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1. Introduction

For an elliptic curve E/ℚ, the Birch-Swinnerton-Dyer conjecture asserts that

rk E(ℚ) = ords=1 L(E, s),

where the L(E, s) is known to have good analytic properties thanks to the modularity theorem.

We know a few things towards BSD, but mostly about the analytic rank ≤ 1 case: ran ≤ 1 implies

rE = ran, which is a result of Gross-Zagier and Kolyvagin.

Recall how this is proved.

(1) Choose an imaginary quadratic �eldK such that ords=1 L(E/K, s) = 1. Note that L(E/K, s) =

L(E, s)L(E
K
, s), where K is the twist of E by the quadratic character of K . This also uses

modularity.
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(2) The Gross-Zagier formula tells something about L
′
(E/K, 1), namely

L
′
(E/K, 1) ∼ ⟨yK , yK⟩NT,

for yK ∈ E(K), the so-called Heegner point.

The two above points imply that yK ∈ E(K) is a non-torsion point. This uses the non-

degeneracy of the Néron-Tate height pairing.

(3) Kolyvagin’s method of Euler systems shows that, if yK is non-torsion, then cork Selp∞(E/K) =

1. Recall that we have a fundamental exact sequence

0 → E(F) ⊗ℤ ℚp/ℤp ≅ (ℚp/ℤp)
rk E(F )

→ Selp∞(E/F ) → X(E/F )[p
∞
] → 0,

for any number �eld F . Thus the fundamental exact sequence implies that X(E/K)[p
∞
]

is �nite as well as rk E(K) = 1. Keeping track of Galois action of Gal(K/ℚ) we can manage

to make this to come from E, not from E
K

.

How far can one go from the Gross-Zagier-Kolyvagin argument?

(1) Can E be replaced with an abelian variety A?

(2) ords=1 L(E, s) ≥ 2?

(3) Results for L(f , s) with f ∈ S2k(Γ0(N )) for k ≥ 2?

Some answers:

Check this.

(1) For a weight 2 newform f ∈ S2(Γ0(N ))
new

, Shimura constructed a ℚ-abelian variety Af of

dimension [ℚ(f ) ∶ ℚ] and Endℚ(Af ) ⊗ ℚ ⊃ ℚ(f ) (note ℚ(f ) is totally real because f is a

newform of trivial Nebentype). It has the L-function L(Af , s) = ∏
�∶ℚ(f )↪ℝ

L(f
�
, s). Thus

Af (ℚ) ⊗ℤ ℚ has an action of ℚ(f ), and it turns out that if ran = ords=1 L(f , s) ≤ 1, then

dimℚ(f ) Af (ℚ) ⊗ ℚ = ran (so that ords=1 L(Af , s) = ran[ℚ(f ) ∶ ℚ]). Essentially the same

proof as Gross-Zagier-Kolyvagin.

(2) Very little is known.

(3) Take the associated Galois representation �f ∶ Gℚ → GL(V ) where V is a 2-dimensional

L-vector space, L ⊃ ℚ(f ) a �nite extension of ℚp , such that L(�f , s) = L(f , s) (Note: we use

the geometric convention that L(V , s) = ∏
�
det(1 − �

−s
Frob� |V I

�
)
−1

(at p we use either the

L-factor of a compatible �
′
-adic Galois representation, �

′
≠ p, or the L-factor of the Weil-

Deligne representation of the local Galois reprsentation at p, coming from the p-adic mon-

odromy theorem), with Frob� being the geometric Frobenius). Suppose ords=k L(E, s) ≤ 1.

We can try to choose an imaginary quadratic �eld K such that ords=k L(f /K, s) = 1, where

L(f /K, s) = L(f , s)L(f ⊗ �K , s) (here we really mean the newform associated to f ⊗ �K ).

∙ This is not always possible, when f is a level 1 modular form, as all twists have the

same sign.

If this is possible, then there is an analogue of Heegner point, the Heegner cycle zK , a

codimension k cohomologously trivial Chow cycle of the Kuga-Sato variety, say denoted

as KS (canonical nonsingular compacti�cation over X0(N ) of the (2k − 2)-fold self-product

of the universal elliptic curve over Y0(N )). As the cycle class map is sent to 0 (cohomol-

ogously trivial!), its image in the absolute étale cohomology lies in the next �ltration,

whose subquotient is H
1
(K , H

2k−1
(KS

ℚ
, ℚp(k))) (“Abel-Jacobi map”), and as V is found as

a subquotient of H
2k−1

(KS
ℚ
, ℚp(k)), we obtain a cycle cK ∈ H

1

f
(K , V (k)). Show-Wu Zhang
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proved that L
′
(f /K , k) = ⟨zK , zK⟩BB, so the analytic rank 1 implies that zK is nonzero in

CH
k
(KS)0⊗ℚ. Also, Nekovar proved that, if cK is nonzero, then dimL H

1

f
(K , V (k)) = 1. The

problem is that we do not know zK ≠ 0 implies cK ≠ 0 (tied to the standard conjectures).

�estion to think about: is there a holomorphic eigenform of weight > 2 whose L-function

has a zero at the central value of order ≥ 2? This would give an e�ective version of Gauss’ class

number formula (argument by Dorian Goldfeld), but we do not know partly because we do not

know how to detect zK = 0, not just cK = 0.

The rest of the course will explain many of the details of a proof of a result towards (2) + (3).

Theorem 1.1 (Skinner-Urban). Let f ∈ S2k(Γ0(N ))new be a newform, and p ̸ |N .
(1) If L(f , k) = 0, then dimL H

1

f
(ℚ, V (k)) > 0.

(2) If L(f , k) = 0 and "(f ), the root number of f (the functional equation is L(f , s) = "(f )L(f , 2k −
s)), is +1 (so that ords=k L(f , s) is even), then dimL H

1

f
(ℚ, V (k)) ≥ 2.

Remark 1.1. Some cases of Theorem 1.1 can be deduced from other results.

∙ If f is ordinary at p, p is odd, p − 1 ∣ 2k − 2 (+some hypothesis on residual Galois repre-

sentation), then (1) is a consequence of the Iwasawa Main Conjecture for f , and (2) also

is, after combining with Nekovar’s work on the “parity conjecture” (i.e. the analytic rank

is congruent mod 2 to the corank of the Selmer group, which here is dimL H
1

f
(ℚ, V (k))).

Theorem 1.1 is a special case of a more general theorem of the form

L(V , 0) = 0 ⇒ dimH
1

f
(K , V ) > 0,

for V a Galois representation associated to some cuspidal automorphic representation of a unitary

group over ℚ.

Example 1.1. Let’s take the simplest example: the Riemann zeta function. The trivial simple

zeros at −2m, 2m ≥ 2, correspond to dimℚp
H
1

f
(ℚ, ℚp(2m + 1)) = H

1

rel
(ℚ, ℚp(2m + 1)), the classes

trivial at all � ≠ p.

Automorphic L-functions arise as constant terms of Eisenstein series. Let

G2k(z; s) = ∑


∈Γ∞⧵ SL2(ℤ)

j(
 , z)
−2k

|j(
 , z)|
−s
,

where Γ∞ = {
(

∗ ∗

0 ∗)
∈ SL2(ℤ)}. If Re(s + 2k) ≫ 0, this series converges absolutely and de�nes

a holomorphic function in s. The general theory of Eisenstein series (by Selberg, Langlands, ⋯)

says that G2k(z; s) has a meromorphic continuation in s. It also has a Fourier expansion

G2k(z; s) = ∑

n∈ℤ

cn(y; s)e(nx),

with

c0(y; s) = 1 + (−1)
k
y
1−(2k+s)

Γ (1 −
s+2k

2 ) Γ (
s+2k

2 )

2

� (2 − (s + 2k))

√

�Γ (
s

2)
Γ (

s

2
+ 2k) Γ (

1−(s+2k)

2 )
� (1 − (s + 2k))

.

By the theory of constant terms, G2k(z; s) is holomorphic at s = s0 i� c0(y; s) is, and G2k(z; s) is

holomorphic in z i� c0(y; s) is.
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At s = 0, if 2k ≥ 4, then there is � (2 − (s + 2k)) factor in the numerator which gives zero, so

that c0(y, 0) = 1, so c0(y, s) is holomorphic in z at s = 0. If 2k = 2, then there is no zero nor pole,

so c0(y, s) = 1 + (∗)y
−1

, which is not holomorphic. This explains the connection between simple

trivial zeros at −2k ≤ −2 and existence of holomorphic Eisenstein series G2k+2(z; 0) of weight

2k + 2 and of level 1. This Eisenstein series is related to the usual classical Eisenstein series by

� (1 − 2k)

2

G2k(z; 0) =∶ E2k(z) =

� (1 − 2k)

2

+

∞

∑

n=1

�2n−1(n)q
n
,

where q = e
2�iz

.

The associated Galois representation to Eisenstein series G2k(z; 0) is of form

(

1 0

0 "
1−2k

cyc
)

(∵

we chose to work with geometric Frobenius). Take the critical p-stabilization G
∗

2k
(z) = G2k(z) −

G2k(pz), then as this is holomorphic, this can be put into a p-adic family of eigenforms that are

generally cuspidal (Coleman family). This gives a non-split extension by degenerating the Galois

representations of the family, which is a nonzero element in H
1

f
(ℚ, ℚp(2k − 1)), i.e. a nonsplit

extension

(

1 ∗

0 "
1−2k

cyc
)

that are split at all primes � ≠ p.

What about 2k = 2? Indeed y
−1

is not a holomorphic function on the upper half plane, but

it is nearly holomorphic (in the sense of Shimura). Thus the critical p-stabilization of E2k(z),

E
∗

2k
(z) = E2k(z) − E2k(pz) = ∑

∞

n=1
�
∗

2k−1
(n)q

n
where �

∗

2k−1
(n) = p

N(2k−1)
∑
d∣n,p̸|d

d
2k−1

when p
N
‖n,

is not homolomorphic but just nearly holomorphic. On the other hand, the other p-stabilization,

the ordinary stabilization, E
ord

2k
(z) = E2k(z) − p

2k−1
E2k(pz), is holomorphic even at 2k = 2.

The critical p-stabilization E
∗

2k
(z), having vanishing constant term on the level of q-expansions,

de�nes a p-adic cusp form, i.e. p-adic limit of classical cusp forms, even for 2k = 2 (although it is

not an overconvergent modular form if 2k = 2).

Coleman family gives an interpretation of overconvergent p-adic modular forms as “nice” an-

laytic family of eigenforms. The variable we would be varying is the weight, seeing as varying

over (ℚ
p
-points of) a ball

Br (ℚp
) = {� ∈ ℚ

p
∣ |� − 1|p ≤ p

−r
}.

Note that Br can be also thought as a rigid analytic space. Let Ar = (Br ) ≅ ℚ
p
⟨p

−r
T⟩ (T (�) =

� − 1).

Theorem 1.2 (Coleman family). For some r ≫ 0, there exists a �nite normal Ar -algebra R and a
normalized (i.e. a1 = 1) formal q-expansion F = ∑

∞

n=1
anq

n
∈ qR[[q]] such that the following are

satis�ed.
(1) For some �0 ∈ Homcont(R, ℚp

) such that �0(T ) = 0, and its stabilization at �0 gives the
q-expansion of E∗

2k
.

(2) For any m ≫ 0, (p − 1) ∣ m and any � ∈ Homcont(R, ℚp
) such that �(1 + T ) = (1 + p)m, the

stabilization of F at � is a classical eigenform of weight 2k + m, level p, trivial Nebentype
with slope 2k − 1 (i.e. |�(ap)|p = p1−2k).

Note that if m ≫ 0, then F� is a cuspform, because an Eisenstein series of weight 2k
′

and level

1 can only have slopes ∞, 0, 2k
′
− 1 (think about what can be achieved for divisor sums). Thus if
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1 − 2k ≠ 1 − 2k
′
, the stabilization of F at weight 2k

′
= 2k + m cannot be an Eisenstein series (i.e.

it is cuspidal).

Each such F� has an ssociated 2-dimensional p-adic Galois representation �� ∶ Gℚ → GL2(L�),

unrami�ed away from p, such that tr ��(Frob� ) = �(a� ) for all � ≠ p, where L� = �(R) ⊂ ℚ
p

is a �nite extension of ℚp . How do we package these into a family? There is no canonical

choice of lattices, but we can use pseudorepresentations. That all ker �’s form a Zariski dense

subset in R implies that the limit of traces of Frobenii can be taken in R, and as all �� fac-

tors through Gal(ℚ{p,∞}/ℚ), we can use Chebotarev density to de�ne a pseudorepresentation

T ∶ Gℚ � Gal(ℚ{p,∞}/ℚ) → R such that �◦T = tr �� . The theory of pseudorepresentations

(that pseudorepresentations over a �eld are traces of genuine representations) gives us a con-

tinuous Galois representation � ∶ Gℚ → AutF (V ) for a 2-dimensional F -vector space, where

F = Frac(R), such that tr � = T .

Remark 1.2. The pseudorepresentation T does not always yield a Galois representation into

GL2(R) unless you have extra assumption on T (e.g. residually irreducible).

With respect to some basis v1, v2 of V , we can write � as

�(�) =
(

a� b�

c� d�)
,

where a� , b� , c� , d� ∈ F , for � ∈ R[Gℚ]. Note that as specialization at �0 gives a reducible pseu-

dorerpesentation, T mod p = 1 + "1−2k
cyc

, where we denote p ∶= ker �0, we can choose �0 ∈ Ip such

that "
1−2k

cyc
(�0) ≠ 1.

We can then diagonalize the speci�c element �(�0) (after possibly enlarging R and m), so that

WLOG we can assume that

�(�0) =
(

� 0

0 �)
,

such that �0(�) = 1 and �0(�) = "cyc(�0)
1−2k

. De�ne the idempotents "1 =
1

�−�
(�0 − �), "2 =

1

�−�
(�0 − �) ∈ R[Gℚ] (also after possibly enlarging R and m; take the neighborhood where � − �

is invertible, and this is possible without ruining desired conditions like normality because R is

1-dimensional). These are idempotents in a sense that

�("1) =
(

1 0

0 0)
, �("2) =

(

0 0

0 1)
.

Then

∙ tr �("1�) = a� , tr �("2�) ∈ R,

∙ and thereby b� c� = a�� − a�a� ∈ R,

∙ a� (mod p) = 1(�),
∙ d� (mod p) = "

1−2k

cyc
(�),

for all �, � ∈ R[Gℚ] (by manipulating with these relations).

Note that b, c take some nonzero values, because otherwise it violates the cuspidality of F�

(i.e. �F�
being irreducible). Take B to be the Rp-module generated by b� ’s in F . This is a nonzero

fractional ideal of Rp (p is height 1 so the localization is in fact a PID). This is a fractional ideal
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(i.e. not everything) because Gℚ is compact. Let M1 = Bv1, M2 = Rpv2, M = M1 ⊕ M2 ⊂ V . By

irreducibility M = R[Gℚ]v2, and as Rp is PID, M is a free Rp-module of rank 2. For m1 ∈ M1, it is

of form bv1 for some b ∈ B, and

�(�)m1 =
(

a� b�

c� d�)(

b

0)
=
(

a�b

c�b)
= a�m1 + c�bv2.

As c�b ∈ pRp, and a� ≡ 1(�)mod p, we have �(�)m1 ∈ 1(�)m1+pM . In other words, M1 = M1/pM1

is a Gℚ-�xed line in M = M/pM . It sits inside an exact sequence

0 → M1 →M →M/M1 = M2/pM2 = M2 → 0.

As a Galois module, M2 ≅ E(1 − 2k), where E is the residue �eld Rp/pRp, as

�(�)v2 =
(

a� b�

c� d�)(

0

1)
∈ d�v2 + M1,

or mod p, �(�)v2 ∈ "
1−2k

cyc
(�)v2 + p. Thus we get an exact sequence of Galois modules

0 → E → M → E(1 − 2k) → 0.

As v2 generates M (and M ), there is no way that this could be split. Taking a twist, we get a

nonzero extension

0 → E(2k − 1) → M(2k − 1) → E → 0.

This is unrami�ed at places away from p because we already had trivial situations away from p.

This thus gives a nonzero element in H
1

f
(ℚ, E(2k − 1)).

Remark 1.3. There is no condition at p because H
1
(ℚp , ℚp(n)) = H

1

f
(ℚp , ℚp(n)) for n > 1 (or

2k − 1 > 1). This breaks down as dimℚp
H
1
(ℚp , ℚp(1)) = 2 whereas dimℚp

H
1

f
(ℚp , ℚp(1)) = 1. In

general cases one analyzes how crystalline periods vary in a family.

2. Bloch-Kato conjecture

Let K be a number �eld and L/ℚp be a �nite extension. Let V be a �nite dimensional L-vector

space on which GK acts continuously and L-linearly, namely a continuous homomorphism � ∶

GK → AutL(V ). We assume the following conditions on �.

∙ (geom) � is geometric, which means it is unrami�ed away from �nitely many places and

�GKv
is de Rham for all v ∣ p.

∙ (reg) For all v ∣ p, the Hodge-Tate weights of �|GKv
are regular, i.e. occur with multiplicity

one.

If V is (absolutely) irreducible, the Fontaine-Mazur conjecture is that V occurs in the étale coho-

mology of a proper smooth variety X/K . Also it will follow from Langlands conjectures that V is

associated with a cuspidal automorphic representation of some reductive group; by functoriality

also expects that one can �nd one from GLdimV ,K .
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Choose an embedding L ↪ ℂ and let qv be the number of residue �eld at v. We de�ne L(V , s) =

∏
v
Pv(q

−s

v
)
−1

, where Pv(X ) ∈ L[X] is de�ned as

Pv(X ) =

{

det(1 − X Frobv ∣V Iv ) v ̸ |p

det(1 − X�v |Dcris(V )
) v|p

where �v is the crystalline Frobenius.

Remark 2.1. As Dcris(V ) technically is a vector space over K
0

v
, one needs to a little more extra

work. We will only face the cases of Kv = ℚp , so there is no ambiguity here.

By Fontaine-Mazur + Langlands, we expect that the Euler product has a half-plane of absolute

convergence and has a meromorphic continuation to the whole ℂ. Furthermore, it is analytic if

V is not a twist of trivial representation.

Example 2.1. ∙ V = L(m), then L(V , s) = �K (s + m).

∙ For E/K an elliptic curve and V = VpE, L(V
∨
, s) = L(E, s) (geometric Frobenius!). As the

Weil pairing gives an isomorphism V
∨
≅ V (1), L(V , s) = L(E, s + 1).

∙ Let � ∶ K
×
⧵A

×

K
→ ℂ

×
be an algebraic Hecke character, which means that �∞|(K⊗ℚℝ)

×

0

=

� |(K⊗ℚℝ)
×

0

, for an algebraic character � of ResK/ℚ Gm =∶ G. In terms of a character on

G(ℚ) = (K ⊗ℚ ℚ)
×
= ∏

�∶K↪ℚ
ℚ
×

, it is of form (a� ) ↦ ∏a
n�

�
for integers n� . As the class

�eld theory gives an isomorphismG
ab

K
≅ K

×
⧵A

×

K
/(K ⊗ℚ ℝ)

×

0
m we can build a 1-dimensional

p-adic Galois representation over K , �� , by

�� ((xv)) = �((xv))�
−1
(x∞)� (xp),

upon choosing embeddings into ℚ
p
, ⋯. These corrections are made to make sure that

the map is stable on K
×

and (K ⊗ℚ ℝ)
×

0
. Then the value, a priori in ℚ

p
(after of course

choosing all the embeddings), is de�ned over a �nite extension of ℚp , and it satis�es

L(�� , s) = L(� , s). Also here it is important to chooes the convention that the geometric

Frobenius corresponds to a uniformizer.

De�nition 2.1 (Local Bloch-Kato f -condition). We de�ne

H
1

f
(Kv , V ) =

{

ker(H
1
(Kv , V ) → H

1
(Iv , V )) v ̸ |p

ker(H
1
(Kv) → H

1
(Kv , V ⊗ Bcris)) v|p

What does the condition at p exactly mean? Note that we have, for any extension 0 → V →

X → L→ 0 (here L is as before a �nite extension of ℚp with trivial Galois action)

0
//
(V ⊗ Bcris)

GKv //
(X ⊗ Bcris)

GKv //
(L ⊗ Bcris)

GKv = (L ⊗ K
0

v
)

//
H
1
(Kv , V ⊗ Bcris)

0
//
V

//

OO

X
//

OO

L
//

OO

H
1
(Kv , V )

OO

Thus that the extension class [X ] is in H
1

f
(Kv , V ) means that Dcris(X ) loses dimension only from

Dcris(V ).
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For v not dividing p,

H
1

f
(K , V ) = H

1

nr
(Kv , V ) = H

1
(GKv

/Iv , V
Iv
),

and asGKv
/Iv is pro-cyclic generated by Frobv , by evaluating at Frobv we getH

1

f
(Kv , V ) ≅ V

Iv
/(Frobv −1)V

Iv
,

which makes it viable to be computed.

Example 2.2. (1) For m ≠ 0, H
1

nr
(Kv , L(m)) ≅ L/(q

m

v
− 1)L = 0.

(2) For V the p-adic Tate module of an elliptic curve, H
1

nr
(Kv , V ) = 0, at least for v not dividing

NEp. This is because of the Riemann Hypothesis part of the Weil conjecture that 1 cannot

be a Frobenius eigenvalue of V . This is expected as this is expected to be the same local

condition as E(Kv) ⊗ ℚp → H
1
(Kv , VpE) (map from Kummer theory), and as v does not

divide p, say if v is � -adic, then E(Kv) is pro-� , which means E(Kv) ⊗ ℚp = 0.

Example 2.3. For v|p, we have the following.

(1) We have

H
1

f
(Kv , L(m)) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

0 if m < 0

a little complicated (explicit) if m = 0, 1

H
1
(Kv , L(m)) if m > 1

What about m = 0, 1? Note that H
1
(Kv , L) = Homcont(G

ab

K
, L), and H

1
(Kv , L(1)) ≅ K

×

v
⊗ L.

One needs to explicitly calculate which extensions are crystalline.

(2) For V = VpE, H
1

f
(Kv , V ) ≅ E(Kv)⊗ℤpℂp through the Kummer theory map, which is proved

by Bloch-Kato themselves.

De�nition 2.2 (Bloch-Kato Selmer group). We de�ne the Bloch-Kato Selmer group H
1

f
(K , V )

as
H
1

f
(K , V ) = {c ∈ H

1
(K , V ) ∣ locv c ∈ H

1

f
(Kv , V )for all v}.

Example 2.4. (1) H
1

f
(K , ℚp(m)) = {classes trivial at v ∣ p}, for m > 1.

(2) H
1

f
(K , VpE) is the characteristic 0 p-adic Slemer group of E/K .

Remark 2.2. For integral or mod p Galois representations, we can propagate our de�nition of

local Bloch-Kato Selmer condition. Namely, let T ⊂ V be a GK -stable lattice inside a rational

p-adic Galois representation, and A = V /T (e.g. T = TpE, V = VpE, A = E[p
∞
]). Then from

0 → T → V → A → 0, we have a sequence of maps H
1
(Kv , T ) → H

1
(Kv , V ) → H

1
(Kv , A).

We then just de�ne H
1

f
(Kv , A) = im(H

1

f
(Kv , V ) ⊂ H

1
(Kv , V ) → H

1
(Kv , A)) and H

1

f
(Kv , T ) be the

preimage of H
1

f
(Kv , V ). We then de�ne the global Bloch-Kato Selmer group in the analogous way.

Example 2.5. H 1

f
(K , TpE) = lim

←←←←←←←←←←←←←←←
Selpn (E/K), H

1

f
(K , E[p

∞
]) = lim

←←←←←←←←←←←←←←→
Selpn (E/K).

In this vein, we can de�ne the Bloch-Kato Tate-Shafarevich group XBK(K , A) to be

XBK(K , A) = H
1

f
(K , A)/ imH

1

f
(K , V ).

This is, unlike the usual Tate-Shafarevich group, known to be always finite. Rather a relation is

that there is a surjection

X(E/K)[p
∞
]�XBK(K , E[p

∞
]),
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where the kernel is a maximal divisible subgroup, which is expected to be zero.

Conjecture 2.1 (Bloch-Kato conjecture. ) For V as above (i.e. geometric, regular, irreducible), then

ords=0 L(V , s) = dimL H
1

f
(K , V

∨
(1)).

Example 2.6. (1) For V = ℚp , L(V , s) = �K (s), and we know that ords=0 �K (s) = rank×

K
.

On the other hand we know dimℚp
H
1

f
(K , ℚp(1)) = dimℚp

×

K
⊗ ℚp , so the Bloch-Kato

conjecture is true in this case.

(2) For V = ℚp(−2m) for 2m > 0, we know, as L(V , s) = � (s − 2m), ords=0 L(V , s) = 1. Thus

we expect dimℚp
H
1

f
(ℚ, ℚp(2m + 1)) = 1. That it is ≥ 1 can be derived from simple global

Euler characteristic calculation argument, and that it is 1 for all but �nitely many m is a

consequence of Iwasawa Main Conjecture. That it is always 1 is a deep result of Soulé.

(3) For V = VpE, We know ords=0 L(V , s) = ords=1 L(E, s) = ran(E/K). The other side is

dimH
1

f
(K , V

∨
(1)) = dimH

1

f
(K , V ). Kummer theory gives E(K) ⊗ ℚp ⊂ H

1

f
(K , V ), so the

BSD is Bloch-Kato + �niteness of X(E/K)[p
∞
].

Our �rst goal stated in this framework is the following.

Theorem 2.1 (Skinner-Urban). Suppose that K is an imaginary quadratic �eld, p = vv is split in K
and V is polarized, which means V ∨

(1) ≅ V
c where c is a complex conjugation. Also assume that V

is geometric, irreducible and associated with a cuspidal automorphic representation � of a Hermitian
space (KdimV

, Φ), such that V |GKv
is regular, crystalline and 0, −1 are not Hodge-Tate weights (which

takes care of V |GK
v

by complex conjugation + polarization). Then

(1) L(V , 0) = 0 implies dimH
1

f
(K , V ) =≥ 1.

(2) If ords=0 L(V , s) is even and positive, dimH
1

f
(K , V ) ≥ 2.

Remark 2.3. Excluding 0, −1 as Hodge-Tate weights excludes V = VpE, but includes all higher

weight modular forms, or more generally RACSDC � of GL2n,ℚ with a regular weight hypothesis.

Eventually we will construct an extension of form 0 → L(1) → X → V → 0. However our

method will on the �rst hand gives an extension of form

⎛

⎜

⎜

⎝

" ∗ ∗

1 ∗

�

⎞

⎟

⎟

⎠

or

⎛

⎜

⎜

⎝

1 ∗ ∗

" ∗

�

⎞

⎟

⎟

⎠

,

and we want an extension of form

(

" ∗

�)
which is only in the second form of extension. How-

ever as K has no unit of in�nite order, H
1

f
(K , L(1)) = 0, which means that an extension of form

⎛

⎜

⎜

⎝

" ∗ ∗

1 ∗

�

⎞

⎟

⎟

⎠

is actually of form

⎛

⎜

⎜

⎝

" 0 ∗

1 ∗

�

⎞

⎟

⎟

⎠

which can be conjugated to be of the second form.

3. Automorphic forms on unitary groups

Let’s consider the case of SL2 �rst. A holomorphic modular form is a holomorphic function

f ∶ ℍ → ℂ, ℍ = {x + iy, y > 0}, such that for 
 ∈ Γ ⊂ SL2(ℤ) a congruence subgroup,

9



f (
 (z)) = j(
 , z)
k
f (z), where j

((

a b

c d)
, z
)
= cz+d . This could be also thought as a holomorphic

section of a line bundle Γ⧵ℍ × ℂ → Γ⧵ℍ where Γ-action on ℍ × ℂ is de�ned by 
 ⋅ (z, w) =

(
 (z), j(
 , z)
k
!); that it is a line bundle is because the factor of automorphy satis�es a cocycle

condition j(

′

 , z) = j(


′
, 
 (z))j(
 , z). Indeed, as ℍ ≅ SL2(ℝ)/ SO2(ℝ), one can construct a smooth

function ' ∶ Γ⧵ SL2(ℝ) → ℂ by '(g) = j(g, i)
−k
f (g(i)). This lies in L

2
(Γ⧵ SL2(ℝ)), with L

2
-norm

being Petersson norm (i.e. integration against the hyperbolic metric), and the Hilbert space has

an obvious SL2(ℝ)-action. Thus in this way we get a representation of SL2(ℝ).

Note that ' obtained this way is not merely just L
2
, in fact it is smooth, and even more K -

�nite, where here K = SO2(ℝ). Indeed, for u =
(

a −b

b a )
∈ SO2(ℝ), '(gu) = j(gu, i)

−k
f (gu(i)) =

j(u, i)
−k
j(g, i)

−k
f (g(i)) = j(u, i)

−k
'(g), and j(u, i)

−k
= (bi + a)

−k
= e

−ik�
, so K -span of ' is a line.

3.1. Unitary groups. Let K be an imaginary quadratic �eld, and let us �x an embedding K ↪ ℂ.

This is important as we would like to say something about signature of our unitary group. Let

Φ ∈ Md (K) be a skew-hermitian matrix, namely
t
Φ = −Φ. This de�nes a skew-hermitian pairing

on K
d
, via ⟨x, y⟩ =

t
xΦy, as ⟨y, x⟩ = −⟨x, y⟩. Assume that the pairing is nondegenerate (i.e.

Φ ∈ GLd (K)). Seeing at the archimedean place we can talk about the signature (a, b) where a is

the number of eigenvalues in iℝ>0 and b is the number of eigenvalues in iℝ<0 (so that a + b = d).

Suppose that b ≥ a, then (K
d
, Φ) is isomorphic to a copies of hyperbolic plane plus an anisotropic

space of dimension b − a. For simplicity we can just consider

Φ =

⎛

⎜

⎜

⎝

Ia

�Ib−a

−Ia

⎞

⎟

⎟

⎠

,

for � ∈ K
×

totally imaginary with −i� < 0 (for a �xed choice of i).

De�nition 3.1. The unitary group G = U(Φ) is de�ned by

G(R) = {g ∈ GLd (K ⊗ℚ R) ∣
t
gΦg = Φ},

for any ℚ-algebra R.

This indeed is the right algebraic group, as G(ℝ) ≅ U(a, b).

Remark 3.1. UsuallyU(a, b) is de�ned with a bilinear pairing corresponding to

(

Ia

−Ib)
, which

is hermitian, not skew-hermitian. But one can just use i times this matrix to convert to skew-

hermitian. The ℚ-group de�ned with this matrix is also usually referred as U(a, b). For Φ of form

⎛

⎜

⎜

⎝

Ia

�Ib−a

−Ia

⎞

⎟

⎟

⎠

, one has an explicit isomorphism U(Φ)

∼,g↦c
−1
gc

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ U(a, b), where U(a, b) is now

de�ned by the bilinear pairing �
(

Ia

−Ib)
, and c =

⎛

⎜

⎜

⎝

� �

Ib−a

Ia Ia

⎞

⎟

⎟

⎠

.
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Example 3.1. For Φ being just a single copy of hyperbolic plane and nothing else, then U(Φ)(ℝ) =

U(1, 1) is
SL2(ℝ)×ℂ

×

1

±1
where ℂ

×

1
means norm 1 elements in ℂ. To see unitary group as such quotient

as an algebraic ℚ-group we need to go to general similitude group as there is the issue of norms in

the center. For GU(1, 1), over ℚ, it is the same as (GL2 ×K
×
)
′
⊂ GL2 ×K

×
, the collection of elements

(g, x) such that det g = NK/ℚ(x)
−1

.

This unitary group acts on a domain

Φ =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎛

⎜

⎜

⎝

z

w

Ia

⎞

⎟

⎟

⎠

∣ z ∈ Ma×a(ℂ), w ∈ M(b−a)×a(ℂ), i(z −
t
z) + i

t
w�w < 0

⎫
⎪
⎪

⎬
⎪
⎪
⎭

,

via, for g ∈ U(Φ), x ∈ Φ, g ⋅ x =

⎛

⎜

⎜

⎝

��
−1

��
−1

Ia

⎞

⎟

⎟

⎠

where gx =

⎛

⎜

⎜

⎝

�

�

�

⎞

⎟

⎟

⎠

is the usual matrix multiplication.

Example 3.2. If Φ is a hyperbolic plane, then Φ = 1,1 is ℍ, and the action is the usual action.

Similar to i ∈ ℍ, we can choose a basepoint x0 =

⎛

⎜

⎜

⎝

iIa

0

Ia

⎞

⎟

⎟

⎠

∈ Φ. The stabilizer of x0, denoted

as K∞, is a maximal compact subgroup of G(ℝ), and G(ℝ)/K∞ ≅ Φ. After the identi�cation

G(ℝ) ≅ U(a, b), we have an identi�cation K∞ ≅ U(a) × U(b).

We can de�ne the automorphy factor J ∶ G(ℝ) ×Φ → K∞(ℂ) so that

∙ J (g, −) is a holomorphic function on Φ,

∙ J (gg
′
, x) = J (g, g

′
(x))J (g

′
, x),

∙ J (c, x0) = c for all c ∈ K∞.

As we have done in the modular form case, we de�ne holomorphic automorphic forms in three

ways. Let W be a weight, i.e. a �nite dimensional algebraic representation of K∞. Let � ∶ K∞ →

GL(W).

(1) A holomorphic automorphic form (modular form) of weight W and level Γ is a holo-

morphic function f ∶ DΦ →W such that f (
 (x)) = �(J (
 , x))f (x) for all 
 ∈ Γ ⊂ G(ℝ).

(2) From the above, a smooth automorphic form can also be de�ned as ' ∶ Γ⧵G(ℝ) → W

such that '(g) = �(J (g, x0))
−1
f (g(x0)). It inherits the K -�niteness property as follows. For

k ∈ K∞(ℝ), we have

'(gk) = �(J (gk, x0))
−1
F (gkx0) = �(J (k, x0))

−1
�(J (g, x0))

−1
F (gx0) = �(k)

−1
'(g),

so that the K -span of ' is a �nite-dimensional vector subspace. Another way of say-

ing this is that W
∨
→ C

∞
(Γ⧵G(ℝ), ℂ) is K∞(ℝ)-equivariant, where the map is de�ned by

w ∈ W
∨
↦ w◦' ∶ Γ⧵G(ℝ) → ℂ. The image of this map lies in a subspace of smooth au-

tomorphic forms A (Γ⧵G(ℝ)) ⊂ C
∞
(Γ⧵G(ℝ)), which is characterized by moderate growth

condition and U (g)-�niteness condition.

In our case, as the center is compact, C
∞
(Γ⧵G(ℝ)) ⊂ L

2
(Γ⧵G(ℝ)) and there we can use

decomposition as G(ℝ)-representations.
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(3) One can realize these as admissible (g, K∞)-representations, which corresponds to smooth

K∞-�nite vectors inside the Hilbert space representation corresponding to it. Here admis-

sibility means for every irreducible K∞(ℝ)-representation W , HomK∞
(W , �) is �nite.

Remark 3.2. (1) To adelically write an automorphic form, we need to use a strong approx-

imation: in the case of SL2 and Γ(N ) ⊂ SL2(ℤ), we can adelically extend to K(N ) =

{g ∈ SL2(ℤ̂) ∣ g ≡ 1(modN )} and then we have by strong approximation SL2(A) =

SL2(ℚ) SL2(ℝ)K(N ). In this way, ' de�ned over Γ⧵G(ℝ) extends to a smooth function

over SL2(ℚ)⧵ SL2(A). As the space of smooth functions on SL2(ℚ)⧵ SL2(A) has a natu-

ral action of SL2(A), we get an adelic representation (more precisely, a representation of

G(Af ) × (g, K∞)). By the tensor product theorem, an automorphic irreducible adelic repre-

sentation is a restricted tensor product of local representations, and then we can do p-adic

theory and such.

(2) How do we see holomorphicity on A (Γ⧵G(ℝ))? Certainly we can de�ne a smooth function,

from ' ∈ (A (Γ⧵G(ℝ)) ⊗W )
K∞

, F'(x) = �(J (g, x0))'(g), where g ∈ G(ℝ) is such that g(x0) =

x . Then, that F' is holomorphic is equivalent to that ' is annihilated by U (p−), where gℂ =
p+⊕k⊕p− is the Cartan decomposition. In the case ofGL2, this is the usual holomorphicity

(Cauchy-Riemann relation, or Maass-Shimura lowering operator).

(3) How do we know if such function exists in our automorphic representation? It turns out

that it does exist when your representation at in�nity is a holomorphic (limit of) discrete

series. A holomorphic (limit of) discrete representation of K∞(ℂ) is a representation of

form U (p+) ⊗ W ≅ U (g) ⊗U (k⊕p−) W for a �nite dimensional irreducible representation

W of K∞(ℂ) which happens to be irreducible. This holds under mild conditions, e.g. if,

when W is seen as an irreducible representation of K∞(ℂ) ≅ GLa(ℂ) ×GLb(ℂ), the highest

weight with respect to the diagonal tori, n1 ≥ n2 ≥ ⋯ ≥ na and m1 ≥ m2 ≥ ⋯ ≥ mb ,

satis�es na, mb ≥
a+b−1

2
. This really depends on how you pick torus/Borel/isomorphism of

K∞(ℂ) ≅ GLa(ℂ) × GLb(ℂ), ⋯.

Remark 3.3. The factor of automorphy is naturally de�ned as follows. From the Cartan de-

composition gℂ ≅ p ⊕ k for G = U(a, b), with k = (Lie K∞)ℂ, and G(ℝ) = KP , we see that

K∞(ℂ)P(ℂ) ⊂ G(ℂ) contains G(ℝ), and the factor of automorphy is just the projection down to the

K∞(ℂ)-factor.

Here we become more precise. Along the veins of de�ning Shimura varieties, one can see Φ

as a set of G(ℝ)-conjugacy classes of a Hodge cocharacter. In this case, such Hodge cocharacter

can be given as

ℎ ∶ ℂ
×

1
→ G(ℝ), z = u + iv ↦

⎛

⎜

⎜

⎝

u −v

z

v u

⎞

⎟

⎟

⎠

,

where G = U(Φ) as before, which corresponds to

(

zIa

zIb)
via the identi�cation G(ℝ)

∼

←←←←←←←→

U(a, b)(ℝ) we discussed before. Under this, Φ ≅ G(ℝ)/K∞, where K∞ = StabG(ℝ)(ℎ). Under

the identi�cation G(ℝ) ≅ U(a, b), the stabilizer is U(a) × U(b). This sits inside the �ag vari-

ety U(a, b)(ℂ)/Pa,b(ℂ) (here we embed via [g] ↦ [gc]) where Pa,b is the stabilizer of the vec-

tor subspace generated by the �rst a vectors (here we take the convention that Pa,b is lower
12



triangular). Given an algebraic representation W of Pa,b(ℂ), we can form a local system  =

(U(a, b)(ℂ)×W )/Pa,b(ℂ) on the �ag variety. AsΦ is simply connected, ∣Φ
is trivial; we can take

� ∶ U(a, b)(ℂ) → GL(W ), canonical up to GL(W )-action on the whole, such that  |DΦ
≅ Φ ×W

can be given by (g, w) ↦ (xg , �(g)w). Then the automorphy factor is j(
 , xg) ∶= �(
g)�(g)
−1

,

which is independent of the choice of � . This is de�ned such that under the same trivialization,

(

′
g, w) maps to (x
 ′g , j(


′
, xg)�(g)w).

Another way of seeing is that, consider the Cartan decomposition g′
ℂ
= p+⊕k′⊕p−, where all Lie

algebras are complexi�ed and
′

means we are working instead with U(a, b), not U(Φ). Then j(g) =

k
′

where gc = p
+
k
′
p
−

via the exponentiated Cartan decomposition. Here Pa,b = K
′

∞
(ℂ)P

−
(ℂ). The

canonical automorphy factor can be de�ned also as j(g, x) = j(ggx )j(gx )
−1
∈ K

′

∞
(ℂ).

Let us go through a sanity check for U(1, 1), and see that it recovers the theory of elliptic modu-

lar forms. The unitary group G = U(Φ) for Φ =
(

0 1

−1 0)
is an algebraic group with identi�cation

G(R) ≅

{(g, x) ∈ GL2(R) × (K ⊗ℚ R)
×
∣ det g = N (x) ∶= xx}

R
×

,

for ℚ-algebras R. In this vein G(ℝ) ≅
SL2(ℝ)×ℂ

×

1

{±1}
.

Our symmetric domain is Φ = {
(

z

1)
∣ z ∈ ℍ}. The action of G(ℝ) restricts to the usual

action of SL2(ℝ) on ℍ, and is acted trivially by ℂ
×

1
. Clearly K∞(ℝ) under the above identi�cation

is K∞(ℝ) ≅
SO2(ℝ)×ℂ

×

1

{±1}
.

In our case G(ℝ) ≅ U(1, 1)(ℝ) via g ↦ c
−1
gc with c =

(

1 i

i 1)
. What is the automorphy factor

as above in this case? Given g =
(

� �


 �)
∈ SL2(ℝ), gc =

(

∗ ∗

∗ 
 i + �)
. We only computed one

entry because in the Cartan decomposition the bottom-right corner of K∞(ℂ)-part carries over.

Thus j(g) = (blah, 
 i + �). Thus j(g, i) = (
1


 i+�
, 
 i + �) as U(1) = S

1
and we have determinant 1

condition.

For an algebraic representation W of K
′

∞
(ℂ) ≅ U(1) × U(1) de�ned by (u1, u2) ↦ u

k

1
u
�

2
, a

holomorphic modular form of weightW is a function f ∶ Φ →W such that f (
 (x)) = j(
 , x)f (x)

for 
 ∈ Γ ⊂ G(ℝ). The SL2(ℝ)-part only sees � − k, but the additional ℂ
×

1
-action makes you to

distinguish between di�erent (k, � )’s with same � − k. This is thus some information that is lost

when you translate into classical holomorphic modular form languages (can do the inverse but

then one needs to make choices).

Adelically we can proceed as follows. Consider a weight 2k newform of level Γ0(N ), f ∶

ℍ → ℂ. Then we can produce a smooth automorphic form ' ∶ GL2(A) → ℂ such that '(g) =

j(g∞, i)
−2k

f (g∞i) where g = 
g∞gf with 
 ∈ GL2(ℚ), g∞ ∈ GL2(ℝ)
+

and gf ∈ U0(N ) ⊂ GL2(ℤ̂). This

is possible as the class group of ℚ is 1. As f is a newform, ' generates an irreducible automorphic

cuspidal representation � .

Remark 3.4. We chose a speci�c action of center, so that '(rg) = r
−2k

'(g) for r ∈ ℝ
×
. We might

as well have twisted by any power of absolute values of automorphy factor.
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To see this as an automorphic representation of unitary groups, we consider the general uni-

tary group GU(Φ), which is isomorphic to
GL2 ×K

×

ℚ
× as ℚ-algebraic groups. Thus we have to add

additional datum of character. To be more precise, we have to add  ∶ A
×

K
→ ℂ

×
such that

 |A
×

ℚ

= �
−1

�
= | − |

2k
. For example we can use  = | − |

k

K
= |NK/ℚ|

k
. This pair (�,  ) de�nes an ir-

reducible automorphic representation of GU(A). To truly work with unitary group automorphic

representation, we can just choose � ⊂ (�,  )|U(Φ)(A).

3.2. L-functions for unitary groups. In general we have a zoo of L-functions associated to an

automorphic representation. Let G be a quasisplit reductive group over ℚ. Then, we obtain a dual

group Ĝ over ℂ, equipped with an action byWℚ. AsG is quasisplit, the action factors throughGℚ,

which further factors through a �nite quotient. The L-group is de�ned as
L
G ∶= ĜoWℚ. For any

representation r ∶
L
G → GLm(ℂ), for an irreducible automorphic representation � of G(A), we

expect to associate an L-function L(�, s, r) = ∏
v
L(�v , s, r ). At unrami�ed places, the L-function

L(�v , s, r ) is the L-function of the Weil-Deligne representation Wℚv
→ GLm(ℂ) associated to �v .

Example 3.3. For G = GLn,ℚ, Ĝ = GLn(ℂ) and Wℚ acts trivially. If �� is unrami�ed, then it is

principal series (supercuspidal representations are rami�ed), so that by the Satake isomorphism

it corresponds to a semisimple conjugacy class t��
∈ GLn(ℂ), say diag(�1, ⋯ , �n), so that �� =

Ind(�) (normalized induction) where �(�ei,i) = �i . For the standard representation rstd of GLn(ℂ),

L(�� , s, rstd) = det(1 − �
−s
t��
)
−1
= ∏

n

i=1
(1 − �i�

−s
)
−1

, the usual local L-factor one sees in a classical

setting.

We will always refer to L(�, s, rstd) when talking about L-function of a cuspidal automorphic

representation if there is no other indication on r .

3.3. Galois representation associated to a cuspidal automorphic representation of U(Φ).
Let G = U(Φ) ≅ U(a, b), with a ≤ b. Let � be a cuspidal automorphic representation of G(A). We

can freely go back and forth between the whole L
2
-space, its subspace of smooth vectors, and its

subspace of K∞-�nite vectors (i.e. � also can be thought as a representation of (g, K∞) × G(Af )).

Let � ≅ �∞ ⊗ �f ≅ ⊗
′

�≠∞
�� , where �� is an irreducible admissible representation of G(ℚ� ). We

assume that �∞ is a holomorphic discrete series. Recall, if we identify K∞ ≅ U(a) × U(b) and

K∞(ℂ) ≅ GLa(ℂ) × GLb(ℂ) (dependent upon a choice of K ↪ ℂ; recall that by de�nition

U(m)(ℂ) = {g ∈ GLm(K ⊗ℚ ℂ) ∣ g
t
g = Im},

and asK⊗ℚℂ ≅ ℂ⊕ℂ, by projecting down toK⊗ℚℂ → ℂ coming from the �xed choice ofK ↪ ℂ,

we get an isomorphismU(m)(ℂ) ≅ GLm(ℂ). Choosing the other embedding gives an involution by

transpose-inverse, giving the dual of the representation), then �∞ being a holomorphic discrete

series is the same as having Blattner parameter (cb+1 ≥ ⋯ ≥ cd ; c1 ≥ ⋯ ≥ cb), with cb − cb+1 ≥ d =

a + b. Then �∞ ≅  (p+) ⊗ℂ W
∨

where W is the irreducible reprsentation of K∞(ℂ) with highest

weight (cb+1 ≥ ⋯ ≥ cd ; c1 ≥ ⋯ ≥ cb).
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The L-group of G is of form Ĝ o Gal(K/ℚ), as GK ≅ GLd,K , and the involution on GLd (ℂ) is

given by g ↦ Φ
−1

d

t
g
−1
Φd where Φd =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

−1

1

−1

⋯

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. Check this.

We basically only know local Langlands for GLn, so it is desirable to utilize base change, which

is an instance of Langlands functoriality. Let H = ResK/ℚ GLd,K . Then
L
H = (Ĝ × Ĝ) o Gal(K/ℚ)

such that c(g1, g2) = (cg2, cg1) where c is the nontrivial element of Gal(K/ℚ). The diagonal em-

bedding Ĝ → Ĝ × Ĝ respects Galois action and gives an L-homomorphism
L
G →

L
H . Thus,

for an automorphic representation � of G(A), there should be a base change BC(�), an automor-

phic representation of H(A) that satis�es the local-global compatibility BC(�� ) = BC(�)� . As we

know local Langlands correspondence for H(ℚ� ), we would like to know if these local represen-

tations gather up to an automorphic representation. By the work of Langlands, certainly a weak

base change exists, where weak base change means an automorphic representation matching up

with local representation for all but �nitely many places exists. By the multiplicity one, then this

should be equal to the strong base change if it exists.

Now let’s just suppose that BC(�) exists as a cuspidal automorphic representation. Note that

this is not always the case (when � is only tempered and stable). The standard representation for

L
H is

rstd ∶
L
H → GL2d (ℂ), (g1, g2)o 1 ↦

(

g1

cg2)
, 1o c ↦

(

1

1 )
,

and by the formalism of local-global compatibility, we can de�ne local L-factors from local Weil-

Deligne representation, namely for the Weil-Deligne representation (� ∶ Gℚ�
→ Aut(V ), N )

corresponding to �� , we de�ne

L(�� , s, rstd) = det(1 − �
−s
Frob� ∣ (V

N
)
I�
)
−1
.

Then L(�, s, rstd) ∶= ∏
�
L(�� , s, rstd) is formally equal to L(BC(�), s, rstd), and as we can see BC(�)

as an automorphic representation of GLd (AK ) = H(A), we know that it has nice analytic proper-

ties (Ramanujan conjecture for cohomological self-dual cuspidal blah blah... of GLd over CM �eld

is true).

Remark 3.5. We can certainly establish partial L-function unconditionally, and nice analytic

property can also be deduced from Rankin-Selberg integral representation of L-functions.

Now we can talk about the associated Galois reprsentation.

Theorem 3.1. Fix ℚ
p
≅ ℂ. For � = ⊗

′
�� with �∞ = U (p+) ⊗ W ∨ holomorphic discrete series,

there exists a continuous semisimple homomorphism � ∶ GK → GLd (ℚp
), such that the following

conditions are satis�ed.

∙ For w̸ |p, WD(�|GKw
)
Frob -ss

≅ rec(BC(�)
∨

w
⊗ | ⋅ |

1−d

2 ), where rec is the local Langlands corre-
spondence normalized as e.g. in Harris-Taylor.

∙ If v ∣ p, then �� |GKv is potentially semistable.
15



∙ If p is unrami�ed, �p is unrami�ed, then for all v ∣ p, �� |GKv is crystalline, andWD(�|GKv
) =

Dcris,v(��,v) ≅ rec(BC(�)
∨

v
⊗ | ⋅ |

1−d

2 ).
∙ The place v coming from K ↪ ℂ

∼

←←←←←←←→ ℚ
p
has regular Hodge-Tate weights (i.e. all Hodge-Tate

weights are distinct) (�1 < �2 < ⋯ < �d ) = (cd + b < cd−1 + b + 1 < ⋯ < cb+1 + a + b − 1 < cb <

cb−1 + 1 < ⋯ < c1 + b − 1).

Example 3.4. Under the identi�cation of classical modular forms withU(1, 1)-automorphic forms,

what is L(�, s, std) and �� ∶ GK → GL2(ℚp
) for � ∈ (�,  )|G(A)? The answers are

L(�, s, std) = L(BC(�) ⊗ | − |
k

K
, s) = L(f , s + k − 1/2)L(f ⊗ �K , s + k − 1/2),

L(�s , s) = L(BC(�)
∨
s − 1/2) = L(Vf (k − 1), s).

To convince ourselves let’s calculate Satake parameters. At unrami�ed � , �� is an unrami�ed

principal series

�(�1, �2) = {f ∶ GL2(ℚ� ) → ℂ smooth ∣ f
((

a b

0 d))
= �1(a)�2(d)|

a

d

|
1/2
f (g)}.

Then (g, x) ∈ GL2(ℚ� ) × (K ⊗ℚ� )
×

acts on f ∈ �(�1, �2) via  (x
−1
)gf . Suppose � is split in K . Then

U(ℚ� ) ⊂ GL2(ℚ� ) × GL2(ℚ� ) which is identi�ed with GL2(ℚ� ) via the projection to the �rst factor.

We want to see the action of a diagonal torus

(

x

x
−1
)

where x = diag(a, d
−1
) to know to

which extent is there a character twist. The action of it is �1(
a

d
)|xx|

1/2
|x|

k

K
, which is �1(a)�1(d)

−1
|a/d|

k+1/2
.

This is the same as sitting in the unrami�ed principal series �� (�1| − |
k
, �
−1

1
| − |

−k
) = �� (�1, �2)⊗ | − |

k

as �
−1

1
= �2| − |

2k
.

4. Eisenstein series

Now it is time to study Eisenstein series, as L-functions arise as constant terms of Eisenstein

series. Let Φ ∶=

⎛

⎜

⎜

⎝

Ia

�

−Ia

⎞

⎟

⎟

⎠

Φ
′
∶=

⎛

⎜

⎜

⎝

Ia+1

�

−Ia+1

⎞

⎟

⎟

⎠

, and G = U(Φ) and H = U(Φ
′
). Let a + b = d .

Let V be the d + 2-dimensional K -vector space equipped with a skew-hermitian form Φ
′
, and let

L ⊂ V be an isotropic line generated by the (a + 1)-st vector (one of the two “appended” by going

from G up to H ). Then P = StabH (L) has Levi M of form

⎛

⎜

⎜

⎜

⎝

Mata×a Mata×b

t
−1

Matb×a Matb×b

t

⎞

⎟

⎟

⎟

⎠

,

so that it is isomorphic to G × ResK/ℚ K
×
.

Remark 4.1. For any isotropic subspace of V , the Levi of the parabolic is of form (unitary) ×GL∗.

The reason why we do not deal with higher dimensional GL is that Eisenstein series obtained

in such way is very rarely holomorphic, unless you take something very degenerate for GL∗-

automorphic form.
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Take (�, V� ) an automorphic representation of G(A) and a Hecke character � of A
×

K
. This

gives rise to an automorphic representation (�, V�) of M(A). Take � = ⊗
′

v
�v ; here for �∞ one

rather takes smooth representation (as opposed to (g, K∞)-representation) to make things easier.

Then the normalized induction is a representation

I (�) = {f ∶ H(A) → V� smooth ∣ f (mng) = �(m)f (g)∀mn ∈ P(A)}.

Let �P be the modulus character of P , which is determined by the adjoint action of M on N . It

turns out that �P (m(g, t)n) = |tt|
−(d+1)

; as g is unitary it shouldn’t show up after all.

Example 4.1. (1) For U(1, 1) and the Siegel parabolic P , we see that the Levi is just

(

t
−1

t)

and the unipotent radical is

(

1 m

0 1)
. Then we see that the modulus character is indeed

|tt |
−1

as

(

t
−1

t)(

1 m

0 1)(

t

t
−1
)
=
(

1 m/tt

1 )
.

(2) For GL2 and upper triangular Borel, we get the usual formula �B = |
a

d
|.

Now take f ∈ I (�), but thought as a smooth ℂ-valued function G(A) → ℂ. Then it is at least

left P(ℚ)-invariant, so that we can create a left G(ℚ)-invariant thing

E(f ; s, ℎ) = ∑


∈P(ℚ)⧵H(ℚ)

f (
ℎ)�P (ℎ)
s+1/2

,

where �P (ℎ)makes sense asH(A) = P(A)K∞H(ℤ̂). This sits inside I (�, s) ∶= I (�×�
s+1/2

P
), whenever

makes sense.

Theorem 4.1 (Langlands). E(f ; s, ℎ) converges absolutely for s, ℎ in any compact region, with
Re(s) ≫ 0. In this region, E(f ; s, ℎ) is holomorphic in s.

We are interested in whether a smooth automorphic form E(f ; s, ℎ) is holomorphic as a function

on the symmetric space (“holomorphic in ℎ”). We know that such property can be characterized

by vanishing by some di�erential operators (namely U (p−)). So, the question is, for X ∈ U (g),

X ∗ E(f ; s, ℎ) = ∑


∈P(ℚ)⧵G(ℚ)

(X ∗ (f ⊗ �
s+1/2

P
))?

Here the RHS is also something analytically continued (it’s also an Eisenstein series; each sum-

mand is also a section in I (�, s)). This does not necessarily always hold, for example nonholomor-

phic weight 2 Eisenstein series. The order of non-holomorphicity is actually related to (non)vanishing

of central L-values.

We specialize further to our situation. Let � be a cuspidal automorphic representation of G(A).

Let � = ⊗
′

v
�v , with �∞ = +

W
a holomorphic discrete series, with W an irreducible algebraic

representation of K∞(ℂ) ≅ GLa(ℂ) × GLb(ℂ) of highest weight (cb+1 ≥ ⋯ ≥ cd ; c1 ≥ ⋯ ≥ cb)

with cb − cb+1 ≥ d . Let � = ⊗�v be an algebraic Hecke character, where algebraicity means

�∞ ∶ (K ⊗ ℝ)
×
→ ℂ

×
, which can be thought as ℂ

×
→ ℂ

×
upon a choice of K ↪ ℂ, being

�∞(z) = z
n
z
m

for n,m ∈ ℤ, n + m ≡ d(mod 2). Let � =
n−m

2
, �

′
=

n+m

2
. We want � is not only just
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an automorphic form of H(A) but a holomorphic discrete series. The condition for such thing

to happen is

cb ≥ � +

d

2

+ 1 ≥ � − (

d

2

+ 1) ≥ cb+1;

note that the central gap is now required to be at least d +2. Let us assume this condition through-

out the section.

Let K
′

∞
be the maximal compact subgroup of H(ℝ), chosen appropriately so that under the

usual identi�cation K
′

∞
(ℂ) ≅ GLa+1(ℂ) × GLb+1(ℂ) and compatible with K∞(ℂ) ≅ GLa(ℂ) × GLb(ℂ).

Let W
′

be the irreducible algeraic representation with highest weight (� − (
d

2
+ 1) ≥ cb+1 ≥ ⋯ ≥

cd ; c1 ≥ ⋯ ≥ cb ≥ � +
d

2
+ 1). By the way we picked K

′

∞
and because of branching laws for unitary

groups, W occurs with multiplicity one in W
′
|K∞(ℂ)

. Thus (�∞ ⊗ W
′
)
K∞(ℂ)×K

×
(ℝ)

= (�∞ ⊗ W)
K∞(ℂ)

,

which is 1-dimensional by the theory of minimal K -types. Thus, by the Frobenius reciprocity,

(I (�∞) ⊗ W
′
)
K
′

∞
(ℂ)

is also 1-dimensional. Here, I (�∞) means the local representation of I (�) at

∞ coming from the tensor product theorem. Pick Ψ∞ inside that line. Similarly one can �nd

Ψf ∈ I (�f ) such that Ψ = Ψ∞ ⊗ Ψf ∈ (I (�) ⊗ W
′
)
K
′

∞
(ℂ)

. We can also choose  ∈ (� ⊗ W)
K∞(ℂ)

corresponding to Ψ under the identi�cation (�∞ ⊗ W
′
)
K∞(ℂ)×K

×
(ℝ)

= (�∞ ⊗ W)
K∞(ℂ)

. Note that

by general theory,  , a highest weight vector of the minimal K -type of holomorphic discrete

series, de�nes a holomorphic modular form, in a sense that the usual associated smooth function

fℎ ∶ Φ → ℂ via fℎ(g∞x0) = jG(g∞, x0) ℎ(g∞), where  ℎ is the right ℎ ∈ H(A)-translate of the

vector, is holomorphic.

Similarly we can also de�ne a function on Φ
′ ,

Fℎ(s, z) = jH (ℎ∞, x
′

0
)Ψ(ℎ∞ℎ)�P (ℎ∞ℎ)

s+1/2
,

where ℎ∞ ∈ H(ℝ) such that ℎ∞(x
′

0
) = z.

1

What is the relation between Fℎ and fℎ? As ℎ∞ = m(g∞, t)n, it turns out that

Fℎ(s, z) = |tt|
1/2+�

′
−s(d+1)

fℎ(r(z)),

where r ∶ Φ
′ → Φ,

⎛

⎜

⎜

⎝

U

W

1

⎞

⎟

⎟

⎠

↦

⎛

⎜

⎜

⎝

U
′

W
′

1

⎞

⎟

⎟

⎠

is the holomorphic projection, with U =
(

U
′
∗

∗ ∗)
, W =

(

W
′
∗

∗ ∗)
. Thus Fℎ is vividly holomorphic if and only if the exponent of |tt | is zero.

4.1. Constant terms of Eisenstein series. We �rst recall what a constant term is for an auto-

morphic form. Given a smooth function ' ∶ G(ℚ)⧵G(A) → ℂ, a constant term along a parabolic

P ⊂ G is 'P (g) = ∫
N(ℚ)⧵N (A)

'(ng)dn.

Remark 4.2. (1) Note that N(ℚ)⧵N (A) is always compact.

(2) Checking if ' vanishes along all cusps can be done by checking only maximal parabolics,

because P
′
⊂ P implies N

′
⊃ N , which is also a normal subgroup, so that 'P = 0 implies

'P ′ = 0. If it happens we say ' is a cusp form.

1
For this part I thank Congling Qiu for some helpful discussions.
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(3) Suppose N is abelian, e.g. P ⊂ GL2 is the standard upper triangular Borel. For any choice

of character  of N(ℚ)⧵N (A) (which is some additive character; for example if N ≅ Ga

then any character is of form  (x) = eA(� x) for � ∈ ℚ, where eA = ∏
v≤∞

ev is the product

of standard “exponentials”), we can calculate the “Fourier coe�cient”

' (g) = ∫
N(ℚ)⧵N (A)

'(ng) (n)dn,

which yields a Fourier expansion '(g) = ∑
 
' (g). Then 'P is really the “constant term

of the Fourier expansion.”

Let’s see what this tells you when G = GL2. Choose Dirichlet characters � ,  , considered as

�nite order characters of ℚ
×
⧵A

×
. Consider the space

Is(� ,  ) = {f ∶ GL2(A) → ℂ ∣ f
((

a b

0 d)
g
)
= �(a) (d)|

a

d

|
s+1/2

f (g)},

where we can think this as family of representations by grouping sections of each represen-

tation Is(� ,  ) into flat sections, where f ∈ I−1/2(� ,  ) ↦ fs ∈ Is(� ,  ) is de�ned by fs(g) =

f (g)�(g)
s+1/2

where � is the extension of modulus character of B via the decomposition GL2(A) =

B(A) SO2(ℝ) GL2(ℤ̂). For f ∈ I (� ,  ) ∶= I−1/2(� ,  ), we de�ne

E(f ; s, g) = ∑


∈B(ℚ)⧵ GL2(ℚ)

fs(
g),

which converges absolutely for Re(s) > 1/2, and is holomorphic in s in the region.

What is EB(f ; s, g)? Note that we have a Bruhat decompositionGL2(ℚ) = B(ℚ)∐B(ℚ)
(

1

−1 )
N(ℚ),

so that B(ℚ)⧵ GL2(ℚ) = {1}∐

{

(

0 1

−1 0)
N(ℚ)

}

. Thus

EB(f ; s, g) =
∫
N(ℚ)⧵N (A)

∑


∈B(ℚ)⧵ GL2(ℚ)

fs(
ng)dn

=
∫
N(ℚ)⧵N (A)

fs(ng)dn + ∫
N(ℚ)⧵N (A)

∑

n∈N (ℚ)

fs
((

1

−1 )
mng

)
dn

= fs(g) + ∫
N(A)

fs
((

1

−1 )
ng

)
dn,

and the latter integral has a hope of factoring into product of local integrals.

Suppose � = ⊗�v and  = ⊗ v , then we can similarly de�ne local versions of Is(� ,  ). Firstly,

do we have I (� ,  ) ≅ ⊗
′

v
I (�v ,  v)?

∙ If both �v ,  v are unrami�ed (this is the case for a.e. v), then I (�v ,  v)
GL2(ℤ� )

= ℂf
0

�
where

f
0

�
(GL2(ℤ� )) = 1. This really de�nes an element in the space as GL2(ℚ� ) = B(ℚ� ) GL2(ℤ� ).

Thus we can make sense of the restricted tensor product using these spherical vectors.

∙ Then, any function f ∈ I (� ,  ) is smooth, so that it is trivial on ∏
�∉S

GL2(ℤ� ) for some

�nite S. Thus it sits inside ⊗
′
I (�v ,  v). Such S should contain ∞ and all ramifying places
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of � ,  , and then f = fSf
S,0

where f
S,0

= ⊗�∉Sf
0

�
and fS ∈ ⊗v∈S I (�v ,  v), a function on

∏
v∈S

GL2(v).

Then, we can express the integral as

∫
N(A)

fs
((

1

−1 )
ng

)
dn =

∫
N(ℚS )

fS,s
((

1

−1 )
ng

)
dn

∫
N(A

S
)

f
S,0

s
((

1

−1 )
ng

)
dn

=
∫
N(ℚS )

fS,s
((

1

−1 )
ng

)
dn ∏

�∉S

∫
N(ℚ� )

f
0

� ,s
((

1

−1 )
ng�

)
dn,

whenever the product makes sense.

Now what is ∫
N(ℚ� )

f
0

� ,s
((

1

−1 )
ng

)
dn =∶ M(fs)(g)?

M(fs)(g) = M(fs)
((

1 b

0 1)(

a

d)
k
)

= M(fs)
((

1 b

0 1)(

a

d))

=
∫
ℚ�

f
0

� ,s
((

1

−1 )(

1 m

0 1)(

1 b
′

0 1 )(

a

d))
dm

=
∫
ℚ�

f
0

� ,s
(
(

1

−1 )(

1 m

0 1)(

a

d)
)dm

=
∫
ℚ�

f
0

� ,s
((

1

−1 )(

a

d)(

1
d

a
m

0 1 ))
dm

=
∫
ℚ�

f
0

� ,s
((

d

a)(

1

−1 )(

1 m

0 1))
|

a

d

|dm

=
∫
ℚ�

�� (d) � (a)|

d

a

|
s+1/2

f
0

� ,s
((

1

−1 )(

1 m

0 1))
|

a

d

|dm.

Thus we know thatM(f
0

� ,s
) ∈ I−s( � , �� )

GL2(ℤ� )
. Thus, M(f

0

� ,s
) = c� (s)

̃
f
0

� ,−s
, where

̃
f
0

� ,−s
is the spherical

vector in I−s( � , �� ). Here c� (s) = M(f
0

� ,s
)(1), so we need to calculate

c� (s) = ∫
ℚ�

f
0

� ,s
((

1

−1 )(

1 n

0 1))
dn.

We decompose ℚ� = ℤ� ⨆∐
∞

r=1
�
−r
ℤ
×

�
, so

c� (s) = ∫
ℤ�

f
0

� ,s
((

1

−1 )(

1 n

0 1))
dn +

∞

∑

r=1

∫
ℤ
×

�

f
0

� ,s
((

1

−1 )(

1 �
−r
u

0 1 ))
�
r
d
+
u,

where we use additive measure of ℤ� restricted to ℤ
×

�
. The �rst integral is just 1. The integrand

in the r-th summand, using the identity

(

1

−1 )(

1 �
−r
u

1 )
=
(

1

−�
−r
u 1)(

1

−1 )
=
(

−�
r
u
−1

1

−�
−r
u)(

0 −1

1 −�
r
u
−1
)(

1

−1 )
,
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which is in

(

−�
r
u
−1

1

−�
−r
u)

GL2(ℤ� ), is

f
0

� ,s
((

1

−1 )(

1 −�
−r
u

1 ))
= f

0

� ,s
((

−�
r
u
−1

1

−�
−r
u))

= �� / � (�
r
)|�

2r
|
s+1/2

= �� / � (�
r
)�
−2rs−r

.

Thus,

c� (s) = 1 +

∞

∑

r=1

∫
ℤ
×

�

�� / � (�
r
)�
−2rs

du = 1 +

∞

∑

r=1

�� / � (�
r
)�
−2rs

vol(ℤ
×

�
) = 1 +

�� / � (� )�
−2s
(1 − 1/� )

1 − �� / � (� )�
−2s

,

which can be rewritten as
1−�� / � (� )�

−2s−1

1−�� / � (� )�
−2s

=
L� (�/ ,2s)

L� (�/ ,2s+1)
. Thus,

∏

s∉S

M(f
0

� ,s
) =

L
S
(�/ , 2s)

L
S
(�/ , 2s + 1)

̃
f
S,0

−s ,

which is absolutely convergent for Re(s) > 1/2.

What we have shown thus is that

EB(f ; s, g) = fs +

L
S
(�/ , 2s)

L
S
(�/ , 2s + 1)

M(fS,s)
̃
f
S,0

−s .

From Langlands’ general theory, we know E(f ; s, g) is meromorphic in s, so that EB(f ; s, g) is

meromorphic in s (integral over a compact region). We also know from general theory that local

intertwining operator is meromorphic in s, as well as holomorphicity of fs(g). Thus, we know

that
L
S
(�/ ,2s)

L
S
(�/ ,2s+1)

is meromorphic in s. This enables you to meromorphically continue L
S
(�/ , s) to

the left by 1, thus giving meromorphic continuation of L
S
(�/ , s) to the whole plane.

Remark 4.3. A re�nement of this idea is by Shahidi (Langlands-Shahidi method), using a non-

constant Fourier coe�cient of Eisenstein series.

What we mean by meromorphic continuation of intertwining operator? Locally at a �nite

place v, M ∶ Is(�v ,  v) → I−s( v , �v) if well-de�ned. A meromorphic continuation of it is

a meromorphic continuation after you unwind back both sides to the unnormalized induction.

Namely, a meromorphic continuation is a rule of meromorphically assigning for any open com-

pact U ⊂ GL2(ℤ� ) and s ∈ ℂ a homomorphism Homℂ(I (�� ,  � )
U
, I ( � , �� )

U
), extending �

s−1/2
M(⋅s)

(note that we have been using I (⋅, ⋅) without subscript for unnormalized induction). This makes

sense in particular because both representations are smooth admissible representations so that

the U -�xed spaces are �nite-dimensional. At in�nity, the same reasoning can be applied using

�-isotypic spaces of K∞-�nite vectors (also using admissibility as (g, K∞)-representations).

4.2. Choice of sections: GL2. Now we try to choose sections for bad places. We start with

Archimedean place. Let k > 0 be an integer such that �∞ ∞ = sgn
k
. Then we can pick a section

fk ∈ I (�∞,  ∞) de�ned by

fk
(
r
(

y ∗

y
−1
)(

a −b

b a ))
= sgn(y)

k
(a + ib)

k
,
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so that

fk,s
(
r
(

y ∗

y
−1
)(

a −b

b a ))
= sgn(y)

k
|y
2
|
s+1/2

(a + ib)
k
.

In terms of automorphy factor, this can be rewritten as

fk,s(g∞) = det(g∞)
k/2
j(g∞, i)

−k
|j(g∞, i)|

k−2s−1
.

For a choice of section f = fk ⊗ f
∞

,

E(fs , g∞gf ) = ∑


∈B(ℚ)⧵ GL2(ℚ)

det(
g∞)
k/2
j(
g∞, i)

−k
|j(
g∞, i)|

k−2s−1
f
∞
(
gf ),

where g∞ ∈ GL2(ℝ)
+
. In terms of g∞ = r

(

y ∗

y
−1
)(

a −b

b a )
, g∞(i) =∗ +iy

2
, so that, after suitable

normalization,

det(g∞)
−k/2

j(g∞, i)
k
E(fs , g∞gf ) = ∑


∈B(ℚ)⧵ GL2(ℚ)

j(
 , z)
−k
|y(z)|

s−
k−1

2 f
∞
(
gf ),

where z = g∞(i) and y(z) means the y-coordinate of z. Thus this is holomorphic in z (when it

makes sense) if s = sk =
k−1

2
.

This choice of section is a section of the minimal K∞-type of Dk , holomorphic discrete series

of weight k, which happens to sit inside Isk
(�∞,  ∞).

Remark 4.4. Note that as K∞ = O2(ℝ), Dk contains holomorphic and antiholomorphic vectors,

Dk = D
+

k
⊕ D

−

k
.

Now a general theory of Langlands quotient tells us that any intertwining operator on a proper

subrepresentation is zero. Thus, M∞(fk,s) = 0! Therefore, for a choice of adelic section f = fk ⊗

fS∞ ⊗ f
S,0

, we have

EB(fs , g) = fs +

L
S
(�/ , 2s)

L
S
(�/ , 2s + 1)

M∞(fk,s) ⊗ M(fS∞,s) ⊗
̃
f
S,0

−s .

Thus, as long as we don’t obtain any pole from partial L-functions, EB(fsk
, g) = fsk

, and by the

theory of constant terms, E(fsk
, g) is holomorphic. For example, if �/ ≠ 1 or k > 2,

L
S
(�/ ,k−1)

L
S
(�/ ,k)

does not give you a pole.

On the other hand, if � =  and k = 2, then sk = 1/2, and � (2s)/� (2s + 1) has a pole at s = sk , so

that the resulting Eisenstein series is not necessarily holomorphic; this is why there is no holo-

morphic Eisenstein series of weight 2 and level 1. On the other hand, we know that there is a holo-

morphic Eisenstein series of weight 2 and level q, for a prime q. This is because we can choose a

q-section to be a critical stabilization of the spherical vector, i.e. fq = f
0

1

2

(g)−f
0

1

2 (
g
(

1

q))
. This

will result in a vanishing intertwining operator at q, becauseM(fq) = f
0

−1/2
(g)−f

0

−1/2
(
g
(

1

q))
=

0 (which you need to check only for representatives of B(ℚq)⧵ GL2(ℚq)/

{

(

∗ ∗

q ∗ ∗)

}

, which is just

W ).
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Remark 4.5. Another reason you want holomorphicity is as follows. Although Is(� ,  ) is gener-

ically irreducible, I1/2(� , � ) is not; it �ts into an exact sequence

0 → St ⊗� → I1/2(� , � ) → character → 0,

so that a choice fq ∈ St ⊗� . This implies that, on the Galois side, any q-adic deformation of the

weight 2 critical Eisenstein series is locally Steinberg, so that it has monodromy at q (in particular

rami�ed). Thus this does not necessarily sit inside the Bloch-Kato f -Selmer group (but rather

somewhere else with di�erent condition).

Now we sketch a generalization of this, for G = U(Φa,b) ⊂ H = U(Φa+1,b+1). Thinking Φa+1,b+1 ∼

⎛

⎜

⎜

⎝

1

Φ
′

−1

⎞

⎟

⎟

⎠

, the stabilizer P = MN of the anisotropic line spanned by the last vector is of form

P =

⎛

⎜

⎜

⎝

x
−1

⋯1 ∗

g ⋯2

x

⎞

⎟

⎟

⎠

,

where ⋯2 = −
t
⋯1, g ∈ G, x ∈ K

×
and ∗∈ ℚ, so that M ≅ G × K

×
. As the action of M on ⋯1 is

the standard representation, the analogous computation in this generality will yield a standard

L-function (general classi�cation is done by Langlands, Shahidi).

Remark 4.6. The combinatorics is easy in this case because P is a maximal parabolic and we are

taking a cusp form on the Levi so that all but at most two constant terms vanish.

4.3. Choice of sections: General cases. Let H = U(Φa,b) and G = U(Φa+1,b+1), b ≥ a, and pick

P ⊂ G the stabilizer of the isotropic line generated by the (a + 1)-st vector. It has a Levi decom-

position P = MN where M ≅ H × ResK/ℚ Gm. Let � be a cuspidal automorphic representation of

H(A) and � be a character of K
×
⧵A

×

K
. This gives a representation � of M(A), and by the usual ex-

tension process we can consider the (unnormalized) induced representation I (�) of G(A). Given

Φ ∈ I (�), the �at section Φs(g) = Φ(g)�
s+1/2

P
(g) ∈ Is(�) can be assembled into an Eisenstein series

E(Φ, s, g) = ∑

∈P(ℚ)⧵G(ℚ)

Φs(
g).

Now let � = �∞ ⊗ �f be such that �∞ = +

W
be a holomorphic discrete series of weight W ,

where W is an irreducible algebraic representation of K∞(ℂ) ≅ GLa(ℂ) × GLb(ℂ). In this section

we choose a convention where the highest weight ofW is regarded as (cb+1 ≥ ⋯ ≥ cd ; c1 ≥ ⋯ ≥ cb)

such that cb − cb+1 ≥ d . We also require � to be algebraic so that �∞(z) = z
n
z
m

, for n,m ∈ ℤ, with

n + m ≡ d(mod 2), a + b = d . We would also like I0(�) to have holomorphic discrete series as

∞-type, so we actually have to have an extra regularity that cb − cb+1 ≥ d + 2. We will normalize

so that

cb ≥ �
′
+

d

2

+ 1 ≥ �
′
−

d

2

− 1 ≥ cb+1,

where �
′
=

n+m

2
and � =

n−m

2
. Indeed, if we let W

′
be the algebraic representation of K

′

∞
≅

GLa+1(ℂ) ×GLb+1(ℂ) whose highest weight is (�
′
−
d

2
− 1 ≥ cb+1 ≥ ⋯ ≥ cd , c1 ≥ ⋯ ≥ cb ≥ �

′
+
d

2
+ 1),

then we have

dimℂ(�∞ ⊗ W)
K∞

= dimℂ(I (�∞) ⊗ W
′
)
K
′

∞ = 1,
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(can take any Is(�∞) because modulus character is trivial on K
′

∞
). We pick a nonzero vector Φ∞ ∈

(I (�∞) ⊗ W
′
)
K
′

∞ . As before, we will try to pick a good section Φ = Φ∞ ⊗ Φf ∈ I (�) ⊗ W
′
, where

Φf = ΦS ⊗ Φ
S,0

, where S is a �nite set of �nite primes, containing all bad primes. Here bad primes

are those over which either K is rami�ed, Φa,b is rami�ed, � is rami�ed or � is rami�ed.

A choice of spherical section is standard. For � ∉ S, I (�� )
G(ℤ� )

is 1-dimensional, so that we can

choose a basis Φ
0

�
. Accordingly we choose a spherical vector �

0

�
for �� such that Φ

0

�
(1) = �

0

�
.

Remark 4.7. In this case the hyperspecial maximal group G(ℤ� ) is easy to describe, namely

G(ℤ� ) = {g ∈ Aut(L� ) ∣ ∀x, y ∈ L� , ⟨gx, gy⟩ = ⟨x, y⟩}, where L� = (K ⊗ ℤ� )
d+2

and ⟨, ⟩ ∶

L� × L� → (K ⊗ ℤ� ) is the bilinear pairing de�ned by Φa+1,b+1.

Then, upon a choice ofΦS , E(Φ, s, g) is aW
′
-valued automorphic form, which has meromorphic

continuation and we can extract information about analytic behavior from that of constant term.

The exact point of interest is

s0 =

�
′
+ 1/2

d + 1

=

m + n + 1

2(d + 1)

,

because Φs(g∞gf ) becomes a holomorphic function in z (the variable varying over the symmetric

space) precisely when s = s0 (done before in the calculation of automorphy factors).

We know that in this case the only nonvanishing constant term of E(Φ, s, g) is over P (up to

G-conjugates), as � is cuspidal. Note that G = P ∐PwP where

P =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎝

A ∗ B ∗

t
−1

∗ ∗

C D ∗

t

⎞

⎟

⎟

⎟

⎠

∣
(

A B

C D)
∈ H, t ∈ K

×

⎫
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎭

,

Check: the shape
is wrong.

and

w =

⎛

⎜

⎜

⎜

⎝

1a

1

1b

−1

⎞

⎟

⎟

⎟

⎠

.

Thus G = P ∐PwN , so that

E(Φ, s, g) = Φs(g) + ∑

n∈N (ℚ)

Φs(wng),

and

EP (Φ, s, g) = ∫
N(ℚ)⧵N (A)

E(Φ, s, ng)dn = Φs(g) + ∫
N(A)

Φs(wng)dn.

24



Where does this intertwining integral lie in? For Φv ∈ I (�v), ∫
N(ℚv )

Φv,s(wng)dn ∈ I−s(�
∨
), where

�
∨

is formed by (�, �
−c
). This is because

∫
N(ℚv )

Φs(wnm(ℎ, t)n
′
g)dn =

∫
N(ℚv )

Φs(wm(ℎ, t)nn
′
g)�P (m(ℎ, t))dn

=
∫
N(ℚv )

Φs(m(ℎ, t
−1

)wnn
′
g)�P (m(ℎ, t))dn

=
∫
N(ℚv )

Φs(m(ℎ, t
−1

)wng)�P (m(ℎ, t))dn

=
∫
N(ℚv )

�(ℎ)�(t
−1

)�(m(ℎ, t
−1

))Φs(wng)�P (m(ℎ, t))dn

=
∫
N(ℚv )

�(ℎ)�
−c
(t)�(m(ℎ, t))

−s+1/2
Φ(wng)dn.

We want to compute the global intertwining operator as a product of local intertwining operators.

At unrami�ed places, M(Φ
0

�
, s) = c� (s)Φ

∨,0

� ,−s
by the sphericity.

Proposition 4.1 (Gindikin-Karpelevich formula).

c� (s) =

L� (�� , �
−1

�
, (d + 1)s)

L� (�� , �
−1

�
, (d + 1)s + 1)

L� (�
′

�
, 2(d + 1)s)

L� (�
′

�
, 2(d + 1)s + 1)

,

where L� (�� , �−1� , s) = L(BC(�� ) ⊗ �
−1

�
, s), and � ′

�
= �

−1

�
|ℚ

×

�

�
d

K�
where �K� is the quadratic character

and ℚ×

�
⊂ (K ⊗ ℚ� )

×.

I guess you can see this calculation in Langlands’ Euler products, Shahidi (which reference?),

Lapid-Rallis, ⋯.

Thus,

EP (Φ, s, g) = Φs(g) +

L
S
(�, �

−1
, (d + 1)s)

L
S
(�, �

−1
, (d + 1)s + 1)

L
S
(�
′
, 2(d + 1)s)

L
S
(�
′
, 2(d + 1)s + 1)

M(Φ∞, s) ⊗ M(Φ
S
, s) ⊗ Φ

v,0,S

s
,

for s in the region of convergence. We should then ask ourselves, is this holomorphic at s = s0? If

so, is it holomorphic in z at s = s0? Recall that the relevant function on the symmetric space can

be de�ned as

E(z, gf ) = JG(g∞, x0)E(Φ, s0, g∞gf ).

We assume that BC(�) is cuspidal (requires that � lies in the stable spectrum). Then, the analysis

of c
S
(s)|s=s0

is as follows.

(1) The cuspidality of BC(�) implies that
L
S
(BC(�)⊗�

−1
,(d+1)s)

L
S
(BC(�)⊗�

−1
,(d+1)s+1)

is holomorphic at s = s0. This is

because the numerator is the central critical value whereas the denominator is at 1 plus

the center, which is actually in the region of absolute convergence.

∙ Why? Note that � = | − |

n+m

2 × (unitary character), and BC(�) is unitary; at least the

central character is unitary because �
c

BC(�)
≅ �

∨

BC(�)
, which means �BC(�)|A

×

ℚ

is qua-

dratic (in particular of �nite order), so that �BC(�),∞ = (
z

z )

k

for some k ∈ ℤ. Thus,

(d + 1)s0 is indeed the central critical value, 1/2.
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∙ What about 3/2? This is in the region of absolute convergence because unitary (=uni-

tarizable, not to be confused with being an automorphic form of unitary group; BC(�)

is an automorphic form of GLn(AK )) cuspidal automorphic representation has to be

tempered because of Ramanujan’s conjecture. This can be known by either know-

ing base change operation better or showing local-global compatibility for Galois

representations showing up in the cohomology of Shimura varieties. Indeed, co-

homological automorphic representations contribute to only the middle degree of

the associated unitary Shimura variety ShH , but we do not know the local-global

compatibility to translate the purity of cohomology into temperedness (as well as

H
ab
(ShH , coe�.)[BC(�)f ]

ss
≅ ((Λ

a
�BC(�))

ss
)
mBC(�) , so extra work is needed).

(2) Note that �
′

∞
|ℝ>0

(r) = r
−(n+m)

, so that �0 ∶= �
′
| − |

n+m
is a �nite order Dirichlet character.

Thus,
L
S
(�
′
,2(d+1)s0)

L
S
(�
′
,2(d+1)s0+1)

=
L
S
(�0,1)

L
S
(�0,2)

, whose denominator is in the region of absolute convergence

and the numerator has a pole only when �0 = 1, i.e. �
′
= | − |

−(n+m)
.

What about M(ΦS , s)? Note that a local intertwining operator has a meromorphic continuation,

so it makes sense to talk about s = s0. Also, by the temperedness assumption of BC(�)f , we know

that it is holomorphic in s at s = s0 (Harish-Chandra). Thus we know that it is holomorphic

and does not contribute to poles (�nite product of meromorphic continuations is a meromorphic

continuation of the �nite product). Note that it may contribute to a zero.

Finally, M(Φ∞, s) also has meromorphic continuation and is holomorphic by the same reason,

but as D
+

W
′ ⊂ Is0

(�∞) is a proper subrepresentation, the intertwining operator has to vanish at

Φ∞ ∈ D
+

W
′ .

Combining these, we have shown the following.

Theorem 4.2. Let � be as above (in particular, BC(�) is cuspidal and tempered). Then,

(1) M(Φ, s) is de�ned and holomorphic in s at s = s0. Thus, E(Φ, s, g) is holomorphic in s at
s = s0.

(2) M(Φ, s0) = 0, except possibly when � ′ = | − |
−2�

′

and L(BC(�), 1−m−n
2

) ≠ 0. If so, EP (Φ, s0, g) =
Φs0
(g).

As we know that JG(g∞, x0)Φs0
(g∞gf ) is a holomorphic function in z as a function on (z, gf ) ∈

Φa,b
× G(Af ) (g∞x∞ = z), we know that E(z, gf ) = JG(g∞, x0)E(Φ, s0, g∞gf ) is also a holomorphic

function in z, if the second condition holds.

Example 4.2. (1) If a = b = 0, we recover the classical Eisenstein series on SL2.

(2) If a = b = 1 with f a weight 2k newform with trivial Nebentypus, giving rise to a cuspidal

automorphic representation � of GL2, with �� = | − |
−2k

, pairing with  = | − |
−k

K
gives a

cuspidal automorphic representation � of H = U(Φ1,1). Then, L(�, s) = L(f/K , s −
1

2
+ k).

Then, �∞ ≅ D
+

(−k;k)
, so that after choosing � to be the trivial character (i.e. n = m = 0),

then the extra requirement is that

k ≥ 2 ≥ −2 ≥ −k,

or 2k ≥ 4; in particular we do not cover weight 2 modular forms.
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In any case, L(BC(�), �
−1
, 1/2) = L(f , k)L(f ⊗ �K , k) where �K is the quadratic character

associated to K/ℚ. What we have shown says that if L(f , k) = 0 then E(z, gf ) is holomor-

phic as a function of z ∈ Φ2,2
.

Remark 4.8. We can ensure a choice of ΦS so that M(ΦS , s0) is nonzero. This requires some

work. At least you expect this by reverse-engineering our argument starting from Bloch-Kato

conjecture.

4.4. Galois representation associated to Eisenstein series. Let � be a cuspidal automorphic

representation of H = U(Φa,b) and let � be a Hecke character of K
×
. We had several restrictions,

most notably �∞ is some discrete series representation. Then we produced � a representation of

M(A), where M is the Levi of the Klingen parabolic of G = U(Φa+1,b+1). We studied Eisenstein

series E(Φ, g, s), where Φ ∈ I (�), Φ∞ being in also the appropriate discrete series. Let Π be any

irreducible subquotient of (g, K)×G(Af )-representation generated by E(Φ, g, s0)’s for suchΦ inside

the space of automorphic forms ofG. Our objective is to show that there is a Galois representation

R associated to Π, which means the standard (partial) L-functions are the same, such that R =

V ⊕ " ⊕ 1 for some self-dual automorphic V . Here " is the cyclotomic character.

We know Π ≅ ⊗�≤∞Π� where at almost all places (say � ∉ S) Π� is unrami�ed, and Π� is an

irreducible quotient of the subrepresentation of Is0
(�� ) generated by spherical vector Φ

0

� ,s0
. Thus,

the Langlands parameter ofΠ� can be read o� from Is0
(�� ). To be more precise, �rst note thatΠ� for

� ∉ S sits inside �� ↪ Ind
Gℚ

�

Bℚ
�

 � for some unrami�ed character  � of Tℚ�
⊂ Bℚ�

; B and T are what

you think. This is a general technique using the so-called Jacquet functor (this is just taking

N -coinvariants for a unipotent radical N ; this gives a way of associating an M-representation

from a G-representation, for a parabolic P = MN ⊂ G) and that the Levi of B is T (if V is the space

corresponding to �� then V
G(ℤ� )

→ V
T (ℤ� )

N
and the target is just an unrami�ed character).

To calculate L-factors, we study the Langlands parameter. In this case a Langlands parameter

is given by

�� ∶ Wℚ�
→

L
G = Ĝ oWK/ℚ, Frob� ↦ (t� , Frob� ),

where Ĝ = GLd+2 and c ∈ Gal(K/ℚ) − {1} acts as g ↦ Φ
−1t
g
−1
Φ, Φ =

⎛

⎜

⎜

⎜

⎝

1

−1

1

⋯

⎞

⎟

⎟

⎟

⎠

.

From this, the standard local L-factor can be read o� as follows. As the standard representation

of
L
G in this case is rstd ∶

L
G → GL2(d+2)(ℂ), sending (g, 1) ↦

(

g

Φ
−1t
g
−1
Φ)

and (1, c) ↦

(

1

1 )
, the standard local L-factor is

L(�� , s, rstd) = det(1 − �
−s
rstd(t� , Frob� ))

−1
.

We from now on deliberately ignore inert � ’s, although you have to check yourself (“okay

because of Chebotarev density”). If � splits, G(ℚ� ) ≅ GLd+2(ℚ� ), depending on a choice of v ∣ � in

K , such that Bℚ�
becomes upper triangular Borel and Tℚ�

is the diagonal torus. Then t� is given
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by ( 1, ⋯ ,  d+2), where  i =  (diag(1, ⋯ , � , ⋯ , 1)) where � appears in the i-th entry. Thus, in this

case, the standard local L-factor is

d+2

∏

i=1

(1 − �
−s
 i)

−1
(1 − �

−s
 
−1

i
)
−1
= L(BC(Π� ), s).

The above applies both to �� and Π� . To relate these, we have to understand the relation

between  � ’s for Π� and �� . From now on until the end of this subsection, we put H in the

subscript for everything related to H and do not put anything for everything related to G. Then,

from �� ↪ Ind
Hℚ

�

BH,ℚ
�

 H,� , we have

Is0
(�� ) ↪ Ind

Gℚ
�

Pℚ
�

(Ind
Hℚ

�

BH,ℚ
�

 H,� ⊗ ���
s0

P
) = Ind

Gℚ
�

Bℚ
�

( H,� ⊗ ���
s0

P
).

Let � = (�1, �2), coming from K
×

ℚ�

≅ ℚ
×

�
× ℚ

×

�
. As the Levi M of the Klingen parabolic P can be

written in a form

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎛

⎜

⎜

⎝

t
−1

ℎ

t

⎞

⎟

⎟

⎠

, ℎ ∈ H , t ∈ K
×

⎫
⎪
⎪

⎬
⎪
⎪
⎭

,

we see that B ∩ M = BH × K
×
, T ∩ M = TH × K

×
; you know what these notations mean. Then

K
×

ℚ�

⊂ GLd+2 sits as (a, b) ∈ ℚ
×

�
× ℚ

×

�
≅ K

×

ℚ�

↦

⎛

⎜

⎜

⎝

b
−1

1d

a

⎞

⎟

⎟

⎠

. Thus, a diagonal character  � for Π�

sends

⎛

⎜

⎜

⎝

t

tH

t
′

⎞

⎟

⎟

⎠

to  H (tH )�1(t
′
)�
−1

2
(t)|t

′
/t|
(d+1)s0

. In other words,

 � = (�
−1

2
|t |
−(d+1)s0

,  H , �1|t |
(d+1)s0

).

Thus, L(Π� , s, rstd) is

L(�� , s, rstd)(1 − �
−1

2
(� )�

(d+1)s0−s
)
−1
(1 − �1(� )�

−(d+1)s0−s
)
−1
(1 − �2(� )�

−(d+1)s0−s
)
−1
(1 − �

−1

1
(� )�

(d+1)s0−s
)
−1
,

which groups into

L(Π� , s, rstd) = L(�� , s, rstd)L(�
c

�
, s + (d + 1)s0)L(�

−1

�
, s − (d + 1)s0),

yielding

L
S
(Π, s, rstd) = L

S
(�, s, rstd)L

S
(�

c
, s + (d + 1)s0)L

S
(�
−1
, s − (d + 1)s0).

Remark 4.9. Note that in the split case there is little di�erence between �� and �
c

�
. Thus to really

pin down the above global expression correctly, one needs to calculate at inert primes too.

Now we can see that there is a Galois representation R ∶ GK → GLd+2(ℚp
) such that L

S
(R, s) =

L
S
(BC(Π)

∨
, s +

d+2

2
−
1

2
); indeed the latter value is just

L
S
(BC(�)

∨
, s +

d + 2

2

−

1

2

)L
S
(�
−c
, s − (d + 1)s0 +

d

2

−

1

2

)L
S
(� , s + (d + 1)s0 +

d

2

−

1

2

),

or

L
S
(�� (1) ⊕ �

−c

�
"

d−(m+n)

2 ⊕ �
c

�
"

d+(m+n)

2
+1
, s),
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where the half integers in the exponent are actually integers because of the condition we had,

d ≡ m + n(mod 2). Thus there really is a Galois representation R,

⎛

⎜

⎜

⎜

⎝

�� (1)

�
−c

�
"

d−(m+n)

2

�� "

d+(m+n)

2
+1

⎞

⎟

⎟

⎟

⎠

,

whose partial L-function is the L-function of the Eisenstein series. This can be simpli�ed: as

�
′
∶= �

−1
|A

×

ℚ

= | − |
n+m

, we see that | − |
n+m

K
= BC(�

′
) = �

−1
�
−c

, so that �
−1

�
�
−c

�
= "

n+m
. Thus, R can

be rewritten as

⎛

⎜

⎜

⎜

⎝

�� (1)

�
−c

�
"

d−(m+n)

2

�
−c

�
"

d−(m+n)

2
+1

⎞

⎟

⎟

⎟

⎠

.

Twisting by �
c

�
"

m+n−d

2 , we get

⎛

⎜

⎜

⎝

�� (1) ⊗ �
c

�
"

m+n−d

2

1

"

⎞

⎟

⎟

⎠

.

We expect that H
1

f
(K , V

∨
(1)) ≠ 0 i� L(V , 0) ≠ 0, where V = �� (1) ⊗ �

c

�
"

m+n−d

2 ; note that indeed

L(V , 0) = L(�� (1) ⊗ �
c

�
"

m+n−d

2 , 0)

= L(BC(�)
∨
⊗ �

c
,

m + n + 1

2

)

= L(BC(�) ⊗ �
−1
, (d + 1)s0),

by the functional equation, self-duality of � and | − |
n+m

K
= �

−1
�
−c

.

Thus, to prove the desired instance of Bloch-Kato conjecture for a polarized Galois represen-

tation V , a general strategy is to �nd �, � such that V = �� (1) ⊗ �
c

�
"

n+m−d

2 , so that L(V , 0) = 0

implies E(z, s0) is holomorphic for the Eisenstein series assocaited to (�, �). We want to deform

the Eisenstein series to deform R = V ⊕" ⊕1. Note that deforming R is not straightforward, as one

needs a nontrivial element in the Bloch-Kato Selmer group to argue that there is a deformation

just from the general deformation theory argument using tangent space calculations.

5. p-adic deformation of automorphic forms

5.1. p-adic deformation ofmodular forms. In the classical situation of modular forms, a holo-

morphic Eisenstein series E2k has two p-stabilizations (i.e. Up-eigenforms of level Γ0(p) in the same

representation space), the ordinary stabilization E
ord

2k
= E(z) − p

2k−1
E(pz) (slope 0) and the critical

stabilization E
crit

2k
= E(z) − E(pz) (slope 2k − 1). Any p-adic deformation, if it is p-adic analytic

in a reasonable sense, must have a locally constant slope, so a p-adic deformation of E
ord

2k
(E
crit

2k
,

resp.) must have constant slope 0 (2k − 1, resp.) in an appropriate neighborhood of the weight

space. Note however that in general an ordinary modular form has only one ordinary (=slope 0)

29



deformation (Hida theory), and we already know one: the family of ordinary Eisenstein series.

Namely, as the q-expansion of E
ord

2k
is

E
ord

2k
=

1

2

� (1 − 2k)(1 − p
2k−1

) +

∞

∑

n=1

∑

d∣n,(p,d)=1

d
2k−1

q
n
,

we can naturally p-adically interpolate this q-expansion into

Ek0,s
=

1

2

�p(−s) +

∞

∑

n=1

∑

d∣n,(p,d)=1

!(d)
2k0−1

⟨d⟩
s
q
n
,

for each residue disc 2k0 − 1 ≡ 2k − 1(mod(p − 1)), and d = !(d)⟨d⟩.

In terms of Galois representations, this is less interesting. On the other hand, a deformation of

critical Eisenstein series, if exists, will produce a generically cuspidal deformation, as an Eisen-

stein series of weight k
′

only can have either 0 or k
′
−1 as its slope. Indeed E

crit

k
(2sE0,s) (2s is mul-

tiplied to clear out the simple pole) is a family of modular forms (not necessarily Up-eigenforms),

and we can use spectral theory of Up-operator to decompose this into eigenfamilies. This ap-

proach is the original approach of Coleman but also quite ad hoc.

We take a topological approach to modular forms (as opposed to algebro-geometric approach)

to make things more natural. Note that a holomorphic modular form can be seen as a mero-

morphic di�erential form on a closed modular curve. Namely, Mk(Γ1(N )) ↪ H
1
(Y1(N ), Lk−2) =

H
1
(Γ1(N ), Sym

k−2
V )where V ≅ ℂ

2
is the standard representation ofGL2(ℝ) and Lk−2 is the vector

bundle on Y1(N ) induced from Sym
k−2

V ; the equality is because Y1(N ) = ℍ/Γ1(N ). Now note that

by de Rham isomorphism, giving a di�erential on Y1(N ) with values in Lk−2 is the same as giving

an in�nitesimal di�erential at the origin (i.e. a linear map on the tangent space of the origin)

tensored with a function on Γ1(N )⧵ GL2(ℝ)
+
, in a compatible way. Namely,

H
1
(Y1(N ), Lk−2) ≅ H

1

((C
∞
(Γ1(N )⧵ GL2(ℝ)

+
) ⊗ Λ

i
(gl

2
/(z ⋅ so2))

∨
⊗ Sym

k−2
V )

ℝ
×
SO2(ℝ)

) ,

which is just the (g, K)-cohomology computation in this setting. A theorem of Borel (and Franke

more generally) says that we can use the space of automorphic forms instead of the space of

C
∞

-functions.

Let B = TN be the upper-triangular Borel of GL2 and B
op

be the lower-triangular Borel. Then

consider (N op
⧵ GL2) (algebro-geometric functions), which has an action by T as N

op
⧵ GL2 →

B
op
⧵ GL2 is a T -torsor. Given � = (k1 ≥ k2), let

W� = (N op
⧵ GL2)[�] = {f ∈ (N op

⧵ GL2) ∣ f
((

t1

t2)
g
)
= t

k1

1
t
k2

2
f (g)}.

By just calculating (really a function on N
op
⧵ GL2 is a function of a, b, det g, for g =

(

a b

∗ ∗)
),

we see that this is, as an algebraic representation of GL2, Sym
k1−k2

⊗ det
k2

. Thus we see that

(N op
⧵ GL2) contains all the algebraic representations of GL2.

As Im =

{

(

a b

p
m
c d)

∈ GL2(ℤp)

}

= N
op
(p
m
ℤp)T (ℤp)N (ℤp) is dense in GL2(ℚp), we see that

W�(ℚp) embeds into a space of functions f ∶ Im → ℚp such that f (n
′
tn) = �(t)f (n), where

n
′
∈ N

op
(p
m
ℤp), t ∈ T (ℤp) and n ∈ N (ℤp). Thus the data of f is completely determined by its
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restriction to N(ℤp) ≅ ℤp . Functions in W� are sent to f ’s which are polynomials on N(ℤp) = ℤp

of degree ≤ k1 − k2, and we can imagine ourselves of enlarging the space appropriate for p-adic

interpolation by considering locally analytic functions (of some �xed convergence radius) on

N(ℤp) = ℤp . Also we can use a p-adic weight � ∈ X(L), where L/ℚp is a �nite extension and X is

the weight space, i.e. X(L) = Homcts(T (ℤp), L
×
). Namely, if we de�ne

A�,r (Im, L) = {f ∶ Im → L ∣ f (n
′
tn) = �(t)f (n), f (n) locally analytic of radius p

−r
},

then W�(L) ↪ A�,r (Im, L) for arithmetic �. Note that one can recover W�(L) from A�,r (Im, L)’s,

namely

W�(L) = ker(A�,0(Im, L)

di�erentiate k1 − k2 + 1 times

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ A�,0(Im, L)).

As A�,r ’s have actions by Im and as Γ0(p
m
) ∩ Γ1(N ) ⊂ Γ1(p

m
N), we have

Mk(Γ1(N ), L) ⊂ H
1
(Γ1(p

m
N), A�,r (Im, L)).

We still have to know how to interpolate A�(Im, L)’s in terms of �.

An approach of p-adic interpolation uses p-adic distributions instead,

D�,r (Im, L) = Homcts(A�,r (Im, L), L),

so that they have W
∨

�
≅ W� as quotients instead. This has an advantage that the classicality of

p-adic modular forms is very easy to see, granted that the cohomology groups are nice spaces

with an action of Up-operator so that there is a so-called slope decomposition (nowadays one

usually does everything on the level of complexes, not cohomologies). In particular, in this case,

because Γ1(p
m
N) has cohomological dimension 1, we have an exact sequence

H
1
(Γ1(p

m
N), D�,r )

≤ℎ−�
�
∗

�

←←←←←←←←←←←←←→ H
1
(Γ1(p

m
N), D�,r )

≤ℎ
→ H

1
(Γ1(p

m
N),W�)

≤ℎ
→ 0,

where ≤ ℎ denotes the slope-less-than-ℎ part of the cohomologies and �
∗

�
is the dual of the “�-

operator.” Thus, if ℎ < �, the image of �
∗

�
is trivially zero (slope is always nonnegative), so the

exactness of the sequence gives you classicality.

Remark 5.1. In this setting, which is “dual” to the setting of p-adic modular forms à la Katz, it

is a bit trickier to see that a classical modular form is a p-adic modular form.

After a simple speculation we can develop a strategy of how to vary p-adic automorphic forms

Vk with respect to weight. A problem is that p
k

is, as a function of k, not an analytic function.

We can however try to do the following.

∙ For a su�ciently regular weight, we have an ordering of Frobenius eigenvalues a1, ⋯ , an

which is ordered so that slopes are increasing. They are expected to have slopes being

certain functions coming from the weight, calculable from Hodge-Tate weights.

∙ The “unit root” (slope 0 part) is expected to vary p-adically anayltically.

∙ More generally, Dcris(∧
i
Vk) has Frobenius eigenvalues aj1

⋯aji
for j1 < ⋯ < ji , and it has a

unique eigenvalue of smallest slope, namely a1⋯ai .

∙ Thus, Dcris(∧
i
Vk(appropriate twist)) must also have “unit root”, and this should vary p-

adically analytically.

∙ In turn, this gives p-adic analytic variations of a1, a1a2p
some function

,⋯, a1a2⋯anp
some function

,

or rather said di�erently, a1, a2p
some function

, ⋯ , anp
some function

.
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This will be justi�ed by Kisin’s work on crystalline periods.

5.2. Finite slope automorphic forms. We make things precise in the case of G = U(Φa,b). Let p

be a prime that splits in K , p = vv. For a cuspidal automorphic representation � of G(A), suppose

that �p , seen as a representation of GLd (ℚp), is unrami�ed, so that �p sits inside an unrami�ed

principle series I (� ), where � is some unrami�ed character (really the Jacquet functor of �p) and

I (� ) is the unitary induction.

For

t ∈ T
+
(ℚp) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

⎛

⎜

⎜

⎝

t1

⋯

td

⎞

⎟

⎟

⎠

∣

|
|
|
|

ti

ti+1

|
|
|
|p

≤ 1

⎫
⎪
⎪

⎬
⎪
⎪
⎭

,

we will associate the analogue of Up-operator, ut , as I0(p)tI0(p), where I0(p) is the Iwahori sub-

group

I0(p) = {g ∈ GLd (ℤp) ∣ g(mod p) ∈ B(Fp)}.

Let Up be the ℤp-algebra generated by ut ’s inside Cc(I0(p)⧵ GLd (ℚp)/I0(p)). This is a commutative

algebra as ut1
ut2

= ut1t2
, and it acts on I (� )

I0(p)
that preserves �

I0(p)

p . Note that ut can be written

also as ut = ∐
n∈N (ℤp)/tN (ℤp)t

−1 ntI0(p) (because what happens on the lower-triangular unipotent

and the diagonal has no e�ect, and tN (ℤp)t
−1
⊂ N (ℤp) precisely because t ∈ T

+
(ℚp)).

A nice thing about Iwahori subgroup is that we have a Bruhat decomposition GLd (ℚp) =

∐
w∈WGL

d

B(ℚp)wI0(p) coming from the Bruhat decomposition of GLd (Fp).

Proposition 5.1. dim I (�)
I0(p)

= d!. More precisely, there is an Up-eigenfunction 'w ∈ I (�)I0(p) such
that uz'w = �(t)�B(t)−1/2'w .

Proof. Note that I (� )
B(ℤp)

N
= ⊕�

w
�B�

1/2
, so the ut-eigenvalue on it is

�
w
(t)�

1/2

B
(t)#{involved n ∈ N (ℤp)/tN (ℤp)t

−1
},

and the number of involved n’s is �
−1

B
(t). �

Thus, Up-eigenvalues of �p are contained in the set of possible Up-eigenvalues of I (� ). This

means that, for an Up-eigenvector v ∈ �
I0(p)

p , then there exist �1, ⋯ , �d such that utv = ∏
i
�
ordp(ti )

i
v,

where �i = �
−1/2

�
w

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

⋯

p

⋯

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. For example, if �p = I (�) (when �p is tempered), this is

exactly the same as choosing an ordering of Satake parameters.

De�nition 5.1. A finite slope automorphic representation of G(A) is an automorphic representa-
tion � of G(A) such that

(1) �∞ is a discrete series (e.g. D+
W

withW = (cb+1 ≥ ⋯ ≥ cd ; c1 ≥ ⋯ ≥ cb), cb − cb+1 ≥ d),
(2) �

I0(p)

p ≠ 0, together with � ∶ Up → ℂ a homomorphism such that �(ut ) ≠ 0 for all t ∈ T +(ℚp),
(3) there exists 0 ≠ v ∈ � I0(p)p a Up-eigenvector with eigenvalues given by � .

32



Then, �
p
⊗ � can be seen as a representation of G(A

p

f
) ⊗Up occuring in �

I0(p)
= �

p
⊗�

I0(p)

p . This

is the one that will be p-adically interpolated.

Example 5.1. If �p ≅ I (�) unrami�ed, then the choice of � is exactly the same as the choice of

�
w

, or the ordering of parameters.

A justi�cation that this can be hoped to be p-adically interpolated is as follows. Note that

MW (K
p
I0(p)), the space of holomorphic modular forms of weight W , sits inside, by the Eichler-

Shimura map, H
ab
(ShG(K

p
I0(p)), L), where L is the local system coming from the representation

of G(ℂ) ≅ GLd (ℂ) with highest weight

� = (c1 − a ≥ ⋯ ≥ cb − a ≥ cb+1 + b ≥ ⋯ ≥ cd + b),

(e.g. (k, 0) on U(1, 1) corresponds to Sym
k−2

⊗ det as usual) and a Up-eigenvector v
p
⊗vp ∈ �

K
p
I0(p)

corresponding to � goes into a cohomology class which is also an Up-eigenvector with eigenval-

ues
̃
�(t) = �(t)

|
|
|
∏ t

�i

i

|
|
|

−1

p

. This now satis�es nice p-integrality as every Hecke action comes from

correspondences, so this has a hope of being p-adically interpolated.

Let us be more precise. If the Hodge-Tate weights of a crystalline Galois representation V are

given by (k1, ⋯ , kd ), and if �1, ⋯ , �d are the eigenvalues of the crystalline Frobenius on Dcris(V ),

then the slope of the family of the deformation of the Galois representation is s = (s1, ⋯ , sd )

where si = ordp �i and �i = �ip
ki

. In terms of the weight of the automorphic form, if � is a

cuspidal automorphic representation of G(A), G = U(Φa,b), with �∞ = D
+

W
, W = (cb+1 ≥ ⋯ ≥

cd ; c1 ≥ ⋯ ≥ cb), cb − cb+1 ≥ d , then the Hodge-Tate weights of �� |GKv
is c1 + d − 1 − a > ⋯ >

cb +d −b −a > cb+1 +d − (b +1) + b > ⋯ > cd +b. Also, L(�� , s) = L(BC(�)
∨
, s +

1−d

2
), and the local L-

factor of L(BC(�)
∨
, s +

1−d

2
) at p is ∏(1−�

−1

i
(p)p

d−1

2
−s
), where BC(�p)v ↪ Ind(�) for an unrami�ed

character � . Thus, in terms of the Langlands parameter, the slopes of Galois representation are

ordp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�
−1

i
(p)p

d−1

2
−

⎛

⎜

⎜

⎜

⎝

ci+(d−i)+

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−a i ≤ b

b i > a

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

How is this, coming from the Galois side, compatible with our previous discussion of slopes

in the automorphic side? Suppose that our choice of ordering is just compatible with � . Then

̃
�(t) = �(t)�B(t)

−1/2
|�W (t)|

−1

p
, where �B has the formula �B(t) = |∏ t

d−2i+1

i
|p , and

�W = (c1 − a,⋯ , cb − a, cb+1 + b,⋯ , cd + b),

is the highest weight of the algebraic representation of G corresponding to the local system over

the unitary Shimura variety into which the weight W holomorphic automorphic forms are em-

bedded via Eichler-Shimura,

MW (K
p
I0(p)) ↪ H

ab
(ShG(K

p
I0(p)), L�W

).
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This evaluated at

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

⋯

p

⋯

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, p at the i-th place, is

�i(p)|p|
−(

d−2i+1

2
)

p |p|

−

⎛

⎜

⎜

⎜

⎝

ci+

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

−a i ≤ b

b i > a

⎞

⎟

⎟

⎟

⎠

p ,

which has exactly ordp the negative of the slope we calculated above. Thus, that a p-adic family

should have the constant slope is compatible with our previous expectation that
̃
�(t) should be

the one that can be varied p-adic analytically.

5.3. Eigenvarieties. The weight spaceX is a rigid space overℚp such thatX(L) = Homcts(T (ℤp), L
×
).

De�nition 5.2. An eigenvariety for an open compact subgroup Kp
⊂ G(A

p

f
) is a rigid analytic

variety EKp that sits inside a commutative diagram

EKp
//

s

��

MaxSpec(R
S
⊗Up) × X

proj
2

vv
X

where
∙ S is the set of primes such that

– � = p, or
– � divides disc K , or
– dimΦa,b is not an � -unit, or
– K

p

�
is not maximal,

∙ R
S
= ⊗

′

�∉S
Cc(K� ⧵G(ℚ� )/K� , ℤp),

such that it satis�es the following properties.
∙ s is �at and generically �nite; the irreducible components of Kp have the same dimension,
dimX = d .

∙ If � is an automorphic representation with �∞ holomorphic discrete series of weightW such
that �K

p
I0(p)

≠ 0 with � a p-stabilization of �p , then there is x ∈ EKp (ℚ
p
) such that x ↦

(�� ,
̃
�, �W ),

∙ If x ∈ E (ℚ
p
) giving rise to (�x , �x , �W ), and if �x is non-critical, which means |si − si+1| <

2|ci − ci+1 − 1|, then (�x , �x , �w ) = (�� , ̃�, �W ).

Such object, at least in our setting, is constructed by Urban.

Example 5.2. Given an elliptic curve with Hecke polynomial at p, x
2
− apx + p, with roots �1, �2

where �1 is a p-unit, there are two stabilizations, (�1, �2) and (�2, �1). Then the corresponding
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slopes are the ordp’s of (�1, �2p
−1
) and (�2, �1p

−1
), which are (0, 0) (ordinary stabilization) and

(1, −1) (critical stabilization; 4 = 2 × |2 − 0 − 1|).

Now start with � , �∞ = D
+

W0

, and a normalized p-stabilization
̃
� of (�p , and the existence of

eigenvariety means there is a point x0 ∈ E (ℚ
p
). Let �0 = �W0

∈ X(ℚ
p
). Then, the properties of

eigenvariety imply that there is a small ball U ⊂ X of �0 and an a�noid neighborhood A ⊂ E of

x0, admitting a �nite �at map to U . This map gives a homomorphism R
S
⊗Up → (A ) such that,

for any � ∶ (A ) → ℚ
p

sitting over an algebraic homomorphism �W ∈ X(ℚ
p
), the composition

R
S
⊗Up → (A )

�

←←←←←←←←→ ℚ
p

comes from ���
⊗
̃
���

for an automorphic form �� of weight W , if
̃
���

is

non-critical.

Remark 5.2. ∙ Non-critical points are dense as the slope stays constant and a dense set of

points has arbitrarily highly regular weights.

∙ The use of this kind of p-adic family is important in constructing Galois representations.

For automorphic forms of low weight, we can try to put it in an eigenvariety and obtain

a p-adically varying pseudocharacters which specialize to actual geometric Galois repre-

sentations at su�ciently regular weights. From these we can realize a specialization at

the desired low weight to be a pseudocharacter with desired properties so that we could

construct a Galois representation with desired properties.

∙ The p-adic limit process does not say much about properties at p, e.g. how do you know

that the resulting Galois representation is geometric/crystalline/semistable, what are the

(crystalline) Frobenius eigenvalues? Several tricks may solve this by using specialized

subfamilies, e.g. you �x one crystalline Frobenius eigenvalue and let others vary.

Now we want to use the eigenvariety to get a p-adic deformation of Eisenstein series. This is

done in the following steps.

(1) Find a p-stabilized Eisenstein series on the eigenvariety. This is not naively possible be-

cuase for low regular weight the same Hecke eigensystem can appear in multiple co-

homological degrees which is bad as Urban’s eigenvariety is constructed by taking the

alternating sum of traces over the full complex that computes the cohomology. On the

other hand one has a trick of multiplying by high powers of a lift of Hasse invariant so

that one �nds the desired point by taking p-adic limit.

(2) Just that we have a point gives a deformation of Hecke eigensystem. Namely say we have

a point (�Π0
,
̃
�0) over w0 ∈ X, then there is an a�noid w0 ∈ U ⊂ X and x0 ∈ A ⊂ E

such that A = s
−1
(U ) and there is a p-adic deformation, namely �A ∶ R

S
→ (A ) and

�A ∶ Up → (A ).

(3) For a suitable p-stabilization the deformation we get is cuspidal. Note that this is special

for overconvergent deformation. Indeed, even in the GL2-case, one can �nd a family of

p-adic modular forms of E
crit

2k
by extracting an eigensystem from the �nite slope projector

applied to �
2k−1

E
ord

2−2k+2�
. Now we note that if we take the p-stabilization so that the central

two slopes, the spots we shoved a character into, are (−1, 1), then we see that this is a gap

that cannot be realized as slopes of Eisenstein series of su�ciently regular weight as p-

stabilized Eisenstein series pick Hodge-Tate weights as Up-eigenvaleus.
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(4) From this we want to get a Galois representation GK → GLd+2((A )). But this is also not

literally possible precisely because the eigenvariety might not be étale over the weight

space. The crutch here is that we take a 1-dimensional sub-deformation and then we can

resolve the curve. Let A = L⟨p
−r
T⟩ and B be the preimage of A, �nite integral over A.

Then for any arithmetic weight � ∈ HomL(B, ℚp
), the pseudocharacter GK → ℚ

p
coming

from the corresponding Galois representation can be recovered by R
S
→ B

�

←←←←←←←←→ ℚ
p

as we

know Hecke operators and Frobenii go to the same element. Thus, by the Zariski density

of � in B, we can construct a pesudocharacterGK → B. By the theory of pseudocharacters

we can then recover a semisimple Galois representation �B ∶ GK → GLd+2(Frac(B)). Now

as GK is compact and A is a Dedekind domain, we can invert �nitely many primes so that

�B can be realized to land in GLd+2(B
′
) for some enlargement B

′
of B. In fact one can just

shrink A enough so that we can avoid any bad places.

(5) The Galois deformation � ∶ GK → GLd+2(B) is generically irreducible, where �
ss

�0
= �� ⊕

�
′
⊕ �

′
", where Π0 is induced from (�, �). We can even choose our line A so that the

deformation is generically crystalline. Suppose not; how can V1 ⊕ V2 can degenerate into

�� ⊕ �
′
⊕ �

′
"? We might have V1 a d-dimensional irreducible chunk, then V2 is either a

sum of characters or a 2-dimensional irreducible representation.

∙ It cannot be a sum of characters, because these should also agree with one of the

Hodge-Tate weights.

∙ It cannot be two-dimesnional also, because the resulting extension gives a nonzero

element in H
1

f
(K , ℚ

p
(1) = 0 (this uses that K is an imaginary quadratic �eld; does not

work for a general CM �eld). That the nonsplit extension is in H
1

f
because we know

the deformation is generically crystalline and we know crystalline periods stay there

(Kisin) so that Dcris has the full 2-dimension.

Thus V1 is (d +1)-dimensional and V2 is a character. But again then V2 must see one of the

Hodge-Tate weights which is a contradiction. Thus, � has to be generically irreducible.

Remark 5.3. The generic irreducibility of � is nontrivial because an endoscopic form has a re-

ducible Galois representation. Moreover, even though it is expected, the irreducibility of the

Galois representaion associated to a stable cusp form is not proved in general.

Indeed, by thinking in the reverse way from the Bloch-Kato conjecture, any p-adic deformation

of the Eisenstein series with nonvanishing critical L-value should end up being an endoscopic

family.

Now we sketch why this gives a nonzero element in H
1

f
(K , V

∨
(1)). By the lattice construction

certainly we can take a free lattice inside �B so that V arises as the quotient of the lattice. Then

taking the dual and twist, we get a representation of form

⎛

⎜

⎜

⎝

V
∨
(1) ∗1 ∗2

�
−1
" ∗3

�

⎞

⎟

⎟

⎠

,
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and a similar argument of “crystalline period of �
−1
" survives in the p-adic limit,” as well as the

purity of V
∨
(1) (to see that the crystalline periods are di�erent from that of �

−1
"), shows that the

extension ∗1 is in H
1

f
.
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