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e We tried to make both class field theories as formal consequences of class formation ax-
ioms. Thus, for the global class field theory, we mainly follow the approach of [AT] (with
certain simplifications as we only aim to prove it for number fields), although we also used
the analytic inputs for the proof of the Second Inequality, as it is culturally more useful

to know about L-functions.

e For the local existence theorem, we chose to use Lubin-Tate theory. We tried to emphasize

a theme of Explicit class field theory.

e For the CM theory, we completely avoid the use of algebraic geometry, and follow the
complex analytic proofs of the two Main Theorems in [Deu]. A clearer exposition for the
first theorem can be found in [Lan], and to a certain extent, [Cox]. We were unable to find



a complete account of a complex analytic proof of the Second Main Theorem written in
English (apart from an English translation of [Deu]), which we provide here.
Part 1. Class field theory
1. RAMIFICATION OF LOCAL FIELDS

We say a little more about ramification of local fields. This is to state finer properties of the
local Artin reciprocity map, and how it also compares the notion of “ramification” on both sides.

Definition 1.1 (Local conductor). Let K/L be a finite extension of local fields. Let p C Oy, be
the maximal ideal. Then, the (local) conductor of K/L, denoted fi /L, is defined as

fopp e 0 if OF = Ng/(OF)
L min{n > 1 : 14+p" C Ng,;(Ok)} otherwise.

The slogan is that the conductor detects how deeply ramified the extension is. In par-
ticular, you should think in a way that N, (Oj) smaller = K/ L more ramified.

Proposition 1.2. Let K /L be an unramified finite extension of local fields. Then, §r1, = 0.

Proof. Let 7 be a uniformizer of L. As K /L is unramified, 7 is also a uniformizer of K. We do
several reductions.

Consider the map Nk ,,(Of) — O — [*, where [ is the residue field of L and the second
map is reduction mod m map. What is the image of this map? It’s easy to see that, if v € Ok, then
Nk jr(z) (mod7) = Ni(x (modn)), where k is the residue field of /. This follows basically
from that O is free over O, (as Of, is a DVR so a PID). Therefore, the image of this map is
precisely Ny (k). I claim that this is equal to [*. Let | = F,». Then k = Fnm for some m > 1.
Then k> is cyclic of order p™™ — 1 and [ is cyclic of order p” — 1. Let a € k™ be a primitive

nm _

root (i.e. a multiplicative generator). Then, a7 € [*, and it is a multiplicative generator of
[*. Now note that Nyi(a) = [],cqa) (a), but every element of Gal(k /1) is a power of Fry;,
which sends x to zP". Thus,

n 2n (m—1)n no ... (m—1)n p"Mm—1
Nk/l(a):(l'ap aP - adP :a1+p +otp = q p"-1 ,

which is as observed above is a primitive root of /. Therefore, N, (k*) contains a primitive root
of [, so contains the whole [*. Thus, to prove that N, (Of) = OF, it suffices to show that
Nk/(Ok) D 1+ 70Oy, or a stronger statement that N1 (1 + 70k) D 1+ 7Oy

We claim that it actually suffices to show that (N (1 + 7°Ok)) - (1+ 7" OL) = 1+ 7O,
for every b > 1 (namely, for any 1 + 7tz for x € Oy, there exist 1 + 7rby € 1+ 1Ok and
1+ 7tz € 1+ 7Oy, such that N, (1 + 7’y) - (1 + 7°12) = 1 + nPz). This is because by
induction we have

1+ 7TOL = (1 + 7T20L) . NK/L(l +7TOK) = (1 +7T3(9L) : NK/L(l —|—7T20K) . NK/L(]- + WOK)

== (1 +7Tb+lOL) . NK/L<1 —|—7TbOK) NK/L(l +7TOK).



This means concretely that, for any 1 + mx € 1+ 7Oy, there exist y;, yo, - - - € Ok such that, for
any b > 1,
1+ 72 = Ngr((L+ 7y (1 + 72ys) -+ - (1 + 7’y)) (mod 7).

Now note that the sequence {c,}, with ¢, = (1 + my)(1 + 7%y3) - - (1 + 7"y,), is a Cauchy
sequence in O, so it converges (by completeness of K') to some element ¢ € K (or even better
in1+70k),and 1 + mx = Nk, 1(c), which is what we want.

Now we prove (NK/L(l + WbOK))-(1+7Tb+IOL) = 1+7°Oy forevery b > 1. Letz € Ok, and
let h(.X) be the characteristic polynomial of the multiplication-by-z matrix m, : K — K (as an
endomorphism of an L-vector space K), which is of the form h(X) = X +ay 1 X1+ +ay,
where d = [K : L] and ag_1, - ,a1,a0 € Op. Then, g(X) = X% + 7laz 1 X + -+ +
74D q, X + 7ay is the characteristic polynomial of the multiplication-by-7’z. Then, g(1) =
Ng/(1 — w°z). Note that g(1) = 1 + ay_y (mod7®*h). As ag_y = — Tr,(x), we see that
(NK/L(l + WbOK)) (1 4+ 7*10L) = 1 + 7°Oy, if we prove that Trg;(Ok) = Op. Note that
Trg/(Ok) C Of is an Op-submodule, it suffices to prove that Trg/;(Ok) contains an element
that is not in 7Oy By the similar reason as above, Tr,z(z) (mod 7) = Try/(z (mod 7)). Thus,
everything will follow if we show that Try (k) # 0. Note that Try, () = z+a2P" 4 -+ A
so it is in particular a polynomial of degree p(™ 1", which has at most (m — 1)n roots in k. This
implies that Try,/; : k& — [ is not zero, as desired. O

Proposition 1.3. Let K/ L be a tamely ramified finite extension of local fields. Then, fx /1, < 1.

Recall that /L is tamely ramified if (ex /1, p) = 1 (p is the characteristic of the residue fields
of the local fields).

Proof. By transitivity of the norms, if we take K /K /L the maximal unramified subextension of
K/L,then Ng,,(Of) = Nk, /r.(Nk/k, (O )). Using this, one can easily reduce to showing the
Proposition for K /K, i.e. we can assume that K /L is totally tamely ramified. We thus need
to show that in this case N /(1 + mxOk) D 1+ 7,0, where g, 71, are uniformizers of K, L,
respectively. As N /(1 + 7,0r) = (1 + 7m,0)°</L, it follows from the fact that any element
of 1 + 7Oy has an eg/r-th root in 1 + 7, Oy, by Hensel’s lemma (which needs (eK/L,p) = 1).
More precisely, for a € 1 + 7,0y, let f(X) = X%/t — a. Then f'(X) = eg;, X*/t71, so
f/(X) is not zero mod 7. In particular, f(X) (modn;) = X</t — 1 is separable. Therefore,
f(X) = (X —1)g(X) mod 7y, where (X — 1,¢(X)) = 1 in k1 [X]. Now using Hensel’s lemma,
there is a root of f(X') in O, which is congruent to 1 mod 7, which is exactly what we want. [

The ramification group we learned before is, more precisely, called to be in lower number-
ing.

Definition 1.4 (Ramification groups in lower numbering). Let /L be a finite Galois extension of
local fields, and let mx € K be a uniformizer. For ¢ > —1 an integer, define the i-th ramification
group in lower numbering Gal(K/L); < Gal(K/L) (or just G;) as

Gi:={o € Gal(K/L) | ca = a (mod 7ii") forall a € Ok}.

We call Gy the inertia subgroup and GG, the wild inertia subgroup.



More generally, for s > —1 a real number, we define G, := G'[,. This definition will come
handy later when we define the ramification groups in upper numbering.

This definition behaves, quite obviously, very well with subgroups. Namely, if you have a
subextension K /K’ /L, then Gal(K/K') < Gal(K/L),and Gal(K/K')NGal(K/L); = Gal(K/K'),.
However, this is not really what we want in view of infinite Galois theory; the infinite Galois the-
ory requires a compatibility with respect to quotients, not subgroups. And it is in general not
true that lower numbering is compatible with quotients of Galois group. However, if you renum-
ber the ramification groups, then the ramification group becomes compatible with quotients.

Definition 1.5 (Ramification groups in upper numbering). Let K/ L be a finite Galois extension
of local fields, and let G = Gal(K /L) = G_1 D Gy D G1 D --- be the ramification groups in
lower numbering, as defined above. Define

* o dx
10} §) = / _
wls) = )t
This is a piecewise linear strictly increasing continuous function ¢, : [-1,00) — [—1,00).
Therefore, we can define its inverse ¢ /1, : [—1,00) — [—1,00) (i.e. Yx/L0PK /L = P /LOVK/L =

id). We define, for t > —1, the ¢-th ramification group in upper numbering as G' := G/ (t)
(Le. Gox/r(8) = @q,).

This is such a weird definition; for lower numbering, the “jumps” of ramification groups hap-
pen at integers (i.e. if G, # G, for ¢ > 0 small, then z is an integer), but such jumps for upper
numbering seem to happen at real numbers (or if you think a bit you realize the jumps happen
at rational numbers, but still not necessarily integers). But there are surprising properties of
ramification groups in upper numbering.

Proposition 1.6. If K/ L/M is a tower of finite Galois extension of local fields, and ift > —1, then

the image of Gal(K /M) via the quotient map Gal(K /M) — Gal(L/M) is precisely Gal(L/M)".
In particular, for an infinite Galois extension X /Y of local fields and t > —1, we can define

Gal(X/Y) = Jim Gal(Z/Y)".
Z]Y finite Galois subextension of XY
Proof. Omitted (tedious but elementary). U
Proposition 1.7. Let /L /M be a tower of finite Galois extensions of local fields. Then ¢ /p(s) =
b/ (Px/(s))-
Proof. Omitted; Exercise. O

Theorem 1.8 (Hasse—Arftheorem). Let K/ L be a finite abelian Galois extension. Then, the jumps
of ramification groups Gal(K/L)" in upper numbering happen at integers. Namely, ift > —1 is
such that Gal(K/L)" # Gal(K/L)"*¢ for arbitrarily small number e > 0, thent € Z.

We will later see how the Hasse—Arf theorem can prove the local Kronecker—-Weber theorem.



Exercise 1.1. Compute the jumps of ramification groups in upper numbering of Gal(Q3((o)/Q3)
and check that the jumps happen at integers.

Now we see a surprising connection between the conductor and the ramification groups.
Theorem 1.9. Let K/ L be a finite abelian extension of degree > 1. Then,
fr/p =min{n € Z : Gal(K/L)" = {1}}.
This will follow from the local class field theory.

2. STATEMENTS OF THE LOCAL CLASS FIELD THEORY

The information about ramification in the previous section gives a hint to the following con-
nections:

size of Ni/,(OF) «» conductor f,;, > ramification subgroups Gal(X/L)" in upper numbering.

The local class field theory gives a connection between the first and the third entries. The lo-
cal class field theory consists of two parts, the Artin reciprocity law and the local existence
theorem. The Artin reciprocity law gives a connection between two totally different kinds of
objects.

Theorem 2.1 (Local Artin reciprocity). Let L be a local field. Then, there is a unique continuous
homomorphism, called the local Artin map

Arty : L — Gal(L*™/L),
satisfying the following properties.

(1) For any finite abelian subextension K /L of L* /L, the local Artin map composed with the
natural map Gal(L*® /L) — Gal(K /L) defines a continuous homomorphism

Artgp : L™ — Gal(K/L),
which is surjective with kernel N, (K*). In particular, there is an isomorphism
L /Ng/p(K™) = Gal(K/L).
(2) If K/ L is unramified, for any uniformizer 7y, € L*,
Artgp(mr) = Fri g .

(3) If K/ L is a finite extension of local fields, the following diagram commutes, where the right
vertical arrow is the restriction to L*®.

Artg
—_—

K= Gal(Kab/K)
Ng/r lres

ab



(4) If K/ L is a finite extension of local fields, the following diagram commutes, where the right
vertical arrow is the transfer map V : Gal(L/L)* — Gal(K/K)?.

Artg

K% 22 Gal(K*°/K)

v

ab

Definition 2.2 (Transfer homomorphism). Let H < G be a finite index subgroup (each G, H
may or may not be infinite). The transfer homomorphism V : G* — H?" is defined as
follows. Let [G' : H] = n, and let us take coset representatives of G/H, so that G = U} ;a; H

forxy,--- ,x, € G. Forg € Gand 1 < i < n, gx; € xj,9)hi(g) for some 1 < j;(g) € n and
hi(g) € H. Then we define V (g) := [[\_, hi(g) in H*".

Proposition 2.3. The transfer homomorphism indeed defines a group homomorphism.

Proof. Omitted (tedious but elementary). You will see this homomorphism appearing more natu-
rally in the context of group (co)homology. O

For example, in the case of K = Q,, we have
X 7 X
@p - p X Zp Y

Gal(Q;/Qy) = Gal(Q}'/Qy) x Gal(@y(G)/Qy) = Z x Z;,
by the local Kronecker-Weber theorem. The local Artin reciprocity Artg, is then

Artg, : Zx L — L x L,

where Z — Z is the natural map and Z, — Z, is the inverse; for more details, see [ANT,
Example 15.1].
The local Artin reciprocity Artg, is almost an isomorphism, except the difference between Z

and Z. This is actually the case for all Artg.

Definition 2.4. Let M be a topological group. The profinite completion M is defined as

M:= lim Q.
M%C%ﬁnite

The profinite completion M is regarded as a topological group, endowed with the inverse limit
topology, with each finite quotient () having the discrete topology (i.e. any subset of () is open).
There is a natural map M — M from definition of the inverse limit. We call M profinite if
M — M is an isomorphism of topological groups.

For a rational prime p € Z, a profinite group M is called pro-p if every finite quotient of M
is a p-group (i.e. of order a power of p).



Example 2.5. (1) For any Galois extension (maybe infinite) K/ L, Gal(K /L) with its topol-
ogy is a profinite group.

(2) Zisa profinite group.

(3) Z, is a pro-p group.
Lemma 2.6. A profinite group is compact, Hausdorff, and totally disconnected (i.e. every connected
component is a singleton). Conversely, a compact, Hausdorff, totally disconnected topological group
is a profinite group.

Proof. Exercise. O

Theorem 2.7 (Local existence theorem). Let L be a local field. There exists an inclusion-reversing
one-to-one correspondence,

{ Open finite index subgroups of L* } <> {Finite abelian extensions of L}
where the maps in both directions are given by
H — (Lab)ArtL(H)’

If L is of characteristic 0, the adjective “open” is unnecessary.
Thus, if L is of characteristic 0, the local Artin reciprocity map Arty : L* — Gal(L*/L)
becomes an isomorphism of topological groups after passing to the profinite completion:

Arty i LX 5 Gal(L*™/L).
From this, already we have some information about the ramification.
Corollary 2.8. Let K/L be a finite abelian extension of local fields.

(1) We have

(2) The extension /L is unramified if and only if fx 1, = 0.
(3) The extension K /L is tamely ramified if and only if fr /1, < 1.
Proof. (1) You may find the proof at [ANT, Corollary 15.15].

(2) Obvious from (1).



(3) Suppose that K/ L is tamely ramified. Note that
OFf D1+ 7,0, D1 +70, D,

is a filtration of subgroups, where 7, is a uniformizer of L. Note that 1+7,O0 = O asan
additive topological group, so it is a pro-p group. On the other hand, O} /(14+7,0p) = [*,
where [ is the residue field of L, so in particular this index is coprime to p. So we have
again a filtration of subgroups

O; D) (1 +7TLOL) . NK/L<O;<) D) (1 +7T%OL) . NK/L<O;<(> Doy

where this now stabilizes after a finitely many steps. Now any subquotient that is not the
first subquotient must be a p-group, but also it is a subquotient of O} /N1 (O ), which is
of order coprime to p. Therefore, all subquotients after the first subquotient must be trivial.
Thus, (1+7,01) - Ni/(Ok) = Nk/(OF), which implies that Ng (O ) O 1+7.0;,
or fx/r, < 1. The converse direction is immediate.

O

We will later see that the local Artin reciprocity precisely works as we expected with ramifi-
cation subgroups.

Theorem 2.9. Let K/ L be a finite abelian extension of local fields, and let n > 1. Then,
Artg (1 +770r) = Gal(K/L)",
where 7, is a uniformizer of L. More precisely, Art g, gives rise to an isomorphism

1 —|— 71'2(9[,

5 Gal(K/L)".
(00 N Ngu(0g) )

3. (CO)HOMOLOGY OF GROUPS

The construction and the proof of local Artin reciprocity law will follow a very general frame-
work using group cohomology, where the same framework will be used for the proof of global
class field theory.

3.1. G-modules. We are interested in the following situation. Let G be a group (not necessarily
abelian). Then a G-module is an abelian group (=Z-module) with a left G-action. This is the
same as a left Z|G]-module, where Z[G] is the group ring

Z|G] = {Z aglg] : a, € Z, only nonzero for finitely many g},

geG

where the multiplication is given by [gh] = [g][h]. Note that this is a ring with unity but not
necessarily commutative (commutative if and only if GG is abelian). A homomorphism between G-
modules (I will use the words G-morphism or G-homomorphism for such a homomorphism)
is a homomorphism of abelian groups which respects the GG-actions on the source and the target.
For two G-modules M, N, the set of G-morphisms is denoted Hom¢ (M, N) (or Homg (M, N)),
and it is naturally an (additive) abelian group. Let Mod be the category of G-modules.



Example 3.1. Two typical examples of G-modules are Z (with the trivial G-action) and Z[G]
(with the obvious left G-action). The trivial G-module Z can be also thought as Z = Z[G]/I
where I is the two-sided ideal of Z|G] generated by the elements of the form [g] — 1 for g € G.
This ideal [ is called the augmentation ideal.

Proposition 3.2. The category Mod is an abelian category, i.e. the kernel and the cokernel exist
and have desired properties.

Proof. This follows from that (left) G-modules are the same as left Z[G]-modules. U

Recall that there are notions of injective modules and projective modules from homolog-
ical/commutative algebra (see Wikipedia for example for the definitions). One way to say is that
I is injective if Hom(+, I) is exact (P is projective if Hom(P, -) is exact, respectively).

Definition 3.3. An abelian category C is called to have enough injectives (enough projec-
tives, respectively) if, for every object X € Ob(C), there exists an injective morphism X < [
into an injective module I (a surjective morphism P — X from a projective module P, respec-
tively).

Given an abelian category C with enough injectives and an object X € Ob(C), you can always
find an injective resolution X — I°, which is an exact sequence

0= X—=1"=1" 51—,

which may or may not extend indefinitely to the right, where each of I°, I'',-- - is an injective
module.

Similarly, given an abelian category C with enough projectives and an object X € Ob(C),
you can always find an projective resolution P, — X, which is an exact sequence

o= PP = F =X =0,

which may or may not extend indefinitely to the left, where each of Iy, P, - - - is a projective
module.

Proposition 3.4. The category Modq has enough projectives and injectives.
Proof. This follows from that (left) G-modules are the same as left Z[G]-modules. O

Example 3.5. A free G-module is a direct sum of copies of Z[G], namely @, ; Z[G] for some
index set I (note that / may be infinite). Any free G-module is a projective G-module. In
practice, when you look for projective G-modules, most of the time you look for free G-modules
(e.g. when you find a projective resolution).

To find an example of injective G-modules, we introduce useful tools of constructing G-
modules.

Definition 3.6. Let H < G be a subgroup. The induction is a functor Ind%, : Mod; — Modg
that is defined by
Ind$; M := Homgu(Z[G), M),

10



where the G-action is given by (g - ¢)(a) = p(ag™!) for ¢ : Z|G] -+ M and g € G. The
coinduction (or compact induction) is a functor coInd$, : Mody — Mod defined by

colnd$y M = Z[G] ®zpm M,

where the left Z[G]-module structure is given naturally by the tensor product. The restriction
is a functor Resg : Modg — Mody that sends a G-module M into itself, M, regarded as an
H-module (which is certainly possible as H < G).

Remark 3.7 (Ind vs. colnd). As you will see below, oftentimes Ind% M and coInd$, M turn
out to be isomorphic. Some references therefore do not bother to distinguish between Ind% and
coInd$,. However, they are not isomorphic in a natural way (i.e. not functorial in M), and in
representation theory it is ultimately important to distinguish the two.

The following are true; many of them are abstract nonsenses.

Theorem 3.8. Let H < G be a subgroup.
(1) (Frobenius reciprocity) For M € Ob(Modg) and N € Ob(Mody),
Homp(Res% M, N) = Homg (M, Ind$ N).
The identification is natural, i.e. is functorial in M and N.
(2) (Frobenius reciprocity) For M € Ob(Mody) and N € Ob(Modg),
Homg(colnd$, M, N) = Hompy (M, Res$ N).
The identification is natural, i.e. is functorial in M and N.

(3) Suppose that H is a finite index subgroup of G. Then, for any H-module M,

Ind$ M = coInd$, M.

(4) Let M be a projective H-module. Then, coIndg M is a projective G-module.
(5) Let M be an injective H-module. Then, Indg M is an injective G-module.
(6) The functors Ind%;, colnd$; and Res$; are exact.

(7) Let M be a projective (injective, respectively) G-module. Then, Resg M is a projective (in-
jective, respectively) H-module.

Proof. (1), (2) are consequences of tensor-hom adjunction (you have to be careful about left vs.
right actions). (4), (5) are consequences of (1), (2). For example, if M is projective, coIndg M
is projective, as Homg(colnd$, M, —) = Hompy (M, Res$(—)) is exact; Homp (M, —) is exact
by the projectivity of M, and Resg is exact by (1) and (2). For (6), we use the fact that Z[G] is
a projective H-module, as it is the same as coInd%, Z[H], and Z[H] is a projective H-module.

11



Then, Ind%, being exact is precisely the property of Z[G] being a projective Z[H]-module, and
coInd$, being exact follows from the general abstract nonsense that projective modules are flat
(i.e. the functor of taking a tensor product with a fixed projective module is exact). From (6),
(7) follow easily from the Frobenius reciprocities, just how (4) and (5) follow from the Frobenius
reciprocities.

Really the nontrivial (non-abstract-nonsense) part is (3). Let ¢9 : M — Indg(M ) be an
H-morphism defined by

gm ifge H

0 otherwise.

Po(m)(g) = {

This ¢ € Homp (M, ResS Ind (M)) corresponds to ¢ € Homg(coInd$, M, Ind$, M) (which
exists regardless of the assumption). On the other hand, there is a map ¢ : Ind% M — colnd$, M
given by

W=D 9@ flgh).

geG/H

Note that here we use that G/H is of finite order. It is now left as an exercise to the reader that
e 1) is well-defined,
e 7 is a G-morphism,
e and ¢ and v are inverses to each other.
O

Example 3.9. Using Theorem 3.8(5), we can now construct many injective G-modules. Firstly,
when G is a trivial group, what is an injective GG-module, or what is an injective Z-module? It
turns out that an abelian group = Z-module is injective if and only if it is divisible; i.e., any
element is divisible by any nonzero element. Standard examples of divisible groups are (Q and
Q/Z. We can then say that Ind{Gl} M for a divisible group M is an injective G-module.

3.2. Group (co)homology: definition. As Modg has enough injectives/projectives, we can
take right/left derived functors of left/right exact functors. We derive the following two particular
functors.

Definition 3.10 (G-invariants). For M € Ob(Mod¢), we define
MC:={meM : gm=mforall g € G}.

In other words, M“ = Homy ) (Z, M).
Definition 3.11 (G-coinvariants). For M € Ob(Mod), we define

Mg :=M/{(gm—m : g€ G,m e M).
In other words, Mg = M/IM =7 ®ziq) M ({ is the augmentation ideal, see Example 3.1).
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By definition, the G-invariants functor is left exact, and the GG-coinvariants functor is right
exact.

Definition 3.12 (Group cohomology/homology). Let H' (G, —) : Modg — Modz be the right
derived functor of the G-invariants functor (—)“ : Modg — Mody, called the i-th group co-
homology. Similarly, let H;(G,—) : Modg — Mody be the left derived functor of the G-
coinvariants functor (—)¢ : Modg — Mody, called the i-th group homology.

(@]

By the similar reason, the Ext%[g] and Torl-Z exist, and

H'(G, M) = Extlyq(Z, M), H(G, M) = Tor!'N(Z, M).
Therefore, there are two major ways to compute the group (co)homology:
e For H{(G, M):

— Take a projective resolution P, — Z of Z, and compute the i-th homology of the
complex

Homz[G]<P0, M) — HOIIlz[G](Pl, M) — Homz[g](Pg, M) — e

— Take an injective resolution M — [°® of M, and compute the i-th homology of the
complex

Homyq(Z, %) — Homy(Z, I — Homyq(Z, ) > ...

e For H;(G, M):

— Take a projective resolution P, — Z of Z, and compute the i-th cohomology of the
complex

= Py ®Z[G} M — P, ®Z[G] M — P, ®Z[G] M.

— Take a projective resolution P, — M of M, and compute the i-th cohomology of the
complex

"'_>Z®Z[G]P2_>Z®Z[G]Pl_>Z®Z[G]PO-

Remark 3.13 (Acyclic resolutions). A posteriori, you can instead use an acyclic resolution
to compute the group cohomology. Recall that M € Ob(Modg) is acyclic if H/(G, M) = 0
for @ > 0. Then, instead of an injective resolution, you may use an acyclic resolution M — A*
(meaning that 0 — M — A° — A! — ... isan exact sequence, with each A’ acyclic) to compute
H'(G, M). This is useful as injective modules are weird (unlike projective or acyclic modules).

Abstract nonsense pays you off:

Theorem 3.14.

13



(1) The group cohomology H*(G, —) and the group homology H,(G, —) have the expected prop-
erties, most notably H°(G,—) = (=)%, Ho(G,—) = (—)q, and the long exact sequence
associated with a short exact sequence of G-modules.

(2) (Shapiro’s lemma) For H < G, and for M € Ob(Mody ), we have
H(G,Ind% M) = H'(H, M),
H;(G, colnd$ M) = Hy(H, M).
The identifications are functorial in M.
(3) For any Z-module M, Ind{Gl} M is an acyclic G-module.
Proof.
(1) This is an immediate consequence of the two functors being derived functors.

(2) Let M — I* be an injective resolution of M. Then, as Ind$ is exact and sends injectives
to injectives (Theorem 3.8), Ind% (M) — Ind% (I*) is an injective resolution of Ind%, ().
By Frobenius reciprocity, the complex

Homyq(Z, Ind% (1°)) — Homgyg(Z, Ind% (1)) — Homge)(Z, Ind$ (1%)) — - - -,
is the same as
Homz[H] (Z, ]O) — Homz[]ﬂ (Z, ]1) — Homz[H](Z, 12) —

using the fact that Res$ Z = Z. Thus H*(G,Ind$ M) and H'(H, M) are computed by
the same complex.

Similarly, let P, — M be a projective resolution of M. Then, as coInd$ is exact and
sends projectives to projectives, colnd$ (P,) — colnd% (M) is a projective resolution of
coInd$ (M). The complex

-+ = Z @i colnd$ (P) — Z @z colnd$y(Py) — Z @z colnd$(By),
is just
- = L ®ge) (ZIG] Qzim Pr) —= L Qziq) (ZIG] @zimy 1) = L Rz (Z]G] @z Po),
which is the same (because Z ®zq) Z[G] = Z) as
w1 Qg Po — L Rz Pr — 2 Qg Po-
Therefore, H;(G, colnd$; M) and H;(H, M) are computed by the same complex.

(3) By Shapiro’s lemma, it suffices to show that M is an acyclic Z-module, i.e. H'({1}, M) =0
for i > 0. On the other hand, as Z is a projective Z-module, H({1}, M) = Ext,(Z, M)
must be zero if i > 0 (0 = Z — Z — 0 is a projective resolution).
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O

A general abstract nonsense gives you a further functoriality in chainging both G and M.
Note that the change of G is a different direction than the change of M for H'(G, M) (i.e. “con-
travariant in G”).

Theorem 3.15. Let o : G — G be a group homomorphism, and let M € Ob(Modg) and M’ €
Ob(Modg). Suppose that we have a homomorphism 3 : M — M’ as abelian groups. Suppose
further that [3 respects the group actions via «: namely, if g € G', m € M, we have

Alalg) -m) =g - B(m).

Then, there is a natural transformation between two derived functors H'(G, M) — H'(G', M),
extending the map H°(G, M) — H°(G', M") given by M — (M")%".

Proof. This is a general abstract nonsense in homological algebra; you just check that the setup
indeed gives a map M — (M")¢". O

From this, we get several new useful functors.

Definition 3.16 (Restriction). Let H < G be a subgroup and M € Ob(Modg). Then, the action
of G on M is surely compatible with the action of H on M (or more precisely Res% M). Thus
the functoriality gives a homomorphism called the restriction homomorphism,

Res : H{(G, M) — H'(H,Res% M).
Exercise 3.1. Check that Res : H'(G, M) — H'(H,Res% M) coincides with the composition
H(G,M) — H(G,Ind% Res$; M) = H'(H,Res$ M),

where the first map comes from the natural G-morphism M — Ind% Res M corresponding to
the identity in Homy (Res$ M, Res$ M) = Homg (M, Ind% Res% M), and the second map is
the Shapiro’s lemma.

Definition 3.17 (Inflation). Let H < G be a normal subgroup. For a G-module M, G/H
naturally acts on M*. Using the maps G — G/H and M — M, we obtain the inflation
homomorphism

Inf : HY(G/H, M) — H (G, M).

Another perspective you can get from this functoriality is that sometimes you can give a
natural group action on H'(G, M). Let’s say you consider H°(G, M) = M¢. Then, obviously
the G-action on it is trivial. However, if M is a G-module and H < G is a normal subgroup, then
H°(H, M) = M*" has a natural action of G/ H. This extends to H*(H, M).

Definition 3.18. Let # < G be a normal subgroup, and M be a G-module. Then, for g € G,
we obtain an action ¢g- : H'(H, M) — H'(H, M) given by the funtoriality via o : H — H,
h+ g~thgand 3 : M — M, m — gm. One can check (exercise!) that this map is the identity if
g € H. Thus, this gives rise to a left G/H-action on H'(H, M).
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Exercise 3.2. Show that the H-action on H'(H, M) is trivial.

Exercise 3.3. Show that, if H < G, the image of Res : H(G, M) — H'(H,Res$ M) is inside
H'(H,Res$ M)CG/H,

There is one more functor which does not fit into the above regime but rather comes from
the coincidence colnd = Ind when H < (G is of finite index.

Definition 3.19 (Corestriction). Suppose that H < (' is a finite index subgroup. Let M be a
G-module. Then the corestriction homomorphism is defined as the composition

Cor : H'(H,Res$ M) = H'(G,Ind% Res$; M) — HY(G, M),

where the first map is the Shapiro’s lemma, and the second map comes from the GG-morphism
Ind% Res$; M — M given by

(p:Z[G) = M) > gellg™]).
geG/H

One can check that this map is well-defined, i.e. does not depend on the choice of a representative
for each coset of G/H. Note that, on H°, Cor is the norm map,

MY — MY me Z gm.

Lemma 3.20. Suppose that H < G is a finite index subgroup, and let M be a G-module. Then,
Cor o Res is the same as multiplying by [G : H| on H'(G, M).

Proof. This comes from the fact that the composition M — Ind% Res$ M — M of the two maps
appearing in the definitions of Cor and Res is multiplication by [G : H], namely m € M is first
sentto ¢ : Z[G] — M thatsends g — gm, andisthensentto > .y g-(g7tm) = > gec/a M =
|G : Hlm. O

Corollary 3.21. If G is a finite group of order m, then for anyi > 0, mH'(G, M) = 0 for any
G-module M.

Proof. This follows from Lemma 3.20 applied to H = {1} and the fact that H*({1}, —) is zero for
any ¢ > 0. U

Finally, as expected for cohomology, there is a notion of cup product.

Definition 3.22. Let M, N € Ob(Modg), and consider M ®z N as a G-module where the action
is given by g(m ® n) = gm ® gn. Then, there is a unique bi-Z-linear pairing

U:H(G,M) x H*(G,N) — H**(G,M @ N),
which is functorial in both M and N, satisfying several properties, such as the following.

(1) When r = s = 0, the pairing is the obvious map M¢ @ N¢ — (M @ N)¢.
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(2 (xUy)Uz=2U(yU z).

(B) rUy = (—1)"yUxzwhenz € H (G, M),y € H*(G, N), after identifying M ® N with
N® M.

(4) Res(x Uy) = Res(z) U Res(y).

(5) Cor(x UResy) = Cor(x) Uy.

(6) Inf(zx Uy) = Inf(z) U Inf(y).
3.3. Group (co)homology: practice. The main computational way of approaching group (co)homology
is to use a very particular projective (free, in fact) resolution of Z.

Definition 3.23. For r > 0, let P, be the free Z-module with basis (o, - ,¢g,) for go, -+ , g, €
G, with a G-action given by g(go, - ,9-) = (990, - ,9gr)- It is easy to see that P, is a free
Z|G]-module. Let d,. : P, — P,_; be a G-morphism defined by

r

d'r‘(.907"' )gT) = Z(_]-)Z(g(h 7/9\1""' 797‘)7

=0
where the notation means that g; is omitted from the tuple in the summand.

It is a tedious yet elementary exercise to check that
dr do d E
=P =P = =P =P = F—=7Z—0,

is a projective resolution of Z, where ¢ : Py — Z is the map that sends (¢g) — 1 for each
g € G. Using this, we can compute the group cohomology (there is a similar description for
group homology but we don’t bother to write).

Proposition 3.24. Let M € Ob(Modg). An r-cochain of G with values in M is any function
©: G" — M, and let C"(G, M) be the (additive) abelian group of r-cochains of G with values in
M. Letd" : C"(G,M) — C™" (G, M) be defined by

(d" ) (g1, s Gra1) ==

T+1S0(gl7 o 797‘)'

glgp(g% e 7gT+1) + Z(_D]SO(gla 5 95-1,9595+41, 52, 0 7gT+1) + (_1>
j=1
Let Z"(G,M) = kerd" (the group of r-cocycles) and B"(G, M) = imd = (the group of r-

coboundaries). Then, H" (G, M) = JZB:EEAAQ

Proof. This is really just computing H" (G, M) using the projective resolution P, — Z, but using
the fact that a morphism in Homeg (P, M) is determined by its values at (1, g1, g192, - -+ , G192 - - * Gr+1)-
O

Using this, we have a more concrete description of certain things.
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Example 3.25. The first cohomology H'(G, M) is computed as % Let’s see what they
parametrize:

BY (G M) ={p:G— M : p(gh) = ge(h) +¢(g)},
ZHG,M)={p:G — M : thereisa € M such that p(g) = ga — a forall g € G}.

Often the elements of B'(G, M) are called crossed homomorphisms because the equation
©(gh) = ge(h) + p(g) looks like some weird variant of a condition of being a homomorphism.
In fact, if the action of G on M is trivial, then this shows that H'(G, M) = Homg,,(G, M) is the
set of group homomorphisms G — M (notice that M is always an abelian group by definition).

Example 3.26. Given a short exact sequence of G-modules 0 - A - B — C' — 0, we can now
describe what the connecting morphism H" (G, C) — H"'(G, A) is concretely. Namely, if you
have an r-cocycle ¢ : G" — C representing an element of H" (G, C), then you can certainly lift
elementwise to obtain an r-cochain ¢ : G" — B. By taking arbitrary lifts, it ruins the condition
of vanishing after applying d", but at least you know d"¢ = 0,s0 d"¢ : G""! — Bisan (r + 1)-
cochain whose values after projecting to C' will vanish. Therefore, it follows that d"¢ has values
in A,sod" @ : G"™' — Aisan (r + 1)-cochain with values in A. As d"*! o d" = 0, this implies
that "¢ € Z""(G, A), which represents an element in H" (G, A). It is a routine check that
this map H"(G,C) — H™"(G, A) does not depend on any choices we made.

Example 3.27. We can describe the cup product using cocycles as follows. Let m € H"(G, M)
andn € H*(G, N) be represented by cocycles ¢ and v, respectively. Then, m U n is represented
by the cocycle

(917 e 7gT+S) = 90(917 e 791“) ®gl te 'grw(gTJrla' t 797“+S)'

Using cochains, we can show the following.

Proposition 3.28 (Inflation-restriction exact sequence). Let H <J G be a normal subgroup, and
let A be a G-module. Then,

Inf Res

0— HY(G/H,A") = HY(G,A) = H'(H, A),

is exact. More generally, if furthermore one knows that H'(H, A) = H*(H,A) = --- = H'(H, A)
for somet > 2, then

Inf Res

0— HY(G/H, A") =% HY (G, A) == H'(H, A),
is exact.

Proof. Exercise (the statement about H' can be easily shown using 1-cocycles, and the second
statement follows from general properties of the cohomology functor). U

Remark 3.29 (Hochschild-Serre spectral sequence). This result looks a bit arbitary. A better
way to think about this is as a consequence of the Hochschild-Serre spectral sequence

EPY = HP(G/H, HY(H, A)) = HP(G, A).
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This is not actually that mysterious. The statement that “there is a spectral sequence converging
to something” means something like the following (there are much more complicated versions of
this, but at least in this setup, it’s explained as follows).

e A spectral sequence is a whole package of data.

— For each n > 0, there is an n-th page of a spectral sequence E??, for each p,q > 0
nonnegative integers.

— Each n-th page also comes equipped with natural maps (differentials) d?? : P9 —
Eptma—ntl - At each EP, there is an arrow coming out of it (d79) and an arrow
coming into it (d?~"9""1), and two arrows form a complex (i.e. P70 dP~"9T7~1 = (),
Taking the homology at that (p, ¢)-th entry will give you the (p, ¢)-th entry of the

next page, E7'Y,.

L
{
;
!
/
Yy

/

P +—pe—pt—Pe—)op

'—)O—) —)o—)o
cde—rr—de—de

7,

e Many spectral sequences are written in the form
BP9 = Eri
[
This means the following,.
— Going from E? to E¥'!,, you cut down certain parts (taking subquotients). That the
spectral sequence converges means that eventually this stabilizes, i.e. there is some

N > 0 such that E{? = ER% | = ---. Sometimes you say that the spectral sequence
degenerates at n-th page, which means that NV can be taken to be n.

— Let EP be the stabilized EP? for large enough n. Then, £} is an object with a
filtration

0O=F'CcF'c...cF"c F™' = g™,
such that, for 0 < ¢ < m, "t /F' = prm—it,

Under this, the inflation-restriction exact sequence is an immediate consequence. Namely, H'(G, A) =
Ego So, it sits in an exact sequence,

0— EX — HY(G, A) — E% — 0.

We see that E,° = H'(G/H,H°(H, A)) = H'(G/H, A™), and EY' = H*(G/H, H'(H, A)) =
H'(H, A)S/H S0 let’s see how EL° and E%' may be different from E, " and EJ".
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e The differential from E#O lands below the horizontal axis (when n > 2), which clearly
vanishes. The differential to E%’O comes from E}L_”’”_Q, so if n > 2, this is to the left of
the vertical axis, so this also vanishes. This implies that £,° = F3° = ... = ELO.

e The differential to E%! comes from the left of the vertical axis (when n > 1), which clearly
vanishes. The differential from E'! lands at E/+*~", so this is right on the horizontal axis
when n = 2, and will land below the horizontal axis when n > 3. Thus, Eg’l = ker(dg’1 :
Byt - By =EY' = = %L

So we actually have an exact sequence

0,1
0 BN = HY(G,A) — B0 2 g20,

or
0 — HY(G/H, A"y = HY(G, A) — H'(H, A 25 g2(G/H, AY).

It is a fun exercise to check that the first two maps are indeed Inf and Res (although it requires
the knowledge of how spectral sequences are built). The differential dg’l is sometimes called the
transgression. The second part of the statement of the inflation-restriction exact sequence is
also a fun exercise which I will leave it to the reader.

We also have a very easy description of H{(G,Z).
Proposition 3.30. We have H,(G,Z) = G*°, the abelianization of G.

Proof. We have a short exact sequence 0 — I — Z[G] — Z — 0, so from this we have a long
exact sequence

- — H{(G,Z|G]) — Hi(G,Z) — Hy(G,I) — Hy(G,Z|G]) — Ho(G,Z) — 0.
As Z|G] is projective, H;(G,Z[G]) = 0 for i > 0. Thus, we have an exact sequence
0— H\(G,Z) — 1/I* = Z|G])I — Z — 0.

As Z|G]/I — Z is an isomorphism, we have H,(G,Z) = I /I?. We claim that I /I* = G®. Let
G — I/I? be a map defined by g — [g] — 1. Then, it is a group homomorphism, as

lgh] =1 =([g] = D)([h] = 1) + ([g] = 1) + ([n] = 1) = ([g] = 1) + ([h] = 1) (mod I*).

As I/I? is an abelian group (additively), this map factors through G# — [I/I?. This map is
quite obviously surjective (any element of [ is a Z-linear combination of elements of the form
[g] — 1). To show it is injective, we form another homomorphism in the other direction. Consider
I — G® defined by > gec Mglg] > g™, which is quite obviously a group homomorphism. Note
that ([g] — 1)([h] — 1) is sent to ghg~'h™! = id, so I? is in the kernel of this map, giving a group
homomorphism 7/I? — G/G?. And it is easy to see that G® — [/I? — G® is identity, as
g+ [g] — 1 — g. Therefore, G®> — I/I? is injective, thus bijective, as desired. O
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We also describe a very useful technique called the dimension shifting.

Theorem 3.31 (Dimension shifting). Let M be a G-module. Then, there are exact sequences of
G-modules,
0— I ®z M — colndfyy M — M — 0,

where the map coInd?l} M — M sends [g] ® m +— m, and
0 — M — Indf}, M — Homg(I, M) — 0,
where the map M — Ind{Gl} M sends m — ([g] — m). From this, we have, forn > 1,
H"(G,Homg(I, M)) = H""NG, M), H,(G,1®;M)=H, (G, M).

Proof. The short exact sequences come from applying ®zM and Homgy(—, M) to the exact se-
quence
0—1—Z[G)—7Z—0,

which actually give you exact sequences, as 7 is an acyclic Z-module. The remaining statements

come from Shapiro’s lemma (that H" (G, Ind?l} M) = 0and H,(G, coInd{Gl} M) =0). O
When G is a cyclic group, Z has a particularly easy projective resolution.

Example 3.32. If G = Z, then Z|[G] can be regarded as Z[X*!]. Then, Z has a projective reso-

lution

0 — z[x*] XX, 71x#) 7 0.

This implies that H*(Z, M) = 0 for i > 1. Furthermore, any Z[Z]-module ) is an abelian group
plus a group automorphism X : M — M, so

HY(Z,M) = M*=' HYZ,M)=M/(Xm—m : m € M).
Similarly, H;(Z, M) = 0 fori > 1, and
Ho(Z,M) = M/{Xm—m : m €M), H(Z M)=M*=".

Example 3.33. When G = Z/nZ, then Z|G] can be regarded as Z[X]/(X™ — 1). Then, Z has a
projective resolution

><(X"_1+Xn_2+~~-+l)

x(X-1)
—_—

S ZIX)/(XT - 1) s ZIX)/(X" — 1) ZIX]/(X" —1) = Z =0,

where the two maps alternate indefinitely. Note that a G-module M is an abelian group plus a
group homomorphism X : M — M such that X" = id. Then,

MX=1 ifi =0
HYZ/nZ,M) = ker(Xn_iran(r))((::QA;;E):M_}M) ifi > 01is odd
MX:l
im(Xn 14+ X224+ 1:M—M)

if 7 > 0 is even.
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Similarly,

M o
im(X—1:M— M) ifi =0

Hy(Z/nZ, M) = { kel im?)f—l:A;;E;M%M) if i > 0 is even

E if i > 0is odd.

im(Xn— 14 X244+ 1:M—M)

Note that the cohomology and homology groups have a lot in common in these cases. We
will see that it is not a coincidence.

4. GALOIS COHOMOLOGY

4.1. Tate cohomology. In this subsection, we assume that G is a finite group. In this case,
given a G-module M, there is a very special operator called the norm map N : M — M, given
by m — > gec gm. A funny thing is that the image of NV is actually inside M @, and anything
in IM (recall that I C Z|[G] is the augmentation ideal) is killed by N. Therefore, we have a
homomorphism

N : Hy(G,M) — H°(G, M).

This gives a connecting bridge between the end of the homology and the end of the cohomology,
and we can now “stitch together” the cohomology and the homology into one, called the Tate
cohomology.

Definition 4.1 (Tate cohomology groups). Let GG be a finite group, and let M be a G-module. We
define the r-th Tate cohomology H}.(G, M) as

H"(G, M) ifr>0
coker(N : Mg — M%) ifr =0
ker(N : Mg — M%) ifr=-1
H_, (G, M) ifr < —1.

Hy (G, M) =

Theorem 4.2 (Long exact sequence of Tate cohomology groups). Let G be a finite group, and
let0 - A — B — C — 0 be a short exact sequence of G-modules. Then, there is a long exact
sequence,

<= HL(G,A) — H(G,B) — H(G,C) — H'YG, A) — HPYG, B) — HAPYG,0) — -+
extending indefinitely to both sides.

Proof. The only care is required at around » = —1, 0 where we are stitching the ends of the two
long exact sequences (homology and cohomology), and verification is very easy. U

Tate cohomology really behaves like cohomology, and the tools of cohomology extend to
Tate cohomology groups as well. Note that, as (G is finite, we don’t have to distinguish between

coinduction and induction, so we will just use induction for simplicity.
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e (Dimension shifting) Let M be a G-module. Then,
Hi (G, Ind{, M) =0,

for all i € Z. We already know this for i # 0, —1. We also know that H°(G, Ind{Gl} M) =
Hy(G, Ind?l} M) = M by Shapiro’s lemma. We see that N : M — M in this case is given
by the map m — 1 ®@m — > o9 ® m — m, so it is in fact an isomorphism. Thus,
H;' (G, Ind{y M) = H)(G, Ind{jy M) =0.
From this and the long exact sequence of Tate cohomology groups, we have
Hp(G,Homy(I,M)) = HFY(G, M), Hy(G,I®;M)=H7(G,M),
for all © € Z. These will be useful for extending tools of cohomology to Tate cohomology.
e (Shapiro’s lemma) Let H < G be a subgroup, and let M be an H-module. Then,
Hi(G,Ind$ M) = Hi.(H, M).
This follows from Shapiro’s lemma for 7 > 1 and dimension shifting for general i € Z.
e (Restriction) For H < G and M € Ob(Modg), there is a restriction map
Res : HL(G, M) — Hi.(H,Res$; M),
which is now an easy consequence of Shapiro’s lemma and Frobenius reciprocity.
e (Corestriction) For H < G and M € Ob(Mod), there is a corestriction map
Cor : H:(H,Res% M) — HL(G, M),
which exists again by Shapiro’s lemma and Frobenius reciprocity.

e (Cup product) For M, N € Ob(Mod), we have a bi-Z-linear pairing
H(G, M) x H{(G,N) = H{7(G,M & N),
satistying the same kinds of properties the cohomological cup product satisfies.

We give a concrete description of Cor and Res for certain degrees of Tate cohomology groups.

Proposition 4.3. Let G be a finite group and H < G. Let M be a G-module.

(1) The map Cor : HY(H, M) — HY(G,M) is induced by the map M — MY m
deG/H gm.

(2) The map Res : Hy'(G, M) — Hy;'(H, M) is induced by the map Mg — My, m
ZgGG/H g_lm'
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(3) The map Cor : H;?(H,Z) — H;*(G,Z) is the map H*® — G,

(4) The map Res : H7*(G,Z) — H;*(H,Z) is the transfer homomorphism V : G —
H?® (see Definition 2.2).

Proof. Omitted (standard). 0

Lemma 4.4. Let G be a finite group of order m. Then, for any G-module M, mH%(G, M) = 0. If
M is finitely generated as an abelian group, then Hi-(G, M) is a finite abelian group.

Proof. Similar to the cohomology case, the first statement follows from the fact that Cor o Res =
m, now at all degrees of Tate cohomology. For the second statement, notice that H}(G , M) is,
either by cochain or chain, a finitely generated abelian group. As the Tate cohomology group is a
finitely generated abelian group annihilated by a nonzero integer, it is a finite abelian group. [

Just like before, the Tate cohomology has more structures when G is a finite cyclic group. Let
G = Z/nZ, and let M be a G-module. This means that there is an automorphism X : M — M
such that X" = 1. Let N : M — M be defined by X"! + X"=2 ...+ 1. Then, by our previous

computation,
ker(X —1:M— M)

HL(C,AM) = { T

im(X—1:M—M)

if 7 is even

if 7 is odd.

This shows that H%(G, M) is periodic with period 2. In fact, given a choice of a generator
u € H2(G,Z), the cup-product with u gives an isomorphism Uu : Hi(G, M) = HE?(G, M),
z— xUu.

So what is H#(G, Z)? Note that we have a short exact sequence 0 — Z — Q — Q/Z — 0,
so we have an exact sequence

= HYG,Q) = HY(G,Q/Z) — H*(G,Z) — H*(G,Q) — --- .

As Qis divisible, by our computation, H!(G, Q) = H*(G, Q) = 0. Thus, H%(G,Z) = H*(G,Z) =
HY(G,Q/Z) = Homgy, (G, Q/Z) = L7/7. Taking a generator of H#(G,Z) is the same as tak-
ing a generator of (4, as we can take an element of Homg,,(G, Q/Z) that sends a taken generator
to L.

Using the periodicity of Tate cohomology for finite cyclic groups, we can define a numerical
invariant:

Definition 4.5 (Herbrand quotient). Let G = Z/nZ and M be a G-module. Then, the Herbrand
quotient is the rational number defined by

_ #HY(G,M)
"D = Gy

Lemma 4.6. Let G = Z/nZ. If0 - A — B — C — 0 is a short exact sequence of G-modules,
then we have h(B) = h(A)h(C).

Proof. This follows from the long exact sequence of Tate cohomology and the periodicity. U
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Lemma 4.7. Let G = 7Z/nZ and let M be a G-module which is also a finite abelian group. Then,
h(M) = 1.

Proof. Note that HY(G, M) and H;'(G, M) are the cokernel and the kernel of the same map
N : Mg — MC€. Thus, h(M) = 1 if we show that # Mg = #M¢. This follows again from the
fact that Mg and M are the cokernel and the kernel of the same map M — M, m +— gm — m,
where g € G is a chosen generator of G. W

4.2. Cohomology of profinite groups. For the group cohomology H(G, M), we may ulti-
mately want to put a profinite group into GG. For this, we need to take topology into account.
This is especially tricky because category of topological groups often fail to be abelian (when
you take kernels and cokernels, what topology should you give to them?). For our purpose, we
restrict the scope to very particular kinds of modules.

Definition 4.8 (Discrete G-modules). Let GG be a profinite group. Let M be a G-module, firstly
without consideration of any topology. We say that M is a discrete G-module if the action map
G x M — M is continuous when M is endowed with the discrete topology. Equivalently, M is a
discrete G-module if M = Uy < open subgroup M H Another equivalent condition is that, for every
m € M,{g € G : gm =m} <G is an open subgroup.

Example 4.9. Let G = Gal(K /L) for a Galois extension K/ L (possibly infinite). Then, G acts on
various objects such as K, K, O (if it makes sense), O (if it makes sense), etc. As stabilizer
of any element z € K is Gal(K/L(z)), and as L(z)/L is a finite extension, Gal(K/L(x)) <
Gal(K /L) is an open subgroup. Thus, this means that all these G-modules are discrete.

As you don’t have to worry too much about giving topology on the modules when they are
discrete, the following holds.

Theorem 4.10. Let GG be a profinite group. Then, the category of discrete G-modules is an abelian
category with enough injectives.

Therefore, by abstract nonsense, one can right-derive a left-exact functor, and obtain the r-th
cohomology functor H" (G, M) for any discrete G-module M. This cohomology fortunately has
more concrete descriptions.

Theorem 4.11. Let G be a profinite group, and let M be a discrete G-module. Then, H" (G, M)
can be computed in two different ways.

(1) Let CL (G, M) be the space of continuous r-cochains of G with values in M, i.e. ¢ :
G" — M that is continuous. Then, the differentials are defined as usual, and define Z!, (G, M)
(continuous r-cocycles) and Bl (G, M) (continuous r-coboundaries). Then,

ths(G7 M)

HAG M) = 3 @ty

(2) The inflation morphisms give rise to a direct system { H"(G /H, M™)} running over all open
normal subgroups of H, and

H"(G,M) = liy  H'(G/H, M.

H<G open normal
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The proofs are omitted. Using these descriptions, we may still define things like Cor, Res, Inf
and cup products.

Corollary 4.12. Let G be a profinite group, and let M be a discrete G-module. Then, forr > 0,
H" (G, M) is a torsion group.

Proof. Any element of H" (G, M) comes from H"(G/H, M) for some open normal subgroup
H < G, which is necessarily of finite index, so the element is annihilated by #(G/H), thus
torsion. O

4.3. Galois cohomology. We now compute the cohomology of Galois groups of fields.

Proposition 4.13 (Additive group case). Let K/ L be a Galois extension of fields (may be infinite).
Then, H"(Gal(K/L),K) =0 forr > 1.

Proof. As H"(Gal(K/L),K) = li&K/M/L’ M/L fiite Galois H"(Gal(M/L), M), the general case fol-

lows from the finite extension case. So, assume that K /L is a finite Galois extension. Then, by
normal basis theorem, there is © € K such that {o(z) : ¢ € Gal(K/L)} is an L-basis of K.
This implies that K’ = Ind?ﬂl(K/ DL as Gal(K/L)-modules. This implies that K is an acyclic
Gal(K/L)-module, which is what we want. O

More interesting is when the module is the multiplicative group; this is actually the main part
of proving local class field theory.

Theorem 4.14. Let K/ L be a Galois extension of fields (may be infinite). Then, H* (Gal(K /L), K*) =
0.

Proof. Again, as above, it suffices to assume that K/L is a finite Galois extension. Let G =
Gal(K/L) for simplicity. Let f : G — K be a 1-cocycle. Note that the Galois automorphisms
of GG are all linearly independent as functions over K. This implies that, as a function on K, the

function x +— (dec f(g)g> x is not identically zero, as f(g) # 0. Let y € K* be the point
where 2 := " _, f(9)gy # 0. Then, for h € G,

hz = hf(g)-hgy=">_f(h) " f(hg)-hgy = f(R)" > flg) gy = f(h) "2
geG geG g'eG
Thus, f(h) = z - h(z)~!, which implies that f is a 1-coboundary. O

Corollary 4.15 (Hilbert’s Theorem 90). Let K/L be a finite cyclic extension with a generator
g € Gal(K/L). Suppose that v € K* is such that Nk, (x) = 1. Then, there existsy € K* such

that x = y/gy.

Proof. By our computation of cohomology of finite cyclic groups, H'(Gal(K /L), K*) = ker(g" '+
+1)/im(g — 1), where Gal(K/L) = Z/nZ. As this group is zero, this exactly implies what
we want. UJ
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Computation of H?(Gal(K/L), K*), however, is much more complicated, and is in fact the
main content of the local class field theory, when K, L are local fields.

Definition 4.16 (Brauer groups). Let K /L be a Galois extension of fields (may be infinite). Then,
Br(K/L) := H*(Gal(K/L), K*) is called the relative Brauer group of K/L. If K = L, we
write Br(L) instead of Br(L/L) and call it the Brauer group of L.

We have the following computation.

Proposition 4.17. Let K be a local field.

(1) Let L/ K be an unramified extension (possibly infinite). Then, H" (Gal(L/K), O} ) = 0 for
allr > 0.

(2) Let L/ K be a finite unramified extension. Then, Br(L/K) = ﬁZ/Z.

(3) We have Br(K™/K) = Q/Z.

Proof. (1) As this is a direct limit of finite level cohomology groups of the same form, we may
assume that L/ K is a finite extension. Then, L/ K is cyclic. Unraveling what we need to
show, we need to show that Ny /x : Of — Oy is surjective, and that if Ny, x(x) = 1 for
z € Of thenz = gy/y for some y € Oy, where g € Gal(L/K) is a generator. These are,
respectively, Proposition 1.2 and Hilbert’s Theorem 90.

(2) Consider the short exact sequence

UL

0—-0f =L —=7Z—0,
2 v
where vy, : L* — Z is the normalized discrete valuation. By (1), we see that H%(Gal(L/K), L*) M),
H?*(Gal(L/K),Z) is an isomorphism. Now it comes from the computation of Galois co-
homology of cyclic groups; namely

H2( Forf(Frp ) 1

H*(Gal(L/K),L*) o), H*(Gal(L/K),Z) < H'(Gal(L/K),Q/Z) = Hom(G,Q/Z) aE K]Z/Z.
(3) This follows from (2).
O
Definition 4.18 (Invariant map). From the proof of Proposition 4.17, we constructed a canonical
isomorphism
~ 1 ~
invy i : Br(L/K) — T K]Z/Z’ inv g g : Br(K™/K) = Q/Z,

for a local field K and a finite unramified extension L/ K. These are called the invariant map.

Lemma 4.19. The invariant maps have the following compatibilities with changing fields.

27



(1) Let K be a local field, and let L1 D Ly be unramified extensions of K. Then, the following
diagram commutes,

invL2/K

Br(Ly/K) — Q/Z

o H

Br(L,/K)— Q/Z.

lnle/K

(2) Let L/ K be a finite extension of local fields of degree n (not necessarily unramified). Then,
the following diagram commutes,

Br(K™/K) 2% Br(L™ /L)
inVKnr/Kj lil’lenr/L
Q/Z — Q/Z.
Proof. Omitted (easy). ([l

The core content of the local class field theory is that in fact the same description of relative
Brauer group holds for any Galois extensions.

Theorem 4.20. Let K be a local field. Then, there is a canonical isomorphism
invg : Br(K) — Q/Z.

For L/ K a finite Galois extension of degree n (not necessarily unramified), we have a canonical
isomorphism

1

invyk : Br(L/K) = —Z/Z.
n
The proof of this will come later (just for the sake of clarity; if we wanted we can prove it

now), after we review how certain cohomological statements like this deduce class field theory
abstractly. For example, for a finite Galois extension L/K of local fields, the inverse of the local
Artin reciprocity map Artz/lK : Gal(L/K)* — K*/Np,x(L*) is defined as the cup product

with the canonical generator of Br(L/K) = H*(Gal(L/K), L*), which gives rise to an isomor-
phism

Gal(L/K)™ = H;2(Gal(L/K),Z) = HY(Gal(L/K), L*) = K* /Ny (L*).

5. CLASS FORMATIONS

From the previous section, we saw a hint of the idea that the reciprocity law part of the local
class field theory follows from the Galois cohomology of things like K, O%.
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Remark 5.1. The existence theorem part of the class field theory is not a cohomological conse-
quence. The cohomological considerations can go up to the construction of reciprocity law which
is continuous. On the other hand, the existence theorem is about the reciprocity law, after cer-
tain modification (such as passing to the profinite completion), being an isomorphism. Thus,
the extra step that the existence theorem gives is that certain two topologies on the multiplicative
group are the same, which is proved by showing that there are “fields with small enough norm
groups.

The key is the following abstract theorem.

Theorem 5.2 (Tate’s theorem). Let G be a finite group, and let C' be a G-module. Suppose that for
all subgroups H < G, the following are true.

o H'(H,C)=0.
o H2(H,C)=7/|H|L.

Then, the cup product with a generatora € H?(G, C) = Z/|G|Z gives an isomorphism HY.(G, Z) —
HI2(G,C) for everyr € Z. In fact, the cup product with Res(a) € H?(H,C) gives an isomor-
phism H;.(H,Z) = H}(H,C) forevery H < G,r € Z.

Proof. Choose a 2-cocycle ¢ representing a. Note that the cocycle condition implies that
g(h, 1) + ¢(g, hi) = (gh, 1) + ¢(g, h).
The idea is to construct an exact sequence of G-modules
0—-C—C(p)—>1—0,

where [ is the augmentation ideal. The construction is as follows. As a Z-module, C'(y) =
C ® D, cq gz1 Zag. The action of G on C(p) is the same as the action of G on C' on the C-part,
and given by
9n = Tgh — g + (g, h),

where 1 = (1, 1); this matches with the action of G on ¢(1,1): gp(1,1) = ©(g,1). Itis
easy to check that this defines a G-action on C'(¢p). There is a G-morphism C(¢) — [ given by
x4 — [g] — 1 and the entirety of C'is sent to 0. Thus C'(¢) indeed fits into the exact sequence of
the form we wrote above.

The virtue of considering C'(¢p) is that, when  is considered as ¢ € C?*(G, C(yp)), it is actually
a 2-coboundary, as p = dz, z € C'(G, C(y)), defined by z(g) = z,; we can check this as

dz(g,h) = gr(h) — x(gh) + 2(g) = gzn — Tgn + 24 = ©(g, h).

This implies that the map H*(G, C') — H*(G,C(p)) sends a to 0. As a generates H*(G, C'), this
implies that the map H*(G,C) — H?*(G,C(y)) itself is zero. As CoroRes = [G : H] for any
H < G, Res(a) generates H*(H,C') for any H < G. Therefore, for any H < G, by the same
logic, H*(H,C) — H?(H,C(yp)) is zero. We have a long exact sequence

0=H'(H,C)— H'(H,C(¢)) — H'(H,I) = H*(H,C) N H*(H,C(¢)) — H*(H,I),
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where the first term is zero because of our assumption. Note that H*(H, I) = 0, because after
applying the long exact sequence to 0 — [ — Z|G]| — Z — 0, we have H*(H,I) = H'(H,Z) =
Homg,,(H,Z) = 0, as Z|G] is an acyclic H-module. Furthermore, H'(H,I) = HY(H,7Z) =
Z/|H|Z. Therefore, it follows that H'(H, C(p)) = H?(H,C(¢)) = 0 by order considerations.

Now we claim that H7.(H,C(yp)) = 0 for any H < G and r € Z. This follows from the
following lemma.

Lemma 5.3. Let G be a finite group, and let M be a G-module. If H*(H, M) = H*(H,M) = 0
forevery H < G, then Hy.(H, M) =0 forall H < G andr € 7.

Proof. 1t suffices to show that H}.(G, M) = 0 for all » € Z. We make the initial reduction. Let
H < G. For a prime p, let H, be a Sylow p-subgroup of H. Note that CoroRes = [H : H,], so
any element x € H}.(H, M) of p-power order is sent to a non-identity element as long as = # 1.
Therefore, Res : H.(H, M), — H}.(H,, M) is injective, where H}.(H, M), is the p-primary part
of H.(H, M). So we only need to show the statement for p-subgroups H < G. In particular, we
may assume that G is a p-group to start with, for some prime p. In particular, we may assume
that G is solvable.

Now we can deduce this from the cyclic case, which is certainly a consequence of the peri-
odicity of Tate cohomology. We use an induction on |G|. There exists a proper normal subgroup
H < G where G/H is cyclic. By induction hypothesis, H}.(H, M) = 0 for all r € Z. By the
inflation-restriction exact sequence, we have exact sequences

0— H(G/H,M") - H"(G,M) — H"(H, M),

forallT > 1. As HY(G,M) = H*(G,M) = 0, H(G/H,M") = H*(G/H,M") = 0, so
by the periodicity of Tate cohomology for the cyclic group G/H, H.(G/H, M?) = 0 for all
r € Z. Therefore, H" (G, M) = 0 for all > 1. To use the dimension shifting argument, we
need to show that I ®7, M satisfies the conditions of the Lemma. If you check, the only thing you
need to show is H%(G, M) = 0. Suppose x € MC. Then, as H>(G/H, M") = 0 by induction
hypothesis, there is y € M such that deG/H gy = x. As HY(H, M) = 0, there is z € M such
that 37, , hz = y. This means that 3 _, g2 = 2, which implies that H7.(G, M) = 0, which
finishes the proof. U

Therefore, by Lemma, H}.(H,C(p)) = 0 for any H < G and r € Z. Therefore, by the long
exact sequence of Tate cohomology, we have an isomorphism H ' (H, I) = Hy.(H,C). Again,
we already know that there is an isomorphism H. *(H,Z) = H; '(H,I), so composing this,
we get an isomorphism H *(H,Z) = H}.(H,C). You can show that this the cup product with
Res(a) by using cocycles. Or, by naturality of the process, it suffices to show that the image of
1 € HY(H,Z) via this isomorphsim is Res(a) € H%(H,C). First, 1 is sent to a 1-cocycle in
CY(H,I), h v [h] — 1. Then, this is sent to a 2-cocycle in C*(H, C), h + dx, which is exactly
©, as observed above, which is exactly what we wanted. O

Using Tate’s theorem, we know exactly what we want to prove the reciprocity law in an ab-
stract setting. The package that we need to form a class field theory is called the class formation.

Definition 5.4 (Class formation). A class formation is the following package of data.
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e A base field F, and an algebraic closure F' of F. Let G = Gal(F'/F). In this context,
every finite extension of F' is regarded as a subextension of the ambient algebraic closure
F. For a finite extension K/F, let G = Gal(F'/K).

e A discrete G-module A. For a finite extension K/F, let Ax = ACK,

e For any Galois extension L/ K between finite extensions of F', we demand two conditions:

Axiom 1. H'(Gal(L/K), Ar) = 0;

Axiom 2. there is an isomorphism inv; x : H*(Gal(L/K), Ay) = oK K] Z]Z called the invari-
ant map, compatible with inflation and restriction in the following way: if M/L/K

is a tower of Galois extensions between finite extensions of K, the following diagrams

commute,
H*(Gal(L/K), A) 2> H2(Gal(M/K), Ay)  H*(Gal(M/K), Ayy) =5 H2(Gal(M/L), Ay)
invL/KjN NLinvM/K inVM/KLN NLinvM/L
[L: K Z/Z T [M K] Z/Z [M K] Z/Z z—[L: K]z [M L] Z/Z

. . . . 2 T .
Also, from Axiom 2, we may form the direct limit H*(Gal(F'/K), A) = th/K fnite Galois

where the transition maps are inflation maps. This inherits the invariant map

H?*(Gal(L/K), Ap),

invg : H*(Gal(F/K),A) = Q/Z.
1

Finally, given a Galois extension L/K of finite extensions of F, uy/x = inv, / K (m) S
H?(Gal(L/K), Ap) is called the fundamental class.

Remark 5.5. From Axiom 1 of the class formation, the inflation-restriction exact sequence al-
ready implies that the inflation map Inf : H?(Gal(L/K), Ar) — H?*(Gal(M/K), Ay) is injec-
tive. Also, from the construction, the following are obvious.

e If L /K is a Galois extension between finite extensions of F, then H*(Gal(L/K), Ar) C

H?*(Gal(F/K), A) is sent via inv isomorphically to T K] T L] L.

e IfL/K iS_a field extension betwgen finite extensions of F, there is a restriction map Res :
H?*(Gal(F/K),A) — H*(Gal(F'/L), A), and the following diagram commutes,

H*(Gal(F/K), A) 2% H2(Gal(F/L), A)

ianl/N NlinvL

Q/zZ Q/Z.

r—[L: K]z
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e For a Galois M /K of finite extensions of F and for an intermediate field M/L/K,
Res(ur/x) = unyn, Cor(unyr) = [L: Klunm k.

Furthermore, if L /K is Galois, Inf(ur/x) = [M : Llup.x.

Example 5.6. We will see shortly that @: as a discrete Gal(@p /Q,)-module is a class formation;
what’s left is to prove Theorem 4.20.

In the number field case, the discrete Gal(Q/Q)-module that gives rise to a class formation
is called the idele class group.

From Tate’s theorem, the following is easy.

Theorem 5.7 (Abstract reciprocity law). Suppose that we are given a class formation. Then, for
any Galois extension L/K of finite extensions of F, the cup product with ur, i gives rise to an
isomorphism

Hp(Gal(L/K),Z) = Hj*(Gal(L/K), Ap),

forany r € Z. In particular, when r = —2, this gives rise to the isomorphism
G&l(L/K)ab 1} AK/NL/K(AL)a
where Np i : Ap, — Ax is defined by x — 3, gz. The inverse' of this isomorphism
recL/K : AK/NL/K(AL) :> G&l(L/K)ab

is called the (relative) reciprocity map®.

Furthermore, the reciprocity map has the following compatibility: if M/ K is a Galois extension
between finite extensions of F, and if M/L/K is an intermediate extension, then the following
diagrams commute,

eCM /K eCM/ L

| A N

AL/N]V[/L(AM) Tecy, Gal(M/L) AK/NM/K(AM)rec Gal(M/K)

where the left vertical arrow of the left square is induced from the natural inclusion Ax — Ay, the
right vertical arrow of the left square is the transfer homomorphism (Definition 2.2), and the right
vertical arrow of the right square is induced from the natural inclusion Gal(M /L) — Gal(M/K).

Proof. This follows from Tate’s theorem and the relationship between the fundamental classes
and Res and Cor (and how Res and Cor behave on H. 2 and H%, Proposition 4.3). O

INote that this is the direction of the local Artin reciprocity map; in general the treatment is clearer when you
take the isomorphism in this direction.
®Historically this was called the norm-residue symbol, and denoted as a + (a, L/K).
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To obtain the absolute version of the reciprocity map, we abuse the notation and denote the
composition of recy/x with the natural quotient map Ax — AK/NL/K(AL) also by recr /i :
Ag — Gal(L/K)*. We need another compatibility of reciprocity maps:

Proposition 5.8. Let M/L/K be a tower of Galois extensions of finite extensions of F'. Then, the
following diagram commutes,

I’eC]u/K

Ag —> Gal(M/K)®
|
Gal(L/K)?,
where the vertical map is induced from the natural surjection Gal(M /K) — Gal(L/K).

Proof. This does not immediately follow from the cohomological considerations, as we have not
seen a cohomological way of defining the map Gal(M/K)*® — Gal(L/K)*. On the other
hand, there is a very useful criterion of telling which elements correspond to each other via the
reciprocity map.

Lemma 5.9. Let L/ K be a Galois extension between finite extensions of I, and let a € Ay and
o € Gal(L/K). Then, rec x(a) = o in Gal(L/K)™ if and only if, for every character x €
Home,,(Gal(L/K),Q/Z), the equality

invg(aUdyx) = x(o),

holds. Here, ¢ : Homg,,(Gal(L/K),Q/Z) = H (Gal(L/K),Q/Z) = H*(Gal(L/K),Z).

The Proposition immediately follows from this Lemma, so we are left with proving this
Lemma.

Proof of Lemma 5.9. By definition, rec i (a) = o in Gal(L/K)? if and only if a = up/x U (.
where (, € H;*(Gal(L/K),Z) = H,(Gal(L/K),Z) = Gal(L/K)® is the class corresponding

to 0. We use the following lemma.

Lemma 5.10. Let G be a finite group. Then, the cup product
Hy(G,Z) x HA(G,Z) — HY(G,Z) = Z/|GIZ.

is given by
Co Udx = |Glx(0),

foro € G and x € Homg,, (G, Q/Z). In particular, an element of H;.*(G, Z) is determined by the
values of its cup products with the elements of HA(G, Z).

Proof. Note that d is represented by a 2-cocycle 6y : G* — Z, given by
0X(g, h) = 5(x(9)) + s(x(h)) = s(x(gh)),
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where s : Q/Z — Q is a set-theoretic section of the quotient Q — Q/Z (as x(g) + x(h) = x(gh)
mod Z, §X(g, h) is an integer). Unraveling the definitions, the cup product (, U d is the class of
> e 0X(1,0) € Zin HY(G,Z) = Z/|G|Z. Because of the formula for §X, we have

Y (o) =|Gls(x(0)) € Z.

The last statement follows from the fact that Homg,, (G, Q/Z) is the dual of G*" and is in par-
ticular of the same order as G** = H..*(G,Z).

O

By Lemma 5.10, @ = up/x U (, if and only if a U 0x = up/k[L : K]x(o) for all x
Home,p(Gal(L/K),Q/Z). Asinvy,k is an isomorphism, this holds if and only if inv g (aUd )

S
ﬁ[L : K]x(0) = x(o) for all x € Homg,,(Gal(L/K),Q/Z), which is what we want. O
U

From Proposition 5.8, we can take the inverse limit over all finite Galois extensions L/ K and
obtain the (absolute) reciprocity map

recr : Ag — Gal(K /K)™.

This has the similar compatibility as recy,/x which we don’t bother to write down. One also has
some information about the norm groups as follows.

Theorem 5.11. Suppose we’re given a class formation. Let I be a finite extension of F'.

(1) (Norm limitation theorem) For any finite extension L/K, if L/M/K is the maximal
abelian subextension of L/ K, then

Ni/k(Ar) = Nyyi (Anr).
In particular, N1k (Ar) only depends on the Galois closure of L/ K.

(2) (Uniqueness theorem) If L1, Lo/ K are finite abelian extensions, then

Npx(Ar,) = Niyx(Ar,) < Ly = Ls.

Proof. (1) It is clear that Ny x(Ar) C Ny (Anr). Take a large Galois extension L'/ K that
contains L. Let G = Gal(L'/K) and H = Gal(L'/L). Then, Gal(L'/M) = [G,G]H,
as M is the maximal abelian extension over K contained in L. We have the following
commutative diagram

Np/x

AL AK AK
recL//Ll recL//Kl recM/Kl

|—=H/H —G/G'—=G/G'H —=1,
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where the bottom row is an exact sequence of abelian groups. Suppose © € Ny /x (Anr).
Then, recy/x(x) € G/G'issentto 1 € G/G'H. Therefore, there is an element h € H/H'
whose image in G/G' is the same as recy/ k. As recry, is surjective, there is y € Ap
such that recy/ g (x) = recr/k(Np/k(y)). Thus, x and Nk (y) are off by an element
in kerrecL//K = NL’/K(AL’> C NL/K(AL)- As NL/K(y) S NL/K(AL), this 1mphes that
x € Np/k(Ar), which is what we want.

(2) The reverse direction is obvious. For the forward direction, let L = L Ly, which is abelian
over K. Then, under recyx : Ax/Npx(AL) = Gal(L/K), Ny, x(Ar,)/Npx(AL)
correspond to Gal(L/L;) C Gal(L/K) for i = 1, 2. Therefore, this means L; = L.

O

Thus, we know exactly what kind of extra statement we need to prove to prove the existence
theorem.

Theorem 5.12 (Abstract existence theorem). Suppose we’re given a class formation. Suppose that
the class formation further satisfies the following condition.

*) For any finite extension K /I and any open finite index subgroup U < Ak,
there exists a finite extension L /K such that Np x(Ar) C U.

Then, the existence theorem holds: for any finite extension K /F and any finite index subgroup
U < Ak, there exists a (unique) finite abelian extension L /K such that Np x(Ar) = U.

Proof. By (*), there exists a finite extension M /K such that Ny;/x (Apr) C U. By the abstract reci-
procity law and the norm limitation theorem, A /Ny i (Apr) = Gal(M'/K), where M’/ K is
the maximal abelian subextension of M/ K. Let L be the fixed field of the subgroup of Gal(M'/K)
corresponding to U/Nyp /i (A ). By the compatibility of reciprocity maps and norms, it follows
that Ny /x(Ar) = U. Uniqueness is exactly the uniqueness theorem. O

6. ADELES AND IDELES

To define the class formation for the global case (e.g. number fields), we need to use adeles
and ideles. Before starting, we fix the terminology.

Definition 6.1 (Global fields). A global field is a field K which is a finite extension of either
Q or F,(T'). Here, IF,(T) is the field of rational functions in one variable with coefficients in the
finite field F,. When K is a finite extension of (Q, we call it a number field. When K is a finite
extension of IF,(7"), we call it a function field.

Remark 6.2 (On the subtleties of the function fields). There are several extra difficulties when K
is a function field. Firstly, K is not perfect; F,(7%/9)/F,(T) is a purely inseparable extension of
degree g. When discussing the Galois theory of F', one must only consider separable extensions.
The absolute Galois group of F' is the Galois group of the maximal separable extension K*
over K. Furthermore, there is a subtle issue with the topology of a profinite group (e.g. there are
finite index subgroups that are not open). In this section, we will often give proofs only in the
case when K is a number field (i.e. charcateristic 0).
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Global class field theory concerns describing Gal(K*°P/K)2" of a global field K. We want
something that captures the arithmetic of the class group of K for Ax. There is another extra
feature you would want, that the local and global class field theories are compatible with each
other in some way, under the name of local-global compatibility. Remember however that the
class group CI(K) is defined using fractional ideals of K. Ideles are invented as alternatives to
ideals that are expressed as elements but also exhibit clear connection with local fields.

Definition 6.3 (Places of a global field). A place or a prime v of a global field K is an equiv-
alence class of absolute values on K. Equivalently, it is either a maximal ideal of O (called a
nonarchimedean prime or a finite place) or an embedding K — C (called an archimedean
prime or an infinite place); in the latter case, which happens only if K is a number field, an
embedding K — C is considered equivalent to its complex conjugate.

Let K, be the completion of K with respect to an absolute value corresponding to v. If v is
nonarchimedean, let p,, C Ok be the corresponding prime ideal (so that K, = Frac(Ok, )). Let
ord, : K — Z be the normalized discrete valuation of the cdvf K,; namely, after choosing a
uniformizer 7, € K, ord,(um)") = m for any m € Z, u € O .

If v is archimedean, K, = R if the corresponding embedding is real, and K, = C if complex.

Definition 6.4 (Normalized absolute values). For a local field L, there is a preferred way to
normalize an absolute value (among the ones in the same equivalence class).

e If L is a p-adic field, then |z| := W (and |0| := 0), where [ is the residue field of L

(which is a finite field), and ord : L* — Z is the normalized discrete value as above (i.e.
scaled such that ord is surjective).

e If L = R, then || is the usual absolute value.
e If L = C, then || is the square of the complex absolute value.

If K is a global field, and if v is a place of K, then let | - |, be the normalized absolute value on K
restricted from that of K, under the natural inclusion K — K,,.
We will see shortly (see Lemma 6.13) why this normalization is a useful thing to do.

Definition 6.5 (Ideles). An idele is a collection of elements («, ), where v, € K for each place
v of K, such that for all but finitely many places v, o, € OIXQF The ideles form a multiplicative
group called the idele group Ix.

We are regarding real/complex embddings also as primes, which is an important feature of
the global class field theory. One reason why we have a,, € Oy for all but finitely primes v is
because we can think of a surjective homomorphism I — Ji (Jk is the multiplcative group of
fractional ideals of K), defined as follows,

Ix > Ji, ()= ] eyl

v nonarchimedean

3If v is archimedean, there is no good analogue of O, so this statement is vacuous in that case. This is fine
because we can always allow finitely many exceptions, and there are finitely many archimedean primes of K.
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Note that the requirement that o, € O for all but finitely many v’s is precisely the one that
makes the above product a finite product (i.e. ord,(c,) = 0 for all but finitely many v’s).

Composing this with the quotient map Jx — CI(K), we get a surjective homomorphism
Ix — CI(K). Clearly we see that («,) € Ik is in the kernel of I — CI(K) if there is an
element @ € K such that each o, came from a by the embedding K — K.

Definition 6.6 (Idele class group). For any o € K*, we can naturally associate («,) € I, where
for each v, v, is the image of « by the natural embedding K — K,; this is well-defined as, given
a € K*, ord,(«) = 0 for all but finitely many v. Any such idele is called a principal idele. This
defines a natural injective homomorphism K* < [, and the quotient Cx := I;c/K* is called
the idele class group.

There is, therefore, a surjective homomorphism Cx — CI(K). It is the idele class group that
we will use for the class formation; Ax = Ck.
To discuss the topology on I and C, we need to first discuss the additive analogue of ideles.

Definition 6.7 (Adeles). An adele is a collection of elements (v, ), where «,, € K, for each place
v of K, such that for all but finitely many places v, a,, € Ok, . The adeles form a ring, called the
adele ring A .

Historically, the word “idele” appeared first, and the word “adele” was introduced as an abbre-
viation of “additive idele” There should technically be accents (idéles, adéles), but many people
drop the accents when they write (they are artificially made words anyway).

The idele group and the adele ring are related as I = A} (the unit group).

We now talk about the topologies of A and I, which are a bit annoying.

Definition 6.8. The ring of finite adeles* A consists of adeles («,) where o, = 1 for all
archimedean primes v. More generally, if S is a finite set of places of K, then A?. consists adeles
(cv,) where ay,, = 1 forallv € S.

We also define A g, the ring of S-adeles, to consist of adeles («,) where o, € Ok, for all
finite places® v not contained in S. In other words, S-adeles are the adeles where you only
allow the primes in S to show up in the denominators. Similarly, A% g, the ring of finite S-
adeles, consists of finite adeles (o) where o, € Ok, for all finite places v ¢ S. By definition,
Ak g does not change if you include/exclude some infinite places from S.

The topology of A as a topological (additive) group is generated by the subsets of the form
Hves U, x st Ok,, where S is a finite set of places of K, and, for eachv € S, U, C K, is
an open subset. This also makes Ay a topological ring (i.e. the multiplication is continuous).
The topologies of AR, A 5, AR ¢ are induced from Ay as the subspace topology; note that the
induced subspace topology on Ax.s = [[,csorvinfinite Kv X [loes and v finite O, 18 the product
topology.

One may define similar subgroups of I as above, namely I := Ix NAR, Ix s := IxNAk,g,

The topology of Ixx = A is not the subspace topology induced from A . Rather, [ is given
the topology as the multiplicative group of the topological ring Ay ; namely, you also want to

“The notation co means that we are putting the set of all infinite places as a superscript.
>As noted earlier, O K, doesn’t make sense when v is an infinite place.
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take into account that the multiplicative inverse map [y — [ is continuous. For that matter,

x z,:v’l
you use the injective (multiplicative) homomorphism [ ! YN k X Ak and use the sub-

space topology induced by this homomorphism. Equivalently, the topology of /x as a topological
(multiplicative) group generated by the subsets of the form [ .4 U, X [[,¢5 Ok, where Sisa
finite set of places of K, and, for each v € S, U/ C K is an open subset’. The topologies of I5¢,
Ik s, I ¢ are induced from I as the subspace topology.

Example 6.9. We have A = 7 ®z Q, or in other words @n> . %2 (also as topological spaces),
and therefore Ag = A’ X R (also as topological spaces). -

AsIsaid, the class formation we will use for the global class field theory will satisfy Ay = Ck.
To define A, we need to know how C' changes as we change K.

Proposition 6.10. Let L /K be a finite extension of global fields.

(1) There is a natural inclusion A — Ap, (o) — (a,), where o, == «, € K, C Ly, forw|v.
This restricts to a natural inclusion I — I, and induces an injection Ci — Cf.

(2) The natural inclusion in (1) gives rise to an isomorphism A @x L — A where Ay is
regarded as a K -vector space via the natural inclusion K — Ag. In particular, if L/ K is
Galois, then 0 € Gal(L/K) acts on A;, = A ® L naturally as the identity on the first
factor and as o on the second factor of the tensor product.

(3) For L/K finite Galois, Afal(L/K) = Ag, ISal(L/K) = Iy, and Cfal(L/K) = Ck.

Proof. (1) Only the last part is the nontrivial part, where it follows from L* N Ix = K*,
which follows from L N A = K by (2).

(2) This follows from K, @ L = Hw‘v L,,.

(3) Only C’fal(L/ K= O requires an explanation. Note that we have a short exact sequence
of Gal(L/K)-modules

1= L =1, —Cp—1,

which gives rise to a long exact sequence

Gal(L/K)

1— (L¥) — [JUEIR) Ly oOIE) L g (Gal(D/K), LX) — - -

By Theorem 4.14, this becomes 1 — K* — [x — C’fal(L/K) — 1, which implies that
CGAL/K) _
L e .

U

®Note that K, is a topological field, so that the topology we have for K, is also continuous with respect to the
inverse map; in particular, the topology on K* is the subspace topology.
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Definition 6.11. Let F' be a global field. We define C' := h& K/ F finite Cy, where the transition

maps are the natural inclusions. It has a natural continuous Gal( F*P / F')-action that makes it a
discrete Gal(F™P /F')-module (as C = CCalF=P/K))

Note that this does not mean that the natural topology on C' is the discrete topology; this
was not the case even in the local case. To have knowledge of the topology of C' or C, we first
want to understand how K * sits inside [, or on a related note, how K sits inside Ay ; note that
K is a global field, so a priori there is no preferred topology on K.

Proposition 6.12. The subspace topology induced on K C Agx (K* C Ik, respectively) is the
discrete topology.

Proof. The key ingredient is the following easy observation.

Lemma 6.13 (Product formula). Leta € K*. Then, [[, |a], = 1.

Proof. Note that the product written above is actually a finite product, as |a,| = 1 for all but
finitely many places v. We also note that the formula is quite obvious when K = Q; any rational
number can be written as 7 = £ [], p" for rational primes p (where n,, = 0 for all but finitely

many p’s), and
I p~ " ifv=p
rl, =
Ir[=1L,p" ifv=o0.

We would like to reduce the general statement to the case of Q. Let v be a place of QQ (either a
rational prime or oo). Then, K ®g¢ Q, = Hw‘v K., running over all places w of K over v. We
claim that, for any z € K*, [[,, [zlo = [Nk/q(@)|.; note that proving the claim will finish
the proof. We first note that, from the decomposition K ®g Qv = [, Kuw, |Nr/go(z)ly =
[T [Nk, /@, ()| As any absolute value extends uniquely over a finite extension of local fields,
, which finishes the proof of the claim. O

we have |z|,, = | Nk, 0, (%)

Now we go back to the original Proposition. As A g is a topological (additive) group, it suffices
to construct an open neighborhood 0 € U C Ay such that U N K = {0}. Given Lemma 6.13, if
we take U = [ [, anie OKw X [l infinitel® € Kw © |z| < 1}, then any element (o) € U satisty
IL, || < 1, unless () = 0, which implies that U N K" = {0}, as desired.

(za™!)

For Ik, note that the topology of /) is induced as the subspace topology from [ o
Ag x Ag. So the subspace topology of K* C Ik is induced as the subspace topology from

o o) Ay X Ag. By the discreteness of K C A, for any z € K*, we may take an open
neighborhood x € U C Ak such that U N K = {z}. Then, K* N (U x Ag) = {x}, so K* is
induced the discrete topology. U

We now define the topologies on Ay /K and Cx = I /K™ to be the quotient topology,
i.e. the finest topologies that make the quotient maps Ax — Ag /K and I — Ix/K* to be
continuous. Remember once again that the topologies on A i /K and C play little role when we
take the cohomology of them.
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Proposition 6.14 (Compactness of A i / K; local compactness of C'). For a global field K, Ay /| K
is a compact group, and C is a locally compact group; recall that a topological space is locally
compact if every point has a compact neighborhood (i.e., for all x, there is an open set U and a
compact set V such thatx € U C V).

Example 6.15. Local fields are locally compact (even R and C are locally compact), whereas the
rings of integers of nonarchimedean local fields are compact (e.g. Q, is locally compact vs. Z,, is
compact).

Proof of Proposition 6.14. For the first part, by Proposition 6.10, A ;- / K is a direct sum of copies of
Ag/Q, so it suffices to show that Ay /Q is compact. We note that Ay — Ag/Q is continuous, and
it is surjective even if we restrict it to [ [ Z, x [0, 1]; if you have («,) € Ag, then you may first
add a rational number to make the finite part integral, and then you may add/subtract an integer
to make the infinite part lie in [0, 1] while keeping the finite part integral. As [],Z, x [0, 1] is
compact, its continuous image Ag/Q is also compact.

For the second part, we already see that C'x cannot be compact, as there is a surjective norm
map | - | : Cx — Rsg, (o) — [], o] (this is well-defined by Lemma 6.13), and R is not
compact. However, this is the only source of non-compactness; if we let C}; := ker(| - | : Cx —
R~), then we will show that C} is compact. This will show that C' is locally compact, as R~
is locally compact.

The compactness of C' is omitted and left as an exercise. O

Exercise 6.1. Prove that C}, is compact. The proof of this has a similar spirit as the proof of the
finiteness of class numbers.

Note that, for example, the finiteness of class numbers is a corollary of the fact that C’Il( is
compact, as the natural quotient map C}, — CI(K) is continuous, and C1(K) has the discrete

topology.

7. STATEMENTS OF THE GLOBAL CLASS FIELD THEORY

The global class field theory is now easy to state, in terms of ideles. We will first state the idele
version, and then translate it into practically more useful version in terms of fractional ideals.

7.1. Idelic version of the global class field theory.

Theorem 7.1 (Global Artin reciprocity). Let F' be a global field, and fix its separable closure F**°P.
Let C = @K/Fﬁnite Ck be the collection of idele classes over a finite extension over F'. These form

a class formation; namely, it satisfies Axioms 1 and 2 of Definition 5.4. More precisely, for a global
field L, there is a continuous homomorphism, called the global Artin map,

Arty : Cp — Gal(L*™/L),
satisfying the following properties.
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(1) For any finite abelian subextension K /L of L*" / L, the global Artin map induces a continuous
homomorphism

AI‘tK/L : CL — Gal(K/L),

which is surjective with kernel Ny ,1.(C ). In particular, there is an isomorphism

CL/NK/L<CK) = Gal(K/L)

(2) If K/ L is a finite extension of global fields, the following diagram commutes, where the right
vertical arrow is the restriction.

Artg

O - Gal(K*/K)

NK/Lj lres

CL TU,) Gal(Lab/L).

(3) If K/ L is a finite extension of global fields, the following diagram commutes, where the left
vertical arrow is the inclusion and the right vertical arrow is the transfer homomorphism.

Artg

O 225 Gal(K*" /K)

v

CL Tt;. Gal(Lab/L).

Moreover, the global Artin map and the local Artin maps at various places of L are compatible with
each other (local-global compatibility) in the following sense.

(4) Let K/L be an abelian extension of global fields. For each place v of L, choose a place w
of K over v, and we have a local Artin map Artg, /p, : L} — Gal(K,/L,). Regarding
Gal(Ky/L,) as a decomposition subgroup of Gal(K /L) (there is no issue of conjugacy as
Gal(K/L) is abelian), we obtain Art, : LY — Gal(K/L) for each place v of L. If v is
unramified in K, then Art,(OF ) = 1 (Proposition 1.2), so taking the product of Art,, gives
a map Art), : I, — Gal(K/L).

The conclusion is that Art} (L*) = 1 and the induced map Art}, : C;, — Gal(K/L) is
precisely the global Artin map.

These properties uniquely characterize Arty.

Remark 7.2. It is important to also consider infinite places, e.g. Artg and Artc, see [ANT] for
the details.

By our general discussions, we have the following corollaries for free.
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Corollary 7.3 (Norm limitation theorem). Let F' be a global field. For any finite extension L/ K
of finite extensions of F', and if L/ M /K is the maximal abelian subextension of L/ K, then

Npyk(CL) = Nyyrc(Anr).

Corollary 7.4 (Uniqueness theorem). Let F' be a global field. For any finite abelian extensions
Ly, Ly/ K of finite extensions of F,

NLl/K(CLl) = NLQ/K(CLQ) & Ly = Lo

Furthermore, this class formation also satisfies the extra condition we need for the existence
theorem.

Theorem 7.5 (Global existence theorem). Let F' be a global field. Then, the class formation (F, C)
satisfies the condition (*) of Theorem 5.12. In particular, for any finite extension K of F' and for

any open finite index subgroup U < C, there is a unique finite abelian extension L /K such that
NL/K(CL) — U

An easy corollary of the global existence theorem is the characterization of Gal(K**/K) for
a number field K.

Corollary 7.6. Let K be a number field (i.e. a global field of characteristic0). Then, Gal( K"/ K) =
Ck, the profinite completion of C.

Proof. The content of the global existence theorem is a Galois-type correspondence

{ Finite abelian } Open finite index

. <~ .
extensions of K subgroups of Cx

If K is of characteristic 0, the word “open” is unnecessary, and the corollary is the immediate

consequence of the above correspondence. U

Z; xR,50 Cp = IT 7

p rational prime “~p

Example 7.7. Itis not difficult to see that Cyp = ||

Z* (there isno proper finite index subgroup of R~.). This is in accordance with @** = J .5, Q(¢)
so that Gal(Q**/Q) = I'&HHN(Z/nZ)X.

7.2. Ideal theoretic version of the global class field theory. The above descriptions are a bit
too abstract, so let us translate the statements to those about ideal class groups or their variants, as
expressed in [ANT] (notations are slightly different here to match with the adelic/idelic notation).

The idea is to describe certain finite quotients of C' in more explicit terms; after all, the
global class field theory is about the finite quotients of C'x, and it suffices to have a nice descrip-
tion of only certain finite quotients of C'x to characterize the global Artin reciprocity map (i.e.
description of C'x /U for U < Ck open finite index subgroups generating the topology of C, not
necessarily all open finite index subgroups). And we have observed that the class group CI(K)
is a finite quotient of C'x! We can similarly identify many other finite quotients of C'x with a
variant of the class group, called the ray class group.

p rational prime
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Definition 7.8 (Modulus). Let K be a global field. A modulus m of K is a function m :
{primes of K} — Zx( such that m(p) = 0 for all but finitely many primes p, m(p) = 0 or 1

if p is real, and m(p) = 0 if p is complex. Conventionally, one write m as m = Hp primes of K pm®),
One can write m = MyMoo where my = Hp finite primes of K pm(p) and Moo = Hp infinite primes of K pm(P)‘
Given a modulus m, let S(m) be the finite set of primes dividing m.

Given two moduli m, n, we say m divides n if m(p) < n(p) for all primes p.

Definition 7.9 (Ray class group). For a finite set of primes/places S of K, let J2 be the (multi-
plicative) group of fractional ideals generated by the prime ideals not contained in .S.

For a modulus m of K, let K\, ; be the set of @ € K* such that ord,(a — 1) > m(p) for all
finite p|m, and a, > 0 for all real p|m. This forms a (multiplicative) subgroup of K, and for any

a € K™, the principal fractional ideal (a) is an element of J}z(m). Therefore, there is a natural
embedding K™! — J}z(m). The quotient C1"(K) := JIS<(m)/_K“1’1 is called the ray class group
with modulus m.

Example 7.10. If m is the modulus where m(p) = 0 for all p, then CI™(K) = CI(K). Such
modulus is called the empty modulus and denoted my.

It turns out that the ray class groups are finite quotients of the idele class group, and they
altogether can recover the idele class group.

Proposition 7.11. Let K be a number field (for simplicity).
(1) If m is a modulus of K, the ray class group C1™(K) is a finite abelian group.

(2) For a modulus m of K, let U(m) C I be the open subgroup defined by

U(m) := 1T O, x 11 Ky x [ a+9m®)x ] Reo.

finite p not dividing m infinite p not dividing m finite p|m real p|m

Then, I /K*U(m) = CI™(K). Equivalently, ifU(m) C C is the image of U(m) C Irx —
Ck, then U(m) C C is an open finite index subgroup such that C /U (m) = CI™(K).

(3) If m,n are two moduli of K such that m|n, then there is a natural map CI"(K) — CI™(K).

Under this, we have l'glm modals of K CI™(K) = Ck.

Proof. (1) follows naturally from the finiteness of class number and (2) and (3), as the difference
between U(m) and U (my) is finite. Also, (3) follows easily from (2), so it remains to show (2).
Let I}? be the group of ideles (ay) such that ord,(a, — 1) > m(p) for all finite pjm and o, > 0
for all real p|m. Then, there is a natural surjective map I} — J}?(m), (ap) = T, fnite pordeles)
and the kernel is precisely U(m) N I™. Furthermore, there is a natural embedding K™! — I,
« + (ap), and not only K™ C ker(I} — CI™(K)), but also CI™(K) = J[i(m)/inq(K“"1 —
I™ — J5™)). From this, it follows that CI™(K) = I™/K™!(U(m) N I™). Thus, (2) will follow if
we prove that the natural map I — I induces an isomorphism /% /K™! =5 [,/ K*. Firstly,
as It N K* = K™!, the map I/K™' — Ir/K* is injective. To show the surjectivity, it
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suffices to show Iz = I™K*. The content of this in concrete terms is as follows: suppose m is
a modulus, and suppose, for each p|m, we have ap € KPX. Then, there exists « € K*, such that
a = a, (mod p™®) for all finite p|m, and «, o, have the same sign for all real p|m. This follows
from the following theorem: namely, this shows that however many congruence conditions and
sign conditions you apply, there is an element in K™ realizing them (as long as there are finitely
many conditions).

Theorem 7.12 (Weak approximation theorem). Let F' be a field, and let ||y, - - ,|-|, be nontrivial
pairwise inequivalent absolute values on F'. Let F;; be the topological space where the underlying set
is ' and the topology is generated by | - |;. Then, inside the topological space 'y x --- x F,, the

diagonal subset ' C Fy X --- x I, namely those of the form (x,z,--- ,x) forxz € F, is a dense
subset.
Proof. This asks you to find, for any a;,--- ,a, € F and ¢ > 0, an element b € K such that

la; — b|; < . Note first that it is sufficient to find, for each 1 < m < n, an element ¢,, € F such
that ¢, |, > 1 and |¢,|; < 1 for all i # m. If there is such an element, then for N > 0, the

N
C. .
element ) " | 7=~ @; will be such an element, as
1

im —y
N—oo 1—|—CZ

cN 1 with respect to | - |;
0 with respect to | - |; for any j # i.

Thus we are reduced, by rearranging indexes, to finding an element ¢ € F' such that |¢|; > 1
and |c|; < 1foralli > 2. We do an induction on n. If n = 2, this is basically the definition of
inequivalence of two absolute values | - |; and | - |o. For general n, by induction hypothesis, we
can first find ¢ € F such that ||y > 1land ||; < 1forall2 < i <n — 1. If|¢|, < 1, then
we are already happy. If not, we can find b € F such that |b|; > 1 and |b|,, < 1. Using this, if

||, = 1, then for N > 0, ¢V will satisfy the condition, and if |¢/|,, > 1, then for N > 0, %b
will satisty the condition. O
O

Definition 7.13 (Ray class field). By the global existence theorem and Proposition 7.11, for a
global field K and a modulus m of K, there exists a finite abelian extension K (m) of K such that
Ck/Nkm)/k(Crm)) = CI"(K) (as finite quotients of C). This field K (m) is called the ray
class field of K for modulus m. In particular, if m = my, K (my) =: Hp is called the Hilbert
class field. If on the other hand m is the product of all real places of K, then K (m) is called the
narrow class field.

We can now reformulate the global class field theory in terms of ray class fields.

Theorem 7.14 (Ideal theoretic global class field theory). Let L /K be a finite abelian extension of
global fields. We define the modulus 1,/ of K, called the (global) conductor of L/ K, asfr k() =
fr./K, for any prime q of L dividing p, where f/x, is the local conductor (Definition 1.1) when p is
a finite prime, and fc,c = fr/r = 0, fc/r = 1, when p is an infinite prime.

44



(1) For any modulus m of K divisible by {1/, L C K(m). For such m, we may define the
global Artin map Art7 . J}S;(m) — Gal(L/K) asp — Fr, for any prime ideal p of K
not dividing m (this is well-defined as all prime ideals of K ramified in L dividefr k). Then,
ker Art} ), O K™, giving a natural surjective map Art7, : CI"(K) — Gal(L/K).

(2) For any modulus m of K, there is a one-to-one incusion-reversing bijection

{Finite subgroups of C1"(K)} <> {Finite abelian extensions L /K with §;/x|m}.

Proof. This follows directly from the local-global compatibility and the definition of the local
conductor (and the fact that the global norm is a product of the local norms). U

This shows that K (m) is the maximal abelian extension of K with the “ramification bounded
by m” For example, the Hilbert class field is the maximal abelian extension of K that is every-
where unramified (including infinite places; an infinite place is unramified if the real places
stay real above), and the narrow class field is the maximal abelian extension of K that is finitely
everywhere unramified (i.e. all finite primes are unramified).

Theorem 7.15 (Principal ideal theorem). Let K be a global field, and letp C Oy be a prime ideal.
Then, pOy,. is a principal ideal in Hy.

Proof. This statement follows from the compatibility of the global Artin maps with changing
fields, i.e. we look at

Art

Cx 2 Gal(K®/K)  ~  CI(K) Gal(Hy /K)

) | )

Citye = Gal(H3/ Hic) Cl(Hy) — Gal(Hp, /Hy).

~

Then this follows from a hard (yet elementary) group-theoretic fact that the transfer homomor-

phism V : G* — H®" is zero if H = [G, G]. O

Remark 7.16. One can show not just the quadratic reciprocity law but the n-ic reciprocity law
using the global class field theory; see [ANT] for more classical applications of ideal-theoretic
description of global class field theory.

Example 7.17. See [ANT, Exercise 16.2] for the full determination of the ray class fields of Q by
elementary considerations.

8. KRONECKER-WEBER THEOREMS: EXPLICIT CLASS FIELD THEORY FOR (Q AND QQ,

Before wrapping up our proofs of global/local class field theories by verifying the class for-
mation axioms + ¢, we start with a baby version, namely describing Q*® and @Zb.

Theorem 8.1 (Kronecker-Weber theorem).

@ = |J QG-

n>1
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Theorem 8.2 (Local Kronecker-Weber theorem).

Q= J Q).

n>1

We will show how these follow from the elementary ramification theory. In fact, the deriva-
tion of local Kronecker—-Weber theorem is related to the Lubin-Tate theory (which will be used
for a proof of local existence theorem).

Remark 8.3. The whole idea of describing K" by adjoining explicit elements (or, even better,
by adjoining units) falls under the name of Kronecker’s Jugendtraum. In the local case, this
is completely solved by the Lubin—Tate theory, which we will see in a few lectures. For number
fields, we have such constructions for only certain types of number fields; for example, the theory
of complex multiplication for imaginary quadratic fields, which we will also see later. There is
not even a conjectural picture of what this should be for general number fields. For example,
even a conjecture for the complex cubic fields was not really known until 2023, see [BCG].

Lemma 8.4. The Kronecker—Weber theorem follows from the local Kronecker—Weber theorem.

Proof. Let K be a finite abelian extension of Q. There are finitely many primes p € Z ramified
in K. Pick a prime p of K lying over p. Then, by the local Kronecker-Weber, K, C Q,((,,) for
some n, > 1. Let e, = ord,(n,) and let n = [ p®.

We claim that K C Q((,). This will follow if we prove that L = K((,) = Q((,). It is firstly
obvious that L D Q((,). Let p € Z be any prime tha ramifies in K, and let q be a prime of L
lying over p. Then, Ly C Q,(¢nys Gn) = Qp(Giem(ny,my)- Let I, € Gal(Lq/Q,) C Gal(L/Q) be
the inertia subgroup of p in L. Let U := (L%)’», which is the maximal unramified subextension
of L9/Q,. Then, as adjoining a prime-to-p-th power root of unity gives an unramified extension,
Ly = U(Gper ). Therefore, I, C (Z/p*Z)*. Let I < Gal(L/Q) be the subgroup generated by I,
for primes p € Z ramified in K. Then, [I| <[, |I,| < [, ¢(p®) = ¢(n) = [Q((,) : Q. On the
other hand, L’ /Q is a finitely everywhere unramified; namely, for any prime number p € Z, p is
unramified in L?. By Minkowski’s theorem, L/ = Q, which implies that [L : Q] = |I| < [Q((,) :
QJ, which implies that L = Q((,), as desired.

Theorem 8.5 (Minkowski’s theorem). If a number field K satisfies that every prime numberp € 7
is unramified in K (or K/Q is finitely everywhere unramified), then K = Q.

Proof. You can use the Minkowski’s discriminant bound in a different way. Namely, we know that,
if[K : Q] = n = r+2s, then each ideal class of C1(K') has an integral ideal representative a such

that N(a) < 2 (2)" y/[dc(R]. As N(a) > 1, we have y/[dise(K] > 2% (3)° > 2% (5)"

n n/2 . . .
One can see that 7 (%) ? > 1as long as n > 2 (the expression increases as n increases).

Thus, if n > 2, then | disc(K)| > 2 has a prime factor, which makes K not finitely everywhere
unramified. Thus K = Q. U

O

Thus, it remains to prove the local Kronecker—-Weber theorem. The key input is the Hasse—Arf
theorem.
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Theorem 8.6 (Hasse—Arf theorem). Let K/ L be a finite abelian extension of local fields. Then, the
jumps of ramification groups Gal(K/L)" in upper numbering happen at integers. Namely, ift > —1
is such that Gal(K /L)' # Gal(K/L)"*¢ for arbitrarily small number ¢ > 0, thent € Z.

Proof. Omitted. It is still elementary but requires some clever ideas. U

Proof of the local Kronecker—Weber theorem, Theorem 8.2. Welet Q7Y =, 5, Q,((,) and Q,((pe) =
Unz1 @p(Gpr). We already know Q) = U, =1 @o(Cn)s s0 Q¢ = Q@ Qp(Cpee), and Q7 N

Qp(Gpe) = Q. Let K/Q, be a finite abelian extension. Then, we have a short exact sequence

1 = Gal(KQy°/Qy") — Gal(KQ"/Qy(Gpx)) = Gal(@/Qp(Gpx)) — 1.

Note that Gal(Q;¥¢/Q, (¢ )) = Gal(Q/Q,) = 7, so it is a free pro-cyclic group. Therefore,
by taking a lift of a topological generator 1 € Z (namely, the closure of the group generated by
the element is everything; in this specific case, this says that Z C Z is dense), this short exact
sequence splits. Therefore, taking the fixed field of this lift, we obtain a field extension F'/Q,,({pe)
such that F' N QY = Q,((p) and FQY¢ = KQ¥¢. As QY = Qp(Cpee )™, F'N QY = Qp(Cpe)
means that F'/Q,((,~) and F'/Q, are totally ramified’. Note that KQ{Y° is abelian over @Q,, so
F/Q, is also abelian.

We claim that F' = Q,((,e ), which will prove the local Kronecker-Weber theorem, as then
KQp© = FQp° = Q). This will follow from the following elementary computation of ramifi-
cation subgroups.

Lemma 8.7. The jumps (in upper numbering) of ramification subgroups of Gal(Q,((ye)/Q,) hap-
pen at all nonnegative integers (except at the 0-th ramification subgroup whenp = 2). More precisely,
foreveryn € Z>,,

Gal(Q,(Cp=)/Qp)" _Jr— I ifn=0
Gal(Qy(Gpe)/Qp)"H p ifn>1.

Proof. By the Hasse—Arf theorem (and the compatibility of upper numbering with taking quo-
tients), we know that the jumps happen at some integers. Thus this boils down to calculating
the jumps of Gal(Q,(¢,m)/Q,) = (Z/p™Z)* for each m > 1. Note that we have an explicit
uniformizer 7 := (,m — 1 € Q,((,m) that we can use. Recall that, if we normalize v(7w) = 1,

then v(p) = o(p™) = p™ (p — 1). Fora € (Z/p™Z)*, let 0, € Gal(Q,({m)/Q,) be such
that ,(Cpm) = (. Then o,(7) — 7 = G (5" — 1). Note that (%' — 1 = Sl (“7h,
so v(og(m) — ) = 1if pf(a — 1). Now we can conclude what the ramification subgroups are

in the case of m = 1 asany a € (Z/pZ)* and p|(a — 1) means a = 1 is the identity. Namely,

Gal(Qp(¢p)/Qp) = Gal(Qp(p)/Qp)o O Gal(@p.@p)/@p)l ={1}.
If p[(a — 1), then {fn' — 1 = doicica1phi ™ (“>") (mod p). So unless (G;I) is divisible by p,
@l — 1) = p. One sees elementarily that, under the assumption that

we can conclude that v((ym

"For a possibly infinite extension of local fields K /L, we say K/L is totally ramified if the maximal unramified
subextension is L.
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pl(a—1), (a;l) is divisible by p iff p?|(a — 1). Now we can finish the calculation in the case of
m=2;
Gal(Qy(G2)/Qp)o = (Z/p*Z),
Gal(Qp(Cp2)/Qp)l == Gal(@p(sz)/Qp)p—l ={a€ (Z/pQZ)X : a =1 (modp)},
Gal(Qp(G2)/Qp)p = -+ - = {1}.

Ifp°|(a — 1), then G’ — 1= 3" iy oy ™ (“>") (mod p). We apply the same argument, and

(3
the pattern is the same. One concludes that, for a general m, we have

Gal(Qy(Cm)/Qp)o = (Z/p™)*,

Gal(@y(Gm)/@)1 = -+ = Gall@y(Gn) /@)yt = {a € (Z/p"Z)* : a=1 (modp)},
Gal(Qp(Cme@p)p“l == Gal(Qp(Cp’”)/Qp)pi—l ={a € (Z/p"Z)" : a=1 (modpi)},
Gal(Qp(¢pm) /Qp)pm—1 = -+ = {1}.

Now we compute the upper numbering. Note that the jumps (i.e. n such that Gal(Q,((ym ) /Qp)n #
Gal(Q,(¢ym)/Qp)n+1) happen exactly at 0,p — 1,- -+, p™ ! — 1. We compute

i p—1 -1 —-(p-1) p-1)-@"-1 .
$Q,(¢m)/Q, (' — 1) = P T oo —1) ot P ip—1) =1

These computations altogether imply the Lemma. U

Why is this useful? It’s because these numbers are optimal!

Lemma 8.8. Let K/L be a totally ramified abelian extension. Let p C Of, be the maximal ideal,
and let q be the order of the residue field of L. Then,

g{q—l ifn=0

‘ Gal(K/L)"
q ifn> 1.

Gal(K /L)1

Proof. Suppose first that K/ L is finite, and let 7 be a uniformizer of K. Then, we have a group
homomorphism

Gal(K/L)o = Fy, o @ (mod p).

This is a well-defined group homomorphism that does not depend on the choice of 7, and the
kernel is exactly Gal(K /L), which implies that Gal(K/ L),/ Gal(K /L), embeds into a subgroup
of . For m > 1, we have a similar group homomorphism

Gal(K/L),, = F,, o+~ olm) _ 1 (mod 7™+,
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which is a well-defined group homomorphism that does not depend on the choice of 7, and the
kernelis exactly Gal(K/L),+1. Thus, Gal(K/L),,/ Gal(K/L),,+1 embeds into a subgroup of I,
As we already know the jumps in upper numbering happen at integers by the Hasse—Arf theorem,
the Lemma follows, in the case when K/L is finite. The case of infinite extension follows from
the case of finite extensions and the compatibility of upper numbering with taking quotients. []

Note that the compatibility of upper numbering with taking quotients imply that, for any

s >0,
B Gal(F/Q,)*
(F/Qp)* N Gal(F/Qy(Cp<)) .

Gal(@p(G)/ Q)" = G

Thus, forn > 0,

Gal(Qy(Cpe ) /Qp)" > ‘ Gal(F/Q,)" _ ‘ Gal(Qy((p)/Qp)" Gal(F/Q,)" N Gal(F/Qp(Cpe))
Gal(Qp(Cpe ) /Qp)™ | — | Gal(F/Qy) Gal(Qy(Cpee )/ Q)™ | | Gal(F/Qy)™ N Gal(F/Qy((pee)) ’
which implies that ‘ ol et ‘ = 1, 0r Gal(F/Q,)"NGal(F/Q,(Cy=)) = Gal(F/Q,)"'n

Gal(F/Qp((p=)) for all n > 0. As F/Q, is totally ramified, Gal(F/Q,((y~)) C Gal(F/Q,) =
Gal(F/Q,)°. Therefore, for every n, Gal(F/Q,((y=)) C Gal(F/Q,)". This implies that Gal(F/Q,({=)) =
{1}; if there is a nontrivial element, then this comes from some finite layer, which should not be

contained in an N-th ramification group (in upper numbering) for a large enough N > 0. This
shows that /' = Q, (), as desired. O

Remark 8.9. The point of the above argument was that there was an explicit totally ramified ex-
tension that has optimal numbers for the ramification subgroups. For a more general local field, a
Lubin-Tate extension will do the job. In fact, one can use the same argument to derive the en-
tirety of the local class field theory from the Lubin-Tate theory without using any cohomological
arguments.

9. LOCAL CLASS FIELD THEORY: VERIFICATION OF THE CLASS FORMATION AXIOMS

We now wrap up the proof of cohomological part of the local class field theory. We already
verified Axiom 1 of the two class formation axioms (Theorem 4.14), and Axiom 2 is Theorem
4.20, which we prove here.

Proof of Theorem 4.20. We exhibit a proof that works for characteristic 0 local fields.

Let L./ K be a finite Galois extension of local fields of degree n, and let M/ / K be an unramified
extension of the same degree n. By Theorem 4.14 and the inflation-restriction exact sequence,
we have two injective maps

Inf : Br(M/K) < Br(ML/K), Inf:Br(L/K)— Br(ML/K).

Note that we already know that Br(M/K) = Z/nZ as M/K is unramified. We will prove
Theorem 4.20 by showing that the images of two inflation maps coincide in Br(M L/K); in this
way, we know that Br(L/K) not only is isomorphic to Z/nZ but also is canonically so via the
invariant map we borrow from Br(M/K).
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Firstly, we show that im(Inf : Br(L/K) < Br(ML/K)) D im(Inf : Br(M/K) — Br(ML/K)).

We may use the inflation-restriction exact sequence

0 — Br(L/K) 2 Br(ML/K) 2 Br(ML/L),

so the claim is equivalent to ker(Res : Br(ML/K) — Br(ML/L)) D im(Inf : Br(M/K) —
Br(ML/K)), or that the composition Br(M/K) ot Br(ML/K) Bes, Br(ML/L) is zero.

We first assume that L/K is totally ramified. Then, L/K and M/K are linearly disjoint,
and Gal(ML/L) = Gal(M/K) by restricting to M. One can check easily by hand on the
level of cocycles that the composition map Br(M/K) — Br(ML/L) coincides with the map
H?(Gal(M/K), M*) — H?*(Gal(ML/L), ML*), induced by the natural inclusion M* —
M L* and the canonical identification Gal(M/K) = Gal(M L/L). As Gal(M/K) = Gal(ML/L)
is a finite cyclic group, this map is the same as the corresponding map in H2 by the periodicity.
Thus, we are reduced to showing that the natural map

KX/NM/K(MX) — LX/NML/L(MLX),

is zero. We know what both sides are, as both M /K and M L /L are unramified. Namely, both are
cyclic groups of order n generated by the respective uniformizers 75 € K and 7, € L. However
mx = uny foru € Of, as L/K is totally ramified. As O C Ny, (M L*), this implies that 7y
is sent to zero by the map, which implies that the map is zero, as desired.

In the general case of L/ K, take the maximal unramified subextension U/K of L /K. Then,
naturally U/K is also a subextension of M /K (as M /K is the unramified extension of degree

n). By again Theorem 4.14 and the inflation-restriction exact sequence, by the inflation map,
Inf

Br(U/K') embeds into both Br(M/K') and Br(L/K), and at least the composition Br(M/K) —

Res Inf

Br(ML/K) — Br(ML/L) sends those coming from Br(U/K) — Br(M/K) to zero as the
composition Br(U/K) ot Br(M/K) ot Br(ML/K) Bes, Br(ML/L) is the same as the

composition Br(U/K) ot Br(L/K) ot Br(ML/K) es, Br(ML/L) and the latter com-

position goes through the inflation-restriction exact sequence for M L/L/K. Now the veracity

of whether the composition Br(M/K) nf, Br(ML/K) Res, Br(ML/L) is zero or not can be

checked by sending coker(Inf : Br(U/K) — Br(M/K)) injectively into Br(A/U) which is
again the inflation-restriction exact sequence. Namely, the claim for L/ K follows from the claim
for L /U, which is totally ramified, which we already showed (this requires checking various
compatibilities which are left as an exercise to the reader).

Thus, we have shown one inclusion. To show the other inclusion, it suffices to show that
#Br(L/K) < n. Note that, if L/M/K is any subextension where M /K is Galois, then again
by Theorem 4.14 and the inflation-restriction exact sequence, 0 — Br(M/K) — Br(L/K) —
Br(L/M) implies that # Br(L/K) < # Br(M/K)Br(L/M). Thus, we can use an induction
on n and reduce proving # Br(L/K) < n in the case when Gal(L/K') has no proper nontrivial
normal subgroup. However, by the consideration of the ramification subgroups, we know that the
Galois group of local fields is always solvable. Thus, this means that we are reduced to proving
#Br(L/K) < nwhen L/K is a cyclic Galois extension of prime degree.
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We now prove that # Br(L/K) = n when L/K is cyclic, which will finish the proof of
Theorem 4.20. As now Gal(L/K) is cyclic, we can use the periodicity of Tate cohomology, and

in particular the Herbrand quotient. By Theorem 4.14, what we want to prove is the same as

h(L*) = n. Using the short exact sequence of Gal(L/K)-modules 1 — O — L* o7 0,

we have h(L*) = h(O})W(Z). We know H%(Gal(L/K),Z) = Z/nZ and H’1 HGal(L/K),Z) =
Home,,(Gal(L/K),Z) = 1, so h(Z) = n. Therefore, it suffices to show that h(O}) = 1.

We show this in a few steps. By the normal basis theorem, thereisz € Lsuchthat {o(z) : ¢ €
Gal(L/K)} is a K-basis of L. We may multiply x with a nonzero element in K, so we may as-
sume that + € pOgk, where p is the characteristic of the residue field of K (i.e. K is a finite

extension of Q). Let V' := @, cqar/x) Oxo(x) C Or. Then, V as a Gal(L/K)-module is

isomorphic to Ind?la}1 LK) Oy, s0 Vs acyclic. In particular, h(V') = 1.

Now consider the exponential and the logarithm maps

exp: pOp = 1+ pOp, log:1+pOr — pOry,

defined as ’
,;Ui
log(1 = —1)t=,
exoe) =35 og40) 1= Y-

Note that the divisibility constraints make sure that these infinite sums converge and also that
exp o log and log o exp are identity maps. Therefore, pO[, and 14+-pOy, are isomorphic as Gal(L/K)-
modules (log and exp give explicit isomorphisms in both ways). In particular, exp(V) C 1 +

pOr C OFf is also acyclic, and h(exp(V')) = 1. Therefore, h(O;) = h(exp(V))h< or ) —

(V)
or of
h (exp(LV)> NOW (V

and H, (Gal(L/K)

) as an abelian group, is a finite abelian group, so H" (Gal(L /K), $(XV)>

)> are also finite abelian groups. Therefore, #H (Gal(L /K), exp(v)>

#HY. <Gal(L /K), i V)) as they are respectively the kernel and the cokernel of the same group

homomorphism N : H, (Gal(L/K)7 xp(XV)> — HO (Gal(L/K) ) between finite abelian

groups of the same order (they are of the same order as they are respectlvely the cokernel and

the kernel of the same group homomorphism o — 1 : ex(g(f\/) — ex(g(v where 0 € Gal(L/K) isa
generator). Therefore, h <ex(;ng)> = 1, which finishes the proof. O

10. LuBIN-TATE THEORY: EXPLICIT CLASS FIELD THEORY FOR LOCAL FIELDS

We are left with the “c” of the local class field theory, namely the local existence theorem
(and how the local class field theory detects ramification on both sides). One may abstractly
verify (*), but rather than doing so, we show the local existence theorem by showing that there
is an Explicit class field theory for all local fields. Namely, we can explicitly construct the
analogues of Q,((y) (which played an important role in the local Kronecker-Weber theorem)
for all local fields. An idea is that Q,((,e) is obtained by adjoining (,~ for m > 1, which is a
solution to the equation X?” = 1. This has the special property that X P = 1 is obtained from
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X?P" =1 by plugging X? into X?" = 1. Furthermore, the powers of (,» form a multiplicative
group. A streamlined way of thinking about these facts is as follows.

o Let @p be an algebraic closure of Q, and let mg C O@p be the maximal ideal (i.e. any
element of Q, with positive valuation). Then, 1 + mg, is a multiplicative group. It’s more
natural to think of (1 +mg, , X ) instead as mg, with a multiplication law x -y = z+y+ 2y
(sothat (1+z)(14+vy) =1+ (z+y+ xy)).

e Furthermore, there is a group homomorphism ¢ : (1 + mg x) — (1+ mg x ) defined
by 1(a) = a”. In terms of the other multiplication law (m@p, -), the formula is ¥ (z) =
(x+1)P — 1.

e The field Q,((y~) is obtained by adjoining the roots of ) o ¢p o - - - o ¢)(x) = 0 (when ¢ is
regarded as an endomorphism of (m@p, ).

We will see that this can be done in much general context, which is called the Lubin-Tate theory.
10.1. Formal group laws.

Definition 10.1 (Formal group law). Let A be a commutative ring. Then a formal power series
in two variables F(X,Y") € A[[X, Y]] is called a (commutative) formal group law if it behaves
like a formula for a multiplication law of an abelian group, whenever the formula makes sense,
and if it is not “too far from” the easiest formula X - Y — X 4 Y. To be more precise, it has to
satisfy the following properties.

(1) F(X,Y) = X +Y (mod(X? XVY,Y?)). In particular, F(0,0) = 0, so you can put
F(X,Y) as an argument into a formal power series (think about how you would com-
pose two formal power series).

(2) (associativity) As elements of A[[X,Y, Z]|, F(X,F(Y,Z)) = F(F(X,Y), Z).
(3) (commutativity) F(X,Y) = F(Y, X).
(4) (identity) F(0,Y) =Y, F(X,0) = X.

(5) (inverses) There exists a unique i(X) € A[[X]] such that F'(X,i(X)) = 0 (necessarily
i(X) € XA[[X])).

Example 10.2. (1) F(X,Y) = X +Y isaformal group law, called the additive group law.

(2) F(X,Y)=X+Y + XY is a formal group law, called the multiplicative group law.

Definition 10.3. The setup that we are interested in is when A = Ok for a local field K (or an
algebraic extension of a local field, such as K™, K, K5, etc.). f mg C Op is the maximal ideal,
then for a, b € mg, the infinite sum F'(a, b) converges and defines an element of my. Therefore,
given a formal group law F'(X,Y), it defines the structure of an abelian group over the set my.
We denote the abelian group defined by this procedure as F'(my).
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Definition 10.4 (Homomorphism between formal group laws). Continuing abstractly, given two
formal group laws F/(X,Y), G(X,Y) € A[[X, Y]], one can axiomatize what it means for f(X) €
A[[X]] to define a formula for a homomorphism from the group defined using F(X,Y") to the
group defined using G(X,Y"). Namely, we call f(X) € A[[X]] a homomorphism from F' to G
if it satisfies

(1) £(0) =0 (ie. f(X) € XA[[X]]),
(2) and, as elements of A[[X,Y]], f(F(X,Y)) = G(f(X), f(Y)).

If ' = G, we also call f an endomorphism of . Using this, it also makes sense to define what
it means for two formal group laws to be isomorphic.

Let Hom(F, G) be the set of all homomorphisms from F, G. This set has a natural abelian
group structure, defined by f + ¢ := G(f(X), g(X)). This is a homomorphism from F to G as

G(f(F(X,Y)), g(F(X,Y))) = G(G(f(X), [(Y)), G(9(X), g(Y)))

= G(G(f(X),9(X)), G(f(Y),9(Y))) = G((f + 9)(X), (f + 9)(Y)),

by the commutativity/associativity of G(X,Y").

Let End(F’) be the set of all endomorphisms of F'. In addition to the abelian group structure
defined above, it has a structure of a (not necessarily commutative) ring, defined by f-g := fog.
It is easy to see that End(F) is closed under composition, and it gives rise to a ring structure as

fo(g+h)=fog+fohand(f+g)oh=foh+ goh (+ as defined above).
Exercise 10.1. Check this.

Example 10.5. (1) For the additive group law F(X,Y) = X +Y, f(X) = aX foranya € A
defines an endomorphism of F;

fFXY)) = a(X +Y) = F(aX,aY) = F(f(X), f(Y)).

(2) For the multiplicative group law F'(X,Y) = X +Y + XY, f(X) = (X +1)" — 1 for any
n € N defines an endomorphism of F;

fIF(X,Y)) = (XY4+X+Y+1)"—1 = (X+1)"(Y+1)"—1 = (f(X)+1)(f(Y)+1)—1 = F(f(X), f(Y)).

(3) Actually, the example (2) also works for more general exponent n € A, if we define
f(X) = (X +1)" — 1as instead > -, (7) X", as long as we know (") € A for every
1> 1.

Exercise 10.2. If A = Ok for (an algebraic extension of) a local field K, show that
(Z) € Ok forany a € Ok and k € N.

Therefore, if A = Ok, for the multiplicative group law F', there is an injective ring
homomorphism A — End(F) (Exercise: check that this respects addition and multi-
plication); there are a lot of endomorphisms of End(F’). Having a group law with a big
endomorphism ring is what we are looking for in general; see also the CM theory later in
the course.
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Now we restrict our attention to the case when A = O. Then, there is a surprising unique-
ness theorem for a formal group law with a particular type of an endomorphism and big endo-
morphism group.

Theorem 10.6 (Lubin-Tate formal group law). Let K be a local field, whose residue field is the finite
field F,. Let m € K be a uniformizer. Then, there is a formal group law F(X,Y) € Ok|[[X,Y]],

unique up to isomorphism, satisfying the following conditions.

(1) There is an injective ring homomorphism|[-| : Ox — End(F), such that[a] = aX (mod X?)
for every a € Ok. In particular, End(F) is naturally an O -algebra.

(2) The endomorphism [r] € End(F'), a formal power series in one variable, satisfies the con-
gruence condition [r] = X7 (mod 7).

In fact, you can set [r1] to be any formal power series in O [[X]| satisfying [r] = 7 X (mod X?) and
(7] = X7 (mod 7). Namely, for any f(X) € Og|[[X]] satisfying these conditions, there is a unique
(on the nose, as a formal power series) formal group law F¢(X,Y) € Ok|[[X, Y]] satisfying (1), (2)
(and Fy = F, for any choices of f, g satisfying these conditions). These formal group laws are called
the Lubin-Tate formal group laws.

Proof. A key is the following lemma.

Lemma 10.7. Let f(X),g(X) € Ok|[[X]] be two formal power series satisfying the above two
congruence conditions (i.e. congruent to 7X (mod X?) and X? (mod)). Letay,--- ,a, € Ok.
Then, there exists a unique formal power series F'(Xy,---,X,) € Okl[[ X1, -, X,]| in n vari-
ables, such that (X1, -, X)) = a1 X1 + - - - + a, X, + (higher order terms), and, as elements of
OKHXh T aXTL”;

Proof. The idea is simple. Namely, you inductively find the coefficients for F'. For example, what
are the second-order terms of F'? Suppose F'(X1,---,X,,) = >0, aiXi + D7 ooy @i Xi X
for some unknown a;; € Og. Let f(X) = Y7, b; X", and g(X) = >.°, ¢;X". Note that
by = ¢, = 7. Then, looking at the identity f(F(Xy,---,X,)) = F(g9(X1), -+, 9(X,)) modulo
third degree terms, we get

n n

W(i aiXZ- -+ Z ainin) -+ bg(z CliXZ')Q = Z ai<7TXi + CQXiZ) + Z aij7T2Xin.
=1

1<i<j<n i=1 i=1 1<i<j<n

The first order terms coincide, and comparing the second order terms, the coefficients of X;X;

on both sides are

2
a5 + 2b2aiaj = a;m,

ifi < j,and

2 2
T + bgai = a;Cy + aymT ,
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if i = j. In any case, we are given an explicit formula for each a;;, namely

{—ng%;y ifi < j
Aij = baa?—a;ca e .
71_12—771_ ifi = VE
So indeed you can find the second order terms explicitly. You may then convince yourself that
the formula for the n-th order term has 7 — 7 as its denominator, so the formal power series can
be found uniquely. U

Using Lemma 10.7, given f(X) € Og|[[X]] such that f(X) = 71X (mod X?) and f(X) =
X? (mod ), one can first find a unique F(X,Y) € Ok[[X,Y]] such that f(F((X,Y)) =
Fy(f(X), f(Y)). One can use the same Lemma to show all the axioms for proving that F;(X,Y)
is a formal group law. For example, the commutativity Fy(X,Y) = Ff(Y, X) follows from
that both F(X,Y’) and F;(Y, X) satisfy the same conditions of Lemma 10.7 so they must be
equal by the uniqueness. Similarly, the associativity (X, F;(Y, Z)) = Fy(F¢(X,Y), Z) fol-
lows from Lemma 10.7 applied to f = g and a formal power series in three variables congruent
to X + Y + Z (mod higher order terms).

Showing the formal group law axioms is straightforward except the existence of inverse. For
that, we realize that we may apply Lemma 10.7 to f = g and a formal power series in one variable
congruent to —X (mod X?). Namely, there is [—1]; € Og[[X]] such that [-1]; = —X (mod X?)
and f([—1]¢(X)) = [-1];(f(X)). Then, [—1]; is the desired inverses map, as Fr(X, [-1]¢(X))
is the unique formal power series congruent to 0 (mod X?) and commute with f, i.e.

FEX, [=1]5(X)) = Fr(f(X), F([=1 (X)) = Fp(f(X), [=1](f (X)),

so by uniqueness F's(X, [—1];(X)) = 0. This shows that Fy(X,Y") defines a formal group law
which has f(X) € End(F'). Furthermore, the same logic implies that, for each a € O, one can
find [a]f € End(F'), and in particular [7]; = f(X) by the uniqueness part of Lemma 10.7. Thus,
this shows the existence and the uniqueness of .

It remains to show that the isomorphism class of F is independent of choice of f(X). Let

Fr=1{9(X) € Og[[X]] : g(X) =7X (mod X?), g(X) = X7 (mod)}.

We want to show that, for any f(X),g(X) € Fr, Iy = F,. By applying Lemma 10.7 to f, g
and a formal power series in one variable congruent to aX (mod X?) for a € O, we see that
there is a unique [a];,(X) € Ok[[X]] for each a € Oy such that [a],(X) = aX (mod X?) and
f(lalrg(X)) = [a]4(g(X)). By the similar argument as above, this defines a homomorphism
lalfy © Fy — Fy. Furthermore, by applying the smae Lemma in a similar way, it is easy to
see that [a + ]y, = [a]sg +F; [b];, for any a,b € Ok, where +p, is the group law for F}.
Also, for yet another h(X) € F, the similar reasoning shows [ab; s = [a]n4 © [b],,; for any
a,b € Ok. Therefore, we see that, for a € OF, [a];, and [a '], ; are inverses to each other, as
[1]7.¢(X) = [1],4(X) = X by the same uniqueness reasoning. Thus, Fy = F, for any f,g € F,
as desired. O

We will freely use the notations used in the proof of Theorem 10.6 (e.g. Fr, FY, [a]f).
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10.2. Lubin-Tate extensions. Now we define the Lubin-Tate extensions just like you define
Q,((pee) from the multiplicative formal group law over Q,.

Theorem 10.8 (Lubin-Tate extensions). Let m be a uniformizer of a local field K. Let f € F,
and let Iy be the corresponding Lubin—Tate formal group law (note that [7]; = f). Let K be the
separable closure of K, and let mseo be the maximal ideal of O gcsep.

(1) Forn > 1,

Mcsen [f°] := {a € mgser = f7"(a) :=fo0 fo---0f (a) =0},

n times

is an O -submodule of Myser, and is isomorphic to Ok /(7™).

(2) The field K ,, := K(mgseo[f°"]), obtained by adjoining the elements of W ycsen [ f"] with K,

is an algebraic extension of K, independent of choice of f € F.

(3) The field K, is a totally ramified finite abelian extension over K, such that the action of

Of onmygsen | 7] gives rise to an isomorphism (O /(7™))* = Gal(K,,,/K). The infinite
extension K := J,~, Kxn is an abelian extension where Gal(K/K) = Oy, and is called
the Lubin-Tate extension (with respect to the choice of a uniformizer ).

(4) Foreachn > 1,7 € N, /k(K),).

Proof.

(1) First suppose the case f(X) = 7X + X9 which is certainly an element of F.
Then, f°"(X) is a degree ¢" polynomial, so the set mgser[f°"] is a finite set of order < ¢"
by the fundamental theorem of algebra. We show that #m e [f°"] = ¢" by induction
on n. Suppose that #m gser [f°™ Y] = ¢"~1. Then, mgsen[f°"] consists of elements a €
Mysep such that a? + ma € Myesen| fo(”_l)]. Therefore, it suffices to show that, for each
b € mgser[f°™ V], X7+ 71X — b = 0 has ¢ distinct roots. Let v : K% — Q be the
extension of the normalized valuation on K (so that v(7) = 1). If v(b) > 1, then f(b) =
7b + b9, so we have v(f(b)) = qu(b), -, v(f°" V(b)) = ¢"'v(b), which implies that
fe=1(b) # 0. Therefore, v(b) < 1, which means that the polynomial X9 + 7X — b is
Eisenstein (over K (b)), so itis irreducible, and its ¢ roots are distinct, as desired. Therefore,
Hmpsen[["] = ¢". Tt is easy to see that mysen[f°"] is stable under the Ok-action, and it
is a cyclic module generated by any element in mgees [ f°"]\m gsen [ f°" V], which implies
that it is isomorphic to Ok /(™) as an Ok-module.

For a general g € F, note that [1], ; : F; — F, gives rise to an isomorphism of for-
mal group laws, with the inverse given by [1], : F, — Fy. So [1]y; : My [f"] =
Msen [¢°"], and it’s easy to see that this respects the Ok-action on both sides.

(2) Asan element of mg=ep [g°"] is obtained by applying [1],  to an element of mg=en [ f°"], and

as [1],. 5 € Ok|[[X]]. any element of myep[¢°"] is contained in K (mysep[f°"]). The reverse
logic gives the reverse containment, implying that K (mgse[f°"]) = K (mgser[g°"]). We
know that K (mgser[f"]) is an algebraic extension for f(X) = 7X + X
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(3) We choose f(X) = mX + X7 Let b; be a nonzero root of f(X), and let b, be a root of
f(X) — b, (inductively defined). Then b, € mgser[f°"]\myeser[f*"~V]. On the other
hand, as noted above, f(X) — b,_; is Eisenstein over K (b,_1), so K(b,)/K(b,_1) is a
totally ramified extension of degree ¢. Similarly, as b; is a root of 7+ X971, which is again
Eisenstein, K (b;)/K is totally ramified of degree ¢ — 1. Therefore, K (b,)/K is totally
ramified of degree ¢"~'(¢ — 1). This implies that [K ,, : K] > ¢"'(q¢ — 1). On the other
hand, K, is the splitting field of f°" (by definition), and K, /K is Galois (f"! is easily
seen to be separable). As all group laws are defined over K, the action by any element
of Gal(K,/K) on the roots of f°" will preserve the Ox-module structure. Therefore,
Gal(Kr,/K) C Auto, (mgseo[f"]) = Auto, (Ok/(7")) = (Ok /(7"))*, which implies
that [K,,, : K] < ¢"'(q — 1). Therefore, K, ,, = K(b,_1) is totally ramified of degree
q" (¢ — 1), and we also obtain the description of the Galois group.

(4) Let fI" .= %o fo---of. Then, f"/(b,) = 0. As v(b,) = —=r-—, the degree of the

——

q"~(g—-1)’
n — 1 times

minimal polynomial of b, over K is > ¢"~'(q — 1), so it must be the case that f" is
the minimal polynomial of b, over K. As the constant term of f is 7, N Knn/K(bn) =
(—1)@=Da" 7. This shows that 7 € Ny, /x(K7,) unless ¢ = 2™ and n = 1. In this
exceptional case, we rather have shown that —7 is in the norm group. On the other hand,
in this case, K1/ K is totally tamely ramified and —2 € 1 4+ 7Ok, so by Proposition 1.3,
1 — 2 = —1is in the norm group Nk, ,/x (K ;). Therefore, 7 is still in the norm group.

O

Example 10.9. Let K = Q, and m = p. Then, there is a particularly nice choice of f € F;:
fX)=(X+1)P—-1=pX+ (5)X*+---+ X?. Then f(X) = (X + 1)P" — 1, s0 Msep [ "]
consists of C;}% —1for1l <m <p" and K, = Q,({m).

Example 10.10. It is important to note that K , and K depend on the choice of 7. For example,
let X' = Q5. Then, just as computed above, when you choose 7 = 2 and n = 2, Ky 5 = Q2((4) =

Q2(v/—1). On the other hand, when you choose m = —2 and n = 2, K_, 5 is the splitting field
of g o g(X), where g(X) = —2X + X?. Note that

9(9(X)) = g(X)(9(X) = 2) = X(X = 2)(X* = 2X - 2) = X(X - 2)((X —1)* = 3),

so K 55 = Qu(v/3). There are many ways to see that Qy(v/—1) and Qy(v/3) are different;
for example, 3 ¢ Ng,(/=1)/0,(Q2(v/—1)%), because z* + y* # 3 for any x,y € Zy by mod 4
considerations, whereas obviously 3 € Ny, /3,0, (Q2(+v/3)%).

10.3. Wrapping up the proof of the local class field theory. As promised, we will show that
the Lubin-Tate extension K, has the similar ramification properties as Q,,({pe).

Theorem 10.11. The jumps (in upper numbering) of ramification subgroups of Gal( K. / K') happen
at all nonnegative integers (except at the 0-th ramification subgroup when ¢ = 2). More precisely,
foreveryn € Z>,,

Gal(K, /K)"
‘ Gal(K, /K)"1

_Jg—=1 ifn=0
B q ifn > 1.
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Proof. The pattern is very similar to the computation of the ramification subgroups in the case of
Qp(Cpe=)/Q,. Note that Gal( K,/ K) = (O /(7™))*, and this has natural subgroups Gal( K ./ Ky ) =
{r € (Og/(nm"))* : z = 1 (modn™)}. Also, we know that K, = K(b,) where b, €
M gcse [ 7]\ gesen [f" V] for a choice of f € F, and b, is a uniformizer of K,,. We claim
that if 0 € Gal(K ,,/Krm)\ Gal(Ky /) Kz i), then v(o(b,) — b,) = ¢ (where v(b,) = 1,
Ko = K). The same kind of computation as in the proof of local Kronecker-Weber theorem
will then give you the desired conclusion. The case of m = 0 follows from the fact that K ; is
the maximal tamely ramified subextension of K by the degree reasons ([K,; : K] = ¢ — 1is
coprime to p, when ¢ = p* for some prime number p).

Suppose o € Gal(K .,/ K1)\ Gal(K 1,/ K nt1). By using the identification Gal( K,/ K) =
(O /(m™))*, we see that o corresponds to 1 + 7w for u € Oj;. Then o(b,) = [1+7"u|;(b,) =
Fy(by, [7™u]f(bn)) = F¢(bn, [u]f(by—r)). Note that b,,_,, is a uniformizer of K ,,_,,, and as [u];
is invertible, [u]f(b,_.,) is also a uniformizer of K ,_,,. In particular, as K ,,_,,,/ K, is to-
tally ramified, v([u](bn—m)) = [Krn-m : Krn] = ¢". Now note that F¢(X,Y) = X +Y +
XYG(X,Y) for some G(X,Y) € Og[[X,Y]]. Therefore,

(bn) = bp = Fy(bn, [u] ;(bn-m)) = bn = [u] §(bnm)+ bultl (b )G (b, [u] £ (brn)) -

~~
divisible by by, - [u] £ (b, —sn)

Therefore, v(o(by,) — bn) = v([u]f(bn—m)) = ¢"", as desired. O

Theorem 10.12 (Generalized local Kronecker—Weber theorem). For any uniformizer m € K,
K = K™K

Proof. The proof is exactly the same as the proof of the local Kronecker—-Weber theorem. U

Remark 10.13. It is interesting to note that K" and K™ does not depend on any choice but K,
does; we will see in the moment what this corresponds to on the norm group side.

We will now show that the Explicit class field theory, i.e. the generalized Kronecker—Weber
theorem, helps with clarifying the local class field theory. In fact, our goal is to show that we can
explicitly construct the local Artin reciprocity map. The key is the following lemma.

Lemma 10.14 (Lubin-Tate formal group laws become isomorphic over l/(E) Let K™ be the
completion® of K™. Then, for any uniformizers 7,7’ € K and f € F,, f' € Fu, Fy and Fy
become isomorphic over K™*. More precisely, the following are true.

SWherL you take an infinite extension of a local field, it generally loses the completeness property. For example,
K" and Q, are not complete. Taking completion respects the original topology, so the infinite Galois group stays

the same, e.g. Gal(@/K) ~ Gal(K™/K), Gal(@/(@p) = Gal(Q,/Q,). The completion of the algebraic closure

of Qy, Qp, is also called C,,. It is not obvious but indeed true that the complete field C,, is also algebraically closed
(C, is the completion of the algebraic closure, so a priori it is not clear whether C, is algebraically closed, but in fact
it is). In some sense, C,, is the true p-adic analogue of the field of complex numbers C.

58



(1) Let v : K™ — 7 be continuously extended from v : K™ — Z and let O = {v €

Koroo v(z) > 0}. Then, the map Oz — Ojgan, b — Froby(b) — b, and the map

0% — O, b > Froby(b)/b, are surjective with the kernels equal to Ok and O,

respectzvely

(2) Let ' = um foru € Oy, and lete € Oz be such that Frob,(e) = ue (which exists by (1)).
Then, there exists a unique power series 1. € Oz [[X]] satisfying the following conditions.
(a) .(X) =X (mod X?).
(b) Frobg(1:)(X) = 1. ([u] (X)), where Frob, acts on O [[X]] coefficientwise.
(¢) Froby(ve)(f(X)) = g(=(X)).
(d) Ye(Fr(X,Y)) = Fy(¢e(X), (V).
() Ve([alf (X)) = [aly(¢=(X)) for any a € Ok.

Thus, Iy and Fy, are isomorphic over Oz by . : Fy & Fy: 1.

Proof. (1) Let mgnr C Ognr and mi C Ok be the maximal ideals. To show (1), it suffices to
show that, for each n > 1, the sequences

b—Frobg (b)—

O — OK/m?( — OKIlr/m,r;(nr OKnr/mKnr — 0

n n b—Frobg(b)/b
1 — (OK/mK)X — (OKnr/me)X

are exact, as Ognr = IL O /M. We prove these by induction on n. In the case of
7 besb? TX bb™

n—lthesequencesare()—>k‘—>k54)k—>0and1—>k’X—>k LnLAEENY e
where £ is the residue field of K (=residue field of K™"), and they are obviously exact.
Assuming the sequences are exact for n — 1, we consider the diagrams

(Oenr [miens)™ = 1,

O —_— OKnr/mKnr I OKnr/mKnr _— OKnr/mKnr E—— 0
l b—Frobg(b)—b l b—Frobg(b)—b l b—Frobg(b)—b

) —— OKnr/mKnr —_— OKm/m}‘(m —— (Qf(nr/‘('f'anim1 - 0,

]- (]- + mKnr)/mKnr _— (OKﬂr/m’r[L(nr) (OKHT/mKnr) —_— ]_
l L b—Frobg(b)/b l b—Frobg(b) /b
1 — (1 + mjcr) /mfen —— (O /Mene ) —— (Openr /M ) —— 1.

What is the left vertical map of the second diagram? It sends 1 + z, * € mj.!, to

Fm}i‘ﬂfiﬂ) = 1+Fﬁ;‘1( ) As(1+2)(1—2) =1—22 = 1 (modmgm), the left ver-
tical map sends 1 + = to (1 + Frob,(z))(1 — ) = 1 + (Froby(x ) z) (mod m¥.,).

b—Frobg (b)—

Therefore, by the snake lemma, it follows that O gar /m’.. o feor /M and
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brsFrobg (b) /b
(Oknr W)™ Toba 0)/ (Ognr /iy )™ are surjective, and the kernels are of the order

q¢"and q(¢" ' — ¢ = ¢" — "', respectively. By comparing orders, we see that the
exact sequences are exact for n, as desired.

n72)

(2) We will inductively find the coefficients for ¢.(X) = >~ | ,,X"; we already have a; = e.
Let [u](X) = > 77 | b, X", where b; = u. Suppose that we know a1, - - - , a,. Then, using
(b), comparing the coefficients for X ntl we have

Frob,(an+1) = ant1u + (an expression using a4, - - - , a,, and b;’s).

Then, Frob,(a,1167!) — a,1167" = (an expression using ay, - - - , a, and b;’s), so defi-
nitely you can choose a,,; in the way that (a), (b) are satisfied.

Let 1 be any formal power series that satisfies (a), (b). Let h(X) = Frob,(¢)(f (v~ 1(X))),
where 1)~1(X) is the inverse of 1)(X) (i.e. ("1 (X)) = 1 (¢(X)) = X), which is pos-

sibleas 1)(X) = eX (mod X*). Note that h(X) = ¢([u];(f (¢ ™"(X)))) = ¢ (f ([u]s(v71(X)))).
As f(X) and [u];(X) have coefficients in Ok, they are fixed by the action of Frob,. Thus,

Frobg(h)(X) = Frob, (v)(f ([u] s (Froby(¢~")(X)))).
Note that Frob,(¢)(X) = ¢ ([u] (X)) implies that [u] ;(Frob,(¢1)(X)) = ¢~ *(X), so

Frobg(h)(X) = Frob,(¢)(f (¥~ (X))) = h(X).

This implies that 2(X) € Ok[[X]]. Note that h(X) = Frob,(e)me ™' X = 7'X (mod X?)
and h(X) = Frob,(¢)(¢1(X)?) = Frob,(¢) (¢ 1(Xq)) Xq (modmg), so h € F.
Then, it is easy to see that ¢.(X) = [1],, ( (X)) satisfies (a), (b), (c). Using Lemma

sati
10.7, one can also easily show that ¢ (F (71 (X ) —1HY))) satlsﬁes the same character-
izing properties as Fy(X,Y’), and that 1. ([a ] (¥71(X))) satisfies the same characterizing
properties as [al,, so 9. satisfies (4) and (5).

U

Theorem 10.15 (Explicit local class field theory via Lubin-Tate extensions). Let K be a local
field, and let 7 € K be a uniformizer. Then, the local Artin map Arty : K* — Gal(K?*/K) is the
same as the map

fr i KX =% x O = Gal(K™/K) x Gal(K, /K) = Gal(K*/K),

where the two maps 1° — Gal(K™/K) = Gal(k/k) (k is the residue field of K, #k = q) and
Oy = Gal(K,/K) are the maps m — Frob, (i.e. Frob, € Gal(k/k) sending x + 29) and the
inverse of the O -action map, i.e. u — [u™']; (for any f € F), respectively. In particular, f.

does not depend on the choice of 7.

Proof. By Theorem 10.8(4), we know that Art x (1) is trivial when sent to Gal(K** / K) — Gal(K,/K),
and is Frob, € Gal(K™/K) when sent to Gal(K™/K) — Gal(K™ /K). Therefore, Arty(m) =

Jx (7).
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Let 7' € K be another uniformizer. We want to show that Arty (7’) = fr(7’). As we know
that they are both sent to Frob, € Gal(K™/K) via Gal(K*/K) — Gal(K™/K), we only
need to show that f,(7') is sent to 1 via Gal(K®/K) — Gal(K,//K). Let g € F and 9. :
Fy — F, be an isomorphism over K™ constructed in Lemma 10.14(2). It suffices to show that
Jx(7)(e(b)) = 1.(b) for every b € mgsen[f°"], n > 1. Note that fr(7") = fo(u) o fr(7). As
f=(m) acts trivially on b € K and acts as Frob, on K™, f.(7)(1:(b)) = Frob,(¢:)(b), as 1. has
coefficients in O ;. Therefore, f,(7')(¢-(b)) = fr(u)(Frob,(¢.)(b)). As f, acts trivially on K™

Knr
and acts as [u™']; on b € K, we have

Fr (@) (b)) = fr(u) (Froby(v:) (b)) = Frobg(vhe) ([u (b)) = e ([u]s([u™]¢(X))) = 1=(X),

as desired. This implies that Arty (7') = f(7’) for any uniformizer 7' € K. As any element of
K* is of the form 7'7" for some uniformizer 7’ and m € Z, this implies that Artx = f;. U

Remark 10.16. We see that the choice of 7 is reflected on the norm group side as the dependency
of the splitting K* = 7% x O} on the choice of 7. Namely, there is a short exact sequence
1 - Of — K* 2 Z — 0 that does not depend on any choice, but this sequence splits, and
the choice of a splitting is the same as the choice of a uniformizer 7, and ultimately the choice of

X _ 7 X
K* =7" x Og.

The construction of the local Artin reciprocity gives you a very clean description of the norm
groups of the Lubin-Tate extensions.

Corollary 10.17. Let K be a local field, and 7 € K be a uniformizer. Then Ny, /x(K),) =
72 x (1 4+ 7"Of). In particular, for uniformizers m, 7' € K, K, = K, implies that T = 7',

Proof. The former statement is immediate from the construction of the local Artin reciprocity.
The latter follows from that 7% = |-, Nx, ,./k (K),) = U, Nk, k(K5 ) =77 O

™n

Now we can finish all the unproved claims about the local class field theory.

Proof of Theorem 2.7, the Local Existence Theorem. The Local Existence Theorem is equivalent to
saying that Arty restricted to O} is sent isomorphically onto the inertia Gal(K?"/K™) C
Gal(K?"/K), which is obvious from Theorem 10.15. O

Proof of Theorem 2.9, on the relation between ramification and local Artin map. This follows from
the calculation of the upper numbering ramification subgroups of K (Theorem 10.11) and the
fact that ramification subgroups only care about inertia subgroup (so indifferent to unramified
extensions). O

11. ANALYTIC PRELIMINARIES FOR THE PROOF OF THE GLOBAL CLASS FIELD THEORY

The proof of the class formation axioms for global fields (let’s focus on number fields) is much
more convoluted. In fact, the two class formation Axioms will be proved simultaneously by much
more indirect methods. A rough outline is as follows.
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Step 1. For L/ K afinite cyclic Galois extension of number fields, we will show that the Herbrand
quotient h(Cr) = [L : K]. This implies the First Inequality of global class field theory,

#£H(Gal(L/K),Cy) > L : K].

Step 2. Using the analytic theory of L-functions, we will show that, for a finite Galois extension
L/K of number fields, the Second Inequality of global class field theory,

#H(Gal(L/K),Cp) < [L : K]

This implies that H'(Gal(L/K),C) = 0 and #H?*(Gal(L/K),C) = [L : K] for finite
cyclic extensions L/ K of number fields.

Step 3. One shows that H'(Gal(L/K), C},) = 0 for just finite cyclic extensions L/K implies the
full Axiom 1 (i.e. the same holds for any finite Galois extensions).

Step 4. Using the Brauer group of number fields, we will show the full Axiom 2. This will prove
the reciprocity law and the local-global compatibility.

Step 5. As usual, one proves € more to prove the existence theorem.

The Second Inequality is arguably the most serious input in the proof of global class field theory.
Although there is a purely algebraic proof, we will deduce this in a more classical way by using
the analytic theory of L-functions.

11.1. L-functions.

Definition 11.1 (Multiplicative characters of local fields). Let F' be a local field. A (multiplica-
tive) character of F'* is a continuous homomorphism ¢ : F'’* — C*. It is called unitary if the
image of ¢ lands in S' C C* (the subgroup of complex numbers of norm 1). It is called unram-
ified if ) factors through the normalized absolute value (see Definition 6.4) | - | : F'* — |F*]|.
Namely, if F' is nonarchimedean, v is unramified if (Oy) = 1; if ' = R, ¢ is unramified if
(£1) = 1;if F = C, ¢ is unramified if ¢)(S') = 1.

The following are easy.

Lemma 11.2. Let F' be a local field.

(1) Every character x of F* is of the form x = n| - | for some unitary character n of F* and
t € C. The real part o := Re(t) is uniquely determined by x and is called the exponent of

X-

(2) Every character of R* is equal to X o1 : R* — C* defined by x,.(x) = 2% z|* for a unique
pair ofa € {0,1} andt € C.

(3) Every character of C* is equal to X+ : C* — C* defined by xap:(2) = 272 7°|z|" fora
unique triple of a,b € 7Z with min(a,b) = 0 andt € C.
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Proof. Easy; Exercise. U

Definition 11.3 (Hecke characters). Let K be a global field. A Hecke character (also called an
idele class character) is a continuous homomorphism x : Cx — C*. Equivalently, a Hecke
character is a continuous homomorphism y : Ix — C* that is trivial on K* C [k. For a place
v of K, let X, = X|xx, which gives a multiplicative character x,, : K;* — C* of K.

A Hecke character y : Cx — C* is unitary if its image is in S C C*.

A Dirichlet character is a Hecke character of finite order, i.e. when the image is a finite
group. By Proposition 7.11(3), any Dirichlet character x must factor through Cy — CI™(K) for
some modulus m. The largest such modulus m is called the conductor of x, and denoted f,.

Lemma 11.4. Let K be a global field. Then, any Hecke character x is of the form n| - |* for some
unitary Hecke character n and t € C (for the definition of | - | : Cx — Ry, see the proof of
Proposition 6.14). The real part o := Re(t) is uniquely determined by x and is called the exponent

of x.

Proof. We have xy = |§—||>d O

Example 11.5. In analytic number theory, one often calls a character of (Z/mZ)* a Dirichlet
character mod m. This fits into the general definition of Dirichlet character defined here, for
K = Q, as we already saw that Cy = 7> x Ry. Therefore, a character (Z/mZ)* — C* can be
regarded as a finite order character of Cy by Cp = Z* x Rsg — 2% — (Z/mZ)* — C*. One
may see that, if you started with a primitive Dirichlet character (i.e. a character of (Z/mZ)*
that does not come from a character of (Z/nZ)* for some smaller n|m), then the corresponding
finite order Hecke character has the conductor moo.

An L-function of something is a holomorphic function that contains a lot of information
about that thing. The definition of the L-function of a character is as follows.

Definition 11.6 (Local L-factor). Let F' be a local field, and let y be a character of /. Then, the
local L-factor L(s, x) is a holomorphic function in variable s, defined as

1 if F' is nonarchimedean (uniformizer 7, residue field ), x is unramified

1—x(m)g—*
L(s, x) = 1 if F' is nonarchimedean, Y is ramified
7X . 7T_t—gsI‘(th) ifF:R,X:X(Lt

2(277)*(”5)11(15 +s) fF=C,x=Xapt

Here, I'(s) is the Gamma function, I'(s) = [ t*"*e"dt (or rather its analytic continuation).

This definition is somewhat mysterious, and will be justified a few lectures later. It is easy to
observe that L(s, x| - |") = L(s + t, ).

Theorem 11.7 (Analytic continuation and functional equation of Hecke L-functions). Let K be
a global field, and let x be a Hecke character of K of exponent o.
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(1) (Euler product’) Then, the infinite product
L(S7 X) = H L(S7 XU)’
v place of K
converges and defines a holomorphic function on {s € C : Re(s) > 1 —o}.
(2) (Analytic continuation) This admits an analytic continuation as a meromorphic function
(called the Hecke L-function of x) defined on the whole complex plane s € C. In fact, this

analytic continuation is entire unless x = | - |', in which case simple poles appear at s = —t
ands =1—t.

We also define Ly (s, X) = I, fnite place of e L(5> Xv) and call it (or rather its analytic contin-
uation) the finite part of the Hecke L-function of x.

(3) (Functional equation) Let x~' be the inverse of x (i.e. x *(z) = ﬁ) Then,

L(s, x)

e(s, x) = m,

is a nowhere vanishing entire function on s € C, called the global e-factor. In fact, the
global e-factor is given by an explicit infinite product (Euler product) of local terms, called

the local e-factors:
(s, x)= [ elsx).
v place of K

In general, €(s,x,) = ac® for some a,b € C. Also, if v is a finite place at which ., is
unramified, €(s, x,) = 1 (so the above infinite product is actually a finite product).

Remark 11.8 (Dirichlet L-functions). Let y be a Dirichlet character. In particular, the exponent
o = 0, and x can be regarded as a character of a ray class group CI"(K) for some modulus m.
By absolute convergence, if Re(s) > 1, one can alternatively write L (s, x) as

Lis, )= JI  @+xmNE=+x@?*NEp)™>+-)= ]] ]Q((a)

)
a)s
pC Ok prime ideal aCOk ideal ( )

which is perhaps a more familiar definition of a Dirichlet L-function. Here N(a) := #Ox/a
(see [ANT]).

This is a much much more general version of the analytic continuation and the functional
equation of the Riemann zeta function. One can of course give a similar proof as the Riemann zeta
function case, but this can all simultaneously be proved very cleanly using Fourier analysis over
the adeles (?!) and is generally called the Tate’s thesis. We will prove Theorem 11.7 following
the Tate’s thesis later in the course. It does not use class field theory, so we will just assume
Theorem 11.7 at the moment (alternatively, we only need the analytic inputs for Dirichlet L-
functions for the proof of Second Inequality, and you can definitely elementarily prove the
analytic continuation and functional equation for Dirichlet L-functions).

9An Euler product is a general term that refers to an infinite product running over each place of a global field.
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Example 11.9. Let K = Q and yx be trivial (i.e. x(x) = 1 for all z € Cg). Then, the Euler
product in Theorem 11.7 is

1 _s (S
Lisx) =[] T L(s,x) = Lg(s,x)m 2T (§> :
p prime number p
Thus, Ly(s, x) is the Riemann zeta function ((s) and L(s, x) is the completed Riemann zeta
function £(s). The functional equation for the Riemann zeta function is {(s) = £(1 — s) (so the
global e-factor is just 1).

11.2. Analytic inputs: nonvanishing of L;(1, x) and analytic class number formula. We
record the two main sources of the “analytic input.” The first is

Theorem 11.10 (Nonvanishing of L¢(1, x)). If x is a nontrivial Dirichlet character of a global field
K, then L¢(1,x) # 0.

We will not prove this here. This can be proved purely analytically right away (e.g. see [CF,
VIIL.2]). Alternatively, one can deduce this from a softer fact after showing (*) for the global
existence theorem (!). For example, after showing (*), one can show Theorem 11.10 (when K is a
number field) from the analytic class number formula, which is the second “analytic input”.

Definition 11.11 (Dedekind zeta function). Let K be a number field. The Dedekind zeta func-
tion is

a priori defined only for Re(s) > 1.

Theorem 11.12 (Analytic class number formula). Let K be a number field. Then, the Dedekind
zeta function (k (s) has an analytic continuation to a meromorphic function on the whole complex
plane s € C, with only simple pole at s = 1. Furthermore, the residue at s = 1 is given by

2"(2m)°Rih
lim(s — 1)Cie(s) = o) Hache_
o i1/ [ disc(K)
where:
e 1 is the number of real embeddings of K, enumerated as o1, - - - , 0y,

e s is the number of complex-conjugate pairs of complex embeddings of K, enumerated as
{0r+17 Ur+1}7 Ty {O-r+sa 0r+s},

o hy = # CI(K) is the class number of K,
® L is the (necessarily finite) group of roots of unity in K,
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o Ry isthe regulator of K, defined as

log |0y (u1)] logloy(uz)| -+ loglon(uris—1)]
Ry = |det log |UT(U1)| log |Ur(u2)| Y log |O-r(ur+s—1)|
2 log |0r+1 (ul)| 2 log |0r+1 (u2)| U 2 log |0r+1 (ur+s—l)| ’
2 IOg |0-r+sfl(u1>| 2 log |O-r+sfl(u2>| e 2 lOg |O-r+sfl(ur+sfl)|
where uy, -+ ,u,+s—1 € O is a fundamental system of units of K, i.e. O = g x
uf x -+ x uZ_,_, (this is the Dirichlet’s unit theorem).

Namely, you can express a certain product of L¢(s, x)’s using the Dedekind zeta function
1 (s) for an abelian extension L of K, and (*) will guarantee that every L¢(s, x) appears in some
such expression. The fact that there is a simple pole at s = 1 implies that L (s, x) for x # 1 does
not vanish at s = 1. We won’t also prove this. The proof of the analytic class number formula is
certainly “less heavy lifting” than the proof of Theorem 11.10.

11.3. Primes in arithmetic progressions. It is a classical topic taught in elementary analytic
number theory that the non-vanishing of L;(1, x) for x # 1 implies the Dirichlet’s theorem
on primes in arithmetic progressions, namely that there are infinitely many prime numbers
congruent to a (modn) for any (a,n) = 1 (see [ANT, Exercise 18.2]). In fact, the proof says
that the prime numbers are equally distributed among each congruence class a(modn) with
(a,m) = 1 in an appropriate sense. One can deduce a similar conclusion in the current context.

Definition 11.13 (Dirichlet density). Let S be a set of prime ideals of K (i.e. finite primes). If

there exists > 0 such that (ZpES W) — dlog ﬁ is bounded as s € R approaches s = 1

from the right, then we say that 0 := 6(.5) and S has Dirichlet density 0.
Lemma 11.14. The set of all prime ideals of K has Dirichlet density 1.

Proof. Note that, for Re(s) > 1 (everything is absolutely convergent so we can freely change the
order of summation),

)—ms

N
loxCe(e) =~ Yl - N =3 Y (M
p prime ideal m2>1 p prime ideal

It is easy to see that >, > (—1)’”% is bounded above by an absolute constant.
r 1 N(p)

Namely, this is obviously bounded by 3" <o > Limeigea V(P) ™™ = 2, prime ideat o Mo <

2 Zp prime ideal W, and for each rational prime p € Z, there are at most [K : Q] many prime ideals

of K dividing p, so this is bounded by 2[K : Q] > 5 <2[K:Q Y s = K

p prime number p2 3
1

So, log (e (s) and 3 e ideal (e is off by at most this constant. By the analytic class number

formula (Theorem 11.12), ( () has a simple pole at s = 1, so this implies that log (x (s) —log =5
is bounded as s € R approaches s = 1 from the right. This shows that the set of all prime ideals
of K has Dirichlet density 1. U

p prime ideal
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The following is the generalization of the Dirichlet’s theorem on primes in arithmetic pro-
gressions.

Theorem 11.15 (Prime ideals in arithmetic progressions). Let K be a global field and m be a
modulus of K. Let a € CI™(K) be an element. Then, the set of prime ideals p of K such that p does
not divide m and [p] = a in C1™(K) has Dirichlet density W‘(K)

Proof. The same argument as in Lemma 11.14 shows that, for any Dirichlet character y of con-

ductor m,
x(p
oLy~ Y P

p prime ideal not dividing m

is bounded as s € R approaches s = 1 from the right. We now use the elementary identity that

#CINK) if[p] =a

> xﬂ@x‘(a)Zi{O i ]

X character of C1™(K)

LN
S

Thus,

#01;‘“([() Z x '(a)log Ls(s,x) | — Z

x Dirichlet character of modulus dividing m p prime ideal not dividing m, [p] = a in CI™(K)

N(p)*’

is bounded as s € R approaches s = 1 from the right. By the nonvanishing of L(1, x) for x # 1
and Lemma 11.14, we see that

_ 1
> X "'(a)log Lg(s, x) —log —,
x Dirichlet character of modulus dividing m
is bounded as s € R approaches s = 1 from the right. This gives the desired conclusion. U

Example 11.16. Applying this to K = Q and m = noo, we recover the density statement for
prime numbers = a(modn); recall that CI™(Q) = Gal(Q(¢,)/Q) = (Z/nZ)*, and a prime
number p gives rise to a class p € (Z/nZ)*. This is why Theorem 11.15 is a generalization of the
Dirichlet’s theorem on primes in arithmetic progressions.

Remark 11.17 (On the notion of density). The notion of Dirichlet density is somewhat artificial.
More natural notion of density of S (called the natural density) islim,, . #gz {F;Jrgﬁfr;‘:eizljaﬁ‘?\}g)(’;ﬁ"}
It is indeed true that the above theorems hold even if you replace the Dirichlet density with
the natural density, but the proof requires a further argument; a set with natural density ¢ has
Dirichlet density ¢ (this again requires the analytic class number formula), but the converse is
not necessarily true. One general tool you could use is the Tauberian theorem, which gives an
asymptotic of Y. _ a,, as n — oo from the behaviour of the holomorphic function }_°_, %=

m=1 ms
as Re(s) — 1T.

m<n
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11.4. Density of splitting primes, and the Second Inequality of global class field theory.
The density theorem we discussed in the previous subsection happened in the ray class group.
There is an analogous density theorem in the other side of the class field theory, on the Galois side.
A type of set of prime ideals whose measure we are interested in is: given a finite Galois extension
of L/ K and a conjugacy class C C Gal(L/K), the set of prime ideals p C Ok unramified in L
and Fr, = C. We will see that we have an expected answer, that the Frobenii of prime ideals are
equally distributed among the elements of Gal(L/K). This is called the Chebotarev density
theorem. This will follow as a consequence of global class field theory, so we are not proving it
here.

A small special case of the Chebotarev density theorem, however, can be proved here, and will
yield the so-called Second Inequality of global class field theory which is a crucial ingredient
for the ultimate proof of the global class field theory. Note that, retaining the above paragraph’s
notations, asking Fr, = id is exactly the same as asking p to split completely in L. More generally,
if L/ K is a finite extension and M /K is its Galois closure, then for a prime ideal p C Oy that is
unramified in L, it is automatically unramified in M (this is because M is the compositum of all
conjugates of L in M, and p is unramified in any conjugate of L), and p splitting completely in
L is equivalent to p splitting completely in M (by the same reasoning), so p splits completely in
L if and only if Fr, € Gal(M/K) is the identity. We can now see why the following statement is
a special case of the Chebotarev density theorem.

Proposition 11.18. Let L/K be a finite extension of number fields, and let M /K be its Galois
closure. Then, the set of prime ideals of K splitting completely in L has Dirichlet density ﬁ

Proof. By the paragraph right before this, we may assume that /K is already Galois to start
with. Let S be the set of prime ideals of K splitting completely in L, and let 7" be the set of
prime ideals of L lying over those in S. Let U be the set of prime ideals ¢ C Oy, such that it is
unramified over K and its residue field Oy, /q is a prime field (i.e. F,, for a prime number p, not
a prime power). Then, U C T; for q € U, if p = q N Ok, then f(q|p) = 1 because there is no
possibility for a residue field extension because Oy, /q is as small as possible; as e(q|p) = 1 by
definition and L/ K is Galois, p splits completely in L.

I claim that U has Dirichlet density 1. Assuming this, the statement easily follows Namely, as

U has Dirichlet density 1, 7" must have Dirichlet density 1. This means ) | qeT N —log ( ) is
bounded as s € R appraches to s = 1 from the right. The sum can be written as Zpe > alp N(q
However, as each p € S splits completely in L, there are exactly [L : K] many q d1V1d1ng P, and

N(q) = N(p) for all such q|p. Therefore, this means [L : K| _ ¢ N(lp log (%) is bounded

as s € R approaches s = 1 from the right, or that S has Dirichlet density TR K].
Now we are left with proving the claim. As there are only finitely many ramified primes, it
suffices to prove the following.

Lemma 11.19. Let K be a number field. Then, the set B of prime ideals p of K whose absolute
residue degree'® is > 1 has Dirichlet density 0.

For a prime ideal p of K, the absolute residue degree is f(p|p), where p € Z is a prime number such that
pZ = p N Z. For example, p has absolute residue degree 1 precisely when Ok /p is a finite field of prime order.
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Proof. Note that, for every prime number p € Z, there are at most [K : Q] many prime ideals of
K dividing p. Also, for p € N(p) with p|p for a prime number p € Z, N(p) = p/*IP) > p2. Thus,

o0

1 K:Q K:Q
> Y s X %S;[T]’

p prime number pEB,p|p p prime number

which is absolutely convergent. Thus, we may rearrange the sum on the left, and deduce that

Zpe B ﬁ is absolutely convergent. This implies that the Dirichlet density of B is 0. U

U

Combining the two statements, we are now ready to prove the Second Inequality.

Theorem 11.20 (Second Inequality). Let L/ K be a finite Galois extension of number fields, and
let m be a modulus of K. Recall that S(m) is the set of primes dividing m. Let S'(m) be the set of
primes of L lying over those in S(m). Then,

[TR™ s K™INp e (] ™) < [L: K],

where Np /¢ - Jfl(m) — Jf((m) is the ideal norm, i.e. Np /i (q) = p/ @) for a prime ideal q of L lying
over a prime ideal p of K.
’ N

Proof. Note that the left hand side is the index [C1™(K) : H]| where H is the image of Jf (m) 27K,
J}S;(m) — CI™(K). By Theorem 11.15, the set A of prime ideals p of K coprime to m such that
[p] € H C CI™(K) has Dirichlet density m Let B be the set of prime ideals p of K that
is coprime to m and splits completely in L. By Proposition 11.18, B has Dirichlet density ﬁ

Note that if a prime ideal p of K coprime to m splits completely in L, then for any prime ideal
q of L lying over p, N7,/x(q) = p. Therefore, B C A. This implies that [01‘“&();H] > [L}K], which
is equivalent to the Second Inequality.

Corollary 11.21 (Second Inequality, Cohomological Version). Let L/K be a finite Galois ex-
tension of number fields. Then,

#H2(Gal(L/K),Cp) < [L: K].
Proof. Note that N, (C') is a finite index subgroup of C, so it in particular contains U (m) for
some modulus m. Then for this modulus this follows from the Second Inequality in the original
form. U

Remark 11.22. There is an algebraic proof (i.e. not using any analytic tools) of the Second
Inequality due to Chevalley, e.g. [Mil, VIL6] (in loc. cit., only the case of L/K cyclic of prime

degree is proved, but we will see that this is enough for the verification of class formation axioms).
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12. GLOBAL CLASS FIELD THEORY: VERIFICATION OF THE CLASS FORMATION AXIOMS + €

12.1. Relaxing the class formation axioms. Recall the two Axioms for the class formation in
our setup.

Axiom 1. For any finite Galois extension L/K of number fields, H!(Gal(L/K),C}) = 0.

Axiom 2. For any finite Galois extension L/K of number fields, there is the invariant map

1
L : K]

invy,x : H(Gal(L/K),Cr) = Z|Z,

compatible with inflation and restriction.

We only have the Second Inequality, which says about the upper bound on the order of H3.
This is very far from Axiom 2, because

e it is about H2 and not H? (although if L/K is cyclic then H? = H? by periodicity),
e it is about the order and not the group structure,
e and it only gives an upper bound.

So we might say that the Second Inequality gives an extremely small part of Axiom 2 for cyclic
extensions. We want to leverage onto this. The first observation is as follows.

Lemma 12.1. Axiom 1 of the class formation axioms is equivalent to:
Axiom 1’. For any finite cyclic extension L/ K of number fields, H'(Gal(L/K),Cy) = 0.

Proof. Itis obvious that Axiom 1implies Axiom 1’. Conversely, Axiom 1’ implies that ' (Gal(L/K),Cp) =
0 for any finite solvable extension L/ K, because you can find a finite filtration L = Ky /K,/--- /K, =
K where each K;/ K, is cyclic, and then use the inflation-restriction exact sequence

0 — HY(Gal(K;11/K),Ck,,,) = H(Gal(K;/K),Ck,) — H (Gal(K;/K;;1),Ck,) =0,

i+1
to inductively show that H'(Gal(K;/K),Ck,) = 0 for all i.

To go from solvable to general finite Galois, we use a similar technique as in the proof of
Tate’s theorem (Theorem 5.2), that we use p-Sylow groups. Namely, the same argument shows
that, for any finite group G and a G-module )/, if we choose a p-Sylow subgroup G, for every
prime number p (we only need to do this for finitely many prime numbers p), then

Res: Hi(G,M) - [] HiG, M),

p prime number

is injective. Applying this to our setup, given a finite Galois extension L/K, we can choose
L/K,/K for any prime number p such that Gal(L/K,) < Gal(L/K) is a p-Sylow subgroup. As
L/ K, is solvable (any p-group is solvable!), Axiom 1’ implies that H'(Gal(L/K}),Cr) = 0. The
above observation then implies that H'(Gal(L/K), Cy) = 0, which is Axiom 1. O
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Remark 12.2. The above proof shows that, if we wish, we can further reduce to checking H! = 0
for finite cyclic extensions of prime degree, a small improvement which we won’t take advantage

of.

What is interesting about this relaxation is that we can use Herbrand quotient. Namely, sup-
pose we care only about computing the order in the cyclic case. By the Second Inequality,
we already know that #H%(Gal(L/K),Cr) = #H2%(Gal(L/K),C) < [L : K]. In addi-
tion to this, if we show that the Herbrand quotient h(Cy) = [L : K], then this will simulta-
neously show that #H*(Gal(L/K),Cr) = 1 and #H2(Gal(L/K),Cr) = [L : K], because
L : K] > #H2(Gal(L/K),Cr) = h(Cp)#H+(Gal(L/K),C) > h(Cr) = [L : K], so the
equality is achieved everywhere! We can summarize our findings as follows.

Lemma 12.3. Axiom 1 and Axiom 2 of the class formation axioms, for F = Q and A = C :=
@K wumber fied Ck, are implied by the following rather different set of Axioms.

e (First Inequality") For a finite cyclic extension L/ K of number fields,

e (Second Inequality) For a finite Galois extension L/ K of number fields,
#H)(Gal(L/K),Cp) < [L : K].

e (“Big Regular Part”"?) For a Galois extension of number fields L/ K, there exists a subgroup
H?*(Gal(L/K),CL)wg C H*(Gal(L/K),CL), whose elements are called regular, and a
homomorphism

invL/Kreg : HQ(Gal(L/K), CL)reg — Q/Z,

_1
[L:K]

pected way. Namely, given a subextension L/M/K, Res on H? of Cy, restricts to Res :
H*(Gal(L/K),CL)weg — H*(Gal(L/M),CL)req, and given a tower of Galois extensions
L/M/K, Inf on H? restricts to Inf : H*(Gal(M/K), Cpt)reg — H*(Gal(L/K), CL)req-

Furthermore, the following diagrams commute,

such that im(invy )k reg) O Z]Z. This map interacts with Inf and Res in an ex-

H2(Gal(L/K), Cp)reg —=> H2(Gal(L/M), CL)req
Q/z o [M:Kz Q/Z.
H2(Gal(M/K), Cap)res —> H*(Gal(L/K), CL)reg
Q/Z — Q/Z.

UThis statement is called an inequality because this implies that #H?(Gal(L/K),C) > [L : K] for cyclic
extensions L/K.
12This is not a standard terminology (there is no standard short name for this result).
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Proof. By the Second Inequality and the periodicity, for a finite cyclic extension L/K, we
see that #H7(Gal(L/K),C) < [L : K|. By the paragraph preceding this, together with
the First Inequality, we obtain that #H'(Gal(L/K),C) = 1 (which is Axiom 1°). and
#H*(Gal(L/K),C) = [L : K|. By Lemma 12.1, we have Axiom 1. Now that we have Ax-
iom 1, we have the inflation-restriction exact sequence for H>2. By the exactly same argument
as in Lemma 12.1, we see that # H?(Gal(L/K),C) < [L : K| for any finite solvable extension
L/K. Furthermore, we know that Res : H*(Gal(L/K),Cy) — [T, prime H*(Gal(L/K,),Cy) is
injective, where Gal(L/K,) < Gal(L/K) is a Sylow p-group, by the solvable case, we know that

#H*(Gal(L/K),Cy) < [[#H*(Gal(L/K,),Cp) < []IL: K] = [L: K],

p p

which shows that # H?(Gal(L/K),Cr) < [L : K| for any finite Galois extension L/K. On the
other hand, the “Big Regular Part” implies that # H*(Gal(L/K), C) > #H?*(Gal(L/K), CL)reg >
#im(invy /g reg) > [L : K. Therefore, we know that

[L: K] > #H*(Gal(L/K),Cr) > #H*(Gal(L/K), Cp)reg > #im(invy g reg) > [L 1 K],

so the equality is realized everywhere. This implies that H?(Gal(L/K),C1) = H*(Gal(L/K), CL,)seq
and invy, /g reg is an isomorphism onto ﬁZ/ Z. The two commutative diagrams ensure that
the invariant map we have satisfies the compatibilities required in Axiom 2. This finishes the

proof. U

Remark 12.4. The above proof shows that, if we wish, we can relax the First Inequality and the
Second Inequality to checking them only for finite cyclic extensions of prime degree, a small
improvement which we won’t take advantage of.

We have already obtained the Second Inequality (Corollary 11.21), so we are left with ob-
taining the First Inequality and the “Big Regular Part”.

12.2. The First Inequality of global class field theory. Let L./ K be a finite cyclic extension
of number fields. We want to compute the Herbrand quotient 2 (C7). The first guess is to use the
short exact sequence

1— L =1, —C,—1,

and use the Herbrand quotients of L* and ;. However, if you try to calculate, you will realize
quickly that the Herbrand quotient of L™ does not exist because the Galois cohomology groups
are infinite.

Example 12.5. Let L = Q(i) and K = Q. Then, H)(Gal(L/K), L*) = Q*/No),0(Q(#)*).
However, you know that a prime number is a norm from Q(7) if and only if it is either 2 or
= 1 (mod 4). Therefore, you see that

H2(Gal(L/K), LX) = {£1} x 1T ARYA

p prime number =3 (mod 4)

which is an infinite group.
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However, there is a surprising consequence of the finiteness of class number.

Lemma 12.6. Let L be a number field. Then, there exists a finite set of places S of L, including all
infinite places of L, such that I;, = I gL*.

Proof. Recall that I, g is the group of ideles whose v-components are in O} forallv ¢ S. Namely,
Ins = I1,¢s Or, % [1,es L - Note that, in terms of the notation introduced in Proposition 7.11,
U(my) = I s, , where Sy is the set of all infinite places of L, and my is the empty modulus (see
Example 7.10). Therefore, C1(L) = I,/ 5., L*, which is a finite group, by the finiteness of class
number. Therefore, there are finitely many ideles a4, - - - , v, € I, that generate I, /I, g, L*. For
each idele a;, there are only finitely many places v of L at which |«;|, # 1. Gathering all such
places for each «; and adding to S, we obtain a finite set of places S where I, s > a3, -+, .
Therefore, IL/IL’SLX = 1, or IL = IL,SLX. O

Therefore, we have a short exact sequence
1— L* m[L,S_>IL,S_>CL — 1.

Note that L* N I s = Of 4 (i.e. x € L such that |z|, = 1 for all v ¢ S, or equivalently, the
prime ideal factorization of (x) only involves primes appearing in S). Now I claim that h(/, s)
and (Oj ) are finite numbers'®, so that we can compute /(C,) from this short exact sequence.

Proposition 12.7. Let L/ K be a finite Galois extension of number fields. Let S be a finite set of
places of K that contains all infinite places of K and all places which ramify in L. Let T" be the set
consisting of all places of L that lies over S. Then,

h(Ipr) = []1Lw : K.,

veES

where the notation means that, for each v € S, we choose any place w of L that lies over v (the
degree [L,, : K, is independent of the choice of suchw as L/ K is Galois).

Proof. This follows from the computations of the cohomology of local fields. Namely,

H (Gal(L/K),Ir) = H' (Gal(L/K), [To: <11 Lé)

w¢T weT

=[[# | car/x). o5, | <[ & | car/x). [T L2

vgS wlv ves wlv

For each place v of K, choose w|v. Then, because L/K is Galois, any other w'|v arises as a con-

LX = IndSME/5) y Ly, and [T, OF, = IndS2HE/E) Oy . By Shapiro’s

jugate of w, so [ Gal(Lu /s Gal(Luw/Ky)

wlv

BWe already know h((’)f ) is a finite number by Lemma 4.4 because OZ; g is a finitely generated abelian group
(Theorem 12.9, Dirichlet’s unit theorem for S-units).
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lemma, we have

17 |Gaz/x).J]ox, | < [[H | Gaz/K). [ L

vgS wlv ves wlv

= [[ 2/ (Gal(Lu/K,), 05 ) x [ [ H (Gal(Ly/K,), L,).
vgS veS

By definition, if v ¢ S, this means v is unramified in L. Thus, L, /K, is unramified, so by
Proposition 4.17(1), H'(Gal(L,,/K,), O} ) = 0 for i > 0 whenever v ¢ S. Therefore, we have

H'(Gal(L/K), Iz) = | [ H'(Gal(Lw/K,), L}).

veS
By Theorem 4.14 and Theorem 4.20,
1 2 ~ 1
H'(Gal(L/K), Iz) =1, H*Gal(L/K), I.z) =] WZ/Z.
ves 7w T
This gives the desired result. O

We record one consequence of the above proof, which is the Galois cohomology of the ideles.
Corollary 12.8. Let L/ K be a finite Galois extension of number fields. Then,
1
1 _ 2 o~ ~ _
H'(Gal(L/K),I;) =1, H*(Gal(L/K),I,)= € Br(l./K)= P T K] 7.)7.,

v places of K v places of K
where the notation means that, for each place v of K, we choose any place w of L that lies over v.
Proof. This follows from a byproduct of the above proof,

1

HY(Gal(L/K),ILz) =1, HXGal(L/K), Ir) =[] e

veS

Z/Z,

and taking the direct limit over S by making S larger and larger. Note that the direct sum appears
as we are taking a direct limit (“union”), so any element in the direct limit must have nonzero
entries at only finitely many places. 0

Now we are reduced to computing the Herbrand quotient of unit group. We firstly record the
Dirichlet’s unit theorem for S-units.

Theorem 12.9 (Dirichlet’s unit theorem for S-units). Let K be a number field, and let S be a finite
set of places of K including all infinite places of K. Then,
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This is very much a direct consequence of the usual Dirichlet’s unit theorem (it is a special case
of the above statement when S is just the set of all infinite places of K, in which case #S5 = r+s
in the usual notation), whose proof you may find in [ANT]. More precisely, as in the proof of the
usual Dirichlet’s unit theorem, you consider the following map,

ks Ogg — R#S 2 (log|z]y)ves-

By the product formula, its image lies in the hyperplane H C R#° defined by

H:= {<tv)v65 : Ztv = O}

veS

Then, as in the case of Dirichlet’s unit theorem, the image LK,S(O[X(’S) is a lattice in H, and

ker lKg,s = (O[X{ﬁ)tors = UK.
Using this gadget, we are now ready to prove the following.

Proposition 12.10. Let L/K be a finite cyclic extension of number fields, and let S be a finite set
of places of K containing all infinite places. Let T be the set of all places of L lying over those in S.
Then,

O ) = g LIk s 1),

where the notation means that, for each v € S, we choose any place w of L that lies over v.

Proof. We consider the map ¢y, 7 : Of ; = R#" defined above. Note that this map is Gal(L/K)-
equivariant (i.e. ¢f, 7 is compatible with the action of Gal(L/K) on the source and the target),
if you define the action of Gal(L/K) on R#T by permuting the coordinates (i.e. the action of
o € Gal(L/K) is that the v-component is sent to the cv-component). The sum-zero hyper-
plane H C R#*" is obviously stable under the Gal(L/K)-action, and so is the image 1 7(O7 ),
which is a lattice in H. Consider the lattice £ C R*" generated by 11, 7(OF ;) and the vector
(1,1,---,1) € R#T, Then, L is stable under the Gal(L/K )-action (as (1,--- ,1) is obviously
stable under permutation of coordinates), so you may consider £ as a Gal(L/K)-module. Then,
L =1,7(0F 1) ® Zas Gal(L/K)-modules, so h(L) = h(Of 1)M(Z) = [L : K]h(OF ;). There-
fore, it suffices to show that h(L) = [, cg[Lw : K]
Now the key is the following lemma.

Lemma 12.11. Let G be a finite cyclic group, and V' be a R[G]-module which is also a finite-
dimensional R-vector space. Let Ly, Lo C V be lattices that are stable under the G-action. Then,
h(Ly) = h(Ls).

Proof. Let dimg V' = d and G = Z/nZZ. Abstractly this means that L,, L, are Z|G|-modules such
that L; ®z R = Ly ®z R as R[G]-modules. Let L; o := L; ®z Q, which is a Q[G]-module. As G
is a finite cyclic group, it is generated by a single element. Thus, upon choosing a basis of L; g,
this being a Q[G]-module means that there is a d x d invertible matrix 7; with coefficients in Q
(or T; € GL4(Q)) such that 7" = id. As L1 g ®g R = Ly g ®g R as R[G]-modules, this means
that, based on the choice of basis on both L; g, L2 g, there is an d x d invertible matrix M with

75



coefficients in R (or M € GL4(RR)) such that M'T} = Ty M. Consider the real vector space of d x d
matrices with real coeflicients, regarded as Rdz, with coordinates (11, -+ ,%4q), and consider
the subspace S C R% such that the matrix (@ij)1<ij<n satisfies (z;)1<ij<nTi = To(Tij)1<i j<n-
This means that x;;’s satisfy a system of linear equations where the coefficients are all rational
numbers. Therefore, S has a basis vy, - - - ,v,, such that, for each v;, all coordinates of v; are
rational numbers. Any element of S is expressed as Y ., y;v;, ¥; € R. Then, the determinant
of the matrix (z;;)1<; j<n is expressed as a polynomial in ¥, - - - , ¥, with rational coefficients,
which we denote P(y1, -+ ,ym) € Qly1,- -+ , ym). The fact that there is M € GL4(R) such that
MT, = Ty M means that there are real numbers 71, - ,7,, € R such that P(ry, -+ ,r,) # 0.
Therefore, the set of solutions {P(y1, -+ ,ym) = 0} C S is a proper closed subset (as P is
continuous). As {(y1, - ,ym) : ¥;i € Q} C Sisdense, this implies that thereare q;,- - , ¢, € Q
such that P(q1,- -+ ,qn) # 0. Therefore, there exists a d X d invertible matrix N with rational
coefficients such that N7} = T5N. This implies that L; g = Ly as Q[G]-modules. Now, by
scaling the isomorphism, it is easy to see that there is an isomorphism f : Li g — Lag of
Q[G]-modules such that f(L;) C Ly (take a random isomorphism, see what vectors you get by
sending L, clear the denominators, and multiply the isomorphism by the common denominator).
This implies that there is an injective G-module homomorphism f : L; — L, whose cokernel is
necessarily a finite abelian group (because L;, L, are lattices of the same vector space). Therefore,

h(Ly) = h(Ly)h(coker f) = h(Ly). O

Therefore, by Lemma 12.11, we can compute h(L) by computing h(L') for any lattice £ C
R#T that is compatible under the Gal(L/ K )-action. One particular choice is Z#T C R#”, which
is clearly preserved under the permutation of coordinates. Note that, as Gal(L /K )-modules,

Gal(L/K)
EBI nd i, /K,
veS
(again w is chosen for each v € S), so h(Z#1) =[], h(Inng}Eéfﬁ{v) Z) = I],eslLw : K, by
Shapiro’s lemma. This finishes the proof. U

Corollary 12.12 (First Inequality). Let L/ K be a finite cyclic extension of number fields. Then,
h(Cr) =[L: K].

Proof. Let S be a finite set of primes of K containing all infinite places of K and all places which
ramify in L. Let T be the set of all places of L lying over those in S. After possibly enlarging
S, we may assure that /;, = I, 7L by Lemma 12.6. Then, by Proposition 12.7 and Proposition
12.10, the short exact sequence 1 — (’)ET — I, — Cp — 1 implies that

Mlr)  [Lesllu: K
hOL 1) ﬁ [LeslLw : Ky

h(CL) = =[L: K].

O

We have thus established the First Inequality and the Second Inequality. Note that, by the
proof of Lemma 12.3, this means that Axiom 1 is established by now.
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12.3. Brauer groups of number fields. Similar to the local case, we also use the Brauer group
of global fields. The starting point is the following.

Corollary 12.13. Let L/ K be a finite Galois extension of number fields. Then, we have the exact
sequence
0—Br(L/K)— 5 Br(Lu/K,) = H*(Gal(L/K),CL),
v places of K

where the notation means that, for each place v of I, we choose any place w of L that lies over v.
By taking the direct limit over L (with Inf being transition maps), we have the exact sequence

0—Br(K)—» & Br(K,) - H*(GalQ/K),C).

v places of K

Proof. This follows from the short exact sequence 1 — L* — I, — Cp — 1, Corollary 12.8, and
Axiom 1, which is now known because of the First Inequality (Corollary 12.12) and the Second
Inequality (Corollary 11.21). The latter statement follows from the fact that taking direct limit
is left exact. O

We actually precisely know what the cokernel of the map Br(K) — €D, juces of & BT (K0),
which is the final ingredient for the proof of the (reciprocity law part of the) global class field
theory.

Theorem 12.14 (“Global Invariant Zero”*). Let K be a number field. Then, the composition

Br(K) » @D Bri(k,) 2™ /z,

v places of K

is zero.
Similarly, for a Galois extension of number fields L/ K, the composition

1
[L: K]

Br(L/K) = @@ Br(Lu/K,) el

v places of K

7)Z,

is zero, where the notation means that, for each place v of K, we choose any place w of L that lies
over v.

We first explain why this is important.

Theorem 12.15. The “Global Invariant Zero” implies the “Big Regular Part”.

Proof. We define H?(Gal(Q/K), C)yeq := im(H?*(Gal(Q/K), I) — H*(Gal(Q/K),C)), where
I = %ﬂ L/K fite I7.. On a finite level,

H*(Gal(L/K),CL)req := {a € H*(Gal(L/K),Cyr) : 3M/L/K Galois s.t.

14This is not a standard terminology (there is no standard short name for this result).
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Inf(a) € im(H*(Gal(M/K), I;) — H*(Gal(M/K),Cx))}.

We define invyk reg : H*(Gal(L/K),CL)reg — Q/Z as follows. Let o« € H*(Gal(L/K), CL)regs
and let M/L/K be Galois such that Inf(«) comes from 8 € H?*(Gal(M/K), I). Then, you can
take the sum of local invariants of 3 as the definition of inv;x reg(cr). This on one hand does
not depend on the choice of 3, because im(H?*(Gal(M/K),I;) — H?*(Gal(M/K),C))) is
the cokernel of H*(Gal(M/K), M*) — H?*(Gal(M/K), I), which, by the “Global Invariant
Zero” (Theorem 12.14), has a well-defined map to ﬁz /Z C Q/Z. This on the other hand does
not depend on the choice of M, as the local invariants stay the same even after further inflation.

Asim(H?*(Gal(L/K),I,) — H*(Gal(L/K),Cy)) C H*(Gal(L/K), CL)eq admits a surjective
invariant map to ﬁZ/ Z, this implies that im(invy, /x reg) O ﬁZ /Z. 1t is an easy exercise to
check that inv; k., interacts in an expected way with Res and Inf by using the same properties

for the local invariants. 0

Thus, what is only left for the reciprocity law part of the global class field theory is to show
the “Global Invariant Zero”.

Proof of “Global Invariant Zero”, Theorem 12.14. As the absolute Brauer group is a direct limit
of the relative Brauer groups, it suffices to show the statement for the relative case. We now
divide the proof into several pieces.

Step 1. Reducing to K = Q.

Note that we know that the local invariants are not changed by Inf and Cor. Thus, if
we take a large enough number field M/L/K where M/Q is Galois, then, for any a €
Br(L/K), the sum of local invariants of « is the same as that of Inf(o) € Br(M/K),
which is the same as that of Cor(Inf(«)) € Br(M/Q). Therefore, it suffices to prove the
case when K = Q.

Step 2. Proof when L/Q is cyclic.

We use the notation of Lemma 5.9. Note that, as Gal(L/Q) is cyclic, H).(Gal(L/Q), L) =
H2(Gal(L/Q), L*), so obviously every element of Br(L/Q) is written as a U dx for
a € Q* and x € Homg,,(Gal(L/Q),Q/Z). This description is nice, because firstly
aUdx € Br(L/Q) is sent to a U dx, € Br(L,,/Q,), where v, is a place of L that
divides p, and a € Q* gives rise to a € Q' and x € Homg,,(Gal(L/Q), Q/Z)
Xp € Homa,,(Gal(L,,/Q,),Q/Z) as Gal(L,,/Q,) C Gal(L/Q). Then, by Lemma 5.9,
invg, jg,(aUdx,) = d,(Arty, jq,(a)). We want to show that ) invy, /q,(aUdy,) = 0.
For this, it suffices to show that [ [ Artz, sg,(a) = 1 as an element of Gal(L/Q) (here,
Arty, s0,(a) € Gal(L,,/Q,) C Gal(L/Q)). Note that, by Proposition 5.8, the relative
local reciprocity map is compatible under enlarging the larger field. As L/Q is cyclic, it
is abelian, so by the Kronecker-Weber theorem (Theorem 8.1, which we already proved!),
we may enlarge L and reduce to checking this when L = Q((,) is a cyclotomic field.

By Theorem 10.15, we know explicitly what the Artin local reciprocity map is. Using this,
we know an explicit recipe of what Artg,(,)/q,(@) is as an element of Gal(Q(¢,)/Q) =
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(Z/nZ)*;if a = pufor someu € Z) andifn = p/rm for (p,m) = 1,then Artg, ()0, (a) €
(Z/nZ)* is the congruence class that is = p® (mod m) and = u~! (mod p'»).

Exercise 12.1. Convince yourself that this is the correct recipe.

We want to show that [ [ Artg,(c,)/q,(a) = 1. As the left hand side is multiplicative in a,

it suffices to show this when either @ = ¢ is a prime number ora = —1. Let n = Hle pzf ’
and consider (Z/nZ)* = (Z/pl'Z)* x - - - x (Z/pS*Z)*, and write a class in (Z/nZ)* as
(c1,- -+ ,¢k) in accordance with the decomposition. Then, if either a = —1 or a = ¢ for a
prime number q # py,- - - , pg, We have
(1717"'“@71,""71) ifp=p;
A t (a) . i-th entry
ThQy (¢n)/Qp\ @) = (a,a,--- ,a) if p = a (in the case of a = —1, this is meant to be p = )
(1717"'71) ifp#ph”'apkva‘
Thus, it is apparent that [[, Artg,(c,)/q,(a) = 1 in these cases. On the other hand, if
a = p;, then
((pi7pi7"'7\ 1 ,a"'api) lfp:pz
i-th entry
—1 . _ . .
Art, )/, (i) = ¢ (L Lo o o0 1) ifp=p;j#i
J-th entry
K(lvlf"al) lfp#p17>pk

Thus, again [ [, Artg,c,.)/q,(pi) = 1 in these cases. These altogether proves the “Global
Invariant Zero” for L/Q cyclic.

Step 3. Reducing the problem to an elementary number theory problem.

Now we want to prove that, for any finite Galois L/Q and o € Br(L/Q),

Z invy, g, (a) =0,

p rational prime

where v is chosen to be any place in L over p (here, a rational prime means either a prime
number or co). As taking inflation does not change the local invariants, we may check this
by possibly enlarging the field. Suppose that there is a cyclic field extension M /Q such
that Inf(a) € Br(ML/Q) satisfies that Res(Inf(«)) € Br(ML/M) is zero. Then, this
means that Inf(a) € ker(Res : Br(ML/Q) — Br(ML/M)). By the inflation-restriction,
this is the same as Inf(«) € im(Inf : Br(M/Q) — Br(ML/Q)). As again the inflation
does not change the local invariants, and as we have shown the “Global Invariant Zero”
for M in Step 2, this will finish the “Global Invariant Zero” for . Therefore, we will
be done if we can find, for each a € Br(L/Q), a cyclic field extension M /Q such that
Res(Inf(a)) = 0in Br(M L/M).
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What do we concretely need for M? Note that invy, g,(«) # 0 for finitely many places
p of Q (p can be 00). For such a place p, let d,, be the denominator of invy, /g, (). Sup-
pose that M/Q is a cyclic extension such that, for each place p with invy, g, (o) # 0,
d, divides [M,, : Q,], where w is any place in M dividing p. We claim that this choice
of M will satisfy Res(Inf(«)) = 0 in Br(M L/M). To check this, note that by Corollary
12.13, Br(ML/M) — @, prace of s Br(M L)ur /M,,) is injective, where for each place
w of M, any place w’ of ML above w is chosen. Therefore, it suffices to show that
inv(arry,, /v, (Res(Inf(a))) = 0 for all places w of M. However, we know that

inv(arr,, /v, (Res(Inf(a))) = [My, : Qplinvir , 0, (Inf(a)) = [M,, : Q)] invy, /g, (),

Step 4.

[(MZ)U : ij] -

where w is the place of M that w” divides, v is the place of L that w” divides, and p
is the place of Q that w" divides. This is always zero, as either inv;, q,(a) = 0 or
(M, : Qplinvy, /g,() is an integer (which is equivalent to zero mod 1). This implies
that Res(Inf(«)) = 0 if you find such an M.

Finishing the proof.
Thus, the problem becomes an elementary number theory problem.

Lemma 12.16. Let py,- - - , p, be distinct places of Q, and let r1,--- ,r;, € N be integers,
with the restriction that r; € {1,2} if p; = co. Then, there exists a cyclic extension M ]/Q
such that, for every 1 < i < h and every place v of M dividing p;, [M, : Q,,] is divisible by
;.

Proof. Tt is annoying to think about the infinite place, but the condition on the infinite
place will be always satisfied if we find M which is totally complex (i.e. all archimedean
embeddings are complex embeddings). So, we will assume that all py, - - - , pj, are finite
prime numbers, and instead find M that is a totally complex number field. We may arrange
pi’s so that p; < -+ < pp. Letlem(ry,--- 1) = [[;_, ;" be the prime factorization (so
ly,- -+, ls are distinct primes). Note that, if p is a prime number and (n,p) = 1, then

[Qp(¢n) : Q] = ord(p (mod n)), and in particular ord(p (modn)) > log,(n).

Let T' > pp, be a big integer. For 1 < i < s, let z; > 4 i

T &')) be a positive integer (i.e.
logr(€7") > € (¢ —1)). Then, as Gal(Q((p:) /Q) = (Z/€7Z)* = (/677" Z) x (Z/(; —
1)Z), there is a cyclic subextension @(ngczl) /M;/Q such that [M; : Q] = (7" (there are
many such cyclic extensions inside @(in ), and we just choose one). For 1 < j < h, for
any place v of M; dividing p;,

L 190G @] ord(p, (mod 7)) | 1oty (6)  loga (1)
l;i—1 li—1 S N

> 07

As M, --- , M; are cyclic extensions of Q with coprime degrees, their compositum C' =
M, - - - M is also cyclic. Furthermore, as each [(M;),, Q,,] is a divisor of [M; : Q], which
is a power of (;, [Cy : Q] = [[;_[(Mi)y, : Qp,] where v/, vy,--- v, are places of

80



C,My,--- , M, dividing p;. Therefore, for each 1 < j < h, [Cy : Q,,] is divisible by

lem(rq, - -+ ,74), so in particular by r;.

Now the only issue is whether C is totally complex or not. If lem(r4, - - - ,7,) is odd, then
we may just take the compositum of C' with Q(7) and get a totally complex cyclic extension
satisfying the same properties (this works because [C' : Q] is odd). If lem(ry, - -+ ,7p) is
even, then by our convention p; = 2. Then, in the process of choosing ), it does not
matter which maximal cyclic subextension of Q((z+1) we choose. We can in particular
always make z, larger so that z; > 3, and take M; = Q((e1 — (5t ). The claim is:

For any N > 3, Q((ov — +) is a totally complex cyclic extension of Q of degree 2™V ~2,

Let Fi = Q((on) and Fy = Q((onv — (v ). We know that Gal(F;/Q) = (Z/2NZ)*. We
claim that Gal(F} / F,) is the order 2 subgroup generated by 2V ~!—1; indeed (2¥~1—1)% =
22N=2_9N 11 =1 (mod2")as 2N —2 > N. This is because the element o € Gal(F}/Q)
corresponding to 2V~! — 1 acts on & := (ov — <2—N1 as

N—-1_ —(2N-1_1 N-1_ N-1 _
a(&) = =G L= T T T = G Gy =€

As [F} : Fy] < 2 ((~ is a root of a quadratic polynomial over F3), this implies that
Gal(Fy/Fy) = (2¥=! — 1), Now among any archimedean embedding of Fj, you see
that £ is never a real number, so F; is a totally complex number field. Furthermore, let
H :=ker((Z/2N7)* — (Z/AZ)*), which is a cyclic group ((Z/2VZ)* is not cyclic, but
(Z)2N7)* = (Z)2N72Z) x {£1}, so given any element u € (Z/2NZ)* of order 2V ~2,
you may take +u to make it an element of H). As H - (2N°! — 1) = (Z/2NZ)* (as
2N=1 — 1 = —1 (mod 4)), this implies that H < (Z/2NZ)* — (Z/270)" Gal(F,/Q) is

@N-1-1) ™
an isomorphism, so F»/Q is cyclic. Thus, by taking M; as above, we can guarantee that
C is totally complex if lem(ry, - - - ,7}) is even. This finishes the proof. U
Thus we are done! 0

Remark 12.17. In the above proof, we did not actually need the Kronecker—Weber theorem in
Step 2, because the extension M constructed in Step 4 is a cyclic extension which is a subextension
of a cyclotomic field. So proving L/Q for cyclic extension which is a subextension of a cyclotomic
field in Step 2 is enough.

Corollary 12.18. The pair F' = Q and A = C' is a class formation. Therefore, the global Artin
reciprocity (Theorem 7.1) holds.

Proof. We proved the First Inequality (Corollary 12.12), the Second Inequality (Corollary
11.21), and the “Big Regular Part” (Theorem 12.14 + Theorem 12.15). Therefore Lemma 12.3
gives you the verification of class formation axioms.

Now that we know (Q, C) is a class formation, we can use Lemma 5.9 to also establish the
local-global compatibility, because the invariant of an idele class is by construction the sum of
the local invariants of its local components. U
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Corollary 12.19 (Fundamental Exact Sequence). The maps in “Global Invariant Zero” form
short exact sequences, ie.

0 Bir(K)— @ Br(k,) % Q/z 0,
v places of K
1

0— BI‘(L/K) — @ Br(Lw/Kv) S [L . K]

v places of K

ZJ7. — 0,

are exact.

Proof. The proof of Lemma 12.3 show that the sum of local invariants map gives you an identi-
fication of the cokernel of the global Brauer group with the direct sum of local Brauer groups.
Thus we get the result. O

12.4. Global existence theorem. Thus, we only need to show the global existence theorem
(Theorem 7.5), for which we need to show (*).

Proof of the global existence theorem, Theorem 7.5. As we know, we need to show the statement
(*): for a number field K and an open subgroup U < Cf of finite index, there exists a finite
extension L/K such that Np/x(Cr) < U. We will show (*) by induction on the number of
divisors of [Ck : U].

There is nothing to prove if [Cx : U] = 1 (take L = K), so the base cases are when [Cx : U]
is a prime number. Before proving the base cases, let us first explain the induction step. Suppose
that we have K and U < Cf with [Ck : U] = N which has D divisors, and suppose we
know (*) for any K’ and U’ < Cy with the number of divisors of [Cxs : U’] less than D. If
N is a prime, this is a base case. If not, then you can find a subgroup U < V < Ck. By the
induction hypothesis, V' O Ny, (C}) for some finite extension L /K. Let N := Ny /x(Cp,). Take
W = NL_/lK(Nﬂ U) C Cf. Then,

[CL:W]=[N:NNnU]=[UN :U],

which clearly divides [V : U]. Therefore, by the induction hypothesis, there exists a finite exten-
sion M /L such that W O Ny (Car). Then,

UDNNU = NL/K(W) D) NL/K(NM/L(CM)) = NM/K(CM),

as desired.

Thus, we only need to prove (*) for the base cases when [C : U| = pis a prime number. One
observation is that we can always enlarge the field K. Suppose there is a counterxample to (*)
for the prime index case so that there is [Cx : U] = p where U does not contain any Ny, /x (Cr).
Then, for any L/K, if we take U’ := N /1K(U N Nz/k(CL)), then by the similar computations
as above, [C, : U'] = [UNpk(CL) : U] which divides [Cx : U] = p, so it is either p or 1.
However, as U does not contain Ny, (Cr), UNy/k(Cr) # U,so [Cr, : Ul = p. If L and U’ is
not a counterexample to (*), then there exists M /L such that Ny (Cyr) C U’, which means

NM/K(CM) = NL/K(NM/L(CM)) C NL/K(U/) =Un NL/K(CL) cU,
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which contradicts with the assumption that K and U give rise to a counterexample. Using this
observation, we may reduce the problem to the cases where X' D Q((,).

Now we only need to prove (*) for [Cx : U] = p a prime number and K D Q((,). B
Lemma 12.6, we may find a finite set S of places of K, containing all infinite places of K, such
that [ = K*Ix s. We may always enlarge S such that S also contains all places of K above
p. Let J C Ik be the preimage of U < () under the projection Iy — Cg. Then, as J <
I is open, by possibly enlarging S, we may ensure that J contains a subgroup of the form
[Toes{l} x I1,¢s Ok, Moreover, as J C I is of index p, I}y C J. This implies that, for any
place v of K, (K )P C J. This implies that

J o Ws = []E ) x [[ 0%

veS véS

Note that, as K O Q((,), by the Dirichlet’s theorem for S-units (Theorem 12.9), O /(O )P =
(Z/pZ)#S. Therefore, if we define L to be obtained from K by adjoining all p-th roots of u €
Ok s then[L : K] = p®and L/ K is Galois (because K C Q((,)). More concretely, if uy, - - -, upg1

is a fundamental system of S-units, then L = K ((,~, ul/r u;/g ,) for some N > 0 (so that
-1 = C]I,JN € K). By the global Artin reciprocity (Theorem 7.1), Cc /Ny k(Cr) = (Z/pZ)#5.

We claim that Ny k(1) D Ws. To show this, we need to show that, for v € S, (K)P <
Npjk(Ip),and forv ¢ S, Og C Npjk(Ip).

e For v € S: note that for any place w of L over v, Np, /i, (L)) C Np/x(I1). By the
local Artin reciprocity (Theorem 2.1), K /Ny, /k, (L) = Gal(L,/K,) (L/K is abelian
to start with). As Gal(L,,/K,) is a subgroup of Gal(L/K), Gal(L,,/K,) has exponent p.
Therefore, (KX)? C Ny, /i, (L) C Npjx(1I1).

e For v ¢ S: note that v is unramified in L. This is because disc(L/K) divides the discrim-
inant computed using a power basis of (v, ul/ P u;/g 1» which divides a product of

powers of discriminants computed using {1, - - - | C;)’Nl}, {1, PPy isl)/p}

respectively, and each such discriminant has prime ideal factors of those in S because u;’s
are S-units (namely, disc(1, - -, gp V/p ) =*Nr0 (puz(»p —Die ), and S contains all primes

dividing p). This implies that, for v ¢ S, O C Ny k(IL) by Proposition 1.2.

These imply that Ny, /i (I,) D W, soin particular Ny, (Cr) DO K*Wg/K*. Note that Ny, (C')
is of index p*® inside Cx. We claim that [Cx : K*Ws/K*] = p*°, which will show that
NL/K(CL) = KXWS/KX. This will 1mply that NL/K<CL) = KXWS/KX - KXJ/KX = U,
proving the base cases for (¥).

Thus our only remaining task is to prove that [C : K*Ws/K*] = p#°. From the exact
sequence 1 — O[X(,s — Ix g — Cxg — 1,and as Wy C Ik s, we have a short exact sequence

01X<,s Iks Ck

— — — 1.
O[X(,SHWS Ws K>*Wg /K>

1 —

So we can compute [C : K*Wg/K*| by computing the orders of the other two groups in the
short exact sequence.
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e For # OXOKASW : I claim that O ¢ N Ws = (O )P This will show that
K,5'"WVs ’ ’

Ors  Ogs
Ok.s NWs B (Ok.5)?

~ (Z/pZ)*?,

so that [Of ¢ : O ¢ N W] = p#°.

One inclusion is clear; it is obvious that ((’)IX( g)? C (9; s N Ws. Conversely, if y €
OIXQ 5N Wg, Iclaim that y is a global p-th power (if so, its p-th root will necessarily be an
element of OF ). This is the same as showing K (y'/?) = K. Let L = K(y"/7). Then,
L/K is Galois (as K D Q((,)), every place v € S splits completely in L, and every place
v ¢ S is unramified in L (because every place over p is already contained in S). Let T’
be the set of all places of L over S. Then, by Proposition 1.2, Np/x(Irr) = Iks. As
Ik s = Ck is surjective, this implies that Ny, /x (Cr) = Ck. By the local Artin reciprocity
(Theorem 2.1), this implies that L. = K, as desired.

For #IVII‘/—; note that quite obviously

]K,S _ HUGS KIT X HvéS O;(v — H Ki
WS HUeS(Kg< )p X Hv%S OIX(U ves (Kﬁ )p

2

I claim that [K* : (K)P] = o

— If v is real, then K D Q((,) means that this is possible only if p = 2. Then [K :
(K2 = R/ =2 = 2

2] *

— If v is complex, then [K* : (K )] =[C* : (C*)P] =1= p’

Pl
— Ifvis a finite place not above p, then note that K = 72 x (O, /(m,))* x (14+7,Ok, ),
where 7, € K, is a uniformizer. As 1 + 7,0k, is pro-{, where ¢ € Z a prime number
which v divides, 1 + 7,0k, = (1 4+ 7,0k, )?. Furthermore, as ¢, € K,, this implies
that p|¢ — 1, and % =~ 7,/pZ. Therefore, [K* : (KX)?] = p? = £

Ok, /(m0))* Pl
— If v is afinite place above p, lete = e(K,/Q,) and f = f(K,/Q,). Then (11:-?5;?)? -
700Ky o Ok, /pOk,, so [1 + 7,0k, : (1 + 1,0k, = #(Ok,/pOk,) = p.

pﬂ'uoKU
Moreover, (O, /(m,))" = F;f, and as ¢, € K, this implies that f > 2. Therefore,

F;/(F ;)P = Z/pZ. Therefore, [K : (K)"] = p*/*2. Note on the other hand that

P2 _ p? ef+2

IZT =g — e =P , so they are the same.
v

This implies that

2 248

p p 2#S
Uk,s: Ws] = == =p",
vl;[g |p‘v HUES |p‘v

as S contains all places of K above p.
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Thus
[Ix,s: Wl _ p*e _ #S
Ok g:OgsNWs]  p#° ’

[CK : KXWS/KX] =
and we are done! O

This concludes the proof of the global class field theory. Before we move on to the next
topic, we record the Galois analogue of Theorem 11.15, and a generalization of Proposition 11.18:
Chebotarev density theorem!

Theorem 12.20 (Chebotarev density theorem). Let L/ K be a finite Galois extension of number
fields, and let C C Gal(L/K) be a conjugacy class. Then, the set of prime ideals p of K such that p
is unramified in L and ¥r, = C has Dirichlet density % in the set of all prime ideals of K.
Proof. If L/ K is abelian, then this is literally Theorem 11.15; namely, we choose a modulus m
such that K(m) D L, and then this set is (up to a finite difference) the set of prime ideals of
K whose class in CI"™(K) lands in C + H where H < CI™(K) corresponds to CI™(K)/H =
Ck/Np/k(Cr) = Gal(L/K). This has density, by Theorem 11.15, [01“'(%):1{] = |Ga1(1L/K)| (note
that C is a singleton if L /K is abelian).

In general, let 0 € C, and let M = L), Then L /M is a cyclic extension of order f, where f
is the order of 0. Now we set several sets of primes.

e Let 7" be the set of prime ideals p of K such that p is unramified in L and Fr, = C in
Gal(L/K).

e Let 7" be the set of prime ideals q of M such that g is unramified in L, Fr, = o in
Gal(L/M) and f(q|qNOk) = 1. By the abelian case as done above, the Dirichlet density
of T" is +.

!

e Let 7" be the set of prime ideals 3 of L such that 3 is unramified over K and Fry = o
in Gal(L/K).

Note that 7”7 — T", P — PN Oy, is a well-defined map, as f(PIPNOk) = f = F(BIBNOun)
which implies that f(P N Oy P N Ok) = 1. We claim that 7" — T” is injective and its image
misses only finitely many primes of 7”. It is injective because f(*B|P N Oy;) = f implies that
PN Oy is inert in L, so that B is the only prime in L above P N O,,. Furthermore, if q € 7" is
such that q is unramified over K, then the order of o being f means q is inert in L, so we take
of L lying over q, then Fry in Gal(L/M) is Fry in Gal(L/ K) raised to the power of f(P|q) = 1,
which means Fry in Gal(L/K) is just 0. Note that for B € T, N(B) = N(P N Oxr)/, so

> w7 ()

peT

is bounded as s — 1 from the right.
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We now construct another map 7”7 — T, P — B N Ok. Note that it is quite obviously

[L:K]

surjective, and each element in 7" is hit by exactly -~ elements in 7" (there are =~ primes in

[L:K]
f1C] f

L above a prime in T)). Again, for B € 7", N(B) = N(P N Ok)’, so

[L: K] I 1
f1C| ZN(P)S =2 N(B)s/+

peT peT”
Therefore,
Z 1 C log < 1 )
e N(p)* [L:K] s—1
is bounded as s — 1 from the right. This is exactly what we wanted. O

Corollary 12.21. Let K be a number field, and let L1, L/ K be finite extensions of K. LetS(L;/ K)
be the set of primes of K that split completely in L;. Suppose that L, is Galois over K.

(1)

@)

Proof.

(2)

Then, Ly C Ly if and only if S(L1/K) contains S(Ly/K) — S for a finite subset S C
S(Ly/K), where S(Lo/ K) is the set of prime ideals p of K such that p is unramified in Lo
and f(q|p) = 1 for some prime ideal p of Lo lying over K.

Then, Ly C Ly if and only if S(Ls/K) contains S(L1/K) — S for a finite subset S C
S(Li/K).

(1) The forward direction is obvious. For the reverse direction, let N be a Galois exten-
sion of K containing both L; and L. We want to show that Gal(N/Ls) C Gal(N/Ly). Let
o € Gal(N/L,). Let p be a prime ideal of K unramified in N such that Fr, in Gal(N/K)
is the conjugacy class of 0. Let 3 be a prime of N such that Fryy = o in Gal(N/K). Let
P =P NOp,. Then, for a € Op,, a = o(a) = VP (mod*P’). Therefore, f(P'|p) = 1.
Therefore, p € S(Ly/K). Therefore, there are infinitely many primes p of K unramified
in NV such that Fr, in Gal(/N/K) is the conjugacy class of o such that it splits completely
in L;. We choose such p. Then let °B be a prime of N lying over such p such that Fry = o
in Gal(N/K). Then Fryno, = olr, in Gal(L,/K). However as p splits completely in
Ly, o|p, = 1. Therefore, 0 € Gal(N/L,), for any 0 € Gal(N/L,), which implies that
L, C Ls.

The forward direction is obvious. For the reverse direction, let N be the Galois closure of
Ly. Then S(N/K) = S(Ly/K). Note that S(L,/K) = S(L1/K). Therefore this case is
(1) for Ly = N and Ly = L;. This implies that N C Ly, which implies Ly, C L.

O

Part 2. The theory of complex multiplication

All instances of Explicit class field theory we have seen so far are all of the form as, given

a field

K, describing K®" by adjoining explicit elements. Furthermore, these explicit elements

have been torsion elements in some group where the multiplication law is given by some explicit
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polynomial/power series. Furthermore, the group had a large endomorphism ring containing
Ok, so that it becomes an Ox-module. We will show that a similar story exists when K is an
imaginary quadratic field, where the corresponding group is given by a so-called “elliptic curve
with complex multiplication”. As this course does not assume a prior knowledge of algebraic
geometry, we try to develop the theory as elementarily as possible.

13. LaTTICES IN C (OR, IN OTHER WORDS, ELLIPTIC CURVES OVER ()
13.1. Elliptic functions for lattices in C (=elliptic curves over C).

Definition 13.1 (Lattices in C = elliptic curves over C). A lattice (or an elliptic curve over
C) A C C is a free rank 2 abelian subgroup which discretely sits inside C (i.e. the subspace
topology on A given by A C C is the discrete topology). A fundamental parallelogram of A is
a parallelogram formed by z, z +wq, 2 + wsy, 2 + w; + w; for some 2z € C and a Z-basis wy,wy € A
(Warning: there are many fundamental parallelograms for a given lattice).

Two lattices (=elliptic curves over C) A1, Ay C C are isomorphic if there exists a complex
number ¢ € C* such that A, = cA;. An isogeny between two lattices (=elliptic curves over C)
A1, As C Cis a homomorphism f : Ay — Ay where there is ¢ € C* such that f(z) = cx. The
degree of an isogeny f : Ay — Ay isdeg f := # coker f. Given two lattices (=elliptic curves
over C) A, Ay C C, let

Hom(Aq, As) := {isogenies A; — Ay} U {0}.

It is easy to check that the addition of complex numbers gives an additive abelian group structure
on Hom(Ay, Ag). Two lattices (=elliptic curves over C) A;, Ay C C are called isogenous if there
is an isogeny from A; to Ay, i.e. if Hom(Ay, Ay) # 0.

For a lattice (=elliptic curve over C) A C C, End(A) := Hom(A, A) further has a commutative
ring structure, where the multiplication is given by the multiplication of complex numbers, or
equivalently, the composition of isogenies. Given f € End(A), we define deg f := # coker f
(and deg 0 = 0). This defines a multiplicative homomorphism deg : End(A) — Zs. It is easy to
see that, if f(x) = cx for ¢ € C*, then deg f = |c|%.

Example 13.2. (1) If A C C is any lattice (=elliptic curve over C), for n € N, there is an
isogeny [n] : A — A given by [n](z) = nz. Its degree is deg[n] = n?. This implies that

there is a natural ring homomorphism 7Z KindliN End(A).

(2) Let K be an imaginary quadratic field, and choose an embedding ¢« : K — C. Then
1(Ok) C Cis a lattice (=elliptic curve over C). For each o € O\ {0}, there is an isogeny
[a] : «(Ok) = 1(Ok) given by [o](c(x)) = t(a)i(x). Its degree is degla] = Nk/g(a).

This implies that there is a natural ring homomorphism O alel, End(:(Ok)).
We want to classify lattices in C (=elliptic curves over C) up to isomorphism. Let A C C be
a lattice (=elliptic curve over C), and choose a basis v1,v2 € A. Then, we can multiply A with
vy! so that v; = 1. We may thus assume that A = Z @ Z7 for some 7 € C. The requirement of
A being a lattice means that 7 ¢ R (Exercise: check this). Furthermore, by possibly replacing 7
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with —7, we may only consider 7 € C with Im(7) > 0. Let HH = {7 € C : Im(7) > 0}, which
is called the upper half plane. The observation so far means that the map of sets

H — {lattices in C (=elliptic curves over C)}/isomorphisms, 7+ Z & Zr,

is surjective. What are the fibers of this map?

Proposition 13.3. Let SLy(Z) be the group of 2 X 2 matrices with integer entries with determinant
1. There is an action of SLy(Z) on H given by

a b at +b
ST = .
c d et +d
Furthermore, for 71,7 € C, two lattices (=elliptic curves over C) Z. & Zm,7 & Z1» C C are
isomorphic if and only if there exists v € SLo(Z) such that 7 = - To.

Proof. See the proof of [ANT, Theorem 10.22]. The calculations in loc. cit. carry over in our setup
in the same way. O

So we know that we have an isomorphism of sets,
SLy(Z)\H = {lattices in C (=elliptic curves over C)} /isomorphisms, 7 > Z & Zr.

This is nice, but the set SLo(Z)\H is still a bit mysterious, so it will be desirable to have more
structures.

Remark 13.4. One way to proceed is to realize SLy(Z)\H as a Riemann surface, which in fact
has a complex algebraic structure whose defining equations can be taken even over Q". Such a
Riemann surface obtained in this way is called a modular curve. As, again, we do not assume
algebraic geometry in this course, we use a different perspective.

Another remark is that one can always move a chosen 7 € H by the action of SLy(Z) so that
you find a unique representative in the fundamental domain

F={ze€H : —1/2 <Re(z) <1/2and|z| > 1,and if Re(z) > 0, |z| > 1}.

Namely, for any 7 € H, SLy(Z)T N F is a singleton. For the proof, see [ANT, Theorem 10.28].
This is also useful for other purposes (see [ANT, §10] for example).

There is a holomorphic function j : H — C such that j(71) = j(72) if and only if 71, 7» give
rise to the isomorphic lattices (=elliptic curves over C), and this specific function is called the
j-function. Along the way, we will also see a hint of how to really see C modulo a lattice as an
algebraic curve's, i.e. the graph of a polynomial equation in two variables.

SIn general, given a complex algebraic structure, there are a lot of ways to find its defining equations over Q (if
there is one). Namely, for example, the algebraic sets of points {(z,y) € C? : y = 22%} and {(z,y) € C? : y = 2?}
are “isomorphic over C” because you get y = 222 from y = 22 after putting v/2z + =, but they are “not isomorphic
over Q” because this substitution V2x +— x is not allowed in the realm of Q-coefficients. In fact, however, the
modular curve has in some sense a “canonical” way of being defined over Q, called the canonical model, and this
notion is very much related to the Main Theorem of complex multiplication we will see in a moment.

16The terminology of “curve” may be confusing. We are following the calculus-like
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Definition 13.5 (Weierstrass p-function). Let A C C be a lattice (=elliptic curve over C). Then,
for z ¢ A, we define the Weierstrass p-function

p(Z):%JF > <ﬁ_%)

xeA\{0}

Lemma 13.6. For a lattice A C C (=elliptic curve over C), o(z) defines a meromorphic function in
C where the poles are at z € A\, where all the poles are of order 2. Furthermore, ©(z) is periodic for
the translation by any element in A, i.e. p(z) = p(z + A) forany A € A.

Similarly, its derivative ¢'(z) = =23, ﬁ is a meromorphic function in C where the
poles are at z € A (all the poles are of order 3), periodic for the translation by any element in A, i.e.
O (2) =¢'(z+ A) forany X € A.

Proof. It is easy to see that the infinite sum converges uniformly absolutely on any compact set
away from A, so it defines a holomorphic function on C\A. It also has order 2 poles at every

z € A as the infinite sum defining o(z) — ﬁ is uniformly absolutely convergent on a compact
set around \. The sum is unchanged if you translate by an element in A, so p(z) is periodic in A.
The same logic applies to ¢'(2). O

This means that p(z) is an elliptic function.

Definition 13.7 (Elliptic function). Let A C C be a lattice (=elliptic curve over C). An ellip-
tic function for A is a meromorphic function f(z) for z € C such that f(z) is periodic with

translation by A, i.e. f(z + \) = f(2) for any A € A.

Definition 13.8 (Eisenstein series). Let A C C be a lattice (=elliptic curve over C). For k > 2,
the Eisenstein series is defined as

1
Goi= D,
AEA\{0}

We may want to write Go1(A) to indicate its dependency on A. It is elementary to check that
Gar(cA) = ¢ Gor(A) for c € C*.

You may also see this as a holomorphic function Ggi, : H — C, 7 +— Gax(7) which is the
infinite sum for the lattice (=elliptic curve over C) Z & Zr.

Remark 13.9. The reason why we only take even powers is because the infinite sum is trivially
zero for odd powers (if A € A, —\ € A). The Eisenstein series G (7) is an example of a modular
form (of weight 2% and level 1).

The following is an algebraic geometry in disguise.
Proposition 13.10. Let A C C be a lattice (=elliptic curve over C).
(1) Then, p(z) satisfies a differential equation,
(¢/(2))" = 4(p(2))* — g200(2) — g3,
where go = 60G4, and g3 = 140G.
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(2) Any elliptic function p(z) for A is expressed as a rational function in o(z) and ¢'(2). If p(z)
is holomorphic outside A, it is expressed as a polynomial in p(z) and @' (z). Namely, if E (H,
respectively) is the ring of elliptic functions (the ring of elliptic functions holomorphic outside
A), then H =2 C[X,Y]/(Y? — (4X3 — o X — g3)) and E = Frac(H).

If p(2) is furthermore even (i.e. p(z) = p(—z)), then you only need to use ©(z) to express
p(2) as above.

(3) If f € End(A) isx — cx forc € C* (ie. cA C A), then p(cz) is expressed as a rational
function in p(z). Conversely, if c € C* is such that p(cz) is expressed as a rational function
in p(z), then cA C A.

(4) For the rational function appearing in (3), you may take p(cz) = % for A(X),B(X) €
C[X] such that deg A = deg B + 1 = deg f.

Proof. (1) Just by expanding the infinite sum formally into Laurent series, we obtain the Lau-
rent series expansion of p(z) at z = 0,

1 n
o(z) = = + Zl(Qn + 1)Gaopgo2™.

This implies that ©'(z) has the Laurent series expansion at z = 0
! 2 = 2n—1
©(z) = =t Z(Zn + 1)2nGap 02" .
n=1

Thus, (¢'(2))? has the Laurent series expansion at z = ()

4 4
(¢'(2))? = %A (6G4z + 20G42°) + (holomorphic part, vanishing at z = 0)
424G
== 1 — 80G¢ + (holomorphic part, vanishing at z = 0).
2 z

Similarly, 4(p(z))® — g29(2) — g3 has the Laurent series expansion at z = ()

A(p(2))® = gop(z) — g3

4 12
=% + ;(3G4z2 + 5Ggzt) — % — g3 + (holomorphic part, vanishing at z = 0)
4 36G4 — 60G
=% + # + (60G¢ — 140G¢) + (holomorphic part, vanishing at z = 0)
424G
=% 1 _ 80Gs + (holomorphic part, vanishing at z = 0).

Therefore, (¢/(2))? — (4(p(2))® — g29(2) — g3) is a meromorphic function with possi-
ble poles at A, periodic in A and is actually holomorphic and vanishing at z = 0. By
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periodicity, this function is holomorphic everywhere. By periodicity, the values of this
function are taken at a compact domain (e.g. fundamental parallelogram), so in particular
bounded. Therefore, by Liouville’s theorem, this function is a constant function. As we
know its value at z = 0 is zero, this function is zero, proving the identity (the difference
is everywhere zero).

(2) If p(2) is an even elliptic function holomorphic outside A, its Laurent series expansion at
z = 0 would look like ZZO: M Qop 22" for M € 7. If M > 0, then by Liouville’s theorem,
p(z) is constant. If M < 0, then you may inductively find a polynomial ¢(X) € C[X]
such that ¢(p(z)) and p(z) has the matching tail of Laurent series expansion; for exam-
ple, p(2) — asprp(2) ™™ would have a lower order pole at z = 0, and you can continue
the process until you eliminate all poles. This implies that again p(z) is expressed as a
polynomial in p(z).

Now let p(z) be an elliptic function holomorphic outside A. As any function is a sum of
an even function and an odd function, we only need to show that an odd elliptic function
holomorphic outside A can be expressed as a polynomial in p(z) and ¢'(z). By using
the same strategy as above, we can eliminate any odd-order poles of order > 3. For the
simple pole, we claim that there is actually no elliptic function with just a simple pole at
each A € A. This is because, if we let A = Z7 & Z, if you compute the contour integral
[5 f(2)dz along a parallelogram S with four vertices 7252, then this would be equal to
27 times the residue of the simple pole, but the two parallel sides of S are in different
directions for S, so [ f(2)dz = 0, contradicting the assumption that f(z) has a simple

pole at z = 0 and nowhere else outside A.

The above two paragraphs and (1) show that there is a surjective map C[X,Y]/(Y? —
(AX3—ge X —g3)) > H, X — p(2),Y — ¢/(2). Asany element of C[X,Y]/(Y?*— (4 X3 —
92X — g3)) is uniquely expressed as ag(X )+ Ya1(X) for ag(X), a;(X) € C[X], if there is
ao(X)+Ya;(X) in the kernel of the surjective map C[X,Y]/(Y?— (4X3 — g2 X — g3)) —
H, then ag(p(2))+¢'(2)a1(p(2)) = 0, 0r ap(p(2)) = —¢'(2)a1(p(2))- As ag(p(2)) is even
and —g'(z)a;(p(2)) is odd, this means that ag = a; = 0. Therefore, the surjective map
C[X,Y]/(Y? — (4X3 — g2 X — g3)) — H is an isomorphism.

If p(z) is an elliptic function, it has finitely many poles up to translation by A = Z7 @ Zrs.
Let zg, - - - , 2, be the poles of p(z) (up to translation by A), with multiplicities mg, - - - , m,,.
Suppose that we manually include zy = 0, in the list of poles by allowing m, to be possibly
0. Then, the function

is an elliptic function whose poles are only at A. This is because p(z) — ©(A) is an elliptic
function whose poles are only at A, and has at least a simple zero at z = ), so multiplying
[T, (p(2) — p(N))™ with p(z) will cancel out all non-A poles (it may introduce more
zeros, but that is fine). Thus, ¢(z) is a polynomial in ©(z) and ¢'(z). Therefore, p(z) is a
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rational function in p(z) and ©'(z). It is clear that if p(z) is even then you don’t need to
use ' (z) because ¢(z) will be an even elliptic function holomorphic outside A.

(3) If cA C A, then p(cz) is definitely an even elliptic function, so by (2), p(cz) is expressed
as a rational function in p(z). Conversely, if p(cz) is expressed as a rational function in
©(z), this means that p(cz) is an elliptic function, i.e. p(cz) = p(c(z + A\)) for A € A.
Therefore, by scaling cz to z, we have p(z) = p(z + c\) for A € A. As p(z) has poles
only at z € A, this means that c\ € A. Therefore, cA C A.

(4) Let us take A(X), B(X) so that A, B have no common factors (=common zeros, as C is
algebraically closed). Note that there is a double pole of p(cz) at z = 0. On the other
hand, the order of a pole of A(p(2)) at z = 0 is 2deg A, and similarly the order of a pole
of B(p(z)) at z = 01is 2deg B. Thus, 2 = 2deg A — 2deg B, or deg A = deg B + 1.

Note also that p(cz) satisfies o (¢ (z + 2)) = p(cz + A) = p(cz), so it is actually invari-
ant under translation by a finer lattice (=elliptic curve over C) %A. In particular, inside
a fundamental parallelogram of A, there are deg f different poles, and all poles are dou-
ble poles. Therefore, the number of poles of ©(cz) in a fundamental parallelogram of A
(counted with multiplicities) is 2 deg f. On the other hand, A(p(2)) has only one pole at
z = 0, of order 2deg A, in a fundamental parallelogram of A containing z = 0. Also,
B(p(z)) has only one pole at z = 0, of order 2deg B, in the same fundamental par-
allelogram, and by the argument principle, there are 2 deg B many zeros (counted with
multiplicities) in the same fundamental parallelogram. Thus, if A(p(z)) and B(p(z)) do

not share a common zero, then the number of poles of gggg; counted with multiplicities
will be 2deg A — 2deg B 4+ 2deg B = 2deg A. This will then show that deg A = deg f.
However, if A(p(z)) = B(p(z)) = 0, then p(z) will be a common zero of A(X) and
B(X), which do not exist by our assumption. Thus, deg A = deg f.

O

Remark 13.11. Given a lattice A C C (=elliptic curve over C), we can now give an algebraic
equation defining C/A, which is as a topological manifold a 2-torus. Consider the map

C/A={0} = C% 2 (p(2), ¢ (2)).

Its image is contained in {(z,y) € C? : y? = 42° — gox — g3} C C? by Proposition 13.10(1).
It turns out that the induced map C/A — {0} — {(z,y) € C* : y* = 42% — gox — g3} isa
biholomorphism, i.e. bijective, holomorphic, and its inverse is also holomorphic. You can add
the “point at infinity” oo in a certain way and let 0 € C/A be sent to oo, so that C/A is, as a
“complex manifold”, isomorphic to {(z,y) € C* : y? = 42> — goz — g3} U {oc}, which is a
complex curve defined by a polynomial equation, a complex algebraic curve. The equation
y? = 4a® — gox — g3 is a typical equation that defines an elliptic curve.

13.2. j-invariants of lattices in C (=elliptic curves over C).
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Definition 13.12 (j-invariant). We may think of g, = 60G, and g3 = 140G§ as a holomorphic
function on H. The j-function j : H — C is a function defined as

92(7)3
92(7)% — 27g5(7)*

Given a lattice A C C (=elliptic curve over C), isomorphic to Z @ Z7, we define the j-invariant of
the lattice (=elliptic curve over C) as j(7). Similarly, for a lattice (=elliptic curve over C) A € C,
J(A) is defined using the same formula with go(A) = 60G4(A) and g3(A) = 140Gg(A). It is
elementary to check that j(A) = j(cA) for any ¢ € C*.

J(r) :=1728

Remark 13.13. There is a good reason why you want to put 1728 in the definition of j-function,
which we will see a bit later.

Proposition 13.14.
(1) The j-function is a holomorphic function, i.e. g»(7)> — 27g3(7)? # 0 for T € H.

(2) The j-function is invariant under the SLy(7Z)-action on H. Namely, for v € SLy(Z) and
T € H, j(vy-7) = j(7). In particular, the j-invariant of a lattice (=elliptic curve over C) is
well-defined.

(3) Conversely, for 7,72 € H, j(11) = j(72) if and only if 71 = 7o for some vy € SLay(Z).
(4) The j-function defines a bijective holomorphic function j : SLy(Z)\H = C.

(5) Foranya,b € C such that a® —27b* # 0, there exists a lattice (=elliptic curve over C) A C C
such that go(A) = a and g3(A) = b.

Proof. (1) By Proposition 13.10(1), X = () is a root of a cubic polynomial 4X? — g, X — g3
if ¢'(2) = 0. Let wy, ws € A be a Z-basis. Then, there are three points, A = %, %2, %
in C, up to translation by A, such that A ¢ A but 2\ € A. At those points \, using that

©(z) is an even function, we have
pz+AN) =p(—2—=X) =p(—2 = A+2)) =p(—2+\).

Therefore, if you take the power series expansion at z = ), then the power series will be
even, so ©'(A\) = 0. Consider the function f(z) = p(z) — @(A). This is also a holomorphic
function periodic in A, that has double poles at z € A (and no other poles) and double
zeros at z € A + A (because f(A\) = 0 and f'(A\) = 0). By the residue theorem, this
implies that there are no more zeros. In particular, p()) is distinct from any other value
of p as long as it is not the translate by A. Therefore, o (%), © (%), © (%) are three
distinct numbers. As 4X3 — g5 X — g3 has at most three roots, these numbers are exactly
the three roots. Now the expression g5 — 273 is 1—16 of the discriminant of the polynomial

4X3 — g2 X — g3, so we know that

doi= g (+(3) -0 (3)) (+(3) -2 (*52)) () -+(*52))
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(2) For this, we clarify what we meant by that the the Eisenstein series G is a modular
form of weight 2k and level 1. This means that, for any v = (CCL Z) € SLy(Z), Gax(y -
7) = (c7 + d)**Ga(7). To prove this, we use that SLy(Z) as a group is generated by
S = (? _01) and T = ((1) 1) It is easy to check that showing Gor(y - 7) = (e +
d)?*Gy;, (1) only needs to be checked for generators of SLy(Z). Thus, we only need to
show that Gox (7 + 1) = Gox(7), and Gy, (—%) = 728Gy, (7). The first relation is obvious
asZ ® Zt =7 ® Z(1 + 1), so the sum defining the Eisenstein series is the same for both
lattices (=elliptic curves over C). For the second relation, we note that Z @ Z (—%) =
Z®Z (L) = 1(Z®Zr), so you get the same sum for G, (—1) as G (7) except that
you multiply every term by = 72% which gives the desired relation.

1
1
2k

This implies the SLy(Z)-invariance of the j-function, because, for y = (OCL Z) ,

(e1 + d)2go(1)3 — 1728 92(7)" = j(7).

(e1 + d)2go(7)3 — 27(eT + d)2g3(T)? go(7)3 — 2793(7)?

jly-7) =1728

(3) If j(7) = j(7'), it’s easy to see that this means gzg:;z = gzg:;z You may find A € C such

that A'G4(7") = G4(7) and \°Gg(7) = Gg(7). This means that the two lattices (=elliptic
curves over C) Ay := Z @& Z7' and Ay := A\(Z @ Z) give rise to the same infinite sum G4
and Gg.

Let pa,(2) and pp,(z) be the Weierstrass p-function obtained by using the two lattices
(=elliptic curves over C) Ay, As. By the proof of Proposition 13.10(1), we see that the
Laurent series expansion at z = 0 of p,, (2) and that of p,, () coincide up to the z*-term.
Moreover, by differentiating the differential equation in Proposition 13.10(1), we obtain

20'(2)9" (2) = 12¢/(2)(p(2))? — 929/ (2),

©"(2) = 69(2)* — go/2.

This means that, by comparing the Laurent series expansion on both side,

2

6 - n— 1 G n

) + Z(Qn +1)2n(2n — 1)Gapy22®" 2 =6 (; + 2(271 + 1)Gopy22” ) — 30G,.
n=1 n=1

Comparing the coefficients, we get the identities
2 term: 6 =6,
1-term: 6G4 = 36G, — 30Gy,
2%-term:  60Gg = 60Gs,
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n—2

Zterm, n > 2: (2n4+3)(2n+2)(2n+1)Gopgs = 12(2n+3)Goyp iy +6 Z(2i+3)(2n—2i+1)G21+4G2n_2i.
i=0

The first three equations are obviously identities, and the last equation is, after rearrang-

ing,

n—2

Gonya = Y (20 +3)(2n — 20 + 1)Goi1aGan_z; forn >2,

1=0

(n—1)(2n+3)(2n +5)
3

and the coefficient on the left hand side is not zero for n > 2. In particular, every G,
n > 2, is determined by G4 and G via a recurrence relation. This implies that p,,(2)
and @y, () have the same Laurent expansion at z = 0, which means px, (2) = pa,(2). As
they have the same set of poles, this implies that A; = As.

We claim that Z & Z1' = A\(Z & Z7) for some A € C* implies that 7/ = - 7 for some 7 €
SLo(Z). U ZBZ1" = NZBZT),1 = ANcr+d) and 7" = A(aT +0b) for a, b, ¢, d € Z. Then,

’ . a b
7= T = ‘Cf:[s As 7" and 1 are not real multiples of one another, (C d) has nonzero
determinant. By doing this the other way around, we see that 7 = a, T,is, fora’ b, c,d €

Z, which implies that (g 2) € GLy(Z). As Z* = {£1}, det (a Z) = 41. On

the other hand, one can check that, if det (CCL Z) = —1, then Im ((Z Z) . T) < 0.

Therefore, <CCL Z) € SLy(Z), as desired.

(4) By (3), we know that j : SLy(Z)\H — C is injective. Thus what we really need to show
is that j is surjective. By Open Mapping Theorem of complex analysis, we know that
j(H) C C is an open subset. To conclude that j(H) = C, it suffices to show that j(H) is
also a closed subset of C as C is connected. Suppose that 7, 75, - - - is a sequence of points
in H such that j(7), j(72), - - - converge to some w € C. We may translate 7;’s by SLy(Z)
so that we can put 7; € F, the fundamental domain (Remark 13.4).

Before we proceed, we need to know one more qualitative fact about j(7). Note that
g2(7) = 60 > ! - =60 22—+ > ).
(m +nr)* (m +nt)4
m,n€L,(m,n)#(0,0) n,mEL,n#0

In this expression, the second sum goes to 0 as Im 7 — +o00. Therefore, limyy, 4 00 g2(7) =
120¢(4) = 120%5 = 1 Similarly,

gs(7) = 140 S m = 140 (2 Z > m> :

m,neZ,(m,n)#(0,0) = n,meZ,n#0
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and by the same reason, limyy, o0 g3(7) = 280((6) = 280% = 82%6 (for the values of
((2n), see for example [ANT, Example 18.18]). In fact, the convergence of the function as

Im 7 — 400 is another requirement for go(7) and g3(7) to be modular forms.

Anyhow, the denominator of j(7) goes to (47*/3)% — 27(87%/27)2 = 0 as Im T — +o0.
This implies that |j(7)| — oo as Im 7 — 4o00. This means that Im 7y, Im 75, - - - remains
bounded below a certain bound M. Therefore, , € FN{r € H : Im(7) < M} C
{r+yieH : xe€[-1/2,1/2], y € [1/2, M]}. Therefore, the infinite sequence 7y, - - -
has a limit point 7’ inside this box. By the continuity of j, j(7') = w. This shows that
j(H) C C is closed.

(5) By (4), there exists 7 € H such that j(7) = 1728%. This implies that Ziggz = Z—S
This implie that there exists ¢ € C* such that go(7) = ca and g3(7) = ®0. Then the

lattice (=elliptic curve over C) ¢(Z & Z7) will do the job.

W

Remark 13.15. The quotient SLy(Z)\H =: Y (1) is an example of the modular curves. Even
though Proposition 13.14(4) tells you that j function is a bijection between SLy(Z)\H and C, it
does not quite identify SL,(Z)\H with C as a complex manifold, because the action of SLy(Z) on
H is not free. There are two reasons for this problem, one easy and one subtle. The easy reason

0 -1

-1
is that 0 ) acts trivially on the whole H. However, even though you consider the action

of PSLy(Z) := SLy(Z)/ {:i: (é (1)) } on H, the action is not free, which is a more subtle source

of the problem. For example,

0 -1y . -1 -1 -1 2m/3_‘€2m/3_1_ —2mi/3 __ _2mi/3
(1 0)'2—7—2, (1 0)6 —W——l—e =e .

In fact, these are the only two points in the fundamental domain F (see Remark 13.4) with a
nontrivial stabilizer in PSLy(Z).

Exercise 13.1. Verify this claim. More precisely, show that, if 7 € F is such that the stabilizer of
7 in PSLy(Z) is not trivial, then 7 = i or 7 = ¢>™/3, Show that the stabilizer of i in PSLy(Z) is

the order 2 cyclic group < (? _01) >, and the stabilizer of €>™/% in PSLy(Z) is the order 3 cyclic

e ((10))

The easy reason can be resolved by taking the quotient of H by a slightly smaller subgroup
0

0 -1
never be resolved by this trick. This is a manifestation of a very subtle fact that the modular
curves are actually (complex) orbifolds, or in algebraic geometry language, (complex) alge-
braic stacks.

of SLy(Z) (basically any subgroup that does not contain ), but the subtle reason can
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As we will see, the j-function is a remarkable holomorphic function that is crucial for the
Explicit class field theory for imaginary quadratic fields.

13.3. Lattices in C (=elliptic curves over C) with complex multiplication. We saw in the
previous section that, given a lattice (=elliptic curve over C) A C C, End(A) is a commutative
ring that contains 7Z in it. We also saw an example where End(A) is bigger than Z, equal to O
for an imaginary quadratic field K.

Definition 13.16 (Lattices in C (=elliptic curves over C) with complex multiplication). Let A C C
be a lattice (=elliptic curve over C). We say that A has complex multiplication (or CM) if
End(A) # Z.

The reason why we call it to have complex multiplication is because the shape of End(A) is
extremely restricted, so that if End(A) # Z, then it has to be not too far from the ring of integers
of an imaginary quadratic field. This is because End(A) has a lot more structures than expected.

Lemma 13.17. Let A, A’ C C be lattices (=elliptic curves over C).

(1) Let f : A — N, x — cx, be an isogeny. Then, its dual fA’: A — A, given by x — @x,
is also an isogeny. In particular, two lattices (=elliptic curves over C) being isogenous is an
equivalence condition. If A = A, this map gives a ring involution (i.e. a ring homomorphism
which is an involution)™ : End(A) — End(A) called the Rosati involution.

—

(2) Forn € Z, [n] = [n].

(3) For f € Hom(A,\'), deg f = degf, fo ]?: [deg f] in End(A’) and fof= [deg f] in
End(A).

(4) Let the trace of f € End(A) be defined as tr f := f + f.Thentrf € Z C End(A).
(5) Let End’(A) = End(A) ®z Q. Then, End"(A) is either Q or an imaginary quadratic field.
(6) IfEnd’(A) = Q, then End(A) = Z.

(7) IfEnd’(A) = K is an imaginary quadratic field, then End(A) C K is, as a Z-module, a
free rank 2 7Z-module. In this case, we say that A has complex multiplication by the
ring End(A).

Proof. (1) The statement is invariant under replacing ¢ and A’ by ¢d and dA’ forany d € C*. In
particular, we may assume that ¢ = 1,i.e. A C A’ is just a sublattice. Then, deg f = #A—,,
so multiplying by deg f will kill anything in this quotient, i.e. © — (deg f)z sends an
element in A’ to an element in A, which makes it an isogeny. This also shows the reflexivity
of the relation of two lattices (=elliptic curves over C) being isogenous despite the apparent
asymmetry in the definition.

deg f

If A = A, then deg f = |c|?, so the dual isogeny fis r — =2ix = cx. Therefore, it is
clear that taking the dual isogeny is an involution.
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(2) Obvious.
(3) Obvious from (1) and (2).
(4) Obvious.

(5) Suppose that f : A — A, z +— cz, is an isogeny. We may scale A so that A = Z & Zr
for some 7 € H. Then, x — cx being an isogeny means that ¢, ct € Z @ Z. Therefore,
¢ = m+ n7 and ¢t = a + br. Combining, we obtain mr + nt? = a + br, or nT? +
(m — b)T — a = 0. This implies that 7 is a solution to a quadratic polynomial in Q[X].
Therefore, Q(7) is either Q or a quadratic field. As 7 € H, 7 is not real, so Q(7) is either
Q or an imaginary quadratic field. As End(A) is naturally a subring of Q(7), this implies
that End’(A) is also a subring of Q(7). Thus, we get the result.

(6) Let us scale A sothat A = Z @& Z7. If  — cx, ¢ € Q, is a self-isogeny of A, this means
that ¢, ¢t € A. However, as Im(7) > 0, ¢ € A means that ¢ € Z. Therefore, End(A) C Z.
As Z C End(A), we get the result.

(7) Let us scale A sothat A = Z & Z7. If © — cx is a self-isogeny of A, then certainly

¢ € 7Z @ Zr. Therefore, End(A) is a Z-submodule of Z @ Zr. This implies that End(A) is

a free Z-module of rank < 2. As there exists highly divisible large enough N > 0 such
that N, N7 € End(A), this implies that the rank of End(A) is > 2, so exactly 2.

O

By Lemma 13.17, for a lattice (=elliptic curve over C) A C C, we know that either End(A) = Z
is or End(A) is a free rank 2 Z-submodule of an imaginary quadratic field, or an order in an
imaginary quadratic field.

Definition 13.18 (Order). Given a Q-algebra K of finite dimension as a Q-vector space, an order
Oin K is a subring of K that is a free Z-module rank dimg K. Equivalently, it is a subring O C K
which is finitely generated as a Z-module, and K = O ®7 Q.

Lemma 13.19. Let K be an imaginary quadratic field. If O C K is an order, then O = Z + NOy
for N =[Ok : O] € N. In particular, any order O is contained in O (making O the maximal
order in K ). We call N the conductor of the order O.

Proof. We first show that O C Og. Let o € O. If a € Z, then obviously a € Og. If not,
then, Z[a] C O is a Z-submodule, so it is a free Z-module of rank exactly 2 (it is > 2 because it
contains Z & Za, it is < 2 because it is contained in O). Let (31, 32 be a Z-basis of Z|«]. Then, /3
and f3, are Z-linear combinations of certain powers of .. Let o¥ be the power of o with a larger
exponent than any powers of a appearing in 31, 35. Then, o = m, 3 + my3; for my, my € Z.
This means that « is a root of a monic polynomial with integer coefficients, so « is an algebraic
integer, or & € Og. This shows that O C Ok.

Now let N = [Ok : O]. Then, NOg C O. Therefore, Z + NOx C O. Now it suffices to
show that [Ox : Z + NOg| = N. Note that [Ox : NOg] = N? so it suffices to show that

[Z+ NOg : NOk| = N. But this is obvious because ZTV](\;?(K = ZHI%OK = . We are done. [J
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We now know quite precisely what can possibly be End(A) for a lattice (=elliptic curve over
C) A C C. We also know that, for “most” lattices (=elliptic curves over C), End(A) = Z, because,
if you scale to express A = Z & Zr for 7 € H, End(A) # Z if and only if 7 is an imaginary
quadratic number, and almost all complex numbers are even transcendental. So a lattice (=elliptic
curve over C) having complex multiplication is quite a special property'”.

We may then ask - given an order O C K in an imaginary quadratic field, what are the
lattices (=elliptic curves over C) A having complex multiplication by O (i.e. End(A) = O)? It is
quite clear that End(QO) = O, but there can be other possibilities, because A need not have a ring
structure. It turns out that there is a very precise description of the list of A’s realizing the given
O as their endomorphism algebras, and, in particular, the list is finite! From here we start to see
a connection between the lattices (=elliptic curves over C) with complex multiplication and the
class field theory of an imaginary quadratic field.

Definition 13.20 (Proper O-ideal). Let O be an order in an imaginary quadratic field K. For an
ideal a C O, let
O(a) :={a € K : aa C a}.

By definition, O C O(a), and O(a) = End(a) when a is seen as a lattice in C (=elliptic curve
over C), so O(a) is also an order in K by Lemma 13.19. An O-ideal a is a proper O-ideal
if O(a) = O. Similarly, a fractional O-ideal b C K (i.e. a finitely generated O-submodule) is a
proper fractional O-ideal if O(b) := {a € K : ab C b} isequalto O. Again, O(b) = End(b)
when b is seen as a lattice in C (=elliptic curve over C), so O(b) is an order in K.

Example 13.21. Not all ideals of an order are proper. For example, let X' = Q(v/—3). Then,
Ok =7 [Hﬁ} , so that O = Z[v/—3] is the order of conductor 2in K. Leta = (2,1++/—3) C

/=
O be an ideal of O. Then, we see that O(a) = Ok # O, because %?3 € O(a).

Remark 13.22. The failure of some ideals being proper is related to the fact that an order is not
necessarily a Dedekind domain (specifically, not normal; for example, [ANT, Lemma 6.9] does

not hold for orders). In particular, all ideals of the maximal order O are proper, as O is normal
(by definition, for an ideal a C O, O(a) = aa~! = Ok).

Definition 13.23 (Ideal norm). Let O be an order in an imaginary quadratic field K, and let
a C O be an O-dieal. Then, the ideal norm of b is N(a) := [O : a]. More generally, for a
fractional O-ideal b C K, which is always of the form Aa for some A € K* and a C O an
O-ideal, N(b) := Ng/g(A)N(a), which can be easily seen to be well-defined.

Remark 13.24. The norm is not necessarily multiplicative, which is also another manifestation
of the fact that fractional (-ideals are not neceesarily invertible. It is however multplicative for
proper (i.e. invertible) fractional O-ideals.

Lemma 13.25. Let O be an order in an imaginary quadratic field K, and let a C K be a fractional
O-ideal. Then, a is a proper fractional O-ideal if and only if a is an invertible O-ideal (i.e. there is
a fractional O-ideal b C K such that ab = O).

Imaginary quadratic numbers in H are therefore sometimes called special points, or CM points.
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Proof. Let a be an invertible fractional O-ideal. Then, there is a fractional O-ideal b C K such
that ab = O. If @« € O(a), then O = aab C ab = O, which implies that « € O. Thus,
O(a) C O, which implies that O(a) = O, or a is proper.

Conversely, let a C K be a proper fractional O-ideal. We may multiply a by an appropriate
element in K so that we may assume that a C O (being proper or being invertible is invariant
under multiplication by an element in K).

Let @ be the O-ideal obtained by applying the nontrivial Galois element of Gal(K/Q) on
a; this is an O-ideal as O = O (every order is of the form Z + NOg for N € N). We claim

that a@ = (N («)) (the principal ideal of O generated generated by N(«)). Then, a™! := Nga)

will give you the inverse, making a invertible. Let o, 3 € a be a Z-basis. Let 7 = E’ so that
a=a(Z&Zr),and O = O(a) = O(Z & Z7). Let aX? + bX + c be the minimal polynomial
of T over Z, so that a,b,c¢ € Z, with a > 0 and gcd(a,b,c) = 1. Note that ar € O(Z ® Zr).
Therefore, O D Z & Zat. If v € O(Z & Zr), vy,yT € Z & Z, so in particular Z & Z1 D O. This
implies that O = Z @ Za't for d’|a. If a'T € O(Z @ Z7), then 't € Z ® Z7. As a*X + bX + ¢
is the minimal polynomial of 7, ¢’ = a. Therefore, O = Z & Zar. So,

N(a)=[0:a] = [Z&Zar : o(Z & L7)] = [LZ(Z@@ZQZ): ; é(ZZ@@Zgg])] B NK/S “

Consider ad, which is the Z-module generated by {a@, a3, Ba, 38} = N x/o(a){1, 7,7, 7T}
Note that 77 = € and 7 + 7 = —2, so ad is the Z-module generated by Ny /g(a){1,7,2, £} =
N(a){a,ar,b,c}. As{a,b,c} generate Z, we see that aa = N(a)(Z @ Zat) = N(a)O = (N(a)).

U

Definition 13.26 (Ring class group). Let O be an order in an imaginary quadratic field. Let
Cl(O), called the ring class group of O, be the group of proper (=invertible) fractional O-ideals
modulo the principal ideals in O.

Proposition 13.27. Let O be an order in an imaginary quadratic field. There is a one-to-one cor-
respondence

Cl(O) < {lattices A C C (=elliptic curves over C) with End(A) = O} /isomorphisms,

a—aCC.

Proof. The only remaining verification is, if A C C is a lattice (=elliptic curve over C) with
End(A) = O, then A = Aa for A € C* and a an O-ideal. You may take A € C* so that

A'A C O. So we just assume that A C O. Then O(A) = O by definition, and A is an O-ideal
as A is stable under multiplication by an element in O. U

Example 13.28. As all fractional ideals of O are invertible, C1(Of) = CI(K).

We may guess that the ring class groups, just like the (ray) class groups, are natural objects
in the idele/ideal side of the global class field theory. In particular, it must arise as a quotient of
the ray class group of a certain modulus. This is in fact true.
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Theorem 13.29 (Ring class groups and ray class groups). Let K be an imaginary quadratic field,
and let O = Z + NOg be the order in K of conductor N.

(1) An O-ideal a C O is said to be coprime to N ifa + NO = O. Then, this is equivalent to
that N (a) is coprime to N.

(2) Any O-ideal coprime to the conductor N is a proper O-ideal.

(3) The ring class group C1(Q) is generated by the O-ideal classes of the O-ideals coprime to the
conductor N. More precisely,

C10) = {fractional O-ideals coprime to N }
- {principal fractional ideals «O where Ny q(ct) € Q is coprime to N}’

where a fractional O-ideal coprime to N is a fractional ideal of the form { where a,b are
O-ideals coprime to N.

(4) Any Ok-ideal a C Ok coprime to N gives rise to an O-ideal a N O C O coprime to
N. Conversely, any O-ideal a C O coprime to N gives rise to an Ok -ideal aOy C Ok
coprime to N. This gives a one-to-one correspondence between the O -ideals coprime to N
and the O-ideals coprime to N. Accordingly, C1(O) = JIS((N)/KN’O, where S(N) is the set
of places of K dividing N, and K™'© is the subgroup of K* generated by oo € Oy such that
a = a (mod NOk) for some a € Z with ged(a, N) = 1.

(5) Consider N as a modulus in K (note that K has no real place, so there is no infinite modulus
to worry about). There is a natural quotient map C1™ (K) — C1(O) with kernel (Z/NZ)*
(principal ideals generated by the integers coprime to N ). In particular, the ring class group
Cl(O) is finite.

Proof (1) Note that a + NO = O is equivalent to that multiplication by N is surjective on
O/a, which is equivalent to the order of O/a being coprime to N.

(2) Let a be an O-ideal coprime to N. Let &« € O(a) C Ok. Then aa C a, so in particular
a0 =ala+NO) Ca+NaO C a+ NOg = O. This implies that &« € O, so O(a) C O,
which means that a is a proper O-ideal.

(3) We first show that, for every proper O-ideal b C O, there is a fractional O-ideal a C K
coprime to N such that ba™! is a principal fractional O-ideal (recall that a is invertible by
(2), so a~! makes sense). Let py,--- ,p, C O be the prime ideals of O containing either
NOQO or b; there are finitely many such prime ideals as both NO and b are of finite index

in O. In particular, if p C O is a prime ideal not equal to any p;, then bO, = O,.

We claim that, even at p;, bO,, = B3;0,, for some 5; € K* (i.e. b is locally principal®);
this is not obvious because O),, now is not necessarily a PID (remember, for the ring of
integers case, we used that a local Dedekind domain is a discrete valuation ring, thus a

1811 fact, the converse is true, that a locally principal ideal is invertible. See [Neu, Proposition 1.12.4].
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PID). Indeed, as bb~! = O, which means that 1 = Y wyforx; € b,y € b~!. Note
that each x;y; € O by definition, and as the sum of x1y1, - - - , 2y, is 1, not all of them, as
elements of O),, are contained in the maximal ideal pO, of O,. After rearranging, suppose
that x1y; as an element of O, is not contained in pO,. As Oy isstill alocal ring, 2131 € Oy
Then, for any = € bO,,, zy; € bb~1 0y, = Oy, and zy; (z1y1) ‘21 € 210,,, which shows
tat bO,, C 210,,. As x; € b, this in fact implies that bOp,; = 210,,, as desired.

We now let q; C Ok be any maximal ideal containing p,Of. By the Weak Approximation
Theorem (Theorem 7.12), there exists § € K* such that |5 — f;|q, < |8, (to apply the
Weak Approximation Theorem, think of this condition as |3; " — 87, < |8; '|q:; it is
finding an element of the diagonal close to the point (5;*,---,371)) forall 1 < i < n.
We claim that a = 37!b does the job; i.e. 371b is a fractional O-ideal coprime to N, or
B0, = Oy, for every 1 < i < n. Note that 37'60,, = 3715,0,,, so it suffices to
show that 37! 3; is a unit in Oy,. By construction, |1 — 7!/;],, < 1, so 57!/3; is a unit in
Ok q;- Note that 4; NO D p;, soitisinfact q; N O = p;, because q; N O # O (i.e. q; cannot
contain ). This implies that Ok, is the integral closure of O,, in K. This implies that
k.q. 1 Op, = Oy, so in particular B715; is a unit in O,,.

What we proved so far is that there is a natural surjection
{fractional O-ideals coprime to N} — Cl(O).

Certainly any principal fractional ideal O with N /g (o) coprime to N is contained in the
kernel. Conversely, if «O is a principal fractional ideal coprime to NNV, then it is invertible,
so by Remark 13.24, its norm is also coprime to IV, which is equal to N g ().

(4) Foran Ok-ideala C O coprime to N, O/aNO — O /aisinjective. As NOg C O, and
as multiplying by N is invertible on Ok /a, it means that O/aN O — Ok /a is surjective.
Therefore, N(a) = N(O Na),so aN O is an O-ideal coprime to N.

Conversely, for an O-ideal a C O coprime to IV, we have
ClOK +NOK = (a—i—N(’))(’)K = OO}( = OK,

which means that aQk is coprime to N.

To show that these are inverses to each other, we first show that, given an O-ideal a C O
coprime to IV, aOx N O = a. Obviously aOx N O D a. For the other inclusion, note that

a0k NO = (a0 NO)(a+ NO)Ca+ NaOg Ca+ a0 = a.

We then show that, given an Ok-ideal a C Ok coprime to N, (aNO)Ok = a. Obviously
(a N O)Ok C a. For the other inclusion, note that

a=a0=a(aNO+NO)C(anNO)Ox+NaC (aNO)Ox +an0O = (anNO)0Ok,

because obviously Na C aand Na C NOg C O. This shows that the two operations
are inverses to each other.
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Finally, to show that C1(O) = J[S((N) /KN, it suffices to show that, for @ € Ok, a =
a (mod NOk) for some a € Z withged(a, N) = lifandonlyifa € O and ged(Ng g(a), N) =

1, which is almost by the definition of the conductor obvious.

(5) This follows from (4) and the finiteness of the ray class group.
O

Definition 13.30 (Ring class field). Let K be an imaginary quadratic field, and let O be an order
in K. Then, the ring class field K (O) is the abelian extension of K which, by the global Artin
reciprocity, corresponds to Cl(Q) as the natural quotient of the idele class group C (because
it is the natural quotient of the ray class group C1"¥(K), where N is the conductor of O). By
definition, Gal(K (O)/K) = Cl(O), and K(O) is the subfield of the ray class field K (V) where
Gal(K(N)/K(O)) =2 (Z/NZ)*.

14. MODULAR FUNCTIONS

14.1. Modular functions for SLy(Z). For the Explicit class field theory for imaginary qua-
dratic fields, we need to develop some theory of modular functions, which are meromorphic
modular forms of weight 0.

Definition 14.1 (Congruence subgroups). For N > 1, we define certain finite index subgroups

of SLy(Z) as follows.
To(N) = {(‘CL Z) €SLy(Z) : c=0 (modN)}.

T (N) = {(i Z) €SLy(Z) : ¢=0 (modN), a,d=1 (modN)}.

T'(N) = {(i Z) € SLy(Z) b,czO(modN),a,dzl(modN)}.

Obviously, I'(N) <T';(N) < T'y(N) < SLy(Z).
A finite index subgroup I' < SL,(Z) is a congruence subgroup if I' O I'(N) for some
N > 1.

Remark 14.2. As the definition suggests, there are finite index subgroups of SLy(Z) that are not
congruence subgroups.

Definition 14.3 (Modular functions). Let I' < SL,(Z) be a congruence subgroup. A modular
function for I" is a meromorphic function f : H — C that satisfies the following.

e Fory e, f(r)= f(y-71).

e “As T escape to infinity, f(7) is meromorphic”.

We explain in detail what this means.
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— Firstly, this includes the statement that f(7) is meromorphic as Im 7 — 400, which is
reminiscent of what we analyzed about j(7) above. Let N(Z) = { ((1) ?) tne Z} <
SLs(Z), and let Ny := N(Z) N T'. Note that as " is a congruence subgroup, I' D

(M) for some M > 1, and I'(M) N N(Z) = {(é A{”) ; nEZ}, so Np =

/
{ (1 M n) ‘e Z} for some M’| M. This implies that (1

!/

01 o 1) ensof(r) =

f(T 4+ M’). Therefore, if you consider the map H — D*, 7 +— e*™™/™' where
D* := {0 < |z| < 1}, then f factors through this map, and therefore gives rise to a
holomorphic map on D*. Then, f(7) being meromorphic as Im 7 — 400 means that
the corresponding holomorphic function on D* has a pole at z = 0, and the Fourier
expansion of f(7) at oo is of the form

e’}
f(T) = Z anqn7 q = 6217;;/77

n=K

for some K € 7Z (i.e. the Laurent series in ¢ has a finite meromorphic tail). This is
called the g-expansion of f(7) at co.

~ A cusp is an element of P := QU {oo}. The same formula for the action of SL;(Z)

on H applies to Pg, (where, for ¢ € Q, (CCL Z) qg=" Z;IIS” = oo ifeg+d=0,and

(Z Z) c00 = Z;’jig” = ¢, which is oo if ¢ = 0). Note that SLy(Z) acts transitively

on I%. Two cusps q1, g2 € ]P’(l@ are ['-equivalentif ¢ = v - ¢y fory e I

For each cusp ¢ € IP’}@, you may choose v, € SLy(Z) such that ¢ = ~, - co. If
f+H — C satisfies f(7) = f(v - 1) for v € I, then if we let f,(7) := f(7, - 7), then
fo(v - 7) = fo(7) if v € 7, 'T'7,. Note that ~, 'T'y, is also a congruence subgroup as
['(N) is a normal subgroup of SLy(7Z).

Now, this requirement of meromorphic as 7 escape to infinity is actually f,(7) being
meromorphic as Im 7 — +o0 for every ¢ € IP’}@. Note that you only need to check one
cusp per a I'-equivalence class of cusps. As Pg/T is a finite set (reason: Pg/ SLy(Z)
is just a singleton, and [SLy(Z) : T'] is finite), this is a finite check.

Clearly, if " < I', a modular function for I' is automatically a modular function for I"'.

Lemma 14.4. The j-function is a modular function for SLy(Z). Its q-expansion is j(1) = ¢~ ' +
744 +196884g + - - - € Z[[q]](¢7 ).

This is the reason why we put 1728 in the definition of j; we want the coefficients of the

g-expansion to be in Z, and the lowest order term to be just ¢!

Proof. We first compute the g-expansions of G4(7) and G¢(7); indeed, they have a slightly differ-
ent transformation formula for the action of SLy(Z), but the extra factor is just 1 when you act
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by any element in N(Z), so there are by the same reason the g-expansions of GG; and Gg. Note
that, for &k > 2, we have

Gar(T) = 20(2k) +2> Y

m>1 nezZ

=2((2k) +2 ) fa(mT),

1
(mT + n)? =

where for(2) = >, m As for(z) = far(z + 1), it should also have a Fourier expansion,

as Imz — +00. As limy .00 f2r(2) = 0, this implies that for(z) = > > | a,,e*™™*. Each
coefficient a,, can be computed by

1+Ni ’
G :/ for(2)e™ ™ ™*dz, N > 0.

Ni

As 2k > 4, the sum is absolutely convergent and we have

1+Ni ( p—2mimz ) 1+Ni  ,—2mimz
Ay, = / E — | dz = E / —  dz
2% 2k
: Z+n ' zZ+n
N1 nez ( ) nez Ni ( )

14+n+Ni _—27wimz co+Ni _—2mwimz
e e
= E dz = dz.
n _

2k 2k
+Ni Z co+Ni <

nez
M-+N1q e—2mimz
—M+Ni 22k

— dz = b + + + dZ7
27 22k 27 , , 4 , 22k
Sx . m,N M+Ni —M+Ni —-M—-Xi M-Xi

where Sx i n is the rectangle with four corners —M + Ni, M + Ni, —M — Xi, M — X for
M, N, X > 0 (counterclockwise). By the residue theorem,

Let Iy n = dz, so that a,, = limy;_,y~ Ips n. Consider the contour integral

1 6727rimzd (_27Tim)2k71 (27Ti>2k71m2k71
R z = —
i Joo ., . 22 (2k — 1)! (2k — 1)!
Therefore,
N2k, 2k—1 —M-Xi M—Xi M+NiN _—2mimz
B ([ )
MN = Va7 7o z.
(2k —1)! —M+Ni —M—Xi M—Xi 22
We claim that a,, = imy_400 Iy n = % For this, we give a bound on the other three

integrals appearing in the above expression.

e For z on the vertical line connecting —M — Xi and —M + Nz, i.e. for 2 = —M + yi with
—X <y < N, we have

e—27rimz 627rmy - 627rmN
Z2k |Z|2k — M2k’
SO )
—M—-X1 e—27rimz 2rmN
< -
‘/ o dz| < (N + X) T
—M+Ni
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e For 2 on the horizontal line connecting M — X7 and —M — X4, i.e. for 2 = x — X with
—M < x < M, we have

6727rimz efQﬂmX < 67271'mX
ZQk |Z‘2k — X2k )
SO
M-Xi —27r7,mz —2mmX
< -
‘ / <M
M—-Xi

e For z on the vertical line connecting M — Xi and M + Ni, i.e. for = = M + yi with
—X <y < N, we have

67271'imz 6271'my 6271'mN
2k | 2|2+ < M2k
SO
M+Nz —27mmz 627rmN
‘ dz| < (N 4+ X)——— e
Therefore, _—
(27Ti>2 m2 -1 627rmN e—2ﬂ'mX
Iyn ——————— | <2(N+ X 2M ———
’ M,N 2k — 1) (N + X) = N2k - X 2k
Let X = M. Then,
(27.”')2km2k:—1 e27rmN 6—27rmM
Iyn ————— | <2(N+ M 2M ———
’ MN T o) (N + M)~ + 2M
The right hand side goes to 0 as M — +o00, so this implies that a,, = %, as desired.
This implies that
o - (27”)2k 21 2mimz
faz) = k-1
m=1
Therefore,
27TZ 2k 2k—1 - 211 2k )
Gu(r) = 26008) + 23 5 CTT o om0 2% S e
m>1 j=1 T r=1
where 09,1 (1) = >, d?*~1. Therefore,
4”4 p2mirT A S 2mirT
g2(7) = 60G4(T) = 3 Z =5 + 3207 Z os(r)e ™,
r=1 r=1
8o Q2 71'6 4487T -
g5(7) = 140Go(r) = - + Z = Z os(r)e”™.
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In particular, go(7) = (1 + 240¢P(q)) and g3(7) = %(1 — 504¢Q(q)) for ¢ = €™ and
P(X),Q(X) € Z[[X]] Wlth P(0) = Q(0) = 1. Therefore,

e S5 (1+2400P(q))’
92(7)3 — 27g3(7)? G472 (1 + 240 P(q))3 — “2 (1 — 504¢Q(q))?

(1+ 240qP(q))
(1+240¢P(q))? — (1 — 504¢Q(q))*

To show that the Laurent series expansion of j(7) is in Z[[q]](¢~') with the first term starting
with ¢~!, what we need to show is that

(14 240¢P(q))* — (1 — 504¢Q(q))?
1728

j(r) =1728

= 1728

=g+ e 2[lg)

Note that
(1+240¢P(q))* — (1 — 504¢Q(q))?

1728
(14 720¢P(q) + 172800¢*P(g)* + 13824000¢° P(q)*) — (1 — 1008¢Q(q) + 2540164*Q(q)?)
- 1728

:q5PW)E7QO”4—umffw@2+8mm¢ﬁ%@3—14@%9@?.

We know that P(0) = Q(0) = 1 and as the g-term only appears in the first part of the above
expression, we know that the g-series for the above expression starts with g + - - - . To show that
the above expression has integer coefficients, we need to show that the coefficients of 5P(¢q) +
7Q)(q) are divisible by 12, or the coefficients of 5(P(q) — Q(q)) are divisible by 12. Thus, we want
to show that P(¢) = Q(q) (mod 12). This is the same as 03(n) = o5(n) (mod 12). As ox(n) is
multiplicative (i.e. ox(mn) = ox(m)og(n) as long as gcd(m,n) = 1), we only need to show the
congruence when 7 is a prime power, n = p*. Thus we want to show that 1 + p® + - .- + p* =
1+p°+---+p° (mod 12) for any s > 1 and prime p. By Chinese Remainder Theorem, we need
to show this for (mod 3) and (mod 4) separately.

e For (mod3):ifp=3,thenl+p>+---+p*=1=1+p°+ -+ p° (mod 3). If p # 3,
then p? = 1 (mod 3), so p** = p** (mod 3) for any ¢ > 0.

e For (mod4):ifp=2,thenl+p3+ - - +p*=1=1+p°+ - +p* (mod 4). If p # 2,
then p? = 1 (mod 4), so p* = p° (mod 4) for any ¢ > 0.

I will leave to the reader checking that the next terms of the g-expansion of j(7) after ¢! are
g '+ 744 +196884q + - - - . O

Theorem 14.5. The modular functions for SLy(7Z) are precisely the rational functions in j(7). In
other words, the field of modular fuctions for SLy(7Z), denoted K (Y (1)), is given by K (Y (1)) =
c().

Among those, the modular functions for SLy(Z) that are holomorphic on H are precisely the
polynomials in j(7). Namely, the ring of modular functions for SLy(Z) holomorphic on H, denoted
O(Y (1)), is given by O(Y (1)) = C[j].
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Proof. 1t is clear that a rational function in j(7) is a modular function for SLy(Z). Conversely,
suppose that you are given a modular function f(7) for SLy(Z). Suppose that f(7) has a ¢-
expansion with some meromorphic tail, starting with ayq " for N > 0. Then, you may consider
f(1) — anj(7)N, which is a modular function with the meromorphic tail of the g-expansion
starting with a lower order term. By repeating this, we may assume that the g-expansion of
f(7) has no meromorphic tail. This means that there is C' € C such that limy,,, 1 f(7) = C.
This implies that f(7) has no poles in the region {Im7 > B} for some B > 0. This implies
that there are only finitely many poles of f(7) up to SLy(Z)-action, as such poles must appear
inthe box {x +yi € H : x € [-1/2,1/2], y € [1/2, B]} and there are only finitely many

poles of a meromorphic function in a compact set in C. Let z1, - - - , 2,,, be the poles of f(7) up to
SLy(Z)-action, of order ny, - - - , n,,. Then, we consider
HON | (GORFICHES
i=1

Note that j(7) is holomorphic on the whole H, so this function is now holomorphic on H. On
the other hand, this process introduces yet another meromorphic tail of the g-expansion at oc.
We then go through the same reduction as above to eliminate the meromorphic tail of the ¢-
expansion (which does not introduce new poles in H, as j(7) is holomorphic on H). Thus we
arrive at a modular function f(7) which is holomorphic on H and has no meromorphic tail in its
g-expansion. But this implies that f(7) is bounded, as limyp, » 1o f(7) = C’ for some C’ € C,
and the rest of the values are realized by f(7) for some 7 in the box [—1/2,1/2] x [1/2, B'] as
above for some B’ > (. Therefore, by Liouville’s theorem, f(7) is a constant function, which is
obviously a rational function in j(7). It is clear from the proof that we also showed that a modular
function for SLy(Z) holomorphic on H is a polynomial in j(7). O

Remark 14.6 (Canonical model of the modular curve Y (1); for those who know algebraic geom-
etry). This implies that the modular curve Y'(1) in the algebraic geometry context can be defined
as the affine line A}, = Spec C[j] where you treat j just as a symbol representing a variable of a
polynomial. Furthermore, you can give a Q-model of Y'(1) by dictating that Spec Q[j] =: Y'(1)g
is “the cannocial model” of Y (1) over Q. You can even try to do this with 7Z instead of Q; for the
modular curve Y (1), it turns out that this is the correct thing to do'’, but in general you need to
ask yourself what is the meaning of “canonical model over Z".

14.2. Modular functions for ['((/NV). Now we consider a variant of j(7).
Definition 14.7. For N € N, let jx(7) := j(NT).
Proposition 14.8. The function jy(7) : H — C is a modular function for I'y(N).

N 0
0 1
any 2 X 2 matrix with real entries and positive determinant acts on H by the same formula). Thus,

Proof. Note that N7 = - 7 (we only talked about the action of SLy(Z) on H, but really

Someone may argue otherwise and may want to exclude 2,3, i.e. it’s a correct thing to do over Z[1/6]. This
is related to the fact that the action of PSLy(Z) on H is not free at precisely the orbits of i and e2™*/3 where the
stabilizers are of order 2 and 3, respectively.
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fory € I'y(IV) and 7 € H,

(G )

. . . N 0 N=t 0
Therefore, we show that jy (v - 7) = jy(7) if we show that 0% € SLo(Z). It

0 1
a b
we let v = Ne d , then

B0 D-C2 00 )-2)

This is obviously in SLy(Z) (determinant 1 is obvious because we are conjugating). To see if j (7)
is meromorphic at the cusps, we first enumerate all I'y(V)-equivalence classes of the cusps. This
is the same as asking the representatives of the set of right cosets I'o(NV)\ SLa(Z). Let

C<N):{(g Z) cad=N,a>0,0<b<d, gcd(a,b,d)Zl}-

-1
We claim that a right coset of ['((/V) in SLy(Z) is of the form [y] := (](\)[ (1)> SLo(Z)y | N

SLo(Z) for a unique v € C (V). Note first that such a set is stable under the action of I'y(N') from

-1 By
A~y € [y]for A € SLy(Z), thenforany M € T'o(N), as (](\)[ (1)> M <](\)7 (1))

CB I O (GO IR

-1 -1
Furthermore, if (j(\)f (1)) Ay, (j(\; (1)> Ay € [7], then

() 4] () 00) =39 (3 5)

-1
as [o(N) = (j(\)f (1)) SLy(Z) (](\)[ ?) N SLy(Z). This implies that [7] is a right I'y(NV)-coset.

(N
the left; 1f(O 1
SLy(Z),

Z € SLy(Z), you may find a unique v € C'(N) such
that there is M € SLy(Z) such that M <Z\2a ]\(;b

it an upper traingular matrix. This is the same as asking whether there exist z,w € Z with

Now the claim is that, given any

= . Firstly we show that we can make
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ged(z, w) = 1 such that Naz + we = 0. Let M = ged(c, N). Then we let z = % and w = —£%a.

As ged(a,c) = 1 and ged (55, 27) = 1, we have ged(z, w) = 1, as desired. Now we find z,y € Z
such that zw — yz = 1we have

Ty Na Nb\ (A B
z w ¢c d) \0 D)’
where by the determinant consideration we have AD = N. By possibly negating x,y, z, w,

we can assure that A, D > 0. Now by multiplying further on the left, we may perform a row
operation of adding a multiple of one row to another, so we may assure that 0 < B < D. We also

have gcd(A, B, D) = 1 as otherwise the original matrix (]\ia j\;b) would also have a nontrivial
common divisor among its entries, which is impossible as gcd(c,d) = 1. We have thus shown
that there is some v € C'(IV). The only thing we are left with showing for the right cosets is that,

no two different elements of C'(/V) are related by multiplication by an element in SIy(Z) on the

/ / / /
left. If (8 Z) , (% Z) € C(N), and if @" g}) (3 2) = (‘5 Z) then firstly z = 0, and

as rw = 1 by the determinant condition, z = w = +1. As a,a’ > 0, we have x = w = 1. Then it

is just about multiplying with <(1) 11)) on the left, which do not give a new element in C'(/N) by

the exactly same reason as above (it is an elementary row operation as alluded above).

From what we have shown is, if M € SLy(Z), then jy(M-7) = j <(](\)[ (1)) M - 7') = j(y7)

for some v € C(N). Let vy = (g 2) Then, from j(7) = e 2™ + 3> a,e*™"7, a, € Z, as
veT = ‘”TH’,Wehave

00 00
](f}/ . 7_) _ 6727rib/d672m'a‘r/d + Z ane27rinb/d€27rinar/d _ efQﬂib/dqfa/d + Z ane2mﬁnb/dqan/d.

n=0 n=0

Thus this is a meromorphic Laurent g-expansion at the cusp (i.e. has a finite meromorphic tail).
so we have finished showing that jy(7) is a modular function for I'o(NV). O

Obviously, j(7) is also a modular function for I'g(N). It turns out that all the modular func-
tions for I'y(NV) are obtained as the rational functions in j(7) and jy(7). The obvious question
is: is there an algebraic relation between j(7) and jy(7)? It turns out that there is one.

Definition 14.9 (Modular equation). For N € N, we define the function ® (X, 7) as

on(X,m) = ][ (X —in(y-7))
AETO(N)\ SLa (2)

This is a degree |C'(N)| polynomial in X with coefficients in holomorphic functions on H.

Theorem 14.10. Let N € N.
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(1) The function ® (X, 7) is a polynomial in X with coefficients in modular functions for
SLy(Z) holomorphic on H. Therefore, by Theorem 14.5, there exists a polynomial ®y(X,Y) €
C[X,Y] in two variables X, Y such that ® (X, 7) = Pn(X, j(7)). We call DN (X,Y) the
modular polynomial for T'y(N).

(2) The modular polynomial ® 5 (X,Y') is, as a polynomial in X , irreducible of degree |C(N)| =
1

(3) The modular functions for I'y(N) are precisely the rational functions in j(7) and jn(7).
Namely, the field of modular functions forUy(N), denoted K (Yy(IN)), is given by K (Yo(N))
C(,in) = COITT/ (PN (T, 7).

Among those, the modular functions for I'o(N) that are holomorphic on H are precisely the
polynomials in j(7) and jn (7). Namely, the ring of modular functions for I'o(IN) holomor-
phic on H, denoted O(Yy(N)), is given by O(Yo(N)) = C[j, jn] = ClJ][T]/ (PN (T, j))-

(4) For N > 1, we have d(X,Y) = On (Y, X).
(5) The modular polynomial ®(X,Y') has integer coefficients, i.e. P (X,Y) € Z[X,Y].

(6) If N is not a perfect square, then ® (X, X) is a polynomial of degree > 1 whose leading
coefficient is 1.

(7) If N = p is a prime, then ,(X,Y) = (X? = Y)(X — Y?) (mod p).

Proof. (1) We need to show that the coefficients of ® (X, 7) are holomorphic on H, in-
variant under SLy(7Z)-action, and is meromorphic at the cusps. Being holomorphic on
H is obvious (already jn(7 - 7) is). Similarly, being meromorphic at the cusps is obvi-
ous (already jy(7 - 7) is). Finally, for the invariance under SLy(Z)-action, if we choose
0 € SLy(Z), then if we enumerate the right cosets of I'o(N) in SLy(Z) as I'o(NV)vi,
1 < i < |C(N)| = [SLa(Z) : To(N)], then the invariance under the action of o is
the same as asking whether the right cosets I'g(N)~,;0 are precisely the right cosets in
['o(N)\ SL2(Z), which is obvious.

(2) Firstly, it is quite easy to see that the analogue of Chinese Remainder Theorem for SLy(7Z)
is true, i.e. for any tuple of pairwise coprime integers (N1, - - - , Ny, ), the map SLy(Z) —
[1:%, SLo(Z/N,Z) is surjective. This implies that, if (N, M) = 1, then [SLy(Z) : T'y(NM)] =
[SLa(Z) : To(N)][SLa(Z) : To(M)). Thus, to show that [C(N)| = N[,y (1+1), it
suffices to show when N = pF is a prime power. In that case, we can just enumerate the
matrices in C’(pk). Namely, if a = p*~% and d = p’, then unless either i = 0 or i = k,
0 < b < d is such that ged(a, b, d) = ged(b, p) = 1, so there are @ many choices for
b. Therefore,
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which is what we want.

To show that ®x(X,Y) is irreducible as a polynomial in X, it suffices to show that
Oy (X, j(7)) is the minimal polynomial of jy(7) over C(j), the field of all modular func-
tions for SLy(Z). Let .# be the field of all meromorphic functions on H, and let .#y =
C(J,jn), which is a subfield of .#. For 0 € SLy(Z), we obtain a homomorphism ¢, :
My — M, f(T) — f(o- 7). This is automatically injective as it is a field homomor-
phism. Furthermore, if f € C(j), then obviously ¢,(f) = f. Now note that, from the
proof of Proposition 14.8, the meromorphic tail of the g-expansion of jy (o - 7) tells you
which v € C(N) does o € [y]. Therefore, if 0, ¢’ are in different right cosets of I'(N) in
SLy(Z), then jy(o - 7) # jn(o' - 7). Therefore, there are at least |C'(/N)| many distinct
field embeddings of .#y into .# fixing C(j). This implies that [.#y : C(j)] > |C(N)|.
As the degree of &y (X,Y) is of degree |C'(NN)| as a polynomial in N, this implies that
Oy (X, 7(7)) must be the minimal polynomial of jx(7) over C(j).

(3) Let f(7) be a modular function for I'y(/V). As above, we enumerate the right cosets of
[o(N) in SLy(Z) as T'g(N)v;, 1 < i < |C(N)]. Consider the function

IC(N)I
G(X,m)=Y_ flyi-m)J[(X =in(r- 7))
i—1 i

This is a polynomial in X with coefficients being meromorphic functions on H with mero-
morphic g-expansion at cusps. We claim that the coefficients of G(X, 7) are actually mod-
ular functions for SLy(Z). For this, we only need to show that G(X,7) = G(X,0 - 7) for
o € SLy(Z). As we already know ® (X, j(7)) has coefficients being modular functions
for ['y(V), it suffices to show that H(X,7) = H(X, 0 - 7), where

H(X,1):= Z Xf(%—(T)T)

However, we know that both f and jy are modular functions for I'y(N), so H(X,7) =
H(X,o - 7) follows from the fact that I'g(N)~;0 runs over all right cosets of I'y(N) in
SLo(Z). As G(X,7) has coefficients being modular functions for SLy(Z), by Theorem
145, G(X, 1) € C(y)[X].

0Dy

We can arrange 7;’s so that v, = 1. Then, Z (jn(7), j(7)) = Hj;él(jN(T) —n(yi - 7).
Thus, 9

N /. .
X (jN<T>7](T))

G(in(T),7) = f(7)

As Oy (X, j(7)) is irreducible over C(j), and as jn(7) is a root of ® (X, j(7)), we have

9N (jn(7),§ (7)) # 0. Therefore, f(7) = % As both the numerator and the

denominator are in C(7, jn ), we get that f(7) € C(j, jn).

Suppose now that f is holomorphic on H. Then, the coefficients of G(X, 7) are the modu-
lar functions holomorphic on H, so G(X, 7) € C[j][X]. Therefore, it suffices to show that
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%(jN(T),j(T)) # 0 for any 7 € H, or that jy(7) # jn(vi - 7) for any 7 € H. Supopse

the contrary that jy(7) = jn(v; - 7) for some ¢ > 2 and 7 € H. As j : SLo(Z)\H — Cis

bijective, this means that there exists M € SLy(Z) such that M (]87 ?) = <](\)[ (1)> Ys-

-1
0 (1) SLy(Z) (](\)[ (1)) N SLy(Z) = I'y(N), which contradicts
the assumption that I'o(N)v; # T'o(N). Thus, we see that f(7) is a polynomial in j(7)

and jn (7).

This means that ; €

(4) Note that (X, j(7)) can be expressed alternatively as

ox(X,j(n) = I (X=itv-7).
7€C(N)

As Lo € C(N) and as L0 -7 = L, this implies that ®(j(7/N),j(7)) =0

0 N 0 N N> NJ y J\T s

or ®xn(j(7),jn (7)) = 0. Therefore, the polynomial ®y(j(7),X) € C[j][X] is divis-

ible by the minimal polynomial of jy(7) over C[j] which is &5 (X, j(7)). Therefore,

On(j(1), X) = g(X)Pn(X, (7)) for g(X) € C(5)[X]. By the Gauss Lemma, we know

that g(X) € C[j][X], i.e. thereis G(X,Y) € C[X,Y] such that ¢(X) = G(X,j(7)).
Thus,

On(5(7), X) = G(X,5(7)2n (X, (7)) = G(X, (7)) G5 (1), X)@n(5(7), X),

so G(X,j(1))G(j(1),X) = 1. As j(7) is not an algebraic function (otherwise it would not
have a g-expansion), this implies that G(X,Y)G(Y, X) = 1 as polynomials in C[X, Y.
This implies that G(X,Y) = G(Y, X) = £1. f G(X,Y) = —1, then Oy (j(7), X) =
—®n (X, j(7)), so in particular ®x(j(7),7(7)) = 0. However, as (X, j(7)) is irre-
ducible over C(}), this is impossible if |C'(/N)| > 1, which is the case when NV > 1. There-
fore, G(X,Y) = 1, and we have ®x (X, j(7)) = Pn(j(7), X), or Pn(X,Y) = DN (Y, X)

as again j(7) is not algebraic.

(5) We know that the g-expansion of j(-7) for v € C'(IV) has coefficients in Z[(y]. Therefore,
the coefficients of ® (X, j(7)), which are the symmetric functions in j(7y - 7), 7y ranging
over C'(NN), are polynomials in j(7) whose g-expansions have coefficients in Z[(y]. We
want to show that these coefficients are in fact integers. Let 0, € Gal(Q({x)/Q) be the

Galois element that sends (x +— (%. Then, after applying o, to the coefficients of the

g-expansion of j(y - 1),y = (8 Z) € C(N), we have

o, (](f}/ . 7_)) _ 6727ribx/dqfa/d + Zane2ﬂinbx/dqna/d.

n=0
a bx (modd)

0 d
where bz (mod d) is the integer in between 0 and d — 1 congruent to bx mod d (note

€ C(N)

This is however the g-expansion of j(v, - 7) where v, =
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that ged(a, bz (modd),d) = ged(a,bz,d) = 1 as ged(z, N) = 1 and a,d divide N).
Therefore, 0,(y) := 7. gives a permutation of C'(N). Therefore, the action of o, on
the coefficients of the g-expansion of a symmetric function in j(y - 7), 7 ranging over
C(N), makes no change of the coefficients. This implies that the g-expansions of the
coefficients of ® (X, j(7)) have integer coefficients. This implies that the coefficients of
Oy (X, j(7)) are integer polynomials in j(7) (this just follows from the same argument
that you eliminate meromorphic tails one by one, and each process the difference is an

integer monomial in j(7)), or (X, j(7)) € Z[j][X], or Pn(X,Y) € Z[X,Y].

a

0 d
expansion of j(7)—j(y-7) has the meromorphic tail g~ —e~2"%/4g=/4 50 the lowest order
term of the meromorphic tail is either ¢~ or —e~2"%/4g=%/4_In particular, the coefficient
of the lowest order term of the meromorphic tail is always a root of unity. Now the lowest
order term of the meromorphic tail of the g-expansion of ®(j(7),j(7)) is a product of
such terms, so its coefficient is again a root of unity. On the other hand, ®x(j(7), (7))
is a polynomial in j(7), so its coefficient of the lowest order term of the g-expansion is
an integer. Therefore, this coefficient must be £1. This implies that ® (X, X) has the

leading coefficient £1.

(6) If N is not a perfect square, then for any v = ( b) € C(N), a # d. Therefore, the ¢-

(7) Let N = p be a prime. Then C(p) = {o¢,- -+ ,0p-1,0,}, where o}, = (1

k
<
0 p) for 0 <

kE<p—1lando,= (g (1)) Therefore, we have

ok - 7) = e 2T krgT U 1N ", 2Tk 0 <k <p -1,

n=0
and

oo r) =7+ g™,
n=0

We use (, = €*™/? and 7 = (, — 1. Then,

jlow-7) =P P4 anF g =g+ ang? (modw), 0<k<p-1.
n=0

n=0

Therefore, if we look at @y (X, j(7)) as an element of polynomials in X with coefficients in
meromorphic ¢-expansions with integer coefficients (i.e. 5 (X, j(7)) € Z[[q]](¢7")[X]).
we have

Oy (X, (7)) = (X - (q‘”p + Z%q”“’)) <X = (q‘p + Zanqm’>) (mod ),
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where the congruence is first seen in a slightly bigger ring Z[(,)[[¢*/?]](¢~*/?)[X]. Note
that, in characteristic p, we have (Y + Z)? = YP? 4+ ZP, and also for any integer M,
MP = M. Therefore,

00 p 0o p o)
<X _ <q1/p + Z &nqn/p>> = XP_ <q1/p + Z anqn/p> = XP_ <q1 + Z Clnqn> (mod 7),
n=0 n=0 n=0

which means that

Oy (X, 7(7)) = (Xp — (ql + Zanq">> (X - <qp + Zanq”p>> (mod 7).

As both sides are now in Z[[¢q]](¢*)[X] and 7Z[(,] N Z = pZ, this implies that

Oy (X, (1)) = (Xp - (q‘l + Z%q”)) (X — (q‘p+zanq”p>> (mod p).

As gt + 377 ja,q" is the g-expansion of the j-function, this means that
Oy (X, (7)) = (X7 = j(T))(X = j(7)") (mod p).

Therefore, P (X,Y) = (X? — Y)(X — Y?) (mod p).
U

Remark 14.11 (Canonical model of the modular curve Yy(N); for those who know algebraic
geometry). This first means that the modular curve Yy(N) =: T'o(N)\H of level T'y(N) is al-
gebraically identified with Spec C[j][T]/(®n(T,j)). And then, you can define “the canonical
model” of Yo(N) over Q as Yy (N )q := Spec Q[4][T]/(Pn (T, j)). As before, you may want to do
this for Z instead of QQ, but in general this is not the philosophically corect thing to do. Namely,
bad things can happen at certain “bad” primes; here, a “bad” prime is a prime p that divides N.*
For example, ® v (X, Y’) mod p for p| N may not give a “correct” modular equation mod p. How-
ever, it is actually OK if p? does not divide N. Therefore, Spec Z[1/M][j][T]/(®n(T, 7)) is the
correct integral model over Z[1/M] for M = Hp2| y D- In particular, Theorem 14.10(7) is related
to what’s called the Eichler-Shimura congruence relation.

We also need the following result that connects the modular polynomial ® ; with the lattices
in C (=elliptic curves over C).

Definition 14.12. Let A, A’ C C be lattices (=elliptic curves over C). An isogeny f : A’ — A is
called a cyclic isogeny of order N if coker f = Z/N7Z.

Proposition 14.13. Let N € N and 7 € H. Let Z & Z1 C C be the corresponding lattice (=elliptic
curve over C). Then there are one-to-one bijections between the following sets:

(1) the roots of the polynomial @y (X, j(7)) € C[X];

20 Again, someone may also want to include 2 and 3 in the list of “bad” primes.
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(2) the points~y - T € H for~y € C(N);

(3) the lattices (=elliptic curves over C) A C C, up to isomorphism, admitting a cyclic isogeny
f+AN— Z ®Zr of order N.

The bijections between (1), (2), (3) are j(y-7) <> v - T <> Z D Z(7y - 7) (fory € C(N)).

Proof. The correspondence between (1) and (2) is an immediate consequence of the definition of
®  and Theorem 14.10(2). For (3), this is classifying the sublattices A C Z @ Z such that % =
7,/ NZ up to isomorphism. Note that if A is an index NN sublattice of Z@Zr, then this must contain
NZ & NZt. Thus, without worrying about isomorphisms, we are just finding the subgroups
of (Z/NZ)? = N%g%{% whose quotient is Z/NZ. This is just parametrized by the surjective
homomorphisms (Z/NZ)*> — Z/NZ, or where (1,0) and (0,1) go to in Z/NZ. Let (1,0) — =
and (0, 1) — y. Then this homomorphism being surjective is the same as ged(x,y, N) = 1. The
corresponding sublattice A C Z & Zr is

A={m+nr : mn€Z, me+ny=0 (modN)}.

Let a = ged(z, N) and d = &. Then, by definition, gcd(a, y) = 1. Therefore, if mz + ny =
0 (mod N), then N|ny, so a|n. Let n = an’ and x = az’. Then,

A={m+an't : m,n’ € Z, ma'+n'y =0 (modd)}.

As ged(2’, d) = 1, this congruence condition can be simplified into m = —”x—,,y (mod d). Let b be
the integer such that 0 < b < d — 1 and b = —% (mod d). Then,

b
A={m+an't : m,n' €Z, mzn/b(mOdd)}_dZ@(erb)Z—d(Z@m; Z).

Note that what we have found so far implies that ( 0 d

“ b) € C(N). Conversely, this also shows

0 d

this implies that a map from (2) to (3) is well-defined and surjective. Injectivity follows from the
fact that no two elements of C'(IV) are SLy(Z)-translates of one another. O

that d (Z & “=27Z) for (a b) € C(N) gives rise to a sublattice with quotient =~ Z/NZ. Thus,

15. EXPLICIT CLASS FIELD THEORY FOR IMAGINARY QUADRATIC FIELDS

15.1. First Main Theorem: from j-invariants to ring class fields. The first main point of the
Explicit class field theory of K is that the ring class field K (QO) can be obtained by adjoining
K with explicit values of the j-function (!).

Theorem 15.1 (First Main Theorem of Complex Multiplication). Let 7 € H be a quadratic num-
ber, corresponding to a lattice (=elliptic curve over C) Z & Zt C C with complex multiplication by
an order O = End(Z @ Zr) in an imaginary quadratic field K = Q(). Then, j(7) is an algebraic
integer (!) and K(O) = K (j(7)) (1.
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Proof. Suppose that « € O such that [o] : Z @& Z1 — Z © Z7, v — axz, is a cyclic isogeny
(necessarily of order Nk/q(c)). Then, by Proposition 14.13, j(7) is a root of ®, . () (X, j(7))-
Therefore, j(7) is aroot of the polynomial @, () (X, X) € Z[X]. If we also know that N g ()
is not a perfect square, then Theorem 14.10(6) will imply that j(7) is an algebraic integer.

Thus, the proof that j(7) is an algebraic integer for quadratic 7 will be done if we show the
following.

Lemma 15.2. Let O C K be an order in an imaginary quadratic field, and let a C O be a proper
O-ideal. Then, there exists « € O such that

o N = Ng/g(o) is not a perfect square, and
e a/aa = Z/NZ (as abelian groups).

Proof. We know that O = Z @& fOf for the conductor f € N of O. Let d = disc(K). Then,
B = %g is always in O (in fact Ox = Z[8] = Z & Zf3; note that 5% = df + d;—dg). We claim
that, unless K = Q(v/—2), a = fJ3 satisfies the two properties. Firstly, Nx/q(a) = fZ#. If

this is a perfect square, then as ged(d—1,d) = 1, eitherd—1 = —2a%andd = —b2ord—1 = —a?

and d = —20°. Note that either d = n for a negative square-free number n = 1 (mod 4) ord = 4n
for a negative square-free number n#1 (mod 4). In the former case, d is odd, so it must be that
d — 1= —2a* and d = —b?, but as d is square-free, b = 1, so d = —1, which is not congruent to

1 (mod 4). In the latter case, d is even, so it must be d — 1 = —a? and d = —2b%. As d = 4n for
a negative square-free number nZ 1 (mod 4), this implies that 2|b, so d = —8¢? for some ¢ € Z,
and this implies that 2|n. As n is square-free, it turns out that ¢ = 1, so d = —8, which is what
we are excluding at the moment. Thus, the first condition is satisfied (as long as K # Q(v/—2)).
For the second condition, consider the short exact sequence

0—=a/aa— O/aa — O/a — 0.

As #a/a = [%aac]‘] = N, we know that a/aa has the correct order. If it is not cyclic, then by the
structure theorem for finite abelian groups, there is a subgroup of a/aa isomorphic to (Z/hZ)? for
some h > 1. Therefore, there exists ca C b C a such that b/aa = (Z/hZ)*. As abelian groups,
b is free of rank 2, and as b/«a is of exponent i, hb C ca. On the other hand, as [b : hb] = h?,
this implies that hb = aa. This implies that b = h™'aa is an O-ideal, and O = hba~!. On the
other hand, as b C a, so ba™! C aa™! = O. Therefore, aO C hO, which implies that T € 0.
On the other hand, o« = ffand O = Z & Zf 3, so o€ O implies that h = 1, contradicting the
assumption.

The only exclusion we made was K = Q(y/—2). Then O = Z® f+/—27. What we did above
shows that the second condition a/aa = Z/NZ can be replaced with the condition that ¥ € O
for h € N implies & = 1. Now here you could choose o = f\/—_2, then N = 2f2? isnot a square,
and the second condition is also clearly satisfied. O

To show K (O) = K(j(7)), we will use Corollary 12.21. Note that we already know K (O) is
Galois over K, but not necessarily for K (j(7)). Moreover, as K/Q is Galois, K(Q)/Q is Galois.
Therefore, we want to show that all but finitely many primes of S(K(O)/Q) are contained in
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S(K(j(7))/Q), and all but finitely many primes of S(K (j(7))/Q) are contained in S(K (O)/Q).
Note first that p € S(K(0)/Q) if and only if p = pp splits completely in K (with p # p) and p
splits completely in K (O), but p splitting completely in K(O) is the same as [p] = 1 in C1(O),
or p = aOf for a € O. Therefore, up to a finite difference, S(K(O)/Q) is the set of primes p
such that p = Nk g(a) for o € O.

e For S(K(0)/Q) — S C S(K(j(7))/Q), for a finite set S.

Let p € S(K(0)/Q) such that p is unramified in K (j(7)). Then, up to a finite difference,
p = Ngpgla) for a € O. Then Z ® Zt — Z & Zt, v +— o, is a cyclic isogeny
of order p (cyclic because p is a prime). Therefore, ®,(j(7),j(7)) = 0. This implies
that (j(7)? — j(7))? is divisible by p. Let I3 be a prime of K (j(7)) lying over p. Then
J(7)? = j(7) (mod*B). Note that Ok (;(-)) D Z[j(7)] may not be the same, but it is of
finite index, and as long as p does not divide (O j(r)) : Z[j(7)]] (which excludes finitely
many priems), o = a (mod*P) for every o € Ok (j(r)). Thus f(P|p) = 1 for any P over
p. This implies that p splits completely in K (j(7)) up to a finite difference.

This implies that K (O) D K(j(a)) for all proper fractional O-ideals a. Let ay, - - - , a ci(0)
be the classes of C1(O). Then A = [],_;(ji(a;) — j(a;)) is a nonzero element of Ok (o).

e For S(K(j(7))/Q) — S € S(K(0)/Q), for a finite set S.

Let p € S(K(j(7))/Q). This in particular implies that p splits completely in K, so p =
N(p) for some prime ideal p of K. As long as p does not divide the conductor of O, then
p= N(p) = N(pNO). We want to show that for all but finitely many such p, pN O = aO

for some o € O, which will show that p = Ng/g(a), so that p € S(K(0)/Q). We can
exclude finitely many p at any point, so we further assume that j is coprime to A.

Let a be the proper O-ideal corresponding to Z@® Zt. Let a’ = (pNO)a. Then it is of index
p inside a, so @’ — a is a cyclic isogeny of order p. Thus, ®,(j(a’),j(a)) = 0. Let I3 be
a prime of K (j(7)) above p such that f(B|p) = 1 (which exists as p € S(K(j(7))/Q)).
Let P’ be a prime of K(O) above B. Then ®,(j(a’),j(a)) = 0 implies that (j(a’)? —

J(@)( (@) — (@) = 0 (mod ). As F(P|p) = 1, we have j(a)? = j(a) (mod ), so in
any case j(a)? = j(a') (mod*P’). As p is coprime to A, this means that j(a) = j(a’). This
means that p N O is a principal O-ideal, which is what we wanted.

O

We also know how Gal(K (O)/K) acts on j(7), in the sense of reciprocity law.

Theorem 15.3 (Reciprocity law for j-invariants). Let O be an order in an imaginary quadratic
field K. Let a be a proper O-ideal, so that j(a) € K(O) by Theorem 15.1. For o € C, we have

Arte(a)(j(a) = j(a,'a),

where a,, is a proper O-ideal representing the image of « by the natural quotient map C'x — C1(O)
obtained in Theorem 13.29(4).
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To deduce this, we divert our attention slightly to the (meromorphic) modular forms.

Definition 15.4 (Modular forms). Let I' < SLy(Z) be a congruence subgroup, and let k£ € Z be
an integer. A meromorphic modular form of weight k£ and level I is a meromorphic function
f + H — C such that the following conditions hold.

(1) (Modularity) For v = (Z fl) el f(y-7) = (et +d)ff(r).

(2) (Meromorphy at cusps) At each cusp c € I%, f(7) is meromorphic at c.

A weakly holomorphic modular form is a holomorphic function f : HH — C which is a
meromorphic modular form.

A modular form is a weakly holomorphic modular form satisfying a stronger condition,
Holomorphy at cusps.

(2)’ (Holomorphy at cusps) At each cusp ¢ € P(l@, f(7) is holomorphic at ¢, i.e. the ¢-
expansion has no meromorphic tail.

A cusp form is a modular form satisfying a stronger condition, Cuspidality at cusps.

(2)’ (Cuspidality at cusps) At each cusp ¢ € Py, f(7) is holomorphic at ¢ and furthermore
f(c) = 0. Namely, the g-expansion of f at ¢ has no nonpositive powers of ¢ in it.

It is clear that any type of the above forms is closed under addition and scalar multiplication.
Furthermore, if you multiply two forms of the same type with the same level and weights £ and
¢, then the product is of the same level and weight k + ¢. If I" = I'(V), then we simply say that a
form is of level V.

Example 15.5.

(1) For a congruence group I, the modular functions for I' are precisely the meromorphic
modular forms of weight 0 and level I". The modular functions for I' holomorphic on H
(e.g. j(7)) are precisely the weakly holomorphic modular forms of weight 0 and level I".

(2) As seen in the proof of Proposition 13.14(2), the Eisenstein series Goy(7) is a modular
form of weight 2k and level 1. As its g-expansion at co has a constant term some nonzero
multiple of ((2k), it is nonzero, so G, (T) is not a cusp form.

(3) As seen in the proof of Lemma 14.4, the g-expansion of g,(7)3 — 27¢3(7)? at oo starts
with the ¢-term. Furthermore, both g,(7)% and g3(7)? are of level 1 and weight 12 (12 =
4x3 = 6x2). Thus, go(7)3—27g3(7)? is a cusp form of weight 12 and level 1. This function
A(T) := go(7)® — 27g3(7)? is called the modular dicriminant. As shown in Proposition
13.14(4), A(7) # 0 for every 7 € H (on the other hand, by cuspidality, “A(cc) = 0”).

We are particularly interested in integrality properties of ratios of values of A.
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Theorem 15.6. Let v = <CCZ Z) be a 2 x 2 matrix with integer entries such thatdegy = N isa

positive integer. Let

. AT12 Ay -7)
‘PW(T) =N (e + d)2A(7)

(1) The function ., is integral over Zlj].

(2) For T € H quadratic, ¢.(7) is an algebraic integer that divides N'2.

(3) Let T € H be a quadratic number with O = End(Z @ Z7) and a = 7 @ Zt for a proper O-

ideal a. Suppose that p is a prime number splitting completely in K such that p does not divide
the conductor of O. Let pO = pp be the factorization into O-ideals (i.e. pO = (p'NO)(p'NO)
where pOy = p'p’). Let ~y be a 2 x 2 matrix with integer entries with dety = p such
that Z. & Z7 = a sends v(Z ® Z1) = pa. Then, in a sufficiently big number field L,

0, (1)OL = PO, (e.g. you can take L = K (p(7))).

(4) Retain the same notation as (3). If 0 is a 2 X 2 matrix with integer entries with detd = p

Proof.

such that, under the isomorphism 7. & Zt = a, §(Z & Z) is sent to neither pa nor pa, then
s(T) is a unit.

(1) Note that from the proof of Proposition 14.8, we can deduce that

C(N):SLQ(Z)\{(Z Z) cabe,d €7, ad—bc:N}.

N 0
0 1

coset for any v which is an integer 2 X 2 matrix with det v = IV, and because the formula
clearly shows that this coset only depends on the right SLy(Z)-coset of 7, so the bijection
C(N) = {right T'y(N)-cosets} factors through

-1
This is because the proof shows that ( ) SLo(Z)~y | NSLy(Z) is a right T'g(V)-

a b

C(N) — SLy(Z)\ { (c d) ca,bye,deZ, ad —bc = N} — {right I'o(V)-cosets}

whose composition is a bijection. Here the first map is just the natural map (any element
of C'(N) is an integer 2 X 2 matrix with determinant V). Thus the first map is injective.
To show that the first map is surjective, we also notice that any integer 2 x 2 matrix with
determinant N can be modified by left multiplying by an element of SL(Z) to arrive at
an element of C'(N), but everything just works in the same way (you can always make
the matrix upper triangular in this way, and everything else is verbatim the same).

As A is a modular form of weight 12 and level 1, if 7/ = M~ for M € SLy(Z), p/(1) =
©(T). Let y1,- -+ ,vc () be all the elements of C(NN). Suppose that o € SLy(Z). Then,
for each 1 < i < |C(N)], there is unique 1 < j; < |C(N)] such that SLy(Z)y,0 =
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SLa(Z)7j(i)- We claim that ¢, (0 - 7) = ¢, (7). Indeed, for v; = (CCL b) and 0 =

(£ )

A(yio - 7) A(yio - 7)

(o-7)=N*™? = N*®

Pl 7) (co -1+ d)2A(c - 1) (c—:::’} +d)2 (21 + w)2A(T)
12 A(yo - 7)

((cx + @) + (cy + dw))PA(m) ~ Plm)

Therefore, if f(7) is a symmetric function in ¢.,(7)’s, then it is a modular function of level
1 (meromorphy at cusps is obvious) that is holomorphic on H. Therefore, the polynomial
HLZSN” (X — ¢4,(7)) is a polynomial in X with coefficients in C[j].

To show that ¢, (7) is integral over Z[j], we want to show that symmetric polynomials
in ¢, (7) have g-expansions in Z[[q]](¢~*). Note that, by the proof of Proposition 14.8, it
is easy to see that the g-expansion of ¢.,,(7) is in Z[(y][[¢*/™]](¢~'/"), and applying o €
Gal(Q(¢n)/Q) on the coefficients will permute the g-expansions of .. (7)’s. Therefore,
this shows that a symmetric polynomial in ., (7)’s has g-expansion in Z|[[q]](¢"!).

(2) From (1) and Theorem 15.1, ,(7) is an algebraic integer for a quadratic 7 € H. Let
. d —b . N 0
adyy—(_c a),sothatfyadjfy—<0 N).Then

2 Aly-7) A(((adjy)y) - 7) _ N — N2
(cm + d)2A(7) (-t 1 a) PAly-r)  (ad—be)t2 .

4 (T)Padjy (V- 7) = N

AS ©agj~ (v - T) is also an algebraic integer, ¢, (7) divides N'2,

(3) We choose a proper O-ideal b such that bp = A\O is a principal O-ideal and b is coprime
to p (this is always possible because C1(Q) is generated by proper O-ideals coprime to M
for any choice of M). Then bpa is a sublattice of pa, so there exists a 2 x 2 matrix 7' with
integer entries such that v(Z & Z7) = pa sends v'v(Z @® Z7) = bpa. Then by definition

dety’ = [pa: bpa] = N(b). Lety = <CCZ Z) and ' = <CCL, Z,) We then have
AQ(Yy-T) Aly-7)
0 (7 T (7) = N(b)2p'? —
7 )@4(7) (b) (c’ﬁ +d)2A(y - ) (er + d)12A(T)
1

— N(b)12p12

(a+de)T + (¢b+dd))?
N(b)12p12

It is easy to see that A = (c'a +d'c)7T + (¢'b+ d'd). Therefore, /(7 - 7)o, (T) = =5
Note that (2) tells us that ./ (v - 7) divides N (b)'?, so ¢, (7) is divisible by i—i. Note also

121



that, as b is coprime to p, the prime factorization of A\Ok has exactly one appearance of
p’ and no appearance of p’. Therefore, ¢.(7)Oy, is divisible by FHOL = p'?O;. On the
N(b)12

Py (7°7)

is coprime to ¢, (7). Therefore, ./(7y - 7) must be off by a unit, and ¢, (7)O;, = pOy.

other hand, by (2), ¢, (7) divides p'?, and as N (b) is coprime to p, it turns out that

(4) Recall that in the proof of Theorem 14.10(7) we observed that C'(p) = {0y, - - - , 0, } where
o = ((1) ’;),0 <k<p-1lando, = (g ?) Suppose that 0 < r # s < pbe such that
the isomorphism Z&Z1 = asends 0, (ZBZ7) = paand o4(Z®Z7) = pa. Then, by (3), we
know that ¢, (T)¢,, (T) is a unit times p'2. What we want to show is that ¢, (7) is a unit as
long asi # r, s. As each ¢,, (7) is an algebraic integer, to achieve what we want, it suffices
to show that [[7_, ¢,, (7) is a unit times p'?. Note that the function F'(z) := [[}_, 0, (2)
for z € H is a modular function in SLy(7Z) holomorphic on H, so it is a polynomial in j.
Furthermore, if we look at the lowest order term of the g-expansions of ¢,, (2), it’s easy to

see that we get (227”"’“/7’q_p1'%1 for0 < k < p—1,and p'2¢?~! for k = p. Therefore, the lowest
order term of the g-expansion of F' is 2™(0+1++{p=1)/pp124(p=1)=(p=1) — o2milp=1)/2p12 —
(—1)P~1p'2. Therefore, F is in fact a modular function for SLy(Z) that is also holomorphic
at infinity. By Liouville’s theorem, this must be a constant, so F'(7) = (—1)?~'p'?, which
is what we wanted.

O

Proof of Theorem 15.3. By Artin reciprocity, Artg(a)|x ) depends only on the image [a,] €
Cl(O) of « along Cx — Cl(O). By Theorem 13.29(3) and (4), for any choice of modulus m
divisible by the conductor N of O, we know that Cl(QO) is generated by the prime O-ideals
of O which are of the form p N O for a prime ideal p C Ok coprime to m. We in particular
add a few more primes to m so that it is divisible also by the primes ramified in K (Q) and the
primes ramified over Q. Then, it suffices to show the identity for a such that a, = p N O for a
prime ideal p C O coprime to m. Now for such «, we know by the local Artin reciprocity and
the local-global compatibility that Artx(a)|x(©) = Fr,. Thus, we need to show that, for each
prime p unramified over Q and unramified in K (Q), if B is a prime of K (QO) lying over p, then
J(@V® = j((pNO)"'a) (mod P).

Let p be a prime number in Z such that pZ = Z N p. If p is inert in K, then p = pOg. On
the other hand, [p] = 1 in Cl(O) because it is a principal ideal and (p, N) = 1. Therefore, we
know that pOy splits completely in K (QO). Therefore, N(*8) = p?> = N(p) and the congruence
we want to show is j(a)”" = j(a) (mod ) which is obvious.

We are left with the case when p splits completely in K, p = p'p’ with p’ # p’. Then, we want
to show that j(a)? = j(p~'a) (mod*P) where p = p' N O.

Recall that in the proof of Theorem 14.10(7) we observed that C'(p) = {oo,--- ,0,} where

o = <(1) ;), 0<k<p-1lando, = (g (1)) We consider the polynomial in two variables

F(XY) = (H(y —n <T>>> >

=0 1=0
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Its coefficients are holomorphic functions on H meromorphic at cusps. Furthermore, it’s easy to
see that the coefficients are invariant under the action of SLy(Z). Therefore, F' € C[X, Y, j]. By
looking at the g-expansions, we see immediately that in fact F' € Z[(,][X, Y, j]. It is also easy to
see that the ¢g-expansions are invariant under the conjugation by any element of Gal(Q((,)/Q),
so I’ € Z[X,Y,j]. Since the first p terms (i.e. those corresponding to oy, -- ,0,_1) have the
g-expansiosn of the same form except that they use different p-th roots of unity (including 1),
these terms are all congruent to each other mod 1 — (,. As there are p such terms, the sum of
these p terms will vanish mod 1 — (. Therefore,

F(X,Y) = (H(y - som(r))) X230 1) (nod1 - g,).

i=0 Y — ¢5,(7)

As j(o, - 1) = j(7)P, we see that F\(j(7)?.Y) € pZ[Y, j].

We let 7 € H be such that Z & Z7 = a. Let «, § be two 2 X 2 integer matrices such that the
isomorphism Z & Z7 = a sends «(Z @ Z7) = pa and f(Z & Z7) = pa. We can then see that
F(j(1)?,05(7)) = 0 (mod pOy,) for a big enough number field L that contains all these values.
Note that det &« = det 8 = p. Therefore, if we let 0, € C(p) be such that SLy(Z)5 = SLs(Z)0oy,
then we see that only the u-th term of the original sum for the definition of F'(X,Y") survives
when we put Y = ¢g(7), so that we obtain

() =jlou-7) JI (ps(r) = ¢s(7)) =0 (modpOy).

0<i<p,izu

Asj(o,7) = j(pa) = j(p'a), to get what we want, it suffices to show that @5 (7)Zp,, (7) (mod pOy)
for i # u. By Theorem 15.6(3), it follows that p3(7)Of = p'20O;. Therefore, it suffices to show
that ¢,,(7)Z0 (mod pOy). If SLy(Z)o; = SLa(Z)a, then again Theorem 15.6(3) shows that
0o, (T)Or = POy, so in particular ¢, (7)20 (mod pOy). If not, then Theorem 15.6(4) shows
that ., (7) is a unit, which also implies that ¢, (7)Z0 (mod pOy,). O

Corollary 15.7. For an imaginary quadratic field K, Hx = K(j(Ok)).

This is a remarkable property of the j-function. In fact, the j-function assumes transcendental
values at algebraic, non-quadratic points on H.

Theorem 15.8 (Schneider). If 7 € H is an algebraic number such that j(7) is also an algebraic
number, then T is a quadratic number. In other words, if T € H is algebraic and not quadratic, j(T)
is a transcendental number.

For the proof, see [Sil, Chapter IL.6].

15.2. Second Main Theorem: from ring class fields to ray class fields. Note that K (V)
(ray class field of conductor N) and K(Z & NOk) (ring class field of order of conductor N) are
different, and Gal(K (N)/K(Z® NOk)) = (Z/NZ)*. How do we reach the ray class field from
the ring class field? We need to adjoin more specific elements to ring class fields.
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Definition 15.9 (Weber functions). Let O be an order in an imaginary quadratic field K. We
define the Weber function of the order O, which is a function on three variables (z,7) € C x H,
as
ro(z,7) 1= g#(r)p(2, 2. © Zr)

where ©(z, Z © Z7) is the Weierstrass p-function for the lattice Z & Z1 C C (=elliptic curve over
C), ue is the group of roots of unity in O (which can be either (—1) (order 2), ((4) (order 4, only
happens when K = Q(i) and O = Ok) or ((s) (order 6, only happens when K = Q(v/—3) and
O = Og)), and

@ ()= _97. 592(7)g3(7)
9-7(7) == =2 STA)

@ () .— 98. 492(7)2
g (r) =2 BA(¢)2’

©) () — _99 . 3693(7—)'
97(7) A
Again, there are good reasons why you want to multiply with those powers of 2 and 3, which
you will see in a moment.

Remark 15.10. The reason why we take the units into account is precisely because the stabilizer
of the SLy(7Z)-action on H is not {£1} precisely at two orbits, namely the orbit of 7 and the orbit
of €2™/3, Note that the case of order 4 stabilizer is precisely when the corresponding lattice
(=zelliptic curve over C) is Z ® Zi = Ogq;), and the case of order 6 stabilizer is precisely when the

corresponding lattice (=elliptic curve over C) is Z @ Ze>™/3 = 7, & 27142 = Og(v=3)!

Similar to the j-function, we are interested in special values of the Weber functions. The
algebraic properties of the special values are studied by an analouge of the modular polynomial.

Definition 15.11 (Division polynomial, torsion points). Let N € N. Consider the function

TN’(')(X,T) = H (X —T0O <—I'1 _’]_V:EQT,T)) .
)=1

x1,22€ZL/NZ, ged(x1,22,N

This is called the N-th order division polynomial for the Weber function 7. The points ”"IJ]“V“T
for ged(z1, x2, N) = 1 are exactly the points z € C such that Nz € Z & Z7 and nz ¢ Z & Zr for
0 < n < N. Such a z is called a torsion point of Z & Z7 of exact order N. A torsion point

of Z & Zt is a point z € C such that nz € Z @ Zr for some n € N.

Theorem 15.12. Let O be an order in an imaginary quadratic field K. Let N € N.

(1) The division polynomial T o (X, T) is a polynomial in X with coefficients being polynomials
in j(7). Thus, we may think of Ty o(X,T) = Tn.o(X, j(7)) for a two-variable polynomial
TN,O (X7 Y)

(2) The two-variable polynomial Ty o(X,Y) € Q[X,Y]. Furthermore, if N is not a prime
power, Ty o(X,Y) € Z|X,Y]. IfN is a power of a prime numberp, thenp® o Ty o(X,Y) €
71X, Y.
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Proof. (1) Itis clear that the action of SLy(Z) on 7 preserves Ty o(X, 7), as the enumeration
of the Z @& Z7-orbits of 25227 running over x1, 2 € Z/NZ, ged(z1, 22, N) = 1 only
depend on the lattice Z @ Z7. It is also clear that the coefficients are actual values and do
not blow up for any 7 € H. The result follows.

(2) We need to discuss the Fourier expansions, so let us start with o(z, 7). Namely, p(z, 7)
is SLo(Z)-invariant at 7-variable, and periodic with periods 1 and 7 at z-variable. Let
U = e*™%. Then, we claim that, for | Im(z)| > Im 7 > 0, the following formula holds,

2
p(z,T):—%<1+( 5+ 12 an or+U™" -2 ))
n,m=1

The way that this formula is obtained is a variant of the argument we used to compute
the Fourier expansion of the Eisenstein series G (7) (this is like the “weight 2” version,
except that there are a lot more decorations to make the infinite sum converge). Namely,

o(z,7)=f(2)+ Y. glz,m7),

meZ,m#0
where .
- _+ Z ( (2 —n) n2)7
n€Z,n#0
1 1
9= =2 ((z—n—T)z - (n+7)2> '

ne”L

Note that this is an OK rearrangement, because the infinite sum for the definition of p(z)

is absolutely convergent as long as you don’t pull terms out of the parentheses (the whole

series disregarding the grouping is not absolutely convergent, but /\)2 — % = )\%Z(ij\;

which is ~ —) Now each of f(z) and g(z, 7) have an absolutely convergent infinite sum,
so dealing with each of these functions, we can rearrange the terms as we wish.

e For f(z): note that f(z) = >_, o7 = n)g —20(3) = > ,ez ﬁ — ﬁ . Note also that

p— = L oz s periodic with period 1, so we may expect a Fourier expansion in terms
of U. In fact, it is one of the standard infinite series proved in complex analysis that

9 1
CSC (Z) = Z m,

nez
so that L ]
mesct(mz) = ;(z——n)Q
Note that sin?(7z) = 1_C°Z(2m) = 220U Therefore, f(z) = —%2 — ﬁi]*l -

<1 + o 2 ) This identity holds as long as U # 1.
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e For g(z,7): note that, using the identity we discussed above, g(z,7) = 72 csc?(n(z —
7)) — w2 csc?(w7). Thus,

( ) 472 472
gZ,’T_—U
;—24‘% qg—2+¢q
Note that
472 Am%q = [—2
e :42 1_ 72:42 _1nn
o e - = Y ()

_47rqzn+1 " = 4g? an

Therefore, similarly,
472
= 472 n
U oy ; "

These identities hold when |¢| < 1 and |#| < 1, which is when Im(z) > Im(7) > 0.
Note however that we are also planning to plug m7 into 7 for m < 0. In those cases,
we need to rather use

47'('2 _ —1\— G -n
m:472q H1—¢™) 2:4772271(1 ;

472

n=1

These identities hold when |q_1\ < land ‘%‘ < 1,whichis whenIm(z) < Im(7) < 0.

So all in all, if we gather the Fourier expansions, we get
p(z 7_) _ _7T_2 1 LY 12U +47T2 Z Z . nqnmU—n)+4ﬂ_2 i i (nqnm _ nqnmU’n)
7 3 (1 - m=1 n=1 m=1 n=1 .

This after rearrangement is precisely what we wanted. Now, we can easily compute the
g-expansions of g(z) , 9(4), g(ﬁ), so that 7o (z, 7) has the Fourier expansion

#1o /2
ro<z,r>:P<q>(1+( 12 Y g U"+U”—2>> |

n,m=1

for some g-expansion P(q) € Z[[q]] with the lowest term starting with ¢~##/2 (this in-
cludes that the lowest order coefficient is 1; this is why we multiplied those funny numbers
in the definitions of ¢, g4, ¢(©)).
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Now we can conclude. Note that, for 0 < x1,29 < N, then U = (3} q”/N, where (y =
e2™/N Thus

T, + 2T 1gcx1qr2/N © #uo/2
et LS 1 — —#po/2 4 . .. 1 N 12 nm (xin zon/N —zin, —xzon/N 2
7o ( ¥ m) (q +) ( M nEm_lnq (Cv"a™"™ + (" ) :

Note that there are only finitely many appearances of negative powers of ¢ in the above
series because z5/N < 1. This shows that the coefficients of the above g-expansion are

in Q((x). Furthermore, the coefficients are actually in Z[(y] unless o = 0 (in which
12¢34

case the middle term would just be m.). Now note that the Galois conjugation
N
(n > (} sends the g-expansion for 7o (ZH2T 7) to 7o (“E22T 7)), so it follows that

Tno(X,Y) € Q[X,Y]. Furthermore, we know exactly how much we need to multiply to
make it integral; namely, we need to multiply by

1 if N is not a prime power
(1 _ Cm )#uo _ |y p
| | N = . ) )
2€Z/NZ, ged(z,N)=1 p*Ho if N = p* is a prime power.

Thus we are done.
OJ

Definition 15.13. Let O be an order in an imaginary quadratic field K. Let N € N. Let p be a

prime number coprime to V. Let v = be a 2 X 2 matrix with integer entries such that

b
d
det v = p. We define, for z1, xo € Z with ged(zq, 22, N) = 1,

5 i\ O\ r1 +xor ' pr1 + proT
~,0O,N 29 T =T0 T,T — TO m77-7 .

Note that this definition makes sense as pZ & pZ1 C (¢ +d)(Z & Zr - 7). We furthermore define

X
Syon(X,T) = 1T (X — 00N (( 1);7)) :
T2
z1,22€ZL/NZ, ged(z1,22,N)=1

For k > 0, the X*-coefficient of S, o v(7) is denoted as D§7()97N(7').

Theorem 15.14. We retain the notations of Definition 15.13.

(1) The functions DEY’%’N(T) are modular functions for G., := SLy(Z) N~ ~* SLy(Z)~, holomor-
phic on H.

(2) The q-expansion ong%’N(T) at infinity has rational coefficients that are p-integers (i.e. can
be written as ™* with ged(n, p) = 1). If y = (g 1

divisible by p (except the leading coefficient case where Dﬁ%’N(T) =1)

, all coefficients of the q-expansion are
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(3) Let 7' € H be a quadratic number such that End(Z ® Z7') = O. Let a be a proper O-ideal
such that Z. & Z7' = a. Suppose that p = p'p’ splits completely in K and p does not divide
the conductor of O. Then, D,(y]f()lN(T/) is algebraic. Furthermore, ify is such that Z 77" = a

sends Y(Z © Z1') = p'a, then Dgf()?,N(T/) is divisible by p’.

(4) Let 7' € H be a quadratic number such that End(Z ® Z7') = O. Let a be a proper O-ideal
such that 7 ® 77" = a. Suppose that p is inert in K, p > 12, p does not divide the conductor

of O, and p is unramified in Q(j(7')). Then, DS%N(T/) is algebraic and is divisible by p.

(5) Let O = Ok. Let z be a torsion point of Z & Z1 of exact order N. Under the isomorphism
7 @ 7t = a, let z be sent to ' (as an element of %a). Then, Nza™' = v is an integral
ideal of Oy coprime to N, and 70,. (2, ) only depends on the ray class [t~'] € C1"(K). For
a € CIV(K), we will define 7o, () := 7o, (2,T) for any z as above such that [t~'] = a.

(6) For any prime ideal p C Ok such that the prime number p divisible by p satisfiesp > 12
and ged(p, N disc(K)) = 1. Then, for any prime ideal 3 above p in a big enough number
field and o € C1V(K),

70, (afp] 1) = 7o, ()M (mod ).

Proof. (1) Note that, for any M € SLy(Z), M = (j g]) ,as oM = <ax +bzoay+ bw)’

cx+dz cy+dw

x xy +aoM T P pry + proM - T
5%(97]\[((1‘;);]\4'7'):7'@ (—1 ]\2[ ,M-T) _TO(NECM-j'-f—d)”YM'T

o (M) o (R i )

(vyw + moy) + (212 + z)T  \7 p(riw + x2y) + p(x12 + To2)T
g TO 77_ — T 5 M - T
N N((cx + dz)T + (cy + dw))

T
X2

This is why d, 0 n was notated vertically in the first place. Note also that, if M € G,
then SLy(Z)y = SLo(Z)yM, so (i;) — M(g) permutes the pairs (ﬁ;) such that 21, 25 €
Z/NZ, gcd(xq, x9, N) = 1. This implies that S, o y(X, 7) is invariant under the action of
G, on 7. It is clear that the coefficients are holomorphic on H and meromorphic at cusps,

so we get the desired result.

(2) Note that the g-expansion of 70 (m%, 7') already have p-integral coefficients. More-

over, as noted in the proof of Theorem 15.12, the g-expansion of Dg% ~(7) has coeffi-
cients in Q((x), and the action of an element in Gal(Q((y)/Q), (v — (j, permutes
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0y 0N (( ) 7') for xy,x9 € Z/NZ, ged(xq,x2, N) = 1, so the g-expansion of DEYI,%,N(T)
has coefficients actually in Q.

0
Ifv= (g 1),
5 <<x1>7_) - <x1 + 2T T)p—T@ <px1 + pxoT p7'>
(p $>’O’N )’ N A

0

Note that the g-expansion of 7o (E2EP22T pr) is obtained from that of 7o (25227, 1) by
replacing ¢ by ¢” and (v by (%, so it follows that 7o (227, )7 = 7 (ERELET pr) (mod p),
which is what we want.

(3) By using the exactly same arguments as Theorem 14.10(3), one can show that the field of
modular functions for G, denoted K (Y (G,)), is precisely C(j, ¢,) (in particular, ¢, is a
modular function for G.,, with the minimal polynomial of ¢., over C(j) of degree p). Fur-
thermore, we know that the g-expansion of ., has integral coefficients. This implies that,

by (2), D), x (1) = F(j(7), ¢, (7)), Where F(X,Y) € Q(¢,)[X, Y] has p-integral coeffi-
cients. Therefore, by Theorem 15.6(2), D7 o.n(7') is an algebraic number. Furthermore, if
7 is such that y(Z @© Z7') = p’a, then we have

DYLNT) T (0r(r) = 0aln)) = aoli(1)) + ar(G(r))en(7) + - + ap (3 (1)) 05 ()7,

aeC(p),o7#y

for ap(Y), - ,a,(Y) € Q[Y] with p-integral coefficients. We claim that ao(j(7')) is
divisible by p. Indeed, note that for any § € C(p), we have

Didnm  TI (0s(r) = 0o(m) = aoli(1)) + ar(G(7))es(7) + - - + ap (i (7)) ps (77,

a€C(p),0#£d

so our claim follows from the fact from (2) and the fact that ¢ (p O) (7') is divisible by

01
p'?, as proved in Theorem 15.6(4).

On the other hand, [], ., o, (#+(7") — ¢4(7')) is not divisible by P, as o, (1) is di-
visible by p’ by Theorem 15.6(3) and ¢, (7’) is not divisible by p’ by Theorem 15.6(3), (4).
Therefore, ng()g ~(7) is divisible by p’.

(4) Let C(p) = {00, -+ ,0p}, as usual, and F(X,7) = [[_ (X — D((T’j’)aN(T)). It is easy
to see that F(X,7) = F(X,j(7)) for F(X,Y) € Q[X,Y] with p-integral coefficients,
by comparing g-expansions and showing that the g-expansion is fixed under the Galois
conjugation by Gal(Q((,)/Q). This implies that Dc(rlj)o ~(7') is algebraic for 0 < i < p.
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By the same reason as the proof of Theorem 14.10(7), combined with (2), we obtain that

F(X,j(r) = X pr<(>1 0) L

0 p
Therefore, FI(X,Y) = X(X? — a1(Y)) (mod p), where a;(Y) is the coefficient of the

X-term of F(X,Y"). Here, mod p congruence makes sense as the coefficients are already
known to be p-integral. In particular, the constant term is divisible by p, and therefore

(mod 1 — ().

there exists 0 < ¢ < p such that fok)o ~(7') is divisible by p. To be more precise,
let P be a prime ideal of L := Q(j(7'), D((TIZ),O’N(T’), e ,DC(,]Z)’QN(T’)) above p. Then,
[locjpiuiX = DV (7)) = XP — Q1(5(7)) (mod ). Therefore, DIy, (7')? =
Q1(j(7')) (mod B) forall 0 < j < p, j # .

Ing’:?OyN(T’) is a multiple zero of (X, j(7')), then this implies that Q; (j(7')) = 0 (mod ),
so that ng)o ~(7") = 0 (mod P) for every j, which is what we wanted.

Ifo,’:?O’N(T’) is a simple zero of F'(X, j(7')), then D((,?QN(T) is a simple zero of F'(X, j(7)).
This implies that D((rl:,)O,N generates K (Y (G,,))/K(Y (1)), as F(X,j(7')) is of the same
degree as [K (Y (G,,)) : K(Y(1))] = p + 1. This implies that

(Do (1), 1) () = eoli(7)) + r(H (7)) Dy () + -+ (7)) Dy ()

A (D o (1), 4(7)) # 0, 0, () € QUI(T), Dy, (7)) Note that TT7_y o, (7') =
:I:p12 as proved in Theorem 15.6(4). We claim that ¢, (7') and ¢, ,(7') for j # ;" are off

by a unit (i.e. Zaj (( ,)) is a unit). Indeed, as p does not divide the conductor of O, which

we denote by M, if Z @ Z71' = a for a proper O-ideal a, then for any o, for 0 < 5" < p,
0 (ZSZLT") = a;n is a proper O,-ideal, where O, = Z&pM O is the order of conductor
pM (it is easy that the O,-action stabilizes a; as p is coprime to M, and it is a proper ideal
as it is invertible; the inverse is either po;» or laju applied to a™').

Our claim will be proved if we show that — ((T/)) is coprime to any prime number /. Let ¢

be a proper O,-ideal in the same class as a]/a] ! which is coprime to pM{. Then there is
v € O, such that a;7 = a,c. As ¢ is coprime to pM Y, it is of the form ¢’ N O, for an ideal
¢/ C Ok of order coprime to pM /. Then, by taking the associated O-ideal, we get

ay=a(d NO),
so ¢/ N O is a principal ideal generated by . Therefore, there is an integer 2 X 2 matrix

A= <“;C i) of determinant N q(7) such that
0y (VL LT = Aloy(Z.® Z)),
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where furthermore the two basis vectors correspond to each other (i.e. v <> 1, y7’ <> 7).
This implies that

AO’j-T/ Aa_j_T/
0o, () Al 7y A(MET)  ealoy 7)oy 7 b w)A (427)
2o, (™) Doy ) " Aoy m) T Nie(n)A(Ag; - 7)
_ palgy ™
Nijo(y)*

We know that w4 (o; - 7') is a factor of a power of Ng () by Theorem 15.6(2), so this
quantity is coprime to /, as desired.

As ., (7P and p'? are off by a unit, p + 1 > 12, and p is unramified in Q(j(7')),
it follows that B is ramified over Q(j(7')). Let ¢ = B N Og(j)). Then, I(Plq) N
Gal(L/Q(j(1"), D((T’;)QN(T’))) # {1}. Let A be a nontrivial element in the intersection.
Then, )\(Dg’j?a N(T)) = D((Tk,)o ~(7') for i # i, and the divisibility by B stays the same,
so D((Tk),o,N(T’) is divisible by B. Therefore, Q1 (j (7)) is also divisible by 3, so D((T]j?o’N(T/)

i/

is divisible by all j, as desired.

(5) This is easy; exercise.
(6) This is an easy consequence of (3), (4) and the definition of Dg% ~> proved just as Theorem
15.3.

O

Now we are ready to prove the reciprocity law and the Second Main Theorem of complex
multiplication.

Theorem 15.15 (Second Main Theorem of Complex Multiplication). Let K be an imaginary qua-
dratic field, and let T € H be a quadratic number such that End(Z ® Zt) = Ok. Let N € N. Then,
the ray class field K with modulus N is given by

K(N) = K(i(r), {rox(5,7) : 2 € x- (0 27) /(Z.© T7)}).
Proof. Let the number field on the right hand side by denoted L. As in the proof of the First Main
Theorem, we use the splitting primes. The nicer thing is that Theorem 15.12 already tells you
that the values 7 (z, 7)’s are conjugates to each other, so L/ K is Galois.

Therefore, as per the density argument, we only need to show that S(K(N)/K) and S(L/K)
have the same Dirichlet density. If p € S(K(N)/K) that is unramified over Q, then by Theorem
15.3 and Theorem 15.14(6), p has to split completely in L. Conversely, if p € S(L/K) that is
unramified over Q and any difference j(7) — j(7') for End(Z & Z7) = End(Z & Z71') = Ok,
then exactly as in the proof of Theorem 15.1, we see that p is principal. Here comes the reason
why the Weber function is defined in such a weird way: it is invariant under any automorphism
of the lattice (=elliptic curve). Namely, if 7o, () = 70, () for a, 8 € CIV(K) that arise to
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the same class in CI(K) (i.e. % is a principal ideal, although maybe not congruent to 1 mod N),
then o/ 3 is congruent to a unit of O mod [V, and this is if and only if. Therefore, any difference
To, (@) —To,. (B) for a # B € CI"V(K) with their images being the same in C1( K) is nonzero, and
we can exclude the prime ideals dividing any such difference. Then, the congruence in Theorem
15.14(6) plus p avoiding the differences imply that p has to be 1 mod NV, so it must split completely
in K(N), as desired. 0

Exercise 15.1. Formulate and prove the reciprocity law for the values of the Weber function
To, (2, T), in the similar way as Theorem 15.3.

Remark 15.16. The analogous statement to Second Main Theorem holds for K (m) for a general
modulus m of K, where now we need to take the values of the Weber function at the “m-torsion
points™.

Remark 15.17. The Second Main Theorem describes K (N) by using the j-invariants of the
lattices (=elliptic curves over C) with complex multiplication by Oy and the associated Weber
functions. On the other hand, the First Main Theorem describes the ring class field using the
j-invariants of those having complex multiplication by a possibly non-maximal order. There is a
way to connect these two, describing K (V) in terms of those having complex multiplication by
a general order.

Example 15.18 (Comparing Explicit Class Field Theories). We have seen three types of Ex-
plicit Class Field Theory, for Q (Kronecker-Weber theorem), for local fields (Lubin-Tate the-
ory), and for imaginary quadratic field (Second Main Theorem of complex multiplication). They
all have the same theme: for the explicit class field theory for a field £, you must find a group
structure with a large endomorphism by O, and the ray class fields are obtained by adjoining
to the maximal unramified extension of F' the torsion points of the group you found. To write
more concisely:

e "= Q (Kronecker-Weber Theorem, Theorem 8.1)

— Group: the multiplicative group Q.
— Torsion points: X~ = 1, so the powers of (.
- Q" =Q({¢v : N=1}).

e F'is alocal field (Lubin-Tate theory, §10)

— Group: (mpsep, Fy) where Fy is a Lubin-Tate formal group law (Theorem 10.6).
— Torsion points: Mpsen [ f°"] (Theorem 10.8).
- F* = PUF = F™(mper[f°"]) (Theorem 10.12).

e F'is an imaginary quadratic field (CM theory, §15)

— Group: Lattice A C C (=elliptic curve over C) with complex multiplication by Op
(Definition 13.16).
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— Torsion points: %A (Definition 15.11).

- F* = F(j(Op), {r0,(z,A) : z € %A}) = Hr({t0,(2,A) : z € %A}) (Second
Main Theorem of Complex Multiplication, Theorem 15.15).

There is also a slightly more vague analogy between the role of the j-function and the exponen-
tial; namely, both are functions where the input and the output being both algebraic is extremely
rare, and the maximal unramified extensions are obtained by the values of the function in those
very rare cases.

e For I' = Q, Hyp = Q (Minkowski’s theorem, Theorem 8.5) and there is nothing to talk
about. There is no bigger everywhere unramified extension because the multiplicative
group is unique.

e For F a p-adic local field, F™ = Uy, ;=1 F((,), and ¢, = e™n € Q. Let’s define a
function f : R — C by f(z) = €?™*. Then it is an easy exercise to see that, for z € R,
both = and f(z) are algebraic if and only if x € Q. Note also that there are many non-
isomorphic Lubin-Tate formal group laws over [, and that they become all isomorphic
over ™" (Lemma 10.14).

e For F' an imaginary quadratic field, Hr = F(j(Op)) (Corollary 15.7). We also know that,
for 7 € H, both 7 and j(7) are algebraic if and only if 7 is a quadratic number (Theorem
15.1, Theorem 15.8).
Part 3. Class field theory as the Langlands correspondence for GL(1)

16. SETUP AND LOCAL THEORY

16.1. Weil groups. Let F' be a local field. Then, we explained that the local Artin map
Artp : F* — Gal(F*/F) = Gal(F/F)®,

is never an isomorphism (here F is the separable closure of F), because there is a “difference
between Z and 7Z” One way to resolve this into establishing an isomorphism is to demote
Gal(F®/F) to a smaller group, called the Weil group.

Definition 16.1 (Weil group). For a local field F', consider the short exact sequence of groups
1 — Ir — Gal(F/F) — Gal(F™/F) — 1,

where I := Gal(F/F™) is the inertia group. Note also that Gal(F™/F) = 7 naturally by
identifying the Frobenius of Gal(F™ /F) with 1 € Z. Let ¢« : Gal(F/F) — Gal(F™ /F) be the
natural surjective map of the short exact sequence. Then, Wy := 1 ~1(Z) is the Weil group of F.
It sits in a natural short exact sequence

1= Ip > Wr 57— 1.

The topology of W is such that I < W is an open subgroup and the subspace topology on I
is the same as the natural topology on I as an infinite Galois group.
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The last part on topology is making the topology to look like something like F'* where there
is a profinite part and a discrete part. Note that W is a subgroup of Gal(F/F) but the topology
of W is not the subspace topology of Gal(F/F).

The local Artin map then can be demoted to an isomorphism of topological groups

Artp . B 5 WEP,

which is actually much more frequent way of thinking about local class field theory in practice.
This also has an advantage of working for local fields of positive characteristic.

From the local class field theory, we obviously have the following. Let £ be a topological field
(a field with topology). Then, there is a one-to-one bijection,

{Continuous homomorphisms} o Continuous homomorphisms
F* — B~ Wb — B~

Because E* is abelian, this gives a one-to-one bijeciton

{Continuous homomorphisms} o {Continuous homomorphisms}
F* — B~ Wg — E* '

The subject of local Langlands correspondence is when we use £ = Q, for £ # p (or we also
sometimes use any finite extension of QQy).

Continuous homomorphisms Continuous homomorphisms
FX—Q, “ Wr—Q; |
This is called the local Langlands correspondence for GL; (F).

16.2. Smooth representations of algebraic groups. We will briefly mention how this bijec-
tion is generalized in more general Langlands program. Firstly we need to understand what we
mean by GL;(F'). For n > 1, we let GL,(F") be the group of invertible n x n matrices with
entries in F'. There is a natural way to give a topology on this group; consider the injective map
GL,(F) = Mat,x,(F) x Mat,xn(F), X — (X, X '), where Mat,,»,,(F) is the set of n x n

matrices with entries in F'; as Mat,, x,(F') = F " this set is naturally topologized by the topology
of F', and we let GL,,(F’) to be inherited the subspace topology along the said embedding.
In particular, GL (F') = F* (with the matching topology). So the local Langlands correspon-

dence for GL;(F') can be rewritten as

Continuous homomorphisms Continuous homomorphisms
GLy(F) — Q, Wr — GL1(Qp)

The local Langlands correspondence for GL,,(F') for n > 1 is actually a bijection

irreducible representations . =
of GL, (F) homomorphisms Wr — GL,(Q,)

plus a bunch of conditions. Our modest goal is to explain what modifications were made so that
this is truly a generalization of the local Langlands correspondence for GL; (F') (i.e. whenn = 1
this general statement specializes to what we know).

Smooth admissible . . .
{ } o { Frobenius-semisimple continuous }
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e The right side (“Galois side”): other than 1 becoming n, there is only one change, namely
there is an additional adjective “Frobenius-semisimple”. What does this mean? A
Frobenius element of W is any element g € W such that ¢(g) = 1 in Z. We want this
to be semisimple, i.e. sent to a matrix that is diagonalizable. This additional adjective
did not appear in the case when n = 1, as any 1 x 1 matrix is diagonalizable.

e The left side (“automorphic side”®'): other than 1 becoming n, there are quite a few
changes.

- Smooth admissible irreducible representations of GL,, (F'). We explain in four
parts.

% --- representations of GL,(F). This is just a vector space V over Q, together
with a linear action of GL,,(F). Note that for this we do not assume that
is finite-dimensional. In fact most representations appearing on the left side
(“automorphic side”) will actually be infinite dimensional.

* Smooth - --. Given a representation of GL,,(F) (acting on V'), a vector v € V
is a smooth vector if the stabilizer of v in GL,,(F) (i.e. the subgroup {g €
GL,(F) : gv = wv}) is an open subgroup. A representation is smooth if every
vector is a smooth vector.

% --- admissible - - - . This means that, for any open subgroup U < GL,,(F'), the
U-fixed vectors V'V are finite-dimensional.

* --- irreducible ---. A representation is irreducible if there is no nonzero
proper subspace stable under the action by GL,,(F).

— Why is there no Q, in the left side? This is because the notion of smoothness
does not care about the topology of the vector space (Exercise: look through
the above definitions and convince yourself of this). In particular, the notion only
cares about the field Q, without caring about its topology. The point now is that an
algebraically closed field with the same cardinality and characteristic is unique up

[a¥)

to isomorphism, so as fields (without caring about topology) Q, = Q=C=....
Therefore, as long as you use any of these fields as base fields for the vector spaces,
the notion does not change!

So why did all these not appear when n = 1? We need to show that continuous homomor-
phisms GL, (F') — @Z are precisely the smooth admissible irreducible representations of

GLi(F).
- Let GLy(F) — @Z be a continuous homomorphism. Then this is obviously irre-
ducible (being a one-dimensional representation) and admissible (representation is
already finite-dimensional). For the smoothness, we need to look at what kind of rep-

resentation this is. Let 7 € F' be a uniformizer. Then F* = 7% x O}, so firstly you

21The reason why it’s called the automorphic side will be clarified later.
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decide where 7 goes, which can be arbitrary element in @Z (this does not affect conti-
nuity). So what is a continuous homomorphism ¢ : O} — @, ? Well, O} D 1+70p,
and this subgroup is pro-p, when F' is a p-adic field. On the other hand, @Z is locally a
pro-{ group (i.e. there is an open subgroup of @Z that is pro-/). Let V C @Z be pro-/.

Then by possibly shrinking V, U := v¢~!(V') must be a pro-p group. Then U Sy
is a continuous homomorphism from a pro-p group to a pro-¢-group, which actually
must be zero (Exercise: check this). Therefore, this implies that ¢/ factors through a
finite quotient of O}.

From this, we see that any vector of the 1-dimensional representation is fixed by ker 1,
which is an open finite index subgroup of Q. So in any case the stabilizer will be
open.

— Conversely, let’s say we have a smooth admissible irreducible representation of GL; (F') =
F* (with base field Q,), acting on V. Take a nonzero vector v € V. Then the stabilizer
is an open subgroup of F'*. Let G be this stabilizer. Then, V¢ is finite-dimensional by
admissibility. Note that 7" - v is fixed by G, as F'* is abelian. Therefore, 7 : | V4SRN Vas,
is a linear endomorphism, and by the finite-dimensionality of V¢ and as Q, is alge-
braically closed, it follows that there is w € V& such that 7w = \w for some \ € @[.
Let W be the span of all vectors of the form g - w for g € OF. By smoothness, we
know that W is finite-dimensional. Moreover, as F'* is abelian, 7 acts on W by the
scalar A\. Therefore, W is stable under the action of F'*, so V' = W, and in partic-
ular V' is finite-dimensional. Now we can use that a finite-dimensional irreducible
representation of an abelian group must be one-dimensional, to deduce that such a
representation must be at least a homomorphism GL; (F') — @Z . By smoothness, it
follows that this homomorphism restricted to O must factor through a finite quo-
tient, so this must be continuous.

Remark 16.2. (1) It is interesting that the left side evolves to an infinite-dimensional repre-
sentation theory of GL,,(F") that does not care about topology of coefficient field, whereas
the right side evolves to a finite-dimensional representation theory of W that cares about
the topology of the coefficient field. In fact, the independence of the RHS on ¢ is an inter-
esting result on its own right.

(2) In fact, the adjective “admissible” is unnecessary, as any smooth irreducible representa-
tions of GL,,(F") are automatically admissible. This is not an easy result and is first proved
by Jacquet.

(3) There are several desiderata on the bijection so that there is a unique bijection satisfying
the desiderata. These include the compatibility with the local class field theory, and the
matching of L-factors and e-factors.

16.3. Local Hecke algebra. There is a ring that encodes everything about the smooth repre-
sentation theory of GL,,(F'), which is called the (local) Hecke algebra.
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Definition 16.3. For a finite index subgroup K of GL, (Op), let
H(K) ={f:GL,(F) — Q, : fis smooth, bi-K-invariant and compactly supported}.

Here, f is smooth if f is locally constant, is bi-K-invariant if f(gzh) = f(z) for g,h € K,
x € GL,(F), and is compactly supported if there is a compact subset C' C GL,,(F’) such that
f(z) =0forz ¢ C.Let H = Ug<qr,(0,) H(K). This H is called the (local) Hecke algebra.

Example 16.4. For a finite index subgroup K < GL,(OF), the characteristic function 15 €
H(K). Recall that the definition of 1 is

1 ifzek
1K(l’)={

0 otherwise.

The reason why H is called an algebra is because there is a multiplication defined on it.
Namely, for fi, fo € H, we define the convolution product

fi % falg) = / B man

Exercise 16.1. Check that f;, fo € H(K) implies f; * fo € H(K).

Exercise 16.2. If we define, for a finite index subgroup K < GL,(OF), ex = ﬁlK € H,
check that e *x ex = e (i.e. ex € H is an idempotent).

This big ring acts on any smooth representation V of GL,,(F); if f € H, then, forv € V,

frv= /GLR(F)f(g)(g -v)dg.

This integral is well-defined because f is locally constant and compactly supported. Thus, any
smooth representation of GL,,(F') can be seen as an 7{-module. In fact, there is a reverse direction,
that “smooth” H-modules are smooth representations of GL,,(F"), but we won’t need this.

17. AUTOMORPHIC REPRESENTATIONS

To describe how the global class field theory is massaged into something that can be general-
ized into the global Langlands correspondence for GL,, it requires a lot more work to do. Again,
our starting point is the global Artin map: for a number field L, the map

ArtL : CL — Gal(f/L)ab.

In the context of Langlands program, one writes C, = L*\ I, = L*\A7. This is not an isomor-
phism, but the difference between L*\AY and Gal(L/L)*" is more subtle than the local case.
Rather than massaging this to an isomorphism, we investigate in which situations the characters
of L*\A¥ can be related to the characters of Gal(L/L).
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17.1. Automorphic forms. The main players in the “automorphic side” are automorphic rep-
resentations, which will be defined shortly. Automorphic representations are roughly speaking
a collection of automorphic forms. Before giving you a definition of automorphic forms, keep
the following examples in mind.

e Hecke characters for L (i.e. characters of the idele class group C}) are automorphic forms
for GL; over L.

e Modular forms are automorphic forms for GL; over Q.

Modular forms are holomorphic functions on the upper half plane, while Hecke characters in-
volve adeles. They look quite different; it amounts to the fact that automorphic forms can be
defined in two related but different ways. Some features we see in either example are:

e they have a transformation law with respect to some group (both Hecke characters and
modular forms);

e they are related to adeles (Hecke characters);
e they are related to some geometric space associated to the group (modular forms);
e they do not grow too fast at infinity (modular forms);

o they satisfy a differential equation (modular forms are holomorphic functions = satisfies
the Cauchy-Riemann equation).

We will eventually connect these pictures and see that they all talk about the same thing.
Let me give you a first definition of automorphic forms, for GL,, over L. The convention is
that when you talk about automorphic forms/representations of GL,, over a number field i, you

say they are for GL,,(Ap).

Definition 17.1 (Adelic automorphic forms for GL,, (A )). An adelic automorphic form for
GL,(Ay) is a function
f : GLn(AL) — C,

such that
(1) it is left-GL,,(L)-invariant,
(2) it is smooth,
(3) it has a central character w : L*\A} — S,
(4) it is K*°-finite for all open compact subgroups K> < GL,,(A}°),
(5) itis K -finite,

(6) itis Z(gl,(L))-finite,
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(7) and it has moderate growth.

We let A(GL,(AL),w) be the vector space of adelic automorphic forms for GL,(A,) with a
central character w.

It has a lot of terms. Let me explain them, where some of them I will be intentionally hand-
wavy as it would take too much time to explain it properly.

(1) (Left-GL,,(L)-invariance) This just means that the function f is invariant under multi-
plying an element of GL,,(L) on the left, ie. f(gz) = f(z) for any z € GL,(A.) and
g € GL, (L) (recall that L. C Ay, so naturally GL,,(L) C GL,(Ay)). Therefore, it is also
natural to see f as a function

f:GL,(L)\ GL,(A;) — C.

(2) (Smoothness) This is the same “smoothness” (or “niceness” as I called in the lectures) as
in Tate’s thesis. Namely, over R or C, this is the same as the usual smoothness in analysis,
whereas over p-adic fields, this is “locally constant.”

More concretely, this means as follows. Let € GL,(AL). Let v be a place of L. Then
L, — Ay gives a natural embedding GL,,(L,) — GL, (AL). Then f being smooth means
that the “orbit map”

GLn(Ly) = C, g+ f(zg),

is smooth in the above sense. More precisely, if L, = R or C, then this means the corre-
sponding map GL,(R) — C or GL,(C) — C is a real-analytically smooth map. If L, is
a p-adic field, then there is an open subgroup I' < GL,(L,) such that f(z) = f(xg) for
gel.

(3) (Central character) The group GL, (A) has the center given by the diagonal matrices
with entries in A}. Then f having the central character w means that f(zg) = w(g) f(z)
for any g € L*\A7 (seen as the diagonal matrix) and = € GL,(A[).

(4) (K°°-finiteness) Recall first that A% is the space of finite adeles, i.e. the adeles where
the entries at infinite places are all 1. We want f to behave in a way that you do not need
the whole complicated group GL,,(A$°) (the finite adele part of GL,,(AL)), but rather its

discrete quotient. Note that GLn((/Q\L) is an open (compact) subgroup of GL,,(A7°) where
Oy, is the profinite completion of Oy. Thus this condition really means that the vector

space spanned by the functions f,(z) := f(xg) for g € GLn((/D\L) is finite-dimensional.

(5) (K oo-finiteness) This is a similar condition but at infinite place. An analogue of the “open
compact subgroup” is a maximal connected compact subgroup (i.e. a connected com-
pact subgroup such that it is maximal among such subgroups) K., < GL, (L), where
Lo = L®gR = [, infmie places of L L,. Note that GL, (L) is a real-analytic mani-
fold which is also a group, which is often called a Lie group. It is a theorem (called
the Cartan-lwasawa-Malcev theorem) that any maximal connected compact sub-
group of a connected Lie group is unique up to conjugation.
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In practice, in our case, GL, (L) is a product of GL,(R)’s and GL,,(C)’s, so we only
need to know what maximal compact subgroups are for GL,,(R) and GL,,(C).

Exercise 17.1. Show that the special orthogonal group SO(n) C GL,(R) (i.e. the
group of n X n orthogonal matrices with determinant 1) is a maximal connected compact
subgroup, i.e. SO(n) is compact and connected and that there is no bigger compact and
connected group containing SO(n) inside GL,,(R).

Exercise 17.2. Show that the unitary group U(n) C GL,(C) (i.e. the group of n x n
unitary matrices) is a maximal connected compact subgroup, i.e. U(n) is compact and
connected and that there is no bigger compact and connected group containing U(n)

inside GL,,(C).

As per the above Exercises, we can take K, to be a product of SO(n)’s and U(n)’s ac-
cordingly. Then, the condition of K -finiteness is similar: the vector space spanned by
the functions f,(z) := f(zg)for g € K is finite-dimensional.

(6) (Z(gl,(Lo))-finiteness) This is a bit too involved to explain, so we have to be hand-wavy.
This is another condition at infinite place which basically says that f satisfies a certain
explicit partial differential equation.

(7) (Moderate growth) This is also a bit too involved to explain; this is a similar condition to
“meromorphic at cusps” condition for modular forms.

So what do these mean when n = 1?

Lemma 17.2. Let L be a number field and w : L*\A} — S' be a unitary Hecke character. Then,
an adelic automorphic form f : GLi(AL) — C for GLy(AL) with central character w is uniquely
of the form

f(x) = cw(z),

for some fixed c € C.

Proof. That it should be of the said form is easy because of the central character condition, so
f(zx) is determined by f(1), i.e. f(x) = w(x)f(1). Thus the task is to see whether w satisfies the
said conditions. The left L* invariance is obvious, and the smoothness is dealt in the discussion
of Tate’s thesis. The central character condition is given. The K *°-finiteness and K, -finiteness
are also obvious, as any action by such groups will give you a constant multiple of w, so the vector
space spanned by those translates will always be one-dimensional.

For the last two conditions, as the conditions were given hand-wavily, we can only justify
them hand-wavily. We know exactly the unitary characters of R* and C*: for R*, the unitary
characters are either x — |x|" for some ¢t € R or x + sgn(z)|z|" for some ¢t € R; for C*, the
unitary characters are of the form z — (%)n | 2| for some n € Z and t € R. Now it is believable
that these functions satisfy certain differential equations (note that for C, you see z = x + 1y and
ask for a differential equation in terms of = and y). O

We can abstractly define what an automorphic representation is.
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Definition 17.3 (Automorphic representation). Recall that A(GL,,(A}),w) is the space of adelic
automorphic forms with a central character w. This has the right action of GL,(A) (i.e. for
g € GL,(AL) and f € A(GL,(AL),w), (9 - f)(x) := f(zg) is also an adelic automorphic
form). An automorphic representation is an irreducible GL,, (A )-representation which arises

as a subquotient (i.e. a quotient representation of a subrepresentation, or a Jordan-Holder con-
stituent) of A(GL,,(AL),w).

We are actually slightly lying here, because we need some more language to properly deal
with the infinite places®, but the main concept is there.

The reason why we want to consider automorphic representations instead of a single auto-
morphic form is because of the following theorem.

Theorem 17.4 (Flath). Every automorphic representation m of GL,,(Ay) is of the form

(13 »
- @

v places of L

where m, is an irreducible smooth admissible representation of GL,,(L,).

We’ve put a quotation mark as some care is required; GL,,(A}) is not a literal product of
GL,(L,)’s*.
We can now state a rough idea of what a global Langlands correspondence for GL,,(A})

should look like.

Conjecture 17.5 (Global Langlands correspondence for GL,,(A[), weak form). Let L be a number
field, and let ¢ be a prime number. Let 7 = ), 7, be an automorphic representation of GL,, (Ay)
that is also “nice at infinite places” (we are constantly hand-waving things at infinite places). Then,
there exists a continuous homomorphism p, : Gal(L/L) — GL,(Q,) such that, for any place v of
L, m, corresponds to the restriction of p, to the Weil group W, inside the decomposition group at v,
seen as Gal(L,/L,).

A mnemonic is that

= ® Ty 7 p7T|Ga1(LT,/Lu) = Pr,-

There are more compatibilities that this correspondence should satisfy, and also a conjectural de-
scription of what the image of this correspondence should be (i.e. characterization of continuous
homomorphisms Gal(L/L) — GL,(Q,) that should arise as p, for some 7), but these are beyond
our scope.

22Instead of asking for a GL,, (A )-representation, which is the same as the data of a GL,,(A$°)-representation
and a GL, (Lo )-representation with commuting actions, we should really ask for the data of a GL,(A?°)-
representation and a (gl,,(L), Ko )-module with commuting actions. Whenever we talk about representations
at infinite places, we will be constantly lying about this issue from now on.

23For all but finitely many v’s, 7, has a specific 1-dimensional line, and one can take it as a “basepoint” of taking
infinite products in a “restricted way”.
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17.2. Symmetric spaces. We will rather try to explain why modular forms can be interpreted
as automorphic forms for GLy(Ag). The key is that there is a different version of the definition
of automorphic forms, called the classical automorphic forms, which is more evidently tied
with the geometry of certain manifolds with a group action. To have an aesthetically satisfying
complete picture, we focus on the case when the number field L has narrow class number 1 (e.g.
L =Q)*

Assumption. Let m,, be the modulus of all real places of L. Then, C1™>* (L) = 1.

Then, the “manifold” that we work with is the quotient®

AXVGLR(LOO)O = GLn(Loo)O/R>OKOOa

which is called the symmetric space for the connected Lie group GL,, (L )"*, which is the
connected component of the identity 1 € GL,(Ls). Here, Ko, C GL,(Ls)° is the maximal
connected compact subgroup, and R~y C GL,, (L) corresponds to the diagonal matrices whose
entries are in R, where R,y C R embeds canonically into L., via tensoring Q — L with
®@qoR. More precisely, there exists a Riemannian manifold Xqr,, (7)o With an isometric action by
GL, (L) (on the left, by our convention).

Example 17.6. (1) If n = 1, then GL1(L)? = (Rs¢)" x (C*)* where r and s are the num-
bers of real and (pairs of) complex embeddings of L, respectively. Then, K, under this
decomposition can be taken to be {1}" x (S')*. Therefore, Xqr, (1.0 = RZ5 ™ (we see
r + s — 1 again!!!) where GL; (L, )° acts by real/complex norms.

(2) If n = 2 and L = Q, then the associated symmetric space is
GLy(R)?/R+o SO(2).

What is this? It is easy to see that this is the same as SLy(R)/ SO(2).

Exercise 17.3. Consider the usual action of SLy(R) on the upper half plane H. Show
that the stabilizer of i € H is precisely SO(2), the special orthogonal group (i.e. 2 x 2
orthogonal matrices with determinant 1).

Thus, Xqr,®)o is the upper half plane H.
Now we can define the classical automorphic forms, firstly as functions on GL,, (L. ).

Definition 17.7 (Classical automorphic forms, version 1). Let I' < GL,(Ls)° be a discrete
subgroup. Let w : LX — S! be a unitary character. Then, a classical automorphic form with
level I' and central character w is

24In general, you need to consider a finite disjoint union of the picture described below.

25We are making the picture simpler by killing all the centers, which is not what people would want to do in
practice.

260ne may try to do this without taking the connected component of the identity. This is possible, at the cost of
dealing with manifolds with several connected components. For example, even for GLy(R), the symmetric space
would then by the union of the lower and the upper half plane.
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(1) a smooth (i.e. real analytic) function f : GL,(L)° — C such that,

() f(vg) = f(g) fory €T,

(3) f(gz) =w(z)f(g) for z € LX, seen as the diagonal matrix,

(4) that is K -finite (i.e. the space of functions fy(g) = f(gk) for k € K is finite-
dimensional),

(5) Z(gl,,(Loo))-finite (roughly speaking, satisfies certain partial differential equations),
(6) and has moderate growth (roughly speaking, analogous to “meromorphic at cusps”).

To relate this with functions on Xqp,, (1. )0, we need a final ingredient, a factor of automor-
phy. Somehow the above picture seems to be invariant under ['-action but transforms under
the action of K. On the other hand, a modular form is a function on H, so it should be invariant
under K -action but transforms under the action of I'. This trade-off comes from the following
kind of procedure.

Example 17.8. Let f : H — C be a modular form of weight k and level SLy(Z). This means that

f(v-2) = (cz+d)*f(z) for vy = (i Z) € SLy(Z). Using that GLy(R)?/R* SO(2) = H with

1 € GLy(R)° corresponding to i € H, we define ¢; : GLy(R)? — C as

oilo) = (et g (ci + ) H g0, 9= (1 ) € GLaRY

Then by the factor (ci + d)™", ¢; is no longer right-SO(2)-invariant, but it is now left-SLy(Z)-
invariant!

The key is coming up with the factor (cz + d)*, which is called a factor of automorphy.

Definition 17.9 (Factor of automorphy). A factor of automorphy is a function j : GL, (L. )° x
Xar, (Lo — C such that, for each v € T, j(v,-) is a smooth function on X¢r,, (1) and the
cocycle condition holds,

A factor of automorphy corresponds to what happens at the infinite places. I won’t go deep
into details, but just remark that this is related to the K -finiteness, so in particular associated
to a finite dimensional representation of K.

b
d
Xcr, (R, it is easy to check that j(7, z) := (det y)™*/%(cz + d)* is a factor of automorphy.

The way that this is related to a finite dimensional representation of K is as follows. Note
that in this case K, = SO(2), and as a matrix group this is given by the rotation matrices,

cosf —sinb
SO(Q)Z{(siHG COSG) 'QER}'
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Example 17.10. Forn = 2, L = Qand k € Z, for vy = ) € GLy(R)’and z € H =



In particular, SO(2) = S* as topological groups. Now if we apply the same formula for vy € SO(2)
and z = ¢ (the “basepoint” of Hl), then we get

j ((COS@ —s1n9> ,i) = (isinf + cos&)k = e'0,

sinf cos6

This gives rise to a character SO(2) — S, so a one-dimensional representation of the circle
group SO(2) = St

As you might have guessed, there is a way to reverse this procedure, using the so-called
Iwasawa decomposition. Moreover, as K, in general is not abelian, the correct generality for
the factor of automorphy should be a function j : I' x X, (1..y0 = GLx(C) for some N > 0;
the below definition then will give you the so-called vector-valued automorphic forms.

Definition 17.11 (Classical automorphic forms, version 2). Let I' < GLn(LOO)O be a discrete
subgroup. Let w : LX — S be a unitary charcater that is trivial on Ryg C LX. Let j :
GL, (L) X Xar, (1.c)o — C be a factor of automorphy. Then, a classical automorphic form
with level I, central character w and weight j is

(1) a smooth (i.e. real analytic) function f : Xqr,,(r..)0 — C such that,

@) f(yz) = j(v,2)f(z) fory € T, & € Xav, (Lo,
(3) f(gz) = w(z)f(g) for z € LX, seen as the diagonal matrix,

(4) that is Z(g,(Lwo))-finite (roughtly speaking, satisfies certain partial differential equa-
tions),

(5) and has moderate growth (roughly speaking, analogous to “meromorphic at cusps”).

Now the procedure is clear: given a classical automorphic form f : Xqr,,(z..)0 — C in the
“version 2” sense, we obtain a classical automorphic form ¢; : GL,(L)? — C in the “version
1”7 sense by setting

wr(9) =3(g, DT (1),
where 1 € X¢y,, (1.0 is the point whose stabilizer is Ko, < GL,(L)°.

To obtain an adelic automorphic form from a classical automorphic form in the “version 1”
sense, the key is the following.

Theorem 17.12 (Strong approximation). Any element g € GL,,(A ) can be written as g = ¢19293,

—~

where g, € GL,,(L), g» € GL,(Ls)°, and g3 € GL,,(Op). In short,
GL, (A7) = GL,(L) GL,(Lso)? GL,(Oy).

Example 17.13. In the case of n = 1, this is precisely the statement that the narrow class group
C1™=(L) = 1. In general, the difference between the left and the right hand sides is precisely the
narrow class group. Alternatively, one can use SL,, instead of GL,, and do not worry about this
issue (although there are other more subtle complications when you use SL,, instead of GL,,).
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Corollary 17.14. Let K> < GLn((’/)\L) be a finite index subgroup. Let ' := GL, (Or)° N K,
where GL,,(01)? = GL,(Or) N GL,(Lw)? is the n x n invertible matrices with entries in O,
whose determinant is positive under every real embedding of L. Then, the natural map

[goo\ GLy(Loo)? — GL,(L)\ GL,(AL) /K,
is a bijection.

Example 17.15. If L = Q and n = 2, then GLy(Z)? = SLy(Z) because the determinant is a unit
in Z which is positive in every real embedding, so must be 1.

By this Corollary, we see that a classical automorphic form with level I'x« gives rise to an
adelic automorphic form (which is right- K *°-invariant).

17.3. When does an automorphic form generate an automorphic representation? We
now know that modular forms give rise to an adelic automorphic form.

{Modular forms} — {Automorphic forms for GLy(Ag)}.

The question is: when does an adelic automorphic form give you an automorphic representation?
You want to produce an irreducible representation, and for that, what is crucial is to see the rep-
resentation as a module over the (local) Hecke algebras. The action of the (local) Hecke algebras
can be encoded in the language of classical automorphic forms in terms of Hecke operators,
and one sufficient (and necessary for modular forms) condition for a modular form to give rise
to an automorphic representation is that it is an eigenvector for the Hecke operators, called a
Hecke eigenform (I won’t be explaining more about this; you may find a lot of references about
what a Hecke operator for a modular form is).

{Hecke eigenforms} — { Automorphic representations of GL2(Ag)}.

Given an automorphic representation, there are many automorphic forms contained in it as a
vector. Correspondingly, there are many Hecke eigenforms that give rise to the same automorphic
representation of GL2(Aq). One such occasion is that, given a Hecke eigenform f : H — C, for
N > 1, fy : H— Cgiven by fn(z) := f(Nz) is also a Hecke eigenform, and it turns out that
f and fy are two different vectors of the same automorphic representation. However, given an
automorphic representation, there is a unique modular form (up to scaling by a nonzero complex
number) which cannot be written as fy for N > 1, and such a modular form is called new. Thus
if we restrict to Hecke eigenforms that are new, and if we ignore multiplying the modular form
by a nonzero scalar, this correspondence becomes injective.

{Hecke eigenforms that are new}/C* — { Automorphic representations of GL2(Ag)}.

18. GALOIS REPRESENTATIONS

A weak form of the global Langlands correspondence for GL,, (A ) attaches a Galois repre-
sentation (i.e. a continuous homomorphism Gal(L/L) — GL,(Q,)) to an automorphic repre-
sentation of GL, (Ay). Specifying what representations should appear as such is more delicate,
especially regarding the data at archimedean places and at /-adic places. What I will say is that
for all but finitely many places v of L, the inertia group I, C D, C Gal(L/L) is sent to the
identity element, i.e. the representation is unramified at v. This already is a very big restriction.
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18.1. Shimura-Taniyama conjecture and Fermat’s Last Theorem. As now we know that
certain modular forms give rise to automorphic representations of GLy(Ag), one may ask if there
is a more down-to-earth expectation on what Galois representations arise as those corresponding
to modular forms. In fact, there is a precise conjecture, which is now almost known (called
the Fontaine—Mazur conjecture). A particular case of this, called the Shimura-Taniyama
conjecture, is a crucial ingredient in the proof of Fermat’s Last Theorem.

Theorem 18.1 (Shimura-Taniyama conjecture, Wiles, Taylor-Wiles, Breuil-Conrad-Diamond—
Taylor). There is a bijective correspondence

{Cuspidal new normalized Hecke eigenforms of weight 2 with rational q-expansion coefficients}

—
{Elliptic curves (=lattices) over Q} /isogenies.
Some explanation of the words.

e Cuspidal- - -: This means that the constant term of the g-expansion is 0 (to exclude the
likes of Eisenstein series).

e .. -normalized- - - : This means that the ¢-term of the g-expansion is 1 (to eliminate the
effect of scaling by a nonzero scalar).

e - .- with rational ¢g-expansion coefficients: This means that the g-expansion has coef-
ficients in Q.

e Elliptic curves over QQ: These are lattices whose j-invariants are in Q.

So what is the correspondence? Objects in two sides match when they give rise to the same
Galois representation. We already mentioned that a new Hecke eigenform gives an automor-
phic representation and thus a Galois representation Gal(Q/Q) — GLy(Qy); this part of global
Langlands correspondence is already known long before. The way that a Galois representation
is associated with an elliptic curve over Q is as follows.?’

Step 1 Up to isomorphism, the Weierstrass p-function associate to an elliptic curve satisfies the
differential equation (p'(2))? = 4p(2)® — g2p(2) — g3 for go, g3 € Q.

Step 2 Consider the set T = {z,y € Q : y?> = 42 — gox — g3}. As g, g3 € Q, the set T has an
action by Gal(Q/Q) (acting on x, y). Furthermore, the fact that this arises from an elliptic
curve (=lattice) implies that there is a natural abelian group structure on 7'. This abelian
group structure is compatible with the action of Gal(Q/Q) (ie. T is a Z[Gal(Q/Q)]-

module).

Step3 For N > 1,let T[¢N] := {t € T : (Nt = 0}, which is a (Z/(N7Z)[Gal(Q/Q)]-module.
It turns out that T[¢("] as a Z/¢(NZ-module is free of rank 2 (i.e. as an abelian group,
T[¢N] =2 (Z/¢N7)%?). Thus, the action of Gal(Q/Q) gives a continuous homomorphism
Gal(Q/Q) — GLy(Z/IN 7).

2"The actual Galois representation matching those arising from modular forms should be
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Step 4 Take the inverse limit N — oo and obtain Gal(@/@)_% GLy(Zy). AsZy C Q, C Q,,
this gives a Galois representation Gal(Q/Q) — GLy(Q,).

The crucial ingredient of the above theorem is the so-called modularity lifting theorem,
which we will explain later.

Theorem 18.2 (Fermat’s Last Theorem). Letp > 2 be a prime number. Then, thereisnoa,b,c € Z
with abc # 0 such that a? + bP = (P,

The proof goes like: if Fermat’s Last Theorem is false, then a nontrivial solution will give you
a very peculiar elliptic curve over Q, which, under the Shimura-Taniyama conjecture (which is
a theorem), corresponds to a weight 2 cusp form of level 2, which does not exist.

18.2. Galois deformation theory. One direction of Shimura-Taniyama conjecture has been
known for a while, namely constructing an elliptic curve from a modular form. Although this is
also quite nontrivial, it is not too crazy (you know exactly where you should look for such elliptic
curves, using modular curves). The difficult direction is that every elliptic curve over Q arises
in this fashion. In other words, we often say an elliptic curve over Q is modular if it arises from
a certain modular form, and the Shimura-Taniyama conjecture says that every elliptic curve over
Q is modular.

The idea of the proof for the conjecture is to use congruences. Namely, we can talk about
when two elliptic curves E, Es over Q are congruent modulo p, for a prime p. Then, the proof
strategy breaks down to two steps.

(1) (Modularity lifting theorem) Show that, if £ is modular, then any elliptic curve congruent
to £ mod p is modular.

(2) For any given F, find a small prime p and a particularly simple elliptic curve £’ congruent
to £ mod p such that you already know £’ is modular.

It turns out that in (2), either p = 3 or p = 5 works in every case (p = 2 is excluded because things

break down at 2). Either p = 3 or p = 5 works in (2) requires the modularity lifting theorem, too
(often called the 3-5 switch).

19. MODULARITY LIFTING THEOREMS

19.1. Basic proof strategy of @ = T theorems. Taylor-Wiles method. Minimal level, non-
minimal level.

19.2. Finding Taylor-Wiles primes.

19.3. The case of GL;(Ay).
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