets is that,

no two di�erent elements of C(N) are related by multiplication by an element in SL2(Z) on the

left. If

(
a b
0 d

)
,

(
a′ b′

0 d′

)
∈ C(N), and if

(
x y
z w

)(
a b
0 d

)
=

(
a′ b′

0 d′

)
, then �rstly z = 0, and

as xw = 1 by the determinant condition, x = w = ±1. As a, a′ > 0, we have x = w = 1. Then it

is just about multiplying with

(
1 b
0 1

)
on the left, which do not give a new element in C(N) by

the exactly same reason as above (it is an elementary row operation as alluded above).

From what we have shown is, ifM ∈ SL2(Z), then jN(M ·τ) = j

((
N 0
0 1

)
M · τ

)
= j(γτ)

for some γ ∈ C(N). Let γ =

(
a b
0 d

)
. Then, from j(τ) = e−2πiτ +

∑∞
n=0 ane

2πinτ
, an ∈ Z, as

γ · τ = aτ+b
d

, we have

j(γ · τ) = e−2πib/de−2πiaτ/d +
∞∑
n=0

ane
2πinb/de2πinaτ/d = e−2πib/dq−a/d +

∞∑
n=0

ane
2πinb/dqan/d.

Thus this is a meromorphic Laurent q-expansion at the cusp (i.e. has a �nite meromorphic tail).

so we have �nished showing that jN(τ) is a modular function for Γ0(N). �

Obviously, j(τ) is also a modular function for Γ0(N). It turns out that all the modular func-

tions for Γ0(N) are obtained as the rational functions in j(τ) and jN(τ). The obvious question

is: is there an algebraic relation between j(τ) and jN(τ)? It turns out that there is one.

De�nition 14.9 (Modular equation). For N ∈ N, we de�ne the function ΦN(X, τ) as

ΦN(X, τ) :=
∏

γ∈Γ0(N)\ SL2(Z)

(X − jN(γ · τ)).

This is a degree |C(N)| polynomial in X with coe�cients in holomorphic functions on H.

Theorem 14.10. Let N ∈ N.
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(1) The function ΦN(X, τ) is a polynomial in X with coe�cients in modular functions for
SL2(Z) holomorphic onH. Therefore, by Theorem 14.5, there exists a polynomialΦN(X, Y ) ∈
C[X, Y ] in two variables X, Y such that ΦN(X, τ) = ΦN(X, j(τ)). We call ΦN(X, Y ) the
modular polynomial for Γ0(N).

(2) The modular polynomial ΦN(X, Y ) is, as a polynomial inX , irreducible of degree |C(N)| =
N
∏

p|N

(
1 + 1

p

)
.

(3) The modular functions for Γ0(N) are precisely the rational functions in j(τ) and jN(τ).
Namely, the �eld ofmodular functions forΓ0(N), denotedK(Y0(N)), is given byK(Y0(N)) =
C(j, jN) = C(j)[T ]/(ΦN(T, j)).

Among those, the modular functions for Γ0(N) that are holomorphic on H are precisely the
polynomials in j(τ) and jN(τ). Namely, the ring of modular functions for Γ0(N) holomor-
phic on H, denoted O(Y0(N)), is given by O(Y0(N)) = C[j, jN ] = C[j][T ]/(ΦN(T, j)).

(4) For N > 1, we have ΦN(X, Y ) = ΦN(Y,X).

(5) The modular polynomial ΦN(X, Y ) has integer coe�icients, i.e. ΦN(X, Y ) ∈ Z[X, Y ].

(6) If N is not a perfect square, then ΦN(X,X) is a polynomial of degree > 1 whose leading
coe�cient is ±1.

(7) If N = p is a prime, then Φp(X, Y ) ≡ (Xp − Y )(X − Y p) (mod p).

Proof. (1) We need to show that the coe�cients of ΦN(X, τ) are holomorphic on H, in-

variant under SL2(Z)-action, and is meromorphic at the cusps. Being holomorphic on

H is obvious (already jN(γ · τ) is). Similarly, being meromorphic at the cusps is obvi-

ous (already jN(γ · τ) is). Finally, for the invariance under SL2(Z)-action, if we choose

σ ∈ SL2(Z), then if we enumerate the right cosets of Γ0(N) in SL2(Z) as Γ0(N)γi,
1 ≤ i ≤ |C(N)| = [SL2(Z) : Γ0(N)], then the invariance under the action of σ is

the same as asking whether the right cosets Γ0(N)γiσ are precisely the right cosets in

Γ0(N)\ SL2(Z), which is obvious.

(2) Firstly, it is quite easy to see that the analogue of Chinese Remainder Theorem for SL2(Z)
is true, i.e. for any tuple of pairwise coprime integers (N1, · · · , Nm), the map SL2(Z) →∏m

i=1 SL2(Z/NiZ) is surjective. This implies that, if (N,M) = 1, then [SL2(Z) : Γ0(NM)] =

[SL2(Z) : Γ0(N)][SL2(Z) : Γ0(M)]. Thus, to show that |C(N)| = N
∏

p|N

(
1 + 1

p

)
, it

su�ces to show when N = pk is a prime power. In that case, we can just enumerate the

matrices in C(pk). Namely, if a = pk−i and d = pi, then unless either i = 0 or i = k,

0 ≤ b < d is such that gcd(a, b, d) = gcd(b, p) = 1, so there are
d(p−1)
p

many choices for

b. Therefore,

|C(pk)| = 1 +
k−1∑
i=1

pi(p− 1)

p
+ pk = pk + pk−1,
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which is what we want.

To show that ΦN(X, Y ) is irreducible as a polynomial in X , it su�ces to show that

ΦN(X, j(τ)) is the minimal polynomial of jN(τ) over C(j), the �eld of all modular func-

tions for SL2(Z). Let M be the �eld of all meromorphic functions on H, and let MN =
C(j, jN), which is a sub�eld of M . For σ ∈ SL2(Z), we obtain a homomorphism ισ :
MN → M , f(τ) 7→ f(σ · τ). This is automatically injective as it is a �eld homomor-

phism. Furthermore, if f ∈ C(j), then obviously ισ(f) = f . Now note that, from the

proof of Proposition 14.8, the meromorphic tail of the q-expansion of jN(σ · τ) tells you

which γ ∈ C(N) does σ ∈ [γ]. Therefore, if σ, σ′ are in di�erent right cosets of Γ0(N) in

SL2(Z), then jN(σ · τ) 6= jN(σ′ · τ). Therefore, there are at least |C(N)| many distinct

�eld embeddings of MN into M �xing C(j). This implies that [MN : C(j)] ≥ |C(N)|.
As the degree of ΦN(X, Y ) is of degree |C(N)| as a polynomial in N , this implies that

ΦN(X, j(τ)) must be the minimal polynomial of jN(τ) over C(j).

(3) Let f(τ) be a modular function for Γ0(N). As above, we enumerate the right cosets of

Γ0(N) in SL2(Z) as Γ0(N)γi, 1 ≤ i ≤ |C(N)|. Consider the function

G(X, τ) :=

|C(N)|∑
i=1

f(γi · τ)
∏
j 6=i

(X − jN(γj · τ)).

This is a polynomial inX with coe�cients being meromorphic functions onHwith mero-

morphic q-expansion at cusps. We claim that the coe�cients ofG(X, τ) are actually mod-

ular functions for SL2(Z). For this, we only need to show that G(X, τ) = G(X, σ · τ) for

σ ∈ SL2(Z). As we already know ΦN(X, j(τ)) has coe�cients being modular functions

for Γ0(N), it su�ces to show that H(X, τ) = H(X, σ · τ), where

H(X, τ) :=

|C(N)|∑
i=1

f(γi · τ)

X − jN(γi · τ)
.

However, we know that both f and jN are modular functions for Γ0(N), so H(X, τ) =
H(X, σ · τ) follows from the fact that Γ0(N)γiσ runs over all right cosets of Γ0(N) in

SL2(Z). As G(X, τ) has coe�cients being modular functions for SL2(Z), by Theorem

14.5, G(X, τ) ∈ C(j)[X].

We can arrange γi’s so that γ1 = 1. Then,
∂ΦN
∂X

(jN(τ), j(τ)) =
∏

j 6=1(jN(τ)− jN(γi · τ)).

Thus,

G(jN(τ), τ) = f(τ)
∂ΦN

∂X
(jN(τ), j(τ)).

As ΦN(X, j(τ)) is irreducible over C(j), and as jN(τ) is a root of ΦN(X, j(τ)), we have

∂ΦN
∂X

(jN(τ), j(τ)) 6= 0. Therefore, f(τ) = G(jN (τ),τ)
∂ΦN
∂X

(jN (τ),j(τ))
. As both the numerator and the

denominator are in C(j, jN), we get that f(τ) ∈ C(j, jN).

Suppose now that f is holomorphic onH. Then, the coe�cients ofG(X, τ) are the modu-

lar functions holomorphic onH, soG(X, τ) ∈ C[j][X]. Therefore, it su�ces to show that
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∂ΦN
∂X

(jN(τ), j(τ)) 6= 0 for any τ ∈ H, or that jN(τ) 6= jN(γi · τ) for any τ ∈ H. Supopse

the contrary that jN(τ) = jN(γi · τ) for some i ≥ 2 and τ ∈ H. As j : SL2(Z)\H→ C is

bijective, this means that there exists M ∈ SL2(Z) such that M

(
N 0
0 1

)
=

(
N 0
0 1

)
γi.

This means that γi ∈
(
N 0
0 1

)−1

SL2(Z)

(
N 0
0 1

)
∩ SL2(Z) = Γ0(N), which contradicts

the assumption that Γ0(N)γi 6= Γ0(N). Thus, we see that f(τ) is a polynomial in j(τ)
and jN(τ).

(4) Note that ΦN(X, j(τ)) can be expressed alternatively as

ΦN(X, j(τ)) =
∏

γ∈C(N)

(X − j(γ · τ)).

As

(
1 0
0 N

)
∈ C(N) and as

(
1 0
0 N

)
· τ = τ

N
, this implies that ΦN(j(τ/N), j(τ)) = 0,

or ΦN(j(τ), jN(τ)) = 0. Therefore, the polynomial ΦN(j(τ), X) ∈ C[j][X] is divis-

ible by the minimal polynomial of jN(τ) over C[j] which is ΦN(X, j(τ)). Therefore,

ΦN(j(τ), X) = g(X)ΦN(X, j(τ)) for g(X) ∈ C(j)[X]. By the Gauss Lemma, we know

that g(X) ∈ C[j][X], i.e. there is G(X, Y ) ∈ C[X, Y ] such that g(X) = G(X, j(τ)).

Thus,

ΦN(j(τ), X) = G(X, j(τ))ΦN(X, j(τ)) = G(X, j(τ))G(j(τ), X)ΦN(j(τ), X),

soG(X, j(τ))G(j(τ), X) = 1. As j(τ) is not an algebraic function (otherwise it would not

have a q-expansion), this implies that G(X, Y )G(Y,X) = 1 as polynomials in C[X, Y ].
This implies that G(X, Y ) = G(Y,X) = ±1. If G(X, Y ) = −1, then ΦN(j(τ), X) =
−ΦN(X, j(τ)), so in particular ΦN(j(τ), j(τ)) = 0. However, as ΦN(X, j(τ)) is irre-

ducible overC(j), this is impossible if |C(N)| > 1, which is the case whenN > 1. There-

fore, G(X, Y ) = 1, and we have ΦN(X, j(τ)) = ΦN(j(τ), X), or ΦN(X, Y ) = ΦN(Y,X)
as again j(τ) is not algebraic.

(5) We know that the q-expansion of j(γ·τ) for γ ∈ C(N) has coe�cients inZ[ζN ]. Therefore,

the coe�cients of ΦN(X, j(τ)), which are the symmetric functions in j(γ · τ), γ ranging

over C(N), are polynomials in j(τ) whose q-expansions have coe�cients in Z[ζN ]. We

want to show that these coe�cients are in fact integers. Let σx ∈ Gal(Q(ζN)/Q) be the

Galois element that sends ζN 7→ ζxN . Then, after applying σx to the coe�cients of the

q-expansion of j(γ · τ), γ =

(
a b
0 d

)
∈ C(N), we have

σx (j(γ · τ)) = e−2πibx/dq−a/d +
∞∑
n=0

ane
2πinbx/dqna/d.

This is however the q-expansion of j(γx · τ) where γx =

(
a bx (mod d)
0 d

)
∈ C(N)

where bx (mod d) is the integer in between 0 and d − 1 congruent to bx mod d (note
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that gcd(a, bx (mod d), d) = gcd(a, bx, d) = 1 as gcd(x,N) = 1 and a, d divide N ).

Therefore, σx(γ) := γx gives a permutation of C(N). Therefore, the action of σx on

the coe�cients of the q-expansion of a symmetric function in j(γ · τ), γ ranging over

C(N), makes no change of the coe�cients. This implies that the q-expansions of the

coe�cients of ΦN(X, j(τ)) have integer coe�cients. This implies that the coe�cients of

ΦN(X, j(τ)) are integer polynomials in j(τ) (this just follows from the same argument

that you eliminate meromorphic tails one by one, and each process the di�erence is an

integer monomial in j(τ)), or ΦN(X, j(τ)) ∈ Z[j][X], or ΦN(X, Y ) ∈ Z[X, Y ].

(6) If N is not a perfect square, then for any γ =

(
a b
0 d

)
∈ C(N), a 6= d. Therefore, the q-

expansion of j(τ)−j(γ·τ) has the meromorphic tail q−1−e−2πib/dq−a/d, so the lowest order

term of the meromorphic tail is either q−1
or −e−2πib/dq−a/d. In particular, the coe�cient

of the lowest order term of the meromorphic tail is always a root of unity. Now the lowest

order term of the meromorphic tail of the q-expansion of ΦN(j(τ), j(τ)) is a product of

such terms, so its coe�cient is again a root of unity. On the other hand, ΦN(j(τ), j(τ))
is a polynomial in j(τ), so its coe�cient of the lowest order term of the q-expansion is

an integer. Therefore, this coe�cient must be ±1. This implies that ΦN(X,X) has the

leading coe�cient ±1.

(7) Let N = p be a prime. Then C(p) = {σ0, · · · , σp−1, σp}, where σk =

(
1 k
0 p

)
for 0 ≤

k ≤ p− 1 and σp =

(
p 0
0 1

)
. Therefore, we have

j(σk · τ) = e−2πik/pq−1/p +
∞∑
n=0

ane
2πink/pqn/p, 0 ≤ k ≤ p− 1,

and

j(σp · τ) = q−p +
∞∑
n=0

anq
np.

We use ζp = e2πi/p
and π = ζp − 1. Then,

j(σk · τ) = ζ−kq−1/p +
∞∑
n=0

anζ
nk
p qn/p ≡ q−1/p +

∞∑
n=0

anq
n/p (mod π), 0 ≤ k ≤ p− 1.

Therefore, if we look at ΦN(X, j(τ)) as an element of polynomials inX with coe�cients in

meromorphic q-expansions with integer coe�cients (i.e. ΦN(X, j(τ)) ∈ Z[[q]](q−1)[X]),
we have

ΦN(X, j(τ)) ≡

(
X −

(
q−1/p +

∞∑
n=0

anq
n/p

))p(
X −

(
q−p +

∞∑
n=0

anq
np

))
(mod π),
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where the congruence is �rst seen in a slightly bigger ring Z[ζp][[q
1/p]](q−1/p)[X]. Note

that, in characteristic p, we have (Y + Z)p = Y p + Zp
, and also for any integer M ,

Mp = M . Therefore,(
X −

(
q−1/p +

∞∑
n=0

anq
n/p

))p

≡ Xp−

(
q−1/p +

∞∑
n=0

anq
n/p

)p

≡ Xp−

(
q−1 +

∞∑
n=0

anq
n

)
(mod π),

which means that

ΦN(X, j(τ)) =

(
Xp −

(
q−1 +

∞∑
n=0

anq
n

))(
X −

(
q−p +

∞∑
n=0

anq
np

))
(mod π).

As both sides are now in Z[[q]](q−1)[X] and πZ[ζp] ∩ Z = pZ, this implies that

ΦN(X, j(τ)) =

(
Xp −

(
q−1 +

∞∑
n=0

anq
n

))(
X −

(
q−p +

∞∑
n=0

anq
np

))
(mod p).

As q−1 +
∑∞

n=0 anq
n

is the q-expansion of the j-function, this means that

ΦN(X, j(τ)) = (Xp − j(τ))(X − j(τ)p) (mod p).

Therefore, ΦN(X, Y ) = (Xp − Y )(X − Y p) (mod p).

�

Remark 14.11 (Canonical model of the modular curve Y0(N); for those who know algebraic

geometry). This �rst means that the modular curve Y0(N) =: Γ0(N)\H of level Γ0(N) is al-

gebraically identi�ed with SpecC[j][T ]/(ΦN(T, j)). And then, you can de�ne “the canonical

model” of Y0(N) over Q as Y0(N)Q := SpecQ[j][T ]/(ΦN(T, j)). As before, you may want to do

this for Z instead of Q, but in general this is not the philosophically corect thing to do. Namely,

bad things can happen at certain “bad” primes; here, a “bad” prime is a prime p that divides N .
20

For example, ΦN(X, Y ) mod p for p|N may not give a “correct” modular equation mod p. How-

ever, it is actually OK if p2
does not divide N . Therefore, SpecZ[1/M ][j][T ]/(ΦN(T, j)) is the

correct integral model over Z[1/M ] for M =
∏

p2|N p. In particular, Theorem 14.10(7) is related

to what’s called the Eichler–Shimura congruence relation.

We also need the following result that connects the modular polynomial ΦN with the lattices

in C (=elliptic curves over C).

De�nition 14.12. Let Λ,Λ′ ⊂ C be lattices (=elliptic curves over C). An isogeny f : Λ′ → Λ is

called a cyclic isogeny of order N if coker f ∼= Z/NZ.

Proposition 14.13. Let N ∈ N and τ ∈ H. Let Z⊕Zτ ⊂ C be the corresponding lattice (=elliptic
curve over C). Then there are one-to-one bijections between the following sets:

(1) the roots of the polynomial ΦN(X, j(τ)) ∈ C[X];

20
Again, someone may also want to include 2 and 3 in the list of “bad” primes.
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(2) the points γ · τ ∈ H for γ ∈ C(N);

(3) the lattices (=elliptic curves over C) Λ ⊂ C, up to isomorphism, admitting a cyclic isogeny
f : Λ→ Z⊕ Zτ of order N .

The bijections between (1), (2), (3) are j(γ · τ)↔ γ · τ ↔ Z⊕ Z(γ · τ) (for γ ∈ C(N)).

Proof. The correspondence between (1) and (2) is an immediate consequence of the de�nition of

ΦN and Theorem 14.10(2). For (3), this is classifying the sublattices Λ ⊂ Z⊕Zτ such that
Z⊕Zτ

Λ
∼=

Z/NZ up to isomorphism. Note that if Λ is an indexN sublattice ofZ⊕Zτ , then this must contain

NZ ⊕ NZτ . Thus, without worrying about isomorphisms, we are just �nding the subgroups

of (Z/NZ)2 = Z⊕Zτ
NZ⊕NZτ whose quotient is Z/NZ. This is just parametrized by the surjective

homomorphisms (Z/NZ)2 � Z/NZ, or where (1, 0) and (0, 1) go to in Z/NZ. Let (1, 0) 7→ x
and (0, 1) 7→ y. Then this homomorphism being surjective is the same as gcd(x, y,N) = 1. The

corresponding sublattice Λ ⊂ Z⊕ Zτ is

Λ = {m+ nτ : m,n ∈ Z, mx+ ny ≡ 0 (modN)}.

Let a = gcd(x,N) and d = N
a

. Then, by de�nition, gcd(a, y) = 1. Therefore, if mx + ny ≡
0 (modN), then N |ny, so a|n. Let n = an′ and x = ax′. Then,

Λ = {m+ an′τ : m,n′ ∈ Z, mx′ + n′y ≡ 0 (mod d)}.

As gcd(x′, d) = 1, this congruence condition can be simpli�ed into m ≡ −n′y
x′

(mod d). Let b be

the integer such that 0 ≤ b ≤ d− 1 and b ≡ − y
x′

(mod d). Then,

Λ = {m+ an′τ : m,n′ ∈ Z, m ≡ n′b (mod d)} = dZ⊕ (aτ + b)Z = d

(
Z⊕ aτ + b

d
Z
)
.

Note that what we have found so far implies that

(
a b
0 d

)
∈ C(N). Conversely, this also shows

that d
(
Z⊕ aτ+b

d
Z
)

for

(
a b
0 d

)
∈ C(N) gives rise to a sublattice with quotient

∼= Z/NZ. Thus,

this implies that a map from (2) to (3) is well-de�ned and surjective. Injectivity follows from the

fact that no two elements of C(N) are SL2(Z)-translates of one another. �

15. Explicit class field theory for imaginary qadratic fields

15.1. First Main Theorem: from j-invariants to ring class �elds. The �rst main point of the

Explicit class field theory of K is that the ring class �eld K(O) can be obtained by adjoining

K with explicit values of the j-function (!).

Theorem 15.1 (First Main Theorem of Complex Multiplication). Let τ ∈ H be a quadratic num-
ber, corresponding to a lattice (=elliptic curve over C) Z⊕ Zτ ⊂ C with complex multiplication by
an order O = End(Z⊕Zτ) in an imaginary quadratic �eldK = Q(τ). Then, j(τ) is an algebraic
integer (!) andK(O) = K(j(τ)) (!!).
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Proof. Suppose that α ∈ O such that [α] : Z ⊕ Zτ → Z ⊕ Zτ , x 7→ αx, is a cyclic isogeny

(necessarily of order NK/Q(α)). Then, by Proposition 14.13, j(τ) is a root of ΦNK/Q(α)(X, j(τ)).

Therefore, j(τ) is a root of the polynomial ΦNK/Q(α)(X,X) ∈ Z[X]. If we also know thatNK/Q(α)

is not a perfect square, then Theorem 14.10(6) will imply that j(τ) is an algebraic integer.

Thus, the proof that j(τ) is an algebraic integer for quadratic τ will be done if we show the

following.

Lemma 15.2. Let O ⊂ K be an order in an imaginary quadratic �eld, and let a ⊂ O be a proper
O-ideal. Then, there exists α ∈ O such that

• N = NK/Q(α) is not a perfect square, and

• a/αa ∼= Z/NZ (as abelian groups).

Proof. We know that O = Z ⊕ fOK for the conductor f ∈ N of O. Let d = disc(K). Then,

β = d+
√
d

2
is always in OK (in fact OK = Z[β] = Z⊕ Zβ; note that β2 = dβ + d−d2

4
). We claim

that, unless K = Q(
√
−2), α = fβ satis�es the two properties. Firstly, NK/Q(α) = f 2 d2−d

2
. If

this is a perfect square, then as gcd(d−1, d) = 1, either d−1 = −2a2
and d = −b2

or d−1 = −a2

and d = −2b2
. Note that either d = n for a negative square-free number n ≡ 1 (mod 4) or d = 4n

for a negative square-free number n6≡1 (mod 4). In the former case, d is odd, so it must be that

d− 1 = −2a2
and d = −b2

, but as d is square-free, b = 1, so d = −1, which is not congruent to

1 (mod 4). In the latter case, d is even, so it must be d − 1 = −a2
and d = −2b2

. As d = 4n for

a negative square-free number n 6≡ 1 (mod 4), this implies that 2|b, so d = −8c2
for some c ∈ Z,

and this implies that 2|n. As n is square-free, it turns out that c = 1, so d = −8, which is what

we are excluding at the moment. Thus, the �rst condition is satis�ed (as long as K 6= Q(
√
−2)).

For the second condition, consider the short exact sequence

0→ a/αa→ O/αa→ O/a→ 0.

As #a/α = [O:αa]
[O:a]

= N , we know that a/αa has the correct order. If it is not cyclic, then by the

structure theorem for �nite abelian groups, there is a subgroup of a/αa isomorphic to (Z/hZ)2
for

some h > 1. Therefore, there exists αa ⊂ b ⊂ a such that b/αa ∼= (Z/hZ)2
. As abelian groups,

b is free of rank 2, and as b/αa is of exponent h, hb ⊂ αa. On the other hand, as [b : hb] = h2
,

this implies that hb = αa. This implies that b = h−1αa is an O-ideal, and αO = hba−1
. On the

other hand, as b ⊂ a, so ba−1 ⊂ aa−1 = O. Therefore, αO ⊂ hO, which implies that
α
h
∈ O.

On the other hand, α = fβ and O = Z ⊕ Zfβ, so
α
h
∈ O implies that h = 1, contradicting the

assumption.

The only exclusion we made wasK = Q(
√
−2). ThenO = Z⊕f

√
−2Z. What we did above

shows that the second condition a/αa ∼= Z/NZ can be replaced with the condition that
α
h
∈ O

for h ∈ N implies h = 1. Now here you could choose α = f
√
−2, then N = 2f 2

is not a square,

and the second condition is also clearly satis�ed. �

To show K(O) = K(j(τ)), we will use Corollary 12.21. Note that we already know K(O) is

Galois over K , but not necessarily for K(j(τ)). Moreover, as K/Q is Galois, K(O)/Q is Galois.

Therefore, we want to show that all but �nitely many primes of S(K(O)/Q) are contained in
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S(K(j(τ))/Q), and all but �nitely many primes of S(K(j(τ))/Q) are contained in S(K(O)/Q).

Note �rst that p ∈ S(K(O)/Q) if and only if p = pp splits completely in K (with p 6= p) and p
splits completely in K(O), but p splitting completely in K(O) is the same as [p] = 1 in Cl(O),

or p = αOK for α ∈ O. Therefore, up to a �nite di�erence, S(K(O)/Q) is the set of primes p
such that p = NK/Q(α) for α ∈ O.

• For S(K(O)/Q)− S ⊂ S(K(j(τ))/Q), for a �nite set S.

Let p ∈ S(K(O)/Q) such that p is unrami�ed in K(j(τ)). Then, up to a �nite di�erence,

p = NK/Q(α) for α ∈ O. Then Z ⊕ Zτ → Z ⊕ Zτ , x 7→ αx, is a cyclic isogeny

of order p (cyclic because p is a prime). Therefore, Φp(j(τ), j(τ)) = 0. This implies

that (j(τ)p − j(τ))2
is divisible by p. Let P be a prime of K(j(τ)) lying over p. Then

j(τ)p ≡ j(τ) (modP). Note that OK(j(τ)) ⊃ Z[j(τ)] may not be the same, but it is of

�nite index, and as long as p does not divide [OK(j(τ)) : Z[j(τ)]] (which excludes �nitely

many priems), αp ≡ α (modP) for every α ∈ OK(j(τ)). Thus f(P|p) = 1 for any P over

p. This implies that p splits completely in K(j(τ)) up to a �nite di�erence.

This implies thatK(O) ⊃ K(j(a)) for all proper fractionalO-ideals a. Let a1, · · · , a# Cl(O)

be the classes of Cl(O). Then ∆ =
∏

i<j(j(ai)− j(aj)) is a nonzero element of OK(O).

• For S(K(j(τ))/Q)− S ⊂ S(K(O)/Q), for a �nite set S.

Let p ∈ S(K(j(τ))/Q). This in particular implies that p splits completely in K , so p =
N(p) for some prime ideal p of K . As long as p does not divide the conductor of O, then

p = N(p) = N(p∩O). We want to show that for all but �nitely many such p, p∩O = αO
for some α ∈ O, which will show that p = NK/Q(α), so that p ∈ S(K(O)/Q). We can

exclude �nitely many p at any point, so we further assume that j is coprime to ∆.

Let a be the properO-ideal corresponding toZ⊕Zτ . Let a′ = (p∩O)a. Then it is of index

p inside a, so a′ → a is a cyclic isogeny of order p. Thus, Φp(j(a
′), j(a)) = 0. Let P be

a prime of K(j(τ)) above p such that f(P|p) = 1 (which exists as p ∈ S(K(j(τ))/Q)).

Let P′ be a prime of K(O) above P. Then Φp(j(a
′), j(a)) = 0 implies that (j(a′)p −

j(a))(j(a′)− j(a)p) ≡ 0 (modP′). As f(P|p) = 1, we have j(a)p ≡ j(a) (modP), so in

any case j(a)p ≡ j(a′) (modP′). As p is coprime to ∆, this means that j(a) = j(a′). This

means that p ∩ O is a principal O-ideal, which is what we wanted.

�

We also know how Gal(K(O)/K) acts on j(τ), in the sense of reciprocity law.

Theorem 15.3 (Reciprocity law for j-invariants). Let O be an order in an imaginary quadratic
�eld K . Let a be a proper O-ideal, so that j(a) ∈ K(O) by Theorem 15.1. For α ∈ CK , we have

ArtK(α)(j(a)) = j(a−1
α a),

where aα is a properO-ideal representing the image of α by the natural quotient map CK � Cl(O)
obtained in Theorem 13.29(4).
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To deduce this, we divert our attention slightly to the (meromorphic) modular forms.

De�nition 15.4 (Modular forms). Let Γ ≤ SL2(Z) be a congruence subgroup, and let k ∈ Z be

an integer. A meromorphic modular form of weight k and level Γ is a meromorphic function

f : H→ C such that the following conditions hold.

(1) (Modularity) For γ =

(
a b
c d

)
∈ Γ, f(γ · τ) = (cτ + d)kf(τ).

(2) (Meromorphy at cusps) At each cusp c ∈ P1
Q, f(τ) is meromorphic at c.

A weakly holomorphic modular form is a holomorphic function f : H→ C which is a

meromorphic modular form.

A modular form is a weakly holomorphic modular form satisfying a stronger condition,

Holomorphy at cusps.

(2)’ (Holomorphy at cusps) At each cusp c ∈ P1
Q, f(τ) is holomorphic at c, i.e. the q-

expansion has no meromorphic tail.

A cusp form is a modular form satisfying a stronger condition, Cuspidality at cusps.

(2)’ (Cuspidality at cusps) At each cusp c ∈ P1
Q, f(τ) is holomorphic at c and furthermore

f(c) = 0. Namely, the q-expansion of f at c has no nonpositive powers of q in it.

It is clear that any type of the above forms is closed under addition and scalar multiplication.

Furthermore, if you multiply two forms of the same type with the same level and weights k and

`, then the product is of the same level and weight k+ `. If Γ = Γ(N), then we simply say that a

form is of level N .

Example 15.5.

(1) For a congruence group Γ, the modular functions for Γ are precisely the meromorphic

modular forms of weight 0 and level Γ. The modular functions for Γ holomorphic on H
(e.g. j(τ)) are precisely the weakly holomorphic modular forms of weight 0 and level Γ.

(2) As seen in the proof of Proposition 13.14(2), the Eisenstein series G2k(τ) is a modular

form of weight 2k and level 1. As its q-expansion at∞ has a constant term some nonzero

multiple of ζ(2k), it is nonzero, so G2k(τ) is not a cusp form.

(3) As seen in the proof of Lemma 14.4, the q-expansion of g2(τ)3 − 27g3(τ)2
at ∞ starts

with the q-term. Furthermore, both g2(τ)3
and g3(τ)2

are of level 1 and weight 12 (12 =
4×3 = 6×2). Thus, g2(τ)3−27g3(τ)3

is a cusp form of weight 12 and level 1. This function

∆(τ) := g2(τ)3− 27g3(τ)2
is called the modular dicriminant. As shown in Proposition

13.14(4), ∆(τ) 6= 0 for every τ ∈ H (on the other hand, by cuspidality, “∆(∞) = 0”).

We are particularly interested in integrality properties of ratios of values of ∆.
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Theorem 15.6. Let γ =

(
a b
c d

)
be a 2× 2 matrix with integer entries such that deg γ = N is a

positive integer. Let

ϕγ(τ) := N12 ∆(γ · τ)

(cτ + d)12∆(τ)
.

(1) The function ϕγ is integral over Z[j].

(2) For τ ∈ H quadratic, ϕγ(τ) is an algebraic integer that divides N12.

(3) Let τ ∈ H be a quadratic number withO = End(Z⊕Zτ) and a ∼= Z⊕Zτ for a properO-
ideal a. Suppose that p is a prime number splitting completely inK such that p does not divide
the conductor ofO. Let pO = pp be the factorization intoO-ideals (i.e. pO = (p′∩O)(p′∩O)
where pOK = p′p′). Let γ be a 2 × 2 matrix with integer entries with det γ = p such
that Z ⊕ Zτ ∼= a sends γ(Z ⊕ Zτ) ∼= pa. Then, in a su�ciently big number �eld L,
ϕγ(τ)OL = p12OL (e.g. you can take L = K(ϕγ(τ))).

(4) Retain the same notation as (3). If δ is a 2 × 2 matrix with integer entries with det δ = p
such that, under the isomorphism Z⊕ Zτ ∼= a, δ(Z⊕ Zτ) is sent to neither pa nor pa, then
ϕδ(τ) is a unit.

Proof. (1) Note that from the proof of Proposition 14.8, we can deduce that

C(N) = SL2(Z)\
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = N

}
.

This is because the proof shows that

((
N 0
0 1

)−1

SL2(Z)γ

)
∩ SL2(Z) is a right Γ0(N)-

coset for any γ which is an integer 2× 2 matrix with det γ = N , and because the formula

clearly shows that this coset only depends on the right SL2(Z)-coset of γ, so the bijection

C(N)
∼−→ {right Γ0(N)-cosets} factors through

C(N)→ SL2(Z)\
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = N

}
→ {right Γ0(N)-cosets}

whose composition is a bijection. Here the �rst map is just the natural map (any element

of C(N) is an integer 2 × 2 matrix with determinant N ). Thus the �rst map is injective.

To show that the �rst map is surjective, we also notice that any integer 2× 2 matrix with

determinant N can be modi�ed by left multiplying by an element of SL2(Z) to arrive at

an element of C(N), but everything just works in the same way (you can always make

the matrix upper triangular in this way, and everything else is verbatim the same).

As ∆ is a modular form of weight 12 and level 1, if γ′ = Mγ for M ∈ SL2(Z), ϕγ′(τ) =
ϕγ(τ). Let γ1, · · · , γ|C(N)| be all the elements of C(N). Suppose that σ ∈ SL2(Z). Then,

for each 1 ≤ i ≤ |C(N)|, there is unique 1 ≤ ji ≤ |C(N)| such that SL2(Z)γiσ =
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SL2(Z)γj(i). We claim that ϕγi(σ · τ) = ϕγji (τ). Indeed, for γi =

(
a b
c d

)
and σ =(

x y
z w

)
,

ϕγi(σ · τ) = N12 ∆(γiσ · τ)

(cσ · τ + d)12∆(σ · τ)
= N12 ∆(γiσ · τ)

(c xτ+y
zτ+w

+ d)12(zτ + w)12∆(τ)

= N12 ∆(γiσ · τ)

((cx+ dz)τ + (cy + dw))12∆(τ)
= ϕγji (τ).

Therefore, if f(τ) is a symmetric function in ϕγi(τ)’s, then it is a modular function of level

1 (meromorphy at cusps is obvious) that is holomorphic on H. Therefore, the polynomial∏|C(N)|
i=1 (X − ϕγi(τ)) is a polynomial in X with coe�cients in C[j].

To show that ϕγ(τ) is integral over Z[j], we want to show that symmetric polynomials

in ϕγi(τ) have q-expansions in Z[[q]](q−1). Note that, by the proof of Proposition 14.8, it

is easy to see that the q-expansion of ϕγi(τ) is in Z[ζN ][[q1/N ]](q−1/N), and applying σ ∈
Gal(Q(ζN)/Q) on the coe�cients will permute the q-expansions of ϕγi(τ)’s. Therefore,

this shows that a symmetric polynomial in ϕγi(τ)’s has q-expansion in Z[[q]](q−1).

(2) From (1) and Theorem 15.1, ϕγ(τ) is an algebraic integer for a quadratic τ ∈ H. Let

adj γ =

(
d −b
−c a

)
, so that γ adj γ =

(
N 0
0 N

)
. Then

ϕγ(τ)ϕadj γ(γ · τ) = N24 ∆(γ · τ)

(cτ + d)12∆(τ)

∆(((adj γ)γ) · τ)(
−caτ+b

cτ+d
+ a
)12

∆(γ · τ)
=

N24

(ad− bc)12
= N12.

As ϕadj γ(γ · τ) is also an algebraic integer, ϕγ(τ) divides N12
.

(3) We choose a proper O-ideal b such that bp = λO is a principal O-ideal and b is coprime

to p (this is always possible because Cl(O) is generated by properO-ideals coprime to M
for any choice of M ). Then bpa is a sublattice of pa, so there exists a 2× 2 matrix γ′ with

integer entries such that γ(Z ⊕ Zτ) ∼= pa sends γ′γ(Z ⊕ Zτ) ∼= bpa. Then by de�nition

det γ′ = [pa : bpa] = N(b). Let γ =

(
a b
c d

)
and γ′ =

(
a′ b′

c′ d′

)
. We then have

ϕγ′(γ · τ)ϕγ(τ) = N(b)12p12 ∆(γ′γ · τ)

(c′ aτ+b
cτ+d

+ d′)12∆(γ · τ)

∆(γ · τ)

(cτ + d)12∆(τ)

= N(b)12p12 1

((c′a+ d′c)τ + (c′b+ d′d))12
.

It is easy to see that λ = (c′a+ d′c)τ + (c′b+ d′d). Therefore, ϕγ′(γ · τ)ϕγ(τ) = N(b)12p12

λ12 .

Note that (2) tells us that ϕγ′(γ · τ) divides N(b)12
, so ϕγ(τ) is divisible by

p12

λ12 . Note also
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that, as b is coprime to p, the prime factorization of λOK has exactly one appearance of

p′ and no appearance of p′. Therefore, ϕγ(τ)OL is divisible by p′
12OL = p12OL. On the

other hand, by (2), ϕγ(τ) divides p12
, and as N(b) is coprime to p, it turns out that

N(b)12

ϕγ′ (γ·τ)

is coprime to ϕγ(τ). Therefore, ϕγ′(γ · τ) must be o� by a unit, and ϕγ(τ)OL = p12OL.

(4) Recall that in the proof of Theorem 14.10(7) we observed thatC(p) = {σ0, · · · , σp}where

σk =

(
1 k
0 p

)
, 0 ≤ k ≤ p−1, and σp =

(
p 0
0 1

)
. Suppose that 0 ≤ r 6= s ≤ p be such that

the isomorphismZ⊕Zτ ∼= a sends σr(Z⊕Zτ) ∼= pa and σs(Z⊕Zτ) ∼= pa. Then, by (3), we

know thatϕσr(τ)ϕσs(τ) is a unit times p12
. What we want to show is thatϕσi(τ) is a unit as

long as i 6= r, s. As each ϕσi(τ) is an algebraic integer, to achieve what we want, it su�ces

to show that

∏p
k=0 ϕσk(τ) is a unit times p12

. Note that the function F (z) :=
∏p

k=0 ϕσk(z)
for z ∈ H is a modular function in SL2(Z) holomorphic on H, so it is a polynomial in j.
Furthermore, if we look at the lowest order term of the q-expansions of ϕσk(z), it’s easy to

see that we get e2πik/pq−
p−1
p for 0 ≤ k ≤ p−1, and p12qp−1

for k = p. Therefore, the lowest

order term of the q-expansion of F is e2πi(0+1+···+(p−1))/pp12q(p−1)−(p−1) = e2πi(p−1)/2p12 =
(−1)p−1p12

. Therefore, F is in fact a modular function for SL2(Z) that is also holomorphic

at in�nity. By Liouville’s theorem, this must be a constant, so F (τ) = (−1)p−1p12
, which

is what we wanted.

�

Proof of Theorem 15.3. By Artin reciprocity, ArtK(α)|K(O) depends only on the image [aα] ∈
Cl(O) of α along CK � Cl(O). By Theorem 13.29(3) and (4), for any choice of modulus m
divisible by the conductor N of O, we know that Cl(O) is generated by the prime O-ideals

of O which are of the form p ∩ O for a prime ideal p ⊂ OK coprime to m. We in particular

add a few more primes to m so that it is divisible also by the primes rami�ed in K(O) and the

primes rami�ed over Q. Then, it su�ces to show the identity for α such that aα = p ∩ O for a

prime ideal p ⊂ OK coprime to m. Now for such α, we know by the local Artin reciprocity and

the local-global compatibility that ArtK(α)|K(O) = Frp. Thus, we need to show that, for each

prime p unrami�ed over Q and unrami�ed in K(O), if P is a prime of K(O) lying over p, then

j(a)N(p) ≡ j((p ∩ O)−1a) (modP).

Let p be a prime number in Z such that pZ = Z ∩ p. If p is inert in K , then p = pOK . On

the other hand, [p] = 1 in Cl(O) because it is a principal ideal and (p,N) = 1. Therefore, we

know that pOK splits completely in K(O). Therefore, N(P) = p2 = N(p) and the congruence

we want to show is j(a)p
2 ≡ j(a) (modP) which is obvious.

We are left with the case when p splits completely inK , p = p′p′ with p′ 6= p′. Then, we want

to show that j(a)p ≡ j(p−1a) (modP) where p = p′ ∩ O.

Recall that in the proof of Theorem 14.10(7) we observed that C(p) = {σ0, · · · , σp} where

σk =

(
1 k
0 p

)
, 0 ≤ k ≤ p− 1, and σp =

(
p 0
0 1

)
. We consider the polynomial in two variables

F (X, Y ) :=

(
p∏
i=0

(Y − ϕσi(τ))

)
p∑
i=0

X − j(σi · τ)

Y − ϕσi(τ)
.
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Its coe�cients are holomorphic functions on H meromorphic at cusps. Furthermore, it’s easy to

see that the coe�cients are invariant under the action of SL2(Z). Therefore, F ∈ C[X, Y, j]. By

looking at the q-expansions, we see immediately that in fact F ∈ Z[ζp][X, Y, j]. It is also easy to

see that the q-expansions are invariant under the conjugation by any element of Gal(Q(ζp)/Q),

so F ∈ Z[X, Y, j]. Since the �rst p terms (i.e. those corresponding to σ0, · · · , σp−1) have the

q-expansiosn of the same form except that they use di�erent p-th roots of unity (including 1),

these terms are all congruent to each other mod 1 − ζp. As there are p such terms, the sum of

these p terms will vanish mod 1− ζp. Therefore,

F (X, Y ) ≡

(
p∏
i=0

(Y − ϕσi(τ))

)
X − j(σp · τ)

Y − ϕσp(τ)
(mod 1− ζp).

As j(σp · τ) = j(τ)p, we see that F (j(τ)p, Y ) ∈ pZ[Y, j].
We let τ ∈ H be such that Z⊕ Zτ ∼= a. Let α, β be two 2× 2 integer matrices such that the

isomorphism Z ⊕ Zτ ∼= a sends α(Z ⊕ Zτ) ∼= pa and β(Z ⊕ Zτ) ∼= pa. We can then see that

F (j(τ)p, ϕβ(τ)) ≡ 0 (mod pOL) for a big enough number �eld L that contains all these values.

Note that detα = det β = p. Therefore, if we let σu ∈ C(p) be such that SL2(Z)β = SL2(Z)σu,

then we see that only the u-th term of the original sum for the de�nition of F (X, Y ) survives

when we put Y = ϕβ(τ), so that we obtain

(j(τ)p − j(σu · τ))
∏

0≤i≤p,i 6=u

(ϕβ(τ)− ϕσi(τ)) ≡ 0 (mod pOL).

As j(σu·τ) = j(pa) = j(p−1a), to get what we want, it su�ces to show thatϕβ(τ)6≡ϕσi(τ) (mod pOL)
for i 6= u. By Theorem 15.6(3), it follows that ϕβ(τ)OL = p12OL. Therefore, it su�ces to show

that ϕσi(τ) 6≡0 (mod pOL). If SL2(Z)σi = SL2(Z)α, then again Theorem 15.6(3) shows that

ϕσi(τ)OL = p12OL, so in particular ϕσi(τ)6≡0 (mod pOL). If not, then Theorem 15.6(4) shows

that ϕσi(τ) is a unit, which also implies that ϕσi(τ)6≡0 (mod pOL). �

Corollary 15.7. For an imaginary quadratic �eld K , HK = K(j(OK)).

This is a remarkable property of the j-function. In fact, the j-function assumes transcendental

values at algebraic, non-quadratic points on H.

Theorem 15.8 (Schneider). If τ ∈ H is an algebraic number such that j(τ) is also an algebraic
number, then τ is a quadratic number. In other words, if τ ∈ H is algebraic and not quadratic, j(τ)
is a transcendental number.

For the proof, see [Sil, Chapter II.6].

15.2. Second Main Theorem: from ring class �elds to ray class �elds. Note that K(N)
(ray class �eld of conductor N ) and K(Z⊕NOK) (ring class �eld of order of conductor N ) are

di�erent, and Gal(K(N)/K(Z⊕NOK)) = (Z/NZ)×. How do we reach the ray class �eld from

the ring class �eld? We need to adjoin more speci�c elements to ring class �elds.
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De�nition 15.9 (Weber functions). Let O be an order in an imaginary quadratic �eld K . We

de�ne the Weber function of the orderO, which is a function on three variables (z, τ) ∈ C×H,

as

τO(z, τ) := g(#µO)(τ)℘(z,Z⊕ Zτ)
#µO

2 ,

where ℘(z,Z⊕Zτ) is the Weierstrass ℘-function for the lattice Z⊕Zτ ⊂ C (=elliptic curve over

C), µO is the group of roots of unity in O (which can be either 〈−1〉 (order 2), 〈ζ4〉 (order 4, only

happens when K = Q(i) and O = OK) or 〈ζ6〉 (order 6, only happens when K = Q(
√
−3) and

O = OK)), and

g(2)(τ) := −27 · 35 g2(τ)g3(τ)

∆(τ)
,

g(4)(τ) := 28 · 34 g2(τ)2

∆(τ)2
,

g(6)(τ) := −29 · 36 g3(τ)

∆(τ)
.

Again, there are good reasons why you want to multiply with those powers of 2 and 3, which

you will see in a moment.

Remark 15.10. The reason why we take the units into account is precisely because the stabilizer

of the SL2(Z)-action onH is not {±1} precisely at two orbits, namely the orbit of i and the orbit

of e2πi/3
. Note that the case of order 4 stabilizer is precisely when the corresponding lattice

(=elliptic curve over C) is Z⊕Zi = OQ(i), and the case of order 6 stabilizer is precisely when the

corresponding lattice (=elliptic curve over C) is Z⊕ Ze2πi/3 = Z⊕ Z−1+
√
−3

2
= OQ(

√
−3)!

Similar to the j-function, we are interested in special values of the Weber functions. The

algebraic properties of the special values are studied by an analouge of the modular polynomial.

De�nition 15.11 (Division polynomial, torsion points). Let N ∈ N. Consider the function

TN,O(X, τ) :=
∏

x1,x2∈Z/NZ, gcd(x1,x2,N)=1

(
X − τO

(
x1 + x2τ

N
, τ

))
.

This is called theN -th order division polynomial for the Weber function τO. The points
x1+x2τ
N

for gcd(x1, x2, N) = 1 are exactly the points z ∈ C such that Nz ∈ Z⊕Zτ and nz /∈ Z⊕Zτ for

0 < n < N . Such a z is called a torsion point of Z ⊕ Zτ of exact order N . A torsion point

of Z⊕ Zτ is a point z ∈ C such that nz ∈ Z⊕ Zτ for some n ∈ N.

Theorem 15.12. Let O be an order in an imaginary quadratic �eld K . Let N ∈ N.

(1) The division polynomial TN,O(X, τ) is a polynomial inX with coe�cients being polynomials
in j(τ). Thus, we may think of TN,O(X, τ) = TN,O(X, j(τ)) for a two-variable polynomial
TN,O(X, Y ).

(2) The two-variable polynomial TN,O(X, Y ) ∈ Q[X, Y ]. Furthermore, if N is not a prime
power, TN,O(X, Y ) ∈ Z[X, Y ]. IfN is a power of a prime number p, then p#µOTN,O(X, Y ) ∈
Z[X, Y ].
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Proof. (1) It is clear that the action of SL2(Z) on τ preserves TN,O(X, τ), as the enumeration

of the Z ⊕ Zτ -orbits of
x1+x2τ
N

running over x1, x2 ∈ Z/NZ, gcd(x1, x2, N) = 1 only

depend on the lattice Z⊕Zτ . It is also clear that the coe�cients are actual values and do

not blow up for any τ ∈ H. The result follows.

(2) We need to discuss the Fourier expansions, so let us start with ℘(z, τ). Namely, ℘(z, τ)
is SL2(Z)-invariant at τ -variable, and periodic with periods 1 and τ at z-variable. Let

U = e2πiz
. Then, we claim that, for | Im(z)| > Im τ > 0, the following formula holds,

℘(z, τ) = −π
2

3

(
1 +

12U

(1− U)2
+ 12

∞∑
n,m=1

nqnm(Un + U−n − 2)

)
.

The way that this formula is obtained is a variant of the argument we used to compute

the Fourier expansion of the Eisenstein series G2k(τ) (this is like the “weight 2” version,

except that there are a lot more decorations to make the in�nite sum converge). Namely,

℘(z, τ) = f(z) +
∑

m∈Z,m 6=0

g(z,mτ),

where

f(z) =
1

z2
+

∑
n∈Z,n6=0

(
1

(z − n)2
− 1

n2

)
,

g(z, τ) =
∑
n∈Z

(
1

(z − n− τ)2
− 1

(n+ τ)2

)
.

Note that this is an OK rearrangement, because the in�nite sum for the de�nition of ℘(z)
is absolutely convergent as long as you don’t pull terms out of the parentheses (the whole

series disregarding the grouping is not absolutely convergent, but
1

(z−λ)2 − 1
λ2 = 2zλ−z2

λ2(z−λ)2

which is∼ 1
λ3 ). Now each of f(z) and g(z, τ) have an absolutely convergent in�nite sum,

so dealing with each of these functions, we can rearrange the terms as we wish.

• For f(z): note that f(z) =
∑

n∈Z
1

(z−n)2 − 2ζ(3) =
∑

n∈Z
1

(z−n)2 − π2

3
. Note also that∑

n∈Z
1

(z−n)2 is periodic with period 1, so we may expect a Fourier expansion in terms

of U . In fact, it is one of the standard in�nite series proved in complex analysis that

csc2(z) =
∑
n∈Z

1

(z − nπ)2
,

so that

π2 csc2(πz) =
∑
n∈Z

1

(z − n)2
.

Note that sin2(πz) = 1−cos(2πz)
2

= 2−U−U−1

4
. Therefore, f(z) = −π2

3
− 4π2

U−2+U−1 =

−π2

3

(
1 + 12U

(1−U)2

)
. This identity holds as long as U 6= 1.
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• For g(z, τ): note that, using the identity we discussed above, g(z, τ) = π2 csc2(π(z−
τ))− π2 csc2(πτ). Thus,

g(z, τ) = − 4π2

U
q
− 2 + q

U

+
4π2

q − 2 + q−1
.

Note that

4π2

q − 2 + q−1
=

4π2q

q2 − 2q + 1
= 4π2q(1− q)−2 = 4π2q

∞∑
n=0

(
−2

n

)
(−1)nqn

= 4π2q
∞∑
n=0

(n+ 1)qn = 4π2

∞∑
n=1

nqn.

Therefore, similarly,

4π2

U
q
− 2 + q

U

= 4π2

∞∑
n=1

nqnU−n.

These identities hold when |q| < 1 and

∣∣ q
U

∣∣ < 1, which is when Im(z) > Im(τ) > 0.

Note however that we are also planning to plug mτ into τ for m < 0. In those cases,

we need to rather use

4π2

q − 2 + q−1
= 4π2q−1(1− q−1)−2 = 4π2

∞∑
n=1

nq−n,

4π2

U
q
− 2 + q

U

= 4π2

∞∑
n=1

nq−nUn.

These identities hold when |q−1| < 1 and

∣∣∣Uq ∣∣∣ < 1, which is when Im(z) < Im(τ) < 0.

So all in all, if we gather the Fourier expansions, we get

℘(z, τ) = −π
2

3

(
1 +

12U

(1− U)2

)
+4π2

∞∑
m=1

∞∑
n=1

(
nqnm − nqnmU−n

)
+4π2

∞∑
m=1

∞∑
n=1

(nqnm − nqnmUn) .

This after rearrangement is precisely what we wanted. Now, we can easily compute the

q-expansions of g(2)
, g(4)

, g(6)
, so that τO(z, τ) has the Fourier expansion

τO(z, τ) = P (q)

(
1 +

12U

(1− U)2
+ 12

∞∑
n,m=1

nqnm(Un + U−n − 2)

)#µO/2

,

for some q-expansion P (q) ∈ Z[[q]] with the lowest term starting with q−#µO/2
(this in-

cludes that the lowest order coe�cient is 1; this is why we multiplied those funny numbers

in the de�nitions of g(2)
, g(4)

, g(6)
).
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Now we can conclude. Note that, for 0 ≤ x1, x2 < N , then U = ζx1
N q

x2/N
, where ζN =

e2πi/N
. Thus

τO

(
x1 + x2τ

N
, τ

)
= (q−#µO/2+· · · )

(
1 +

12ζx1
N q

x2/N

(1− ζx1
N q

x2/N)
2 + 12

∞∑
n,m=1

nqnm
(
ζx1n
N qx2n/N + ζ−x1n

N q−x2n/N − 2
))#µO/2

.

Note that there are only �nitely many appearances of negative powers of q in the above

series because x2/N < 1. This shows that the coe�cients of the above q-expansion are

in Q(ζN). Furthermore, the coe�cients are actually in Z[ζN ] unless x2 = 0 (in which

case the middle term would just be
12ζ

x1
N

(1−ζx1
N )2 .). Now note that the Galois conjugation

ζN 7→ ζrN sends the q-expansion for τO
(
x1+x2τ
N

, τ
)

to τO
(
rx1+x2τ

N
, τ
)
, so it follows that

TN,O(X, Y ) ∈ Q[X, Y ]. Furthermore, we know exactly how much we need to multiply to

make it integral; namely, we need to multiply by

∏
x∈Z/NZ, gcd(x,N)=1

(1− ζxN)#µO =

{
1 if N is not a prime power

p#µO
if N = pk is a prime power.

Thus we are done.

�

De�nition 15.13. Let O be an order in an imaginary quadratic �eld K . Let N ∈ N. Let p be a

prime number coprime to N . Let γ =

(
a b
c d

)
be a 2 × 2 matrix with integer entries such that

det γ = p. We de�ne, for x1, x2 ∈ Z with gcd(x1, x2, N) = 1,

δγ,O,N

((
x1

x2

)
; τ

)
:= τO

(
x1 + x2τ

N
, τ

)p
− τO

(
px1 + px2τ

N(cτ + d)
, γ · τ

)
.

Note that this de�nition makes sense as pZ⊕pZτ ⊂ (cτ +d)(Z⊕Zγ ·τ). We furthermore de�ne

Sγ,O,N(X, τ) :=
∏

x1,x2∈Z/NZ, gcd(x1,x2,N)=1

(
X − δγ,O,N

((
x1

x2

)
; τ

))
.

For k ≥ 0, the Xk
-coe�cient of Sγ,O,N(τ) is denoted as D

(k)
γ,O,N(τ).

Theorem 15.14. We retain the notations of De�nition 15.13.

(1) The functionsD(k)
γ,O,N(τ) are modular functions forGγ := SL2(Z)∩γ−1 SL2(Z)γ, holomor-

phic on H.

(2) The q-expansion ofD(k)
γ,O,N(τ) at in�nity has rational coe�cients that are p-integers (i.e. can

be written as m
n
with gcd(n, p) = 1). If γ =

(
p 0
0 1

)
, all coe�cients of the q-expansion are

divisible by p (except the leading coe�cient case where D(k)
γ,O,N(τ) = 1).
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(3) Let τ ′ ∈ H be a quadratic number such that End(Z⊕ Zτ ′) ∼= O. Let a be a proper O-ideal
such that Z ⊕ Zτ ′ ∼= a. Suppose that p = p′p′ splits completely in K and p does not divide
the conductor ofO. Then,D(k)

γ,O,N(τ ′) is algebraic. Furthermore, if γ is such that Z⊕Zτ ′ ∼= a

sends γ(Z⊕ Zτ ′) ∼= p′a, then D(k)
γ,O,N(τ ′) is divisible by p′.

(4) Let τ ′ ∈ H be a quadratic number such that End(Z⊕ Zτ ′) ∼= O. Let a be a proper O-ideal
such that Z⊕Zτ ′ ∼= a. Suppose that p is inert inK , p > 12, p does not divide the conductor
of O, and p is unrami�ed in Q(j(τ ′)). Then, D(k)

γ,O,N(τ ′) is algebraic and is divisible by p.

(5) Let O = OK . Let z be a torsion point of Z ⊕ Zτ of exact order N . Under the isomorphism
Z ⊕ Zτ ∼= a, let z be sent to z′ (as an element of 1

N
a). Then, Nza−1 = r is an integral

ideal ofOK coprime toN , and τOK (z, τ) only depends on the ray class [r−1] ∈ ClN(K). For
α ∈ ClN(K), we will de�ne τOK (α) := τOK (z, τ) for any z as above such that [r−1] = α.

(6) For any prime ideal p ⊂ OK such that the prime number p divisible by p satis�es p > 12
and gcd(p,N disc(K)) = 1. Then, for any prime ideal P above p in a big enough number
�eld and α ∈ ClN(K),

τOK (α[p]−1) ≡ τOK (α)N(p) (modP).

Proof. (1) Note that, for any M ∈ SL2(Z), M =

(
x y
z w

)
, as δM =

(
ax+ bz ay + bw
cx+ dz cy + dw

)
,

δγ,O,N

((
x1

x2

)
;M · τ

)
= τO

(
x1 + x2M · τ

N
,M · τ

)p
− τO

(
px1 + px2M · τ
N(cM · τ + d)

, γM · τ
)

= τO

(
x1(zτ + w) + x2(xτ + y)

N
, τ

)p
− τO

(
px1(zτ + w) + px2(xτ + y)

N(c(xτ + y) + d(zτ + w))
, γM · τ

)
= τO

(
(x1w + x2y) + (x1z + x2x)τ

N
, τ

)p
− τO

(
p(x1w + x2y) + p(x1z + x2x)τ

N((cx+ dz)τ + (cy + dw))
, γM · τ

)
= δγM,O,N

(
M

(
x1

x2

)
; τ

)
.

This is why δγ,O,N was notated vertically in the �rst place. Note also that, if M ∈ Gγ ,

then SL2(Z)γ = SL2(Z)γM , so

(
x1

x2

)
7→M

(
x1

x2

)
permutes the pairs

(
x1

x2

)
such that x1, x2 ∈

Z/NZ, gcd(x1, x2, N) = 1. This implies that Sγ,O,N(X, τ) is invariant under the action of

Gγ on τ . It is clear that the coe�cients are holomorphic on H and meromorphic at cusps,

so we get the desired result.

(2) Note that the q-expansion of τO
(
x1+x2τ
N

, τ
)

already have p-integral coe�cients. More-

over, as noted in the proof of Theorem 15.12, the q-expansion of D
(k)
γ,O,N(τ) has coe�-

cients in Q(ζN), and the action of an element in Gal(Q(ζN)/Q), ζN 7→ ζrN , permutes
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δγ,O,N

((
x1

x2

)
; τ
)

for x1, x2 ∈ Z/NZ, gcd(x1, x2, N) = 1, so the q-expansion of D
(k)
γ,O,N(τ)

has coe�cients actually in Q.

If γ =

(
p 0
0 1

)
,

δp 0
0 1

,O,N
((

x1

x2

)
; τ

)
= τO

(
x1 + x2τ

N
, τ

)p
− τO

(
px1 + px2τ

N
, pτ

)
.

Note that the q-expansion of τO
(
px1+px2τ

N
, pτ
)

is obtained from that of τO
(
x1+x2τ
N

, τ
)

by

replacing q by qp and ζN by ζpN , so it follows that τO
(
x1+x2τ
N

, τ
)p ≡ τO

(
px1+px2τ

N
, pτ
)

(mod p),

which is what we want.

(3) By using the exactly same arguments as Theorem 14.10(3), one can show that the �eld of

modular functions for Gγ , denoted K(Y (Gγ)), is precisely C(j, ϕγ) (in particular, ϕγ is a

modular function for Gγ , with the minimal polynomial of ϕγ over C(j) of degree p). Fur-

thermore, we know that the q-expansion of ϕγ has integral coe�cients. This implies that,

by (2), D
(k)
γ,O,N(τ) = F (j(τ), ϕγ(τ)), where F (X, Y ) ∈ Q(ζp)[X, Y ] has p-integral coe�-

cients. Therefore, by Theorem 15.6(2), D
(k)
γ,O,N(τ ′) is an algebraic number. Furthermore, if

γ is such that γ(Z⊕ Zτ ′) ∼= p′a, then we have

D
(k)
γ,O,N(τ)

∏
σ∈C(p),σ 6=γ

(ϕγ(τ)− ϕσ(τ)) = a0(j(τ)) + a1(j(τ))ϕγ(τ) + · · ·+ ap(j(τ))ϕγ(τ)p,

for a0(Y ), · · · , ap(Y ) ∈ Q[Y ] with p-integral coe�cients. We claim that a0(j(τ ′)) is

divisible by p. Indeed, note that for any δ ∈ C(p), we have

D
(k)
δ,O,N(τ)

∏
σ∈C(p),σ 6=δ

(ϕδ(τ)− ϕσ(τ)) = a0(j(τ)) + a1(j(τ))ϕδ(τ) + · · ·+ ap(j(τ))ϕδ(τ)p,

so our claim follows from the fact from (2) and the fact that ϕp 0
0 1

(τ ′) is divisible by

p12
, as proved in Theorem 15.6(4).

On the other hand,

∏
σ∈C(p),σ 6=γ(ϕγ(τ

′) − ϕσ(τ ′)) is not divisible by p′, as ϕγ(τ
′) is di-

visible by p′ by Theorem 15.6(3) and ϕσ(τ ′) is not divisible by p′ by Theorem 15.6(3), (4).

Therefore, D
(k)
γ,O,N(τ ′) is divisible by p′.

(4) Let C(p) = {σ0, · · · , σp}, as usual, and F (X, τ) =
∏p

i=0(X − D
(k)
σi,O,N(τ)). It is easy

to see that F (X, τ) = F (X, j(τ)) for F (X, Y ) ∈ Q[X, Y ] with p-integral coe�cients,

by comparing q-expansions and showing that the q-expansion is �xed under the Galois

conjugation by Gal(Q(ζp)/Q). This implies that D
(k)
σi,O,N(τ ′) is algebraic for 0 ≤ i ≤ p.
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By the same reason as the proof of Theorem 14.10(7), combined with (2), we obtain that

F (X, j(τ)) ≡ X

Xp −D(k)1 0
0 p

,O,N(τ)p

 (mod 1− ζp).

Therefore, F (X, Y ) ≡ X(Xp − a1(Y )) (mod p), where a1(Y ) is the coe�cient of the

X-term of F (X, Y ). Here, mod p congruence makes sense as the coe�cients are already

known to be p-integral. In particular, the constant term is divisible by p, and therefore

there exists 0 ≤ i ≤ p such that D
(k)
σi,O,N(τ ′) is divisible by p. To be more precise,

let P be a prime ideal of L := Q(j(τ ′), D
(k)
σ0,O,N(τ ′), · · · , D(k)

σp,O,N(τ ′)) above p. Then,∏
0≤j≤p,j 6=i(X − D

(k)
σj ,O,N(τ ′)) ≡ Xp − Q1(j(τ ′)) (modP). Therefore, D

(k)
σj ,O,N(τ ′)p ≡

Q1(j(τ ′)) (modP) for all 0 ≤ j ≤ p, j 6= i.

IfD
(k)
σi,O,N(τ ′) is a multiple zero ofF (X, j(τ ′)), then this implies thatQ1(j(τ ′)) ≡ 0 (modP),

so that D
(k)
σj ,O,N(τ ′) ≡ 0 (modP) for every j, which is what we wanted.

IfD
(k)
σi,O,N(τ ′) is a simple zero ofF (X, j(τ ′)), thenD

(k)
σi,O,N(τ) is a simple zero ofF (X, j(τ)).

This implies that D
(k)
σi,O,N generates K(Y (Gσi))/K(Y (1)), as F (X, j(τ ′)) is of the same

degree as [K(Y (Gσi)) : K(Y (1))] = p+ 1. This implies that

∂F

∂X
(D

(k)
σi,O,N(τ), j(τ))ϕσi(τ) = c0(j(τ)) + c1(j(τ))D

(k)
σi,O,N(τ) + · · ·+ cp(j(τ))D

(k)
σi,O,N(τ)p.

As
∂F
∂X

(D
(k)
σi,O,N(τ ′), j(τ ′)) 6= 0, ϕσi(τ

′) ∈ Q(j(τ ′), D
(k)
σi,O,N(τ ′)). Note that

∏p
j=0 ϕσj(τ

′) =

±p12
, as proved in Theorem 15.6(4). We claim that ϕσj(τ

′) and ϕσj′ (τ
′) for j 6= j′ are o�

by a unit (i.e.

ϕσj′ (τ
′)

ϕσj (τ ′)
is a unit). Indeed, as p does not divide the conductor of O, which

we denote by M , if Z⊕ Zτ ′ ∼= a for a proper O-ideal a, then for any σj′′ for 0 ≤ j′′ ≤ p,

σj′′(Z⊕Zτ ′) ∼= aj′′ is a properOp-ideal, whereOp = Z⊕pMOK is the order of conductor

pM (it is easy that theOp-action stabilizes aj′′ as p is coprime toM , and it is a proper ideal

as it is invertible; the inverse is either pσj′′ or
1
p
σj′′ applied to a−1

).

Our claim will be proved if we show that

ϕσj′ (τ
′)

ϕσj (τ ′)
is coprime to any prime number `. Let c

be a proper Op-ideal in the same class as aj′a
−1
j which is coprime to pM`. Then there is

γ ∈ Op such that aj′γ = ajc. As c is coprime to pM`, it is of the form c′ ∩Op for an ideal

c′ ⊂ OK of order coprime to pM`. Then, by taking the associated O-ideal, we get

aγ = a(c′ ∩ O),

so c′ ∩ O is a principal ideal generated by γ. Therefore, there is an integer 2 × 2 matrix

A =

(
x y
z w

)
of determinant NK/Q(γ) such that

σj′(γZ⊕ γZτ ′) = A(σj(Z⊕ Zτ ′)),
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where furthermore the two basis vectors correspond to each other (i.e. γ ↔ 1, γτ ′ ↔ τ ′).
This implies that

ϕσj′ (τ
′)

ϕσj(τ
′)

=
∆(σj′ · τ ′)
∆(σj · τ ′)

=
∆
(
Aσj ·τ ′
γ

)
∆(σj · τ ′)

=
ϕA(σj · τ ′)(zσj · τ ′ + w)12∆

(
Aσj ·τ ′
γ

)
NK/Q(γ)12∆(Aσj · τ ′)

=
ϕA(σj · τ ′)γ12

NK/Q(γ)12
.

We know that ϕA(σj · τ ′) is a factor of a power of NK/Q(γ) by Theorem 15.6(2), so this

quantity is coprime to `, as desired.

As ϕσi(τ
′)p+1

and p12
are o� by a unit, p + 1 > 12, and p is unrami�ed in Q(j(τ ′)),

it follows that P is rami�ed over Q(j(τ ′)). Let q = P ∩ OQ(j(τ ′)). Then, I(P|q) ∩
Gal(L/Q(j(τ ′), D

(k)
σi,O,N(τ ′))) 6= {1}. Let λ be a nontrivial element in the intersection.

Then, λ(D
(k)
σi,O,N(τ ′)) = D

(k)
σi′ ,O,N

(τ ′) for i 6= i′, and the divisibility by P stays the same,

soD
(k)
σi′ ,O,N

(τ ′) is divisible by P. Therefore,Q1(j(τ ′)) is also divisible by P, soD
(k)
σj ,O,N(τ ′)

is divisible by all j, as desired.

(5) This is easy; exercise.

(6) This is an easy consequence of (3), (4) and the de�nition ofD
(k)
γ,O,N , proved just as Theorem

15.3.

�

Now we are ready to prove the reciprocity law and the Second Main Theorem of complex

multiplication.

Theorem 15.15 (Second Main Theorem of Complex Multiplication). LetK be an imaginary qua-
dratic �eld, and let τ ∈ H be a quadratic number such that End(Z⊕Zτ) = OK . LetN ∈ N. Then,
the ray class �eld K with modulus N is given by

K(N) = K(j(τ), {τOK (z, τ) : z ∈ 1

N
(Z⊕ Zτ) /(Z⊕ Zτ)}).

Proof. Let the number �eld on the right hand side by denoted L. As in the proof of the First Main

Theorem, we use the splitting primes. The nicer thing is that Theorem 15.12 already tells you

that the values τO(z, τ)’s are conjugates to each other, so L/K is Galois.

Therefore, as per the density argument, we only need to show that S(K(N)/K) and S(L/K)
have the same Dirichlet density. If p ∈ S(K(N)/K) that is unrami�ed overQ, then by Theorem

15.3 and Theorem 15.14(6), p has to split completely in L. Conversely, if p ∈ S(L/K) that is

unrami�ed over Q and any di�erence j(τ) − j(τ ′) for End(Z ⊕ Zτ) = End(Z ⊕ Zτ ′) = OK ,

then exactly as in the proof of Theorem 15.1, we see that p is principal. Here comes the reason

why the Weber function is de�ned in such a weird way: it is invariant under any automorphism

of the lattice (=elliptic curve). Namely, if τOK (α) = τOK (β) for α, β ∈ ClN(K) that arise to
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the same class in Cl(K) (i.e.
α
β

is a principal ideal, although maybe not congruent to 1 mod N ),

then α/β is congruent to a unit ofO×K modN , and this is if and only if. Therefore, any di�erence

τOK (α)−τOK (β) for α 6= β ∈ ClN(K) with their images being the same in Cl(K) is nonzero, and

we can exclude the prime ideals dividing any such di�erence. Then, the congruence in Theorem

15.14(6) plus p avoiding the di�erences imply that p has to be 1 modN , so it must split completely

in K(N), as desired. �

Exercise 15.1. Formulate and prove the reciprocity law for the values of the Weber function

τOK (z, τ), in the similar way as Theorem 15.3.

Remark 15.16. The analogous statement to Second Main Theorem holds forK(m) for a general

modulus m of K , where now we need to take the values of the Weber function at the “m-torsion

points”.

Remark 15.17. The Second Main Theorem describes K(N) by using the j-invariants of the

lattices (=elliptic curves over C) with complex multiplication by OK and the associated Weber

functions. On the other hand, the First Main Theorem describes the ring class �eld using the

j-invariants of those having complex multiplication by a possibly non-maximal order. There is a

way to connect these two, describing K(N) in terms of those having complex multiplication by

a general order.

Example 15.18 (Comparing Explicit Class Field Theories). We have seen three types of Ex-

plicit Class Field Theory, for Q (Kronecker–Weber theorem), for local �elds (Lubin–Tate the-

ory), and for imaginary quadratic �eld (Second Main Theorem of complex multiplication). They

all have the same theme: for the explicit class �eld theory for a �eld F , you must �nd a group

structure with a large endomorphism by OF , and the ray class �elds are obtained by adjoining

to the maximal unrami�ed extension of F the torsion points of the group you found. To write

more concisely:

• F = Q (Kronecker–Weber Theorem, Theorem 8.1)

– Group: the multiplicative group Q×.

– Torsion points: XN = 1, so the powers of ζN .

– Qab = Q({ζN : N ≥ 1}).

• F is a local �eld (Lubin–Tate theory, §10)

– Group: (mF sep , Ff ) where Ff is a Lubin–Tate formal group law (Theorem 10.6).

– Torsion points: mF sep [f ◦n] (Theorem 10.8).

– F ab = F nrFπ = F nr(mF sep [f ◦n]) (Theorem 10.12).

• F is an imaginary quadratic �eld (CM theory, §15)

– Group: Lattice Λ ⊂ C (=elliptic curve over C) with complex multiplication by OF
(De�nition 13.16).
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– Torsion points:
1
N

Λ (De�nition 15.11).

– F ab = F (j(OF ), {τOK (z,Λ) : z ∈ 1
N

Λ}) = HF ({τOK (z,Λ) : z ∈ 1
N

Λ}) (Second

Main Theorem of Complex Multiplication, Theorem 15.15).

There is also a slightly more vague analogy between the role of the j-function and the exponen-

tial; namely, both are functions where the input and the output being both algebraic is extremely

rare, and the maximal unrami�ed extensions are obtained by the values of the function in those

very rare cases.

• For F = Q, HQ = Q (Minkowski’s theorem, Theorem 8.5) and there is nothing to talk

about. There is no bigger everywhere unrami�ed extension because the multiplicative

group is unique.

• For F a p-adic local �eld, F nr = ∪(n,p)=1F (ζn), and ζn = e2πi 1
n ∈ Q×. Let’s de�ne a

function f : R → C by f(x) = e2πix
. Then it is an easy exercise to see that, for x ∈ R,

both x and f(x) are algebraic if and only if x ∈ Q. Note also that there are many non-

isomorphic Lubin–Tate formal group laws over F , and that they become all isomorphic

over F nr
(Lemma 10.14).

• For F an imaginary quadratic �eld, HF = F (j(OF )) (Corollary 15.7). We also know that,

for τ ∈ H, both τ and j(τ) are algebraic if and only if τ is a quadratic number (Theorem

15.1, Theorem 15.8).

Part 3. Class �eld theory as the Langlands correspondence for GL(1)

16. Setup and local theory

16.1. Weil groups. Let F be a local �eld. Then, we explained that the local Artin map

ArtF : F× → Gal(F ab/F ) = Gal(F/F )ab,

is never an isomorphism (here F is the separable closure of F ), because there is a “di�erence

between Z and Ẑ.” One way to resolve this into establishing an isomorphism is to demote

Gal(F ab/F ) to a smaller group, called the Weil group.

De�nition 16.1 (Weil group). For a local �eld F , consider the short exact sequence of groups

1→ IF → Gal(F/F )→ Gal(F nr/F )→ 1,

where IF := Gal(F/F nr) is the inertia group. Note also that Gal(F nr/F ) ∼= Ẑ naturally by

identifying the Frobenius of Gal(F nr/F ) with 1 ∈ Ẑ. Let ι : Gal(F/F ) → Gal(F nr/F ) be the

natural surjective map of the short exact sequence. Then, WF := ι−1(Z) is the Weil group of F .

It sits in a natural short exact sequence

1→ IF → WF
ι−→ Z→ 1.

The topology of WF is such that IF ≤ WF is an open subgroup and the subspace topology on IF
is the same as the natural topology on IF as an in�nite Galois group.
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The last part on topology is making the topology to look like something like F× where there

is a pro�nite part and a discrete part. Note that WF is a subgroup of Gal(F/F ) but the topology

of WF is not the subspace topology of Gal(F/F ).

The local Artin map then can be demoted to an isomorphism of topological groups

ArtF : F×
∼−→ W ab

F ,

which is actually much more frequent way of thinking about local class �eld theory in practice.

This also has an advantage of working for local �elds of positive characteristic.

From the local class �eld theory, we obviously have the following. LetE be a topological �eld

(a �eld with topology). Then, there is a one-to-one bijection,{
Continuous homomorphisms

F× → E×

}
↔
{

Continuous homomorphisms

W ab
F → E×

}
.

Because E× is abelian, this gives a one-to-one bijeciton{
Continuous homomorphisms

F× → E×

}
↔
{

Continuous homomorphisms

WF → E×

}
.

The subject of local Langlands correspondence is when we use E = Q` for ` 6= p (or we also

sometimes use any �nite extension of Q`).{
Continuous homomorphisms

F× → Q×`

}
↔
{

Continuous homomorphisms

WF → Q×`

}
.

This is called the local Langlands correspondence for GL1(F ).

16.2. Smooth representations of algebraic groups. We will brie�y mention how this bijec-

tion is generalized in more general Langlands program. Firstly we need to understand what we

mean by GL1(F ). For n ≥ 1, we let GLn(F ) be the group of invertible n × n matrices with

entries in F . There is a natural way to give a topology on this group; consider the injective map

GLn(F ) → Matn×n(F ) × Matn×n(F ), X 7→ (X,X−1), where Matn×n(F ) is the set of n × n

matrices with entries in F ; as Matn×n(F ) ∼= F n2
, this set is naturally topologized by the topology

of F , and we let GLn(F ) to be inherited the subspace topology along the said embedding.

In particular, GL1(F ) = F× (with the matching topology). So the local Langlands correspon-

dence for GL1(F ) can be rewritten as{
Continuous homomorphisms

GL1(F )→ Q×`

}
↔
{

Continuous homomorphisms

WF → GL1(Q`)

}
.

The local Langlands correspondence for GLn(F ) for n ≥ 1 is actually a bijection{
Smooth admissible

irreducible representations

of GLn(F )

}
↔
{

Frobenius-semisimple continuous

homomorphisms WF → GLn(Q`)

}
,

plus a bunch of conditions. Our modest goal is to explain what modi�cations were made so that

this is truly a generalization of the local Langlands correspondence for GL1(F ) (i.e. when n = 1
this general statement specializes to what we know).
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• The right side (“Galois side”): other than 1 becoming n, there is only one change, namely

there is an additional adjective “Frobenius-semisimple”. What does this mean? A

Frobenius element of WF is any element g ∈ WF such that ι(g) = 1 in Z. We want this

to be semisimple, i.e. sent to a matrix that is diagonalizable. This additional adjective

did not appear in the case when n = 1, as any 1× 1 matrix is diagonalizable.

• The left side (“automorphic side”
21

): other than 1 becoming n, there are quite a few

changes.

– Smooth admissible irreducible representations of GLn(F ). We explain in four

parts.

∗ · · · representations of GLn(F ). This is just a vector space V overQ` together

with a linear action of GLn(F ). Note that for this we do not assume that V
is finite-dimensional. In fact most representations appearing on the left side

(“automorphic side”) will actually be in�nite dimensional.

∗ Smooth · · · . Given a representation of GLn(F ) (acting on V ), a vector v ∈ V
is a smooth vector if the stabilizer of v in GLn(F ) (i.e. the subgroup {g ∈
GLn(F ) : gv = v}) is an open subgroup. A representation is smooth if every

vector is a smooth vector.

∗ · · · admissible · · · . This means that, for any open subgroup U ≤ GLn(F ), the

U -�xed vectors V U
are �nite-dimensional.

∗ · · · irreducible · · · . A representation is irreducible if there is no nonzero

proper subspace stable under the action by GLn(F ).

– Why is there no Q` in the le� side? This is because the notion of smoothness

does not care about the topology of the vector space (Exercise: look through

the above de�nitions and convince yourself of this). In particular, the notion only

cares about the �eld Q` without caring about its topology. The point now is that an

algebraically closed �eld with the same cardinality and characteristic is unique up

to isomorphism, so as �elds (without caring about topology) Q`
∼= Qp

∼= C ∼= · · · .
Therefore, as long as you use any of these �elds as base �elds for the vector spaces,

the notion does not change!

So why did all these not appear when n = 1? We need to show that continuous homomor-

phisms GL1(F )→ Q×` are precisely the smooth admissible irreducible representations of

GL1(F ).

– Let GL1(F ) → Q×` be a continuous homomorphism. Then this is obviously irre-

ducible (being a one-dimensional representation) and admissible (representation is

already �nite-dimensional). For the smoothness, we need to look at what kind of rep-

resentation this is. Let π ∈ F be a uniformizer. Then F× = πZ × O×F , so �rstly you

21
The reason why it’s called the automorphic side will be clari�ed later.
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decide where π goes, which can be arbitrary element inQ×` (this does not a�ect conti-

nuity). So what is a continuous homomorphismψ : O×F → Q×` ? Well,O×F ⊃ 1+πOF ,

and this subgroup is pro-p, when F is a p-adic �eld. On the other hand,Q×` is locally a

pro-` group (i.e. there is an open subgroup ofQ×` that is pro-`). Let V ⊂ Q×` be pro-`.

Then by possibly shrinking V , U := ψ−1(V ) must be a pro-p group. Then U
ψ−→ V

is a continuous homomorphism from a pro-p group to a pro-`-group, which actually

must be zero (Exercise: check this). Therefore, this implies that ψ factors through a

�nite quotient of O×F .

From this, we see that any vector of the 1-dimensional representation is �xed by kerψ,

which is an open �nite index subgroup of O×F . So in any case the stabilizer will be

open.

– Conversely, let’s say we have a smooth admissible irreducible representation of GL1(F ) =
F× (with base �eldQ`), acting on V . Take a nonzero vector v ∈ V . Then the stabilizer

is an open subgroup of F×. LetG be this stabilizer. Then, V G
is �nite-dimensional by

admissibility. Note that πn ·v is �xed byG, as F× is abelian. Therefore, π : V G → V G

is a linear endomorphism, and by the �nite-dimensionality of V G
and as Q` is alge-

braically closed, it follows that there is w ∈ V G
such that πw = λw for some λ ∈ Q`.

Let W be the span of all vectors of the form g · w for g ∈ O×F . By smoothness, we

know that W is �nite-dimensional. Moreover, as F× is abelian, π acts on W by the

scalar λ. Therefore, W is stable under the action of F×, so V = W , and in partic-

ular V is �nite-dimensional. Now we can use that a �nite-dimensional irreducible

representation of an abelian group must be one-dimensional, to deduce that such a

representation must be at least a homomorphism GL1(F )→ Q×` . By smoothness, it

follows that this homomorphism restricted to O×F must factor through a �nite quo-

tient, so this must be continuous.

Remark 16.2. (1) It is interesting that the left side evolves to an in�nite-dimensional repre-

sentation theory of GLn(F ) that does not care about topology of coe�cient �eld, whereas

the right side evolves to a �nite-dimensional representation theory ofWF that cares about

the topology of the coe�cient �eld. In fact, the independence of the RHS on ` is an inter-

esting result on its own right.

(2) In fact, the adjective “admissible” is unnecessary, as any smooth irreducible representa-

tions of GLn(F ) are automatically admissible. This is not an easy result and is �rst proved

by Jacquet.

(3) There are several desiderata on the bijection so that there is a unique bijection satisfying

the desiderata. These include the compatibility with the local class �eld theory, and the

matching of L-factors and ε-factors.

16.3. Local Hecke algebra. There is a ring that encodes everything about the smooth repre-

sentation theory of GLn(F ), which is called the (local) Hecke algebra.
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De�nition 16.3. For a �nite index subgroup K of GLn(OF ), let

H(K) = {f : GLn(F )→ Q` : f is smooth, bi-K-invariant and compactly supported}.

Here, f is smooth if f is locally constant, is bi-K-invariant if f(gxh) = f(x) for g, h ∈ K ,

x ∈ GLn(F ), and is compactly supported if there is a compact subset C ⊂ GLn(F ) such that

f(x) = 0 for x /∈ C . LetH =
⋃
K≤GLn(OF )H(K). ThisH is called the (local) Hecke algebra.

Example 16.4. For a �nite index subgroup K ≤ GLn(OF ), the characteristic function 1K ∈
H(K). Recall that the de�nition of 1K is

1K(x) =

{
1 if x ∈ K
0 otherwise.

The reason why H is called an algebra is because there is a multiplication de�ned on it.

Namely, for f1, f2 ∈ H, we de�ne the convolution product

f1 ∗ f2(g) =

∫
GLn(F )

f1(gh−1)f2(h)dh.

Exercise 16.1. Check that f1, f2 ∈ H(K) implies f1 ∗ f2 ∈ H(K).

Exercise 16.2. If we de�ne, for a �nite index subgroup K ≤ GLn(OF ), eK := 1
vol(K)

1K ∈ H,

check that eK ∗ eK = eK (i.e. eK ∈ H is an idempotent).

This big ring acts on any smooth representation V of GLn(F ); if f ∈ H, then, for v ∈ V ,

f · v :=

∫
GLn(F )

f(g)(g · v)dg.

This integral is well-de�ned because f is locally constant and compactly supported. Thus, any

smooth representation of GLn(F ) can be seen as anH-module. In fact, there is a reverse direction,

that “smooth”H-modules are smooth representations of GLn(F ), but we won’t need this.

17. Automorphic representations

To describe how the global class �eld theory is massaged into something that can be general-

ized into the global Langlands correspondence for GLn, it requires a lot more work to do. Again,

our starting point is the global Artin map: for a number �eld L, the map

ArtL : CL → Gal(L/L)ab.

In the context of Langlands program, one writes CL = L×\IL = L×\A×L . This is not an isomor-

phism, but the di�erence between L×\A×L and Gal(L/L)ab
is more subtle than the local case.

Rather than massaging this to an isomorphism, we investigate in which situations the characters

of L×\A×L can be related to the characters of Gal(L/L).
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17.1. Automorphic forms. The main players in the “automorphic side” are automorphic rep-

resentations, which will be de�ned shortly. Automorphic representations are roughly speaking

a collection of automorphic forms. Before giving you a de�nition of automorphic forms, keep

the following examples in mind.

• Hecke characters for L (i.e. characters of the idele class group CL) are automorphic forms

for GL1 over L.

• Modular forms are automorphic forms for GL2 over Q.

Modular forms are holomorphic functions on the upper half plane, while Hecke characters in-

volve adeles. They look quite di�erent; it amounts to the fact that automorphic forms can be

de�ned in two related but di�erent ways. Some features we see in either example are:

• they have a transformation law with respect to some group (both Hecke characters and

modular forms);

• they are related to adeles (Hecke characters);

• they are related to some geometric space associated to the group (modular forms);

• they do not grow too fast at in�nity (modular forms);

• they satisfy a di�erential equation (modular forms are holomorphic functions = satis�es

the Cauchy–Riemann equation).

We will eventually connect these pictures and see that they all talk about the same thing.

Let me give you a �rst de�nition of automorphic forms, for GLn over L. The convention is

that when you talk about automorphic forms/representations of GLn over a number �eldK , you

say they are for GLn(AL).

De�nition 17.1 (Adelic automorphic forms for GLn(AL)). An adelic automorphic form for

GLn(AL) is a function

f : GLn(AL)→ C,

such that

(1) it is le�-GLn(L)-invariant,

(2) it is smooth,

(3) it has a central character ω : L×\A×L → S1
,

(4) it is K∞-finite for all open compact subgroups K∞ ≤ GLn(A∞L ),

(5) it is K∞-finite,

(6) it is Z(gln(L∞))-finite,
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(7) and it has moderate growth.

We let A(GLn(AL), ω) be the vector space of adelic automorphic forms for GLn(AL) with a

central character ω.

It has a lot of terms. Let me explain them, where some of them I will be intentionally hand-

wavy as it would take too much time to explain it properly.

(1) (Left-GLn(L)-invariance) This just means that the function f is invariant under multi-

plying an element of GLn(L) on the left, i.e. f(gx) = f(x) for any x ∈ GLn(AL) and

g ∈ GLn(L) (recall that L ⊂ AL, so naturally GLn(L) ⊂ GLn(AL)). Therefore, it is also

natural to see f as a function

f : GLn(L)\GLn(AL)→ C.

(2) (Smoothness) This is the same “smoothness” (or “niceness” as I called in the lectures) as

in Tate’s thesis. Namely, overR orC, this is the same as the usual smoothness in analysis,

whereas over p-adic �elds, this is “locally constant.”

More concretely, this means as follows. Let x ∈ GLn(AL). Let v be a place of L. Then

Lv ↪→ AL gives a natural embedding GLn(Lv) ↪→ GLn(AL). Then f being smooth means

that the “orbit map”

GLn(Lv)→ C, g 7→ f(xg),

is smooth in the above sense. More precisely, if Lv = R or C, then this means the corre-

sponding map GLn(R) → C or GLn(C) → C is a real-analytically smooth map. If Lv is

a p-adic �eld, then there is an open subgroup Γ ≤ GLn(Lv) such that f(x) = f(xg) for

g ∈ Γ.

(3) (Central character) The group GLn(AL) has the center given by the diagonal matrices

with entries in A×L . Then f having the central character ω means that f(xg) = ω(g)f(x)
for any g ∈ L×\A×L (seen as the diagonal matrix) and x ∈ GLn(AL).

(4) (K∞-�niteness) Recall �rst that A∞L is the space of finite adeles, i.e. the adeles where

the entries at in�nite places are all 1. We want f to behave in a way that you do not need

the whole complicated group GLn(A∞L ) (the �nite adele part of GLn(AL)), but rather its

discrete quotient. Note that GLn(ÔL) is an open (compact) subgroup of GLn(A∞L ) where

ÔL is the pro�nite completion of OL. Thus this condition really means that the vector

space spanned by the functions fg(x) := f(xg) for g ∈ GLn(ÔL) is �nite-dimensional.

(5) (K∞-�niteness) This is a similar condition but at in�nite place. An analogue of the “open

compact subgroup” is a maximal connected compact subgroup (i.e. a connected com-

pact subgroup such that it is maximal among such subgroups) K∞ ≤ GLn(L∞), where

L∞ = L ⊗Q R =
∏

v in�nite places of L Lv. Note that GLn(L∞) is a real-analytic mani-

fold which is also a group, which is often called a Lie group. It is a theorem (called

the Cartan–Iwasawa–Malcev theorem) that any maximal connected compact sub-

group of a connected Lie group is unique up to conjugation.
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In practice, in our case, GLn(L∞) is a product of GLn(R)’s and GLn(C)’s, so we only

need to know what maximal compact subgroups are for GLn(R) and GLn(C).

Exercise 17.1. Show that the special orthogonal group SO(n) ⊂ GLn(R) (i.e. the

group of n×n orthogonal matrices with determinant 1) is a maximal connected compact

subgroup, i.e. SO(n) is compact and connected and that there is no bigger compact and

connected group containing SO(n) inside GLn(R).

Exercise 17.2. Show that the unitary group U(n) ⊂ GLn(C) (i.e. the group of n × n
unitary matrices) is a maximal connected compact subgroup, i.e. U(n) is compact and

connected and that there is no bigger compact and connected group containing U(n)
inside GLn(C).

As per the above Exercises, we can take K∞ to be a product of SO(n)’s and U(n)’s ac-

cordingly. Then, the condition of K∞-�niteness is similar: the vector space spanned by

the functions fg(x) := f(xg)for g ∈ K∞ is �nite-dimensional.

(6) (Z(gln(L∞))-�niteness) This is a bit too involved to explain, so we have to be hand-wavy.

This is another condition at in�nite place which basically says that f satis�es a certain

explicit partial di�erential equation.

(7) (Moderate growth) This is also a bit too involved to explain; this is a similar condition to

“meromorphic at cusps” condition for modular forms.

So what do these mean when n = 1?

Lemma 17.2. Let L be a number �eld and ω : L×\A×L → S1 be a unitary Hecke character. Then,
an adelic automorphic form f : GL1(AL) → C for GL1(AL) with central character ω is uniquely
of the form

f(x) = cω(x),

for some �xed c ∈ C.

Proof. That it should be of the said form is easy because of the central character condition, so

f(x) is determined by f(1), i.e. f(x) = ω(x)f(1). Thus the task is to see whether ω satis�es the

said conditions. The left L× invariance is obvious, and the smoothness is dealt in the discussion

of Tate’s thesis. The central character condition is given. The K∞-�niteness and K∞-�niteness

are also obvious, as any action by such groups will give you a constant multiple of ω, so the vector

space spanned by those translates will always be one-dimensional.

For the last two conditions, as the conditions were given hand-wavily, we can only justify

them hand-wavily. We know exactly the unitary characters of R× and C×: for R×, the unitary

characters are either x 7→ |x|it for some t ∈ R or x 7→ sgn(x)|x|it for some t ∈ R; for C×, the

unitary characters are of the form z 7→
(
z
z

)n |z|it for some n ∈ Z and t ∈ R. Now it is believable

that these functions satisfy certain di�erential equations (note that for C, you see z = x+ iy and

ask for a di�erential equation in terms of x and y). �

We can abstractly de�ne what an automorphic representation is.
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De�nition 17.3 (Automorphic representation). Recall thatA(GLn(AL), ω) is the space of adelic

automorphic forms with a central character ω. This has the right action of GLn(AL) (i.e. for

g ∈ GLn(AL) and f ∈ A(GLn(AL), ω), (g · f)(x) := f(xg) is also an adelic automorphic

form). An automorphic representation is an irreducible GLn(AL)-representation which arises

as a subquotient (i.e. a quotient representation of a subrepresentation, or a Jordan–Holder con-

stituent) of A(GLn(AL), ω).

We are actually slightly lying here, because we need some more language to properly deal

with the in�nite places
22

, but the main concept is there.

The reason why we want to consider automorphic representations instead of a single auto-

morphic form is because of the following theorem.

Theorem 17.4 (Flath). Every automorphic representation π of GLn(AL) is of the form

“ π =
⊗

v places of L

πv ”,

where πv is an irreducible smooth admissible representation of GLn(Lv).

We’ve put a quotation mark as some care is required; GLn(AL) is not a literal product of

GLn(Lv)’s
23

.

We can now state a rough idea of what a global Langlands correspondence for GLn(AL)
should look like.

Conjecture 17.5 (Global Langlands correspondence for GLn(AL), weak form). LetL be a number
�eld, and let ` be a prime number. Let π =

⊗
v πv be an automorphic representation of GLn(AL)

that is also “nice at in�nite places” (we are constantly hand-waving things at in�nite places). Then,
there exists a continuous homomorphism ρπ : Gal(L/L) → GLn(Q`) such that, for any place v of
L, πv corresponds to the restriction of ρπ to the Weil groupWLv inside the decomposition group at v,
seen as Gal(Lv/Lv).

A mnemonic is that

π =
⊗
v

πv ↔ ρπ|Gal(Lv/Lv) = ρπv .

There are more compatibilities that this correspondence should satisfy, and also a conjectural de-

scription of what the image of this correspondence should be (i.e. characterization of continuous

homomorphisms Gal(L/L)→ GLn(Q`) that should arise as ρπ for some π), but these are beyond

our scope.

22
Instead of asking for a GLn(AL)-representation, which is the same as the data of a GLn(A∞L )-representation

and a GLn(L∞)-representation with commuting actions, we should really ask for the data of a GLn(A∞L )-
representation and a (gln(L),K∞)-module with commuting actions. Whenever we talk about representations

at in�nite places, we will be constantly lying about this issue from now on.

23
For all but �nitely many v’s, πv has a speci�c 1-dimensional line, and one can take it as a “basepoint” of taking

in�nite products in a “restricted way”.

141



17.2. Symmetric spaces. We will rather try to explain why modular forms can be interpreted

as automorphic forms for GL2(AQ). The key is that there is a di�erent version of the de�nition

of automorphic forms, called the classical automorphic forms, which is more evidently tied

with the geometry of certain manifolds with a group action. To have an aesthetically satisfying

complete picture, we focus on the case when the number �eld L has narrow class number 1 (e.g.

L = Q)
24

.

Assumption. Let m∞ be the modulus of all real places of L. Then, Clm∞(L) = 1.

Then, the “manifold” that we work with is the quotient
25

XGLn(L∞)0 := GLn(L∞)0/R>0K∞,

which is called the symmetric space for the connected Lie group GLn(L∞)026

, which is the

connected component of the identity 1 ∈ GLn(L∞). Here, K∞ ⊂ GLn(L∞)0
is the maximal

connected compact subgroup, andR>0 ⊂ GLn(L∞)0
corresponds to the diagonal matrices whose

entries are in R>0, where R>0 ⊂ R embeds canonically into L∞ via tensoring Q ↪→ L with

⊗QR. More precisely, there exists a Riemannian manifold XGLn(L∞)0 with an isometric action by

GLn(L∞)0
(on the left, by our convention).

Example 17.6. (1) If n = 1, then GL1(L∞)0 = (R>0)r × (C×)s where r and s are the num-

bers of real and (pairs of) complex embeddings of L, respectively. Then, K∞ under this

decomposition can be taken to be {1}r × (S1)s. Therefore, XGL1(L∞)0
∼= Rr+s−1

>0 (we see

r + s− 1 again!!!) where GL1(L∞)0
acts by real/complex norms.

(2) If n = 2 and L = Q, then the associated symmetric space is

GL2(R)0/R>0 SO(2).

What is this? It is easy to see that this is the same as SL2(R)/ SO(2).

Exercise 17.3. Consider the usual action of SL2(R) on the upper half plane H. Show

that the stabilizer of i ∈ H is precisely SO(2), the special orthogonal group (i.e. 2 × 2
orthogonal matrices with determinant 1).

Thus, XGL2(R)0 is the upper half plane H.

Now we can de�ne the classical automorphic forms, �rstly as functions on GLn(L∞)0
.

De�nition 17.7 (Classical automorphic forms, version 1). Let Γ ≤ GLn(L∞)0
be a discrete

subgroup. Let ω : L×∞ → S1
be a unitary character. Then, a classical automorphic form with

level Γ and central character ω is

24
In general, you need to consider a �nite disjoint union of the picture described below.

25
We are making the picture simpler by killing all the centers, which is not what people would want to do in

practice.

26
One may try to do this without taking the connected component of the identity. This is possible, at the cost of

dealing with manifolds with several connected components. For example, even for GL2(R), the symmetric space

would then by the union of the lower and the upper half plane.
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(1) a smooth (i.e. real analytic) function f : GLn(L∞)0 → C such that,

(2) f(γg) = f(g) for γ ∈ Γ,

(3) f(gz) = ω(z)f(g) for z ∈ L×∞, seen as the diagonal matrix,

(4) that is K∞-�nite (i.e. the space of functions fk(g) := f(gk) for k ∈ K∞ is �nite-

dimensional),

(5) Z(gln(L∞))-�nite (roughly speaking, satis�es certain partial di�erential equations),

(6) and has moderate growth (roughly speaking, analogous to “meromorphic at cusps”).

To relate this with functions on XGLn(L∞)0 , we need a �nal ingredient, a factor of automor-

phy. Somehow the above picture seems to be invariant under Γ-action but transforms under

the action ofK∞. On the other hand, a modular form is a function onH, so it should be invariant

underK∞-action but transforms under the action of Γ. This trade-o� comes from the following

kind of procedure.

Example 17.8. Let f : H→ C be a modular form of weight k and level SL2(Z). This means that

f(γ · z) = (cz + d)kf(z) for γ =

(
a b
c d

)
∈ SL2(Z). Using that GL2(R)0/R× SO(2) ∼= H with

1 ∈ GL2(R)0
corresponding to i ∈ H, we de�ne ϕf : GL2(R)0 → C as

ϕf (g) = (det g)k/2(ci+ d)−kf(g · i), g =

(
a b
c d

)
∈ GL2(R)0.

Then by the factor (ci + d)−k, ϕf is no longer right-SO(2)-invariant, but it is now left-SL2(Z)-

invariant!

The key is coming up with the factor (cz + d)k, which is called a factor of automorphy.

De�nition 17.9 (Factor of automorphy). A factor of automorphy is a function j : GLn(L∞)0×
XGLn(L∞)0 → C such that, for each γ ∈ Γ, j(γ, ·) is a smooth function on XGLn(L∞)0 and the

cocycle condition holds,

j(γδ, z) = j(γ, δ · z)j(δ, z).

A factor of automorphy corresponds to what happens at the in�nite places. I won’t go deep

into details, but just remark that this is related to the K∞-�niteness, so in particular associated

to a finite dimensional representation of K∞.

Example 17.10. For n = 2, L = Q and k ∈ Z, for γ =

(
a b
c d

)
∈ GL2(R)0

and z ∈ H =

XGL2(R)0 , it is easy to check that j(γ, z) := (det γ)−k/2(cz + d)k is a factor of automorphy.

The way that this is related to a �nite dimensional representation of K∞ is as follows. Note

that in this case K∞ = SO(2), and as a matrix group this is given by the rotation matrices,

SO(2) =

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.
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In particular, SO(2) ∼= S1
as topological groups. Now if we apply the same formula for γ ∈ SO(2)

and z = i (the “basepoint” of H), then we get

j

((
cos θ − sin θ
sin θ cos θ

)
, i

)
= (i sin θ + cos θ)k = eikθ.

This gives rise to a character SO(2) → S1
, so a one-dimensional representation of the circle

group SO(2) ∼= S1
.

As you might have guessed, there is a way to reverse this procedure, using the so-called

Iwasawa decomposition. Moreover, as K∞ in general is not abelian, the correct generality for

the factor of automorphy should be a function j : Γ ×XGLn(L∞)0 → GLN(C) for some N > 0;

the below de�nition then will give you the so-called vector-valued automorphic forms.

De�nition 17.11 (Classical automorphic forms, version 2). Let Γ ≤ GLn(L∞)0
be a discrete

subgroup. Let ω : L×∞ → S1
be a unitary charcater that is trivial on R>0 ⊂ L×∞. Let j :

GLn(L∞)0 ×XGLn(L∞)0 → C be a factor of automorphy. Then, a classical automorphic form

with level Γ, central character ω and weight j is

(1) a smooth (i.e. real analytic) function f : XGLn(L∞)0 → C such that,

(2) f(γx) = j(γ, x)f(x) for γ ∈ Γ, x ∈ XGLn(L∞)0 ,

(3) f(gz) = ω(z)f(g) for z ∈ L×∞, seen as the diagonal matrix,

(4) that is Z(gn(L∞))-�nite (roughtly speaking, satis�es certain partial di�erential equa-

tions),

(5) and has moderate growth (roughly speaking, analogous to “meromorphic at cusps”).

Now the procedure is clear: given a classical automorphic form f : XGLn(L∞)0 → C in the

“version 2” sense, we obtain a classical automorphic form ϕf : GLn(L∞)0 → C in the “version

1” sense by setting

ϕf (g) = j(g, 1)−1f(1),

where 1 ∈ XGLn(L∞)0 is the point whose stabilizer is K∞ ≤ GLn(L∞)0
.

To obtain an adelic automorphic form from a classical automorphic form in the “version 1”

sense, the key is the following.

Theorem 17.12 (Strong approximation). Any element g ∈ GLn(AL) can be written as g = g1g2g3,
where g1 ∈ GLn(L), g2 ∈ GLn(L∞)0, and g3 ∈ GLn(ÔL). In short,

GLn(AL) = GLn(L) GLn(L∞)0 GLn(ÔL).

Example 17.13. In the case of n = 1, this is precisely the statement that the narrow class group

Clm∞(L) = 1. In general, the di�erence between the left and the right hand sides is precisely the

narrow class group. Alternatively, one can use SLn instead of GLn and do not worry about this

issue (although there are other more subtle complications when you use SLn instead of GLn).

144



Corollary 17.14. LetK∞ ≤ GLn(ÔL) be a �nite index subgroup. Let ΓK∞ := GLn(OL)0 ∩K∞,
where GLn(OL)0 = GLn(OL) ∩ GLn(L∞)0 is the n × n invertible matrices with entries in OL
whose determinant is positive under every real embedding of L. Then, the natural map

ΓK∞\GLn(L∞)0 → GLn(L)\GLn(AL)/K∞,

is a bijection.

Example 17.15. If L = Q and n = 2, then GL2(Z)0 = SL2(Z) because the determinant is a unit

in Z which is positive in every real embedding, so must be 1.

By this Corollary, we see that a classical automorphic form with level ΓK∞ gives rise to an

adelic automorphic form (which is right-K∞-invariant).

17.3. When does an automorphic form generate an automorphic representation? We

now know that modular forms give rise to an adelic automorphic form.

{Modular forms} → {Automorphic forms for GL2(AQ)}.

The question is: when does an adelic automorphic form give you an automorphic representation?

You want to produce an irreducible representation, and for that, what is crucial is to see the rep-

resentation as a module over the (local) Hecke algebras. The action of the (local) Hecke algebras

can be encoded in the language of classical automorphic forms in terms of Hecke operators,

and one su�cient (and necessary for modular forms) condition for a modular form to give rise

to an automorphic representation is that it is an eigenvector for the Hecke operators, called a

Hecke eigenform (I won’t be explaining more about this; you may �nd a lot of references about

what a Hecke operator for a modular form is).

{Hecke eigenforms} → {Automorphic representations of GL2(AQ)}.

Given an automorphic representation, there are many automorphic forms contained in it as a

vector. Correspondingly, there are many Hecke eigenforms that give rise to the same automorphic

representation of GL2(AQ). One such occasion is that, given a Hecke eigenform f : H→ C, for

N > 1, fN : H → C given by fN(z) := f(Nz) is also a Hecke eigenform, and it turns out that

f and fN are two di�erent vectors of the same automorphic representation. However, given an

automorphic representation, there is a unique modular form (up to scaling by a nonzero complex

number) which cannot be written as fN forN > 1, and such a modular form is called new. Thus

if we restrict to Hecke eigenforms that are new, and if we ignore multiplying the modular form

by a nonzero scalar, this correspondence becomes injective.

{Hecke eigenforms that are new}/C× ↪→ {Automorphic representations of GL2(AQ)}.

18. Galois representations

A weak form of the global Langlands correspondence for GLn(AL) attaches a Galois repre-

sentation (i.e. a continuous homomorphism Gal(L/L) → GLn(Q`)) to an automorphic repre-

sentation of GLn(AL). Specifying what representations should appear as such is more delicate,

especially regarding the data at archimedean places and at `-adic places. What I will say is that

for all but �nitely many places v of L, the inertia group Iv ⊂ Dv ⊂ Gal(L/L) is sent to the

identity element, i.e. the representation is unramified at v. This already is a very big restriction.
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18.1. Shimura–Taniyama conjecture and Fermat’s Last Theorem. As now we know that

certain modular forms give rise to automorphic representations of GL2(AQ), one may ask if there

is a more down-to-earth expectation on what Galois representations arise as those corresponding

to modular forms. In fact, there is a precise conjecture, which is now almost known (called

the Fontaine–Mazur conjecture). A particular case of this, called the Shimura–Taniyama

conjecture, is a crucial ingredient in the proof of Fermat’s Last Theorem.

Theorem18.1 (Shimura–Taniyama conjecture, Wiles, Taylor–Wiles, Breuil–Conrad–Diamond—

Taylor). There is a bijective correspondence

{Cuspidal new normalized Hecke eigenforms of weight 2 with rational q-expansion coe�cients}

↔
{Elliptic curves (=lattices) over Q}/isogenies.

Some explanation of the words.

• Cuspidal· · · : This means that the constant term of the q-expansion is 0 (to exclude the

likes of Eisenstein series).

• · · ·normalized· · · : This means that the q-term of the q-expansion is 1 (to eliminate the

e�ect of scaling by a nonzero scalar).

• · · ·with rational q-expansion coe�icients: This means that the q-expansion has coef-

�cients in Q.

• Elliptic curves over Q: These are la�ices whose j-invariants are in Q.

So what is the correspondence? Objects in two sides match when they give rise to the same

Galois representation. We already mentioned that a new Hecke eigenform gives an automor-

phic representation and thus a Galois representation Gal(Q/Q) → GL2(Q`); this part of global

Langlands correspondence is already known long before. The way that a Galois representation

is associated with an elliptic curve over Q is as follows.
27

Step 1 Up to isomorphism, the Weierstrass ℘-function associate to an elliptic curve satis�es the

di�erential equation (℘′(z))2 = 4℘(z)3 − g2℘(z)− g3 for g2, g3 ∈ Q.

Step 2 Consider the set T = {x, y ∈ Q : y2 = 4x3 − g2x− g3}. As g2, g3 ∈ Q, the set T has an

action by Gal(Q/Q) (acting on x, y). Furthermore, the fact that this arises from an elliptic

curve (=lattice) implies that there is a natural abelian group structure on T . This abelian

group structure is compatible with the action of Gal(Q/Q) (i.e. T is a Z[Gal(Q/Q)]-
module).

Step 3 For N > 1, let T [`N ] := {t ∈ T : `N t = 0}, which is a (Z/`NZ)[Gal(Q/Q)]-module.

It turns out that T [`N ] as a Z/`NZ-module is free of rank 2 (i.e. as an abelian group,

T [`N ] ∼= (Z/`NZ)⊕2
). Thus, the action of Gal(Q/Q) gives a continuous homomorphism

Gal(Q/Q)→ GL2(Z/`NZ).

27
The actual Galois representation matching those arising from modular forms should be
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Step 4 Take the inverse limit N → ∞ and obtain Gal(Q/Q) → GL2(Z`). As Z` ⊂ Q` ⊂ Q`,

this gives a Galois representation Gal(Q/Q)→ GL2(Q`).

The crucial ingredient of the above theorem is the so-called modularity li�ing theorem,

which we will explain later.

Theorem 18.2 (Fermat’s Last Theorem). Let p > 2 be a prime number. Then, there is no a, b, c ∈ Z
with abc 6= 0 such that ap + bp = cp.

The proof goes like: if Fermat’s Last Theorem is false, then a nontrivial solution will give you

a very peculiar elliptic curve over Q, which, under the Shimura–Taniyama conjecture (which is

a theorem), corresponds to a weight 2 cusp form of level 2, which does not exist.

18.2. Galois deformation theory. One direction of Shimura–Taniyama conjecture has been

known for a while, namely constructing an elliptic curve from a modular form. Although this is

also quite nontrivial, it is not too crazy (you know exactly where you should look for such elliptic

curves, using modular curves). The di�cult direction is that every elliptic curve over Q arises

in this fashion. In other words, we often say an elliptic curve over Q is modular if it arises from

a certain modular form, and the Shimura–Taniyama conjecture says that every elliptic curve over

Q is modular.

The idea of the proof for the conjecture is to use congruences. Namely, we can talk about

when two elliptic curves E1, E2 overQ are congruent modulo p, for a prime p. Then, the proof

strategy breaks down to two steps.

(1) (Modularity lifting theorem) Show that, ifE is modular, then any elliptic curve congruent

to E mod p is modular.

(2) For any givenE, �nd a small prime p and a particularly simple elliptic curveE ′ congruent

to E mod p such that you already know E ′ is modular.

It turns out that in (2), either p = 3 or p = 5 works in every case (p = 2 is excluded because things

break down at 2). Either p = 3 or p = 5 works in (2) requires the modularity lifting theorem, too

(often called the 3-5 switch).

19. Modularity lifting theorems

19.1. Basic proof strategy of R = T theorems. Taylor–Wiles method. Minimal level, non-

minimal level.

19.2. Finding Taylor–Wiles primes.

19.3. The case of GL1(AL).
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