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§0. Introduction

Let k be an algebraic number field, O its ring of integers, S a finite set of valuations
of k (including all the archimedean ones), and OS =

{
x ∈ k

∣∣ v(x) ≥ 0, ∀v �∈ S
}
. Let

G be a semisimple, simply connected, connected algebraic group defined over k with
a fixed embedding into GLd. Let Γ = G(OS) = G ∩ GLd(OS) be the corresponding
S-arithmetic group. We assume that Γ is an infinite group.

For every non-zero ideal I of OS let Γ(I) = Ker
(
Γ → GLd(OS/I)

)
. A subgroup of

Γ is called a congruence subgroup if it contains Γ(I) for some I. For n > 0, define

Cn(Γ) = #
{
congruence subgroups of Γ of index at most n

}
.

Theorem 1. There exist two positive real numbers α− and α+ such that for all
sufficiently large positive integers n

n
log n

log log nα− ≤ Cn(Γ) ≤ n
log n

log log nα+ .

This theorem is proved in [Lu], although the proof of the lower bound presented
there requires the prime number theorem on arithmetic progressions in an interval
where its validity depends on the GRH (generalized Riemann hypothesis for arithmetic
progressions). In §2 below, we show that by appealing to a theorem of Linnik [Li] on
the least prime in an arithmetic progression, the proof can be made unconditional.
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Following [Lu] we define:

α+(Γ) = lim sup
n

logCn(Γ)
λ(n)

,

α−(Γ) = lim inf
n

logCn(Γ)
λ(n)

,

where λ(n) = (log n)2

log log n .
It is not difficult to see that α+ and α− are independent of both the choice of

the representation of G as a matrix group, as well as independent of the choice of S.
Hence α± depend only on G and k. The question whether α+(Γ) = α−(Γ) and the
challenge to evaluate them for Γ = SL2(Z) and other groups were presented in [Lu].
Here we prove:

Theorem 2. α+(SL2(Z)) = α−(SL2(Z)) = 3
4 − 1√

2
= 0.0428932 . . .

We believe that SL2(Z) represents the general case and we expect that α+ = α−
for all groups.

The proof of the lower bound in Theorem 1 is based on the Bombieri-Vinogradov
Theorem [Bo], [Vi], [Da], i.e., the Riemann hypothesis on the average. The upper
bound, on the other hand, is proved by reducing the problem to a counting problem
for subgroups of abelian groups and then solving that extremal counting problem.

We will, in fact, show a more remarkable result: the answer is independent of O!

Theorem 3. Let k be any number field, O its ring of integers, S a finite set of
primes, and OS as above. Then

α+(SL2(OS)) = α−(SL2(OS)) =
3
4
− 1√

2
.

We conjecture that for every Chevalley group scheme G, the upper and lower
limiting constants, α±(G(OS)), depend only on G and not on O. In fact, we have a
precise conjecture, for which we need to introduce some additional notation. Let G
be a Chevalley group scheme, d its dimension, �, its rank, and κ = |Φ+| the number
of positive roots in the root system of G. Letting R = R(G) = d−�

2� , we see that

R =
�+ 1

2
, (resp., )

if G is of type A� (resp. B�, C�, D�, G2, F4, E6, E7, E8).



COUNTING CONGRUENCE SUBGROUPS 3

Conjecture. Let k,O, and S be as in Theorem 2, and suppose that G is a simple
Chevalley group scheme. Then

α+(G(OS)) = α−(G(OS)) =

(
R−

√
R(R+ 1)

)2

4R2
.

The conjecture reflects the belief that “most” subgroups of H = G(Z/mZ) lie
between the Borel subgroup B of H and the unipotent radical of B. Our proof covers
the case of SL2 and we are quite convinced that this will hold in general. For general
G, we do not have such an in depth knowledge of the subgroups of G(Fq) as we do
for G = SL2, yet we can still prove:

Theorem 4. With k,O, and S as in Theorem 3, G a simple Chevalley group scheme
of dimension d and rank �, and R = R(G) = d−�

2� , then:

(a) α−(G(OS)) ≥
(
R−

√
R(R+1)

)2

4R2 .

(b) There exists an absolute constant C such that α+(G(OS)) ≤ ???.

Corollary 5. There exists an absolute constant C such that for d = 2, 3, . . .

??? ≤ α−(SLd(Z)) ≤ α+(SLd(Z)) ≤ C 1
d2
.

This greatly improves the upper bound α+(SLd(Z)) < 5
4d

2 implicit in [Lu] and
settles a question asked there.

The paper is organized as follows.
In §1, we present some require preliminaries and notations.
In §2, we prove the lower bound of Theorem 1. As shown in [Lu] this depends

essentially on having uniform bounds on the error term in the prime number theorem
along arithmetic progressions. The choice of parameters in [Lu] needed an estimate on
this error term in a domain in which it is known only modulo the GRH. We show here
that by a slight modification of the proof and an appeal to a result of Linnik the proof
will be unconditional. Still, if one is interested in good lower bounds on α−(Γ), better
estimates on the error terms are needed. To obtain unconditional results (independent
of the GRH), we will use the Bombieri–Vinogradov Theorem [Bo], [Vi], [Da].
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In §3, we introduce the notion of Bombieri set which is the crucial ingredient needed
in the proof of the lower bounds. We then use it in §4 to prove the lower bounds of
Theorems 2, 3, and 4.

We then turn to the proof of the upper bounds. In §5, we present a reduction
lemma (Proposition 5.1) which plays an important role in several steps of the proofs.
We then show in §6, how the counting problem of congruence subgroups in SL2(Z)
can be completely reduced to an extremal counting problem in a finite abelian group;
the problem is actually, as one may expect, a number theoretic extremal problem -
see §7 where this extremal problem is solved and the upper bounds of Theorems 1
and 2 are then deduced in §8. Finally, in §9 we give the upper bound of Theorem 3.

§1. Preliminaries and notations

Throughout this paper we let �(n) denote log n/ log log n and λ(n) = (logn)2/ log log n.
If f and g are functions of n, we will say that f is small w.r.t. g if lim

n→∞
log f(n)
log g(n) = 0.

We say that f is small if f is small with respect to n�(n). Note that if f is small, then
multiplying Cn(Γ) by f will have no effect in the estimate on the estimates of α+(Γ)
or α−(Γ). We may, and we will, ignore factors which are small.

Note also that if ε(n) is a function of n which is smaller than n
(i.e., log ε(n) = o(log n)) then:

(1.1) lim
logCnε(n)(Γ)

λ(n)
= α+(Γ)

and

(1.2) lim
logCnε(n)(Γ)

λ(n)
= α−(Γ).

Indeed, to prove (1.1) it suffices to show that lim logCnε(n)(Γ)

(log n)2/ log log n ≤ α+(Γ). Now

lim
logCnε(n)(Γ)

λ(n)
= lim

logCnε(n)(Γ)
λ(nε(n))

· λ(nε(n))
X(n)

≤ α+(Γ) · 1
= α+(Γ).
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The inequality follows from the fact that limλ(nε(n))
λ(n) = 1 which is an immediate

consequence of the assumption that ε(n) is small w.r.t. n. A similar argument proves
(1.2).

It follows that we can, and we will sometimes indeed, enlarge n a bit when evalu-
ating Cn(Γ), again without influencing α+ or α−. Similar remarks apply if we divide
n by ε(n) provided ε(n) is bounded away from 0.

The following lemma is proved in [Lu] in a slightly weaker form. Here, when we care
about the constant appearing in the exponents, we need the more precise formulation:

Lemma 1.1. (“Level versus index” - (see [LS], ). Let Γ be as before. Then
there exists a function ε(n) small w.r.t. n., such that if H is a congruence subgroup
of Γ of index at most n, it contains Γ(m) for some m ≤ nε(n).

Corollary 1.2. Let γn(Γ) =
n∑

m=1
sn(G(Z/mZ), where for a group H, sm(H) denotes

the number of subgroups of H of index at mostm. Then α+(Γ) = lim sup log γn(Γ)/λ(n)
and α−(Γ) = lim inf log γn(Γ)/λ(n).

Proof of Corollary. By the Lemma, Cn(Γ) ≤ γnε(n)(Γ). It is also clear that
γn(Γ) ≤ n · Cn(Γ). So, an argument as above implies the corollary. �

§2. Proof of Theorem 1

Before proving the theorem, a remark is in order (see also [Lu]): we may change
S, as long as Γ = G(OS) is infinite without changing α− or α+. We may, therefore,
enlarge S to contain all the primes above some set of rational primes S0. We can then
use restriction of scalar to get a group G̃ over Q, with G̃(ZS0) = G(OS). It suffices,
therefore, to prove the theorem for k = Q. Now, for simplifying the notations we
assume S = {∞} and so Γ = G(Z). For an integer m we denote G(Z/mZ) the image
of Γ in GLd(Z/mZ). If m = p is a prime, G may be considered, with the possible
exceptions of finitely many primes, as a group over Fp. By the Strong Approximation
Theorem (see [PR, ]) the image of Γ is indeed the Fp-points of this group.

The proof of the upper bound is already given in [Lu] and we do not reproduce
that here. The proof of the lower bound in Theorem 1 will follow the footsteps of the
proof given in [Lu]; in fact, it will actually simplify it a bit. The main new ingredient
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is the use of a deep result of Linnik, [Li] giving an estimate for the number of primes
in a short interval of an arithmetic progression. A result of that kind was also used in
[Lu], but because of an uncareful choice of the parameters, the interval was very short,
and the validity of the prime number theorem there is known only module GRH.

We introduce some notations which are needed here and for the next section. Let
a, q be relatively prime integers with q > 0. For x > 0, let P(x; q, a) be the set of
primes p with p ≤ x and p ≡ a( mod q). For a = 1, we set P(x; q) = P(x; q, 1). We
also define ν(x; q, a) =

∑
p∈P(x;q,a)

log p and ν(x; q) = ν(x; q, 1).

If f(x), g(x) are arbitrary functions of a real variable x, we say f(x) ∼ g(x) as
x→ ∞ if

lim
x→∞

f(x)
g(x)

= 1.

Theorem 2.1 (Linnik, [Li]). There exist effectively computable constants c0, c1 > 1
such that if a and q are relatively prime integers, q ≥ 2 and x ≥ qc0 , then

ν(x; q, a) ≥ x

c1q2ϕ(k)

where ϕ is the Euler function.

Let now x be a large number and q a prime with q ∼ x1/c0 . Let X be a subset of
P(x; q) satisfying ∑

p∈X
log p ∼ x

c1q2ϕ(q)
∼ 1
c1
x1− 3

c0 .

We also define P =
∏
p∈X

p. It follows from Theorem 2.1 that

logP ∼ x

c1x3/c0
.

Let now Γ(P ) be the principal congruence subgroup. It is of index approximately
P dimG in Γ and by Strong Approximation, Γ/Γ(P ) =

∏
p∈P(x;q)

G(Fp), where G is

considered as a group defined over Fp. (This can be done for almost all p’s and we
can ignore the finitely many exceptions). Moreover, by a Theorem of Lang (see [PR,
]) G is quasi-split over Fp, which implies that G has a split one dimensional torus, so
G(Fp) has a subgroup isomorphic to F×

p . The latter is a cyclic group of order p− 1.
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Since q|p − 1, it follows that G(Fp) contains a cyclic group of order q and Γ/Γ(P )
contain a subgroup isomorphic to (Z/qZ)L where L = #X.

It now follows from Theorem 2.1 and the choice of X, that L ∼ x
c1q2ϕ(x) log x . On

the other hand, the abelian group (Z/qZ)L has q
1
4L

2+O(L) subgroups as L → ∞ (cf.
[LS, ]). Consequently, Γ has at least q

1
4L

2+O(L) subgroups of index at most P dim(G).

Taking logarithms, we compute:

log(#subgroups)
(log(index))2/ log log(index)

≥ ( 1
4L

2 +O(L)) log q
(log(P dim(G)))2/ log log(P dimG)

≥

(
x

c1(x1/c0 )3 log x

)2

· 1
c0

log x

dim(G)2 1
c21

(x1− 3
c0 )2/(1 − 3

x0
) log x

=
(1 − 3

c0
)

c0(dimG)2
.

This finishes the proof of the lower bound with α− = c
(dimG)2 for some constant c.

When one is interested in better estimates on α−, Linnik’s result is not sufficient.
We show, however, in the next two sections, that the Bombieri–Vinogradov Theorem,
Riemann hypothesis on the average, suffices to get lower bounds on α− which are
as good as can be obtained using GRH (though the construction of the appropriate
congruence subgroup is probabilistic and not effective).

§3. Bombieri Sets.

Let a, q be relatively prime integers with q > 0. For x > 0 let

ϑ(x; q, a) =
∑
p≤x

p≡ a (mod q)

log p,

where the sum ranges over rational prime numbers p. Define the error term

E(x; q, a) = ϑ(x; q, a) − x

φ(q)
,

where φ(q) is Euler’s function. Then Bombieri proved the following deep Theorem
[Bo], [Da] (see also Vinogradov [Vi]).
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Theorem 3.1. (Bombieri) Let A > 0 be fixed. Then there exists a constant c(A) > 0
such that ∑

q ≤
√

x

(log x)A

max
y≤x

max
(a,q)=1

∣∣E(y; q, a)
∣∣ ≤ c(A) · x

(log x)A−5

as x→ ∞.

This theorem shows that the error terms max
(a,q)=1

E(x; q, a) behave as if they satisfy

the Riemann hypothesis in an averaged sense.

Definition 3.2. Let x be a large positive real number. A Bombieri prime (relative
to x) is a prime q ≤ √

x such that the set P(x, q) of primes p ≤ x with p ≡ 1 (mod q)
satisfies

max
y ≤ x

|E(y; q, 1)| ≤ x

φ(q)(log x)2
.

We call P(x, q) a Bombieri set (relative to x).

Lemma 3.3. Fix 0 < ρ < 1
2 . Then for x sufficiently large, there exists at least one

Bombieri set P(x, q) (relative to x) with q a Bombieri prime in the interval

xρ

log x
≤ q ≤ xρ.

Proof:. Assume that
max
y ≤ x

|E(y; q, 1)| > x

φ(q)(log x)2

for all primes xρ

log x ≤ q ≤ xρ, i.e., that there are no such Bombieri sets in the interval.
In view of the trivial inequality, φ(q) = q − 1 < q, it immediately follows that

∑
xρ

log x ≤ q≤ xρ

max
y ≤ x

∣∣E(y; q, 1)
∣∣ > x

(log x)2
∑

xρ

log x ≤ q≤ xρ

1
q
>
x · (log log x)2

2ρ · (log x)3
,

say, for sufficiently large x. This follows from the well known asymptotic formula
[Lan] for the partial sum of the reciprocal of the primes

∑
q≤Y

1
q

= log log Y + b+O
(

1
log Y

)

as Y → ∞. Here b is an absolute constant. This contradicts Theorem 3.1 with A ≥ 8
provided x is sufficiently large. �
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Lemma 3.4. Let P(x, q) be a Bombieri set. Then for x sufficiently large
∣∣∣∣#{P(x, q)} − x

φ(q) log x

∣∣∣∣ ≤ 3
(

x

φ(q)(log x)2

)
.

Proof. We have

∑
p∈P(x,q)

1 =
x∑

n=2

ϑ(n; q, 1) − ϑ(n− 1; q, 1)
log n

=
x∑

n=2

ϑ(n; q, 1)
( 1

log(n)
− 1

log(n+ 1)

)
+

ϑ(x; q, 1)
log([x] + 1)

=
x∑

n=2

ϑ(n; q, 1)
log

(
1 + 1

n

)
log n log(n+ 1)

+
ϑ(x; q, 1)

log x
+ ϑ(x; q, 1)

(
1

log x
− 1

log(x+ 1)

)
.

By the property of a Bombieri set, we have the estimate |ϑ(n; q, 1)− n
φ(q) | ≤ x

φ(q)(log x)2 ,
for n ≤ x. It easily follows that
∣∣∣∣∣∣

∑
p∈P(x,q)

1 − ϑ(x; q, 1)
log x

∣∣∣∣∣∣ ≤
x∑

n=2

ϑ(n; q, 1)
1

n · (log n)2
+ ϑ(x; q, 1)

(
1

log x
− 1

log(x+ 1)

)

≤ 3
(

x

φ(q)(log x)2

)
.

�

§4. Proof of the lower bound in Theorems 2, 3, 4.

Fix a real number 0 < ρ < 1
2 . It follows from Lemma 3.3 that for every x → ∞

there exists a prime number q ∼ xρ such that P(x, q) is a Bombieri set.
Define

P =
∏

p ∈ P(x,q)

p.

It is clear from the definition of Bombieri set that

logP ∼ x

φ(q)
∼ x1−ρ.
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Consider Γ(P ) which is of index at most P dim(G) in Γ. Note that for every subgroup
H/Γ(P ) in Γ/Γ(P ) there corresponds a subgroup H in Γ of index at most P dim(G) in
Γ.

By strong approximation

Γ/Γ(P ) = G (Z/PZ) =
∏

p∈P(x,q)

G(Fp).

It follows from Lang’s Theorem [PR] that G is quasi–split over Fp, which implies that
G has a split one–dimensional torus, i.e., G(Fp) has a subgroup isomorphic to F×

p . The
latter is a cyclic group of order p− 1. Since q|(p− 1), it follows that G(Fp) contains a
cyclic group of order q and Γ/Γ(P ) contains a subgroup isomorphic to (Z/qZ)L where

L = #{P(x, q)}.

Note that by Lemma 3.4

L ∼ x

φ(q) log x
∼ x1−ρ

log x
.

We shall need a basic lemma on counting subspaces of a vector space defined over
a finite field (see [Lb], p. xxx).

Lemma 4.1. Let q be a fixed prime. Let V = F�q be an � dimensional vector space
over Fq. For 1 ≤ r ≤ �, define

Φ(q, �, r) = #{subspaces of V of dimension r}.

Then

(i) qr·(�−r) ≤ Φ(q, �, r) ≤ qr·(�−r+1),

(ii) max
1≤r≤�

Φ(q, �, r) is obtained for r =
[
�
2

]
, and in this case,

Φ(q, �, r) = q
1
4 �

2+O(�), (as �→ ∞).

By Lemma 4.1, the elementary abelian group (Z/qZ)L has

q
1
4L

2+O(L)
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subgroups as L → ∞. Consequently, Γ has q
1
4L

2+O(L) subgroups of index at most
P dim(G).

Taking logarithms, we compute

log
(
#{of subgroups}

)
(
log(index)

)2
/ log log(index)

≥
(

1
4L

2 +O(L)
)
log q(

log
(
P dim(G)

))2
/ log log

(
P dim(G)

)

�
1
4

[ (
x1−ρ

log x

)2

+ O
(
x1−ρ

log x

) ]
· ρ log x

(dim(G))2x2−2ρ/
(
log(dim(G)) + (1 − ρ) log x

)

≥
1
4ρ(1 − ρ)
(dim(G))2

as x→ ∞.
Choosing ρ = 1

2 , we have proved the lower bound with α− = 1
16(dim(G))2 .

This proof follows the proof of [Lu1] where the Bombieri set and q replace the
choice of m there. The reader is referred to [Lu1] for the proof of the upper bound.

We now show how to improve the lower bound α− = 1
16(dim(G))2 and turn our

attention to Theorems 2, 3, 4. We first consider the case when we are working over
Q instead of a general number field.

As in section 3, let x→ ∞, fix a positive ρ < 1
2 , and let P(x, q) be a Bombieri set

where q ∼ xρ is a prime number. We know such a Bombieri set exists by Lemma 3.3.
Define, as before,

P =
∏

p∈P(x,q)

p,

where
logP ∼ x

φ(q)
∼ x1−ρ.

Let B(p) denote the Borel subgroup of upper triangular matrices in G(Fp). Then

log
(
#

{
B(p)

})
∼ dim(G) + rk(G)

2
log p.

But
log

(
#

{
SLr(Fp)

})
∼ dim(G) log p.
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It immediately follows that (for p→ ∞)

log
[
G(Fp) : B(p)

]
∼ dim(G) − rk(G)

2
log p,

and, therefore,

log (G(Z/PZ : B(P )) ∼ dim(G) − rk(G)
2

logP.

Now B(p) is mapped onto F×
p

rk(G) and, hence, is also mapped onto (Z/qZ)rk(G)

since #{F×
p } = p− 1 and p ≡ 1 (mod q). So B(P ) is mapped onto

(Z/qZ)rk(G)·L

where

L = #{P(x, q)} ∼ x

φ(q) log x
∼ x1−ρ

log x
.

For a real number θ, define �θ� to be the smallest integer t such that θ ≤ t. Let
0 ≤ σ ≤ 1. It follows from Lemma 4.1 that B(P ) has at least

qσ(1−σ)rk(G)2L2+O(L)

subgroups of index equal to

q
σ·rk(G)·L� ·
[
G(Z/PZ) : B(P )

]
.

Hence, for x→ ∞,

log
(
#

{
of subgroups

})
=

(
σ(1 − σ)rk(G)2L2 +O(rk(G) · L)

)
log q

∼ σ(1 − σ)rk(G)2
x2−2ρ

(log x)2
· ρ log x,

while

log(index) = �σ · rk(G) · L� · log q +
1
2
(
dim(G) − rk(G)

)
logP

∼ rk(G)σ
x1−ρ

log x
ρ log x +

1
2
(
dim(G) − rk(G)

)
x1−ρ

=
(
σ · ρ · rk(G) +

1
2
(
dim(G) − rk(G)

))
x1−ρ,
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and
log log(index) ∼ (1 − ρ) log x.

We compute

log
(
#{of subgroups}

)
(
log(index)

)2
/ log log(index)

∼
σ(1 − σ) · rk(G)2 · ρ x2−2ρ

log x(
σ · ρ · rk(G) + 1

2

(
dim(G) − rk(G)

))
x1−ρ

/
(1 − ρ) log x

∼ σ(1 − σ)ρ(1 − ρ) · rk(G)2((
σρ− 1

2

)
· rk(G) + 1

2 dim(G)
)2

as x→ ∞.
We may rewrite

σ(1 − σ)ρ(1 − ρ) · rk(G)2((
σρ− 1

2

)
· rk(G) + 1

2 dim(G)
)2 =

σ(1 − σ)ρ(1 − ρ)
(σρ+R)2

where

R =
dim(G) − rk(G)

2 · rk(G)
.

Now, for fixed R, it is enough to choose σ, ρ so that

σ(1 − σ)ρ(1 − ρ)
(σρ+R)2

is maximized. This occurs when

ρ = σ =
√
R(R+ 1) −R,

in which case we get

σ(1 − σ)ρ(1 − ρ)
(σρ+R)2

=

(
R−

√
R(R+ 1)

)2

4R2
.

In the special case when R = 1, we obtain the lower bound of Theorem 2. For a
simple Chevalley group scheme over Q, this gives the lower bound in Theorem 4.
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§5. A reduction Lemma

Corollary 14 shows us that in order to give an upper bound on α+(Γ) it suffices to
bound sn(G(Z/mZ)) when m ≤ n. The goal of this section is to show that we can
further assume that m is a product of different primes. To this end denote m =

∏
p

where p runs through all the primes dividing m.

We have an exact sequence

1 → K → G(Z/mZ) π−→ G(Z/mZ) → 1

where K is a nilpotent group of rank at most dimG (see [ ]).

The following result will give us the desired reduction and will serve us later a few
more times:

Lemma 4.1. Let 1 → K → U
π−→ L → 1 be an exact sequence of finite groups,

where K is a solvable group of derived length � and of rank at most r. Then the
number of supplements to K in U (i.e., of subgroups H of U for which π(H) = L) is
bounded by |U |�f(r) where f is some function depending on r.

We postpone the proof of Proposition 4.1, deducing first the desired reduction:

Corollary 4.2. sn(G(Z/mZ)) ≤ mf ′(dimG) log log msn(G(Z/mZ)) where f ′(dimG)
depends only on dimG.

Proof. Let H be a subgroup of index at most n in G(Z/mZ) and denote L = π(H) ≤
G(Z/mZ). So L is of index at most n in G(Z/mZ). Let U = π−1(L), so every
subgroup H of G(Z/mZ) with π(H) = L is a subgroup of U . Given L (and hence
also U) we have the exact sequence 1 → K → U

π−→ L → 1 and by Lemma 4.1, the
number of H in U with π(H) = L is at most |U |�f(r) where � is the derived length
of K, r ≤ dimG is the rank of K and f(r) ≤ f(dimG) is independent of m. Now
|U | ≤ mdimG. By a result of Glasby ([ ]) if K is a finite solvable group, then its
derived length is at most c log log |K| for some absolute constant c. We can, therefore,
deduce that sn(G(Z/mZ)) ≤ mc dimGf(dimG) log dim(G)sn(G(Z/mZ)) which proves our
claim.

We now turn to the proof of Lemma 4.1. The main part of the proof is the following.
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Proposition 4.3. Let 1 → K → U
π−→ L→ 1 be as in Proposition 4.1 and assume

in addition that K is abelian, so � = 1. Then the number of H in U with π(H) = L
is bounded by |U |f(r).

Proof of (4.3). Let H ≤ U be a subgroup with π(H) = L. Look at H ∩ K. The
number of possibilities for H∩K is at most |K|r ≤ |U |r. As K is abelian, H∩K � K
and we can divide everything by H ∩ K to assume that H ∩ K = {e}, i.e. H is a
complement of K in U .

Assume first that U is a p-group. Let C be the centralizer of K in U , so K ≤ C
as K is abelian. The quotient U/C acts faithfully on K and hence U/C ↪→ Aut(K).
Now, as rank(K) ≤ r, it is known that rank(Aut(K)) ≤ 4r2 (see [ ]). Thus, if
H ∩C is also given, the number of choices for H is at most |U |4r2 (as H is generated
mod H ∩ C by at most 4r2 elements from U). We are left with the need to bound
the number of possibilities for H ∩ C.

Claim. H∩C is a complement to K in C. Indeed, if c ∈ C, c = kh with k ∈ K and
h ∈ H (as H is a complement to K in U). But K ≤ C, so k ∈ C and so h ∈ H ∩ C.

We deduce that we need to bound the number of complements to K in C. This
is equal to |Hom(C/K,K)| = |Hom(A,K)| where A is the commutator quotient of
C/K. Now, A and K are abelian groups and as such |Hom(A,K)| = |Hom(K,A)|
(see [ ]). Hence |Hom(A,K)| ≤ |A|r ≤ |U |r and Proposition 4.3 is proven under the
assumption that U is a p-group.

Assume now that U is solvable: Let p1, . . . , ps be the primes dividing |U | and
U1, . . . , Us a Sylow system in U , i.e., each Ui is a pi-Sylow subgroup of U and UiUj =
UjUi for every i and j. Note that K is abelian, hence has a unique pi-Sylow Ki

subgroup for each pi, and Ki ≤ Ui.
Now, if H1, . . . , Hs is a Sylow system for H, then there exists U1, . . . , Us a Sylow

system for U , with Hi ≤ Ui for every i = 1, . . . , s. As there are at most |U | Sylow
systems (since they are conjugate in U), we can fix one and assume Hi ≤ Ui ∀i. We
claim that Ui = KiHi. Indeed, we assumed (as we could) that H is a complement to
K in U , hence Ki ∩Hi = {e} and clearly |Ki||Hi| = |Ui| - so the claim is proved.

We can now use the case of p-groups proved before to deduce that the number of
choices for Hi is at most |Ui|f1(r) and so the number of choices for H is at most
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s∏
i=1

|Ui|f1(r) = |U |f1(r) · |U |r+1.

We pass now to the general case (where we will use twice the (CFSG):

By a well known result of Aschbacher and Guralnick ([AG ]) H is generated by
some maximal solvable subgroup S of it plus one element h ∈ H. Now, SK is solvable
and S is a complement of K in SK. As K is abelian, it is easy to see that SK is a
maximal solvable subgroup of U . Now by [ ] a group U has at most |U |c maximal
solvable subgroups for some absolute constant c. For each one of them we can apply
the previous case (when we assume that U is solvable) to deduce, altogether, that
the number of choices for H is bounded by |U |f(r) for a suitable f(r). This ends the
proof of Proposition 4.3. �

Lemma 4.1 is now deduced from 4.3 by induction on �: So (4.3) is just the case
� = 1. Assume it is true for � − 1. Divide U by K ′

1-the commutator subgroup of K.
This gives us the sequence 1 → K/K ′ → U/K ′ π̃−→ L → 1. By (4.3) the number of
H̃ in U/K ′ with π̃(H̃) = L is at most (U/K ′)f(r). Now, if H is a supplement to K
in U (i.e., π(H) = L) look at H · K ′. When taken mod K ′, this is a supplement
to K/K ′ in U/K ′ hence one of (U/K ′)f(r) possibilities. Now, H is a supplement to
K ′ in H ·K ′ and by the induction hypothesis there are at most |H ·K ′|(�−1)f(r) such
(since the derived length of K ′ is �− 1). So, altogether the number of possibilities for
H is at most

|U |(�−1)f(r) · |U/K ′|f(r) ≤ |U |�f(r)

and Lemma 4.1 is proved. �

§6. From SL2 to abelian groups

Corollary 1.4 shows us that in order to estimate α+(G(Z)) one should concentrate
on sn(G(Z/mZ)) with m ≤ n. Corollary 4.2 implies that we can further assume that

m is a product of different primes. So let us now assume that m =
t∏

i=1

qi where the

qi are different primes and so, G(Z/mZ) � ∏
G(Z/qiZ) and t ≤ (1 + o(1)) logm

log logm .
We can further assume that we are counting only essential subgroups of G(Z/mZ),
i.e., subgroups H which do not contain G(Z/qiZ) for any 1 ≤ i ≤ t, or equivalently
the image of H under the projection to G(Z/qiZ) is a proper subgroup. Thus H is
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contained in
t∏

i=1

Mi where Mi is a maximal subgroup of G(Z/qiZ).

Let us now specialize to the case G = SL2, and let q be a prime.

Maximal subgroups of SL2(Z/qZ) are conjugate to one of the following three sub-
groups (see [ ])

(1) B = Bq-the Borel subgroup of all upper triangular matrices in SL2.

(2) D = Dq -a dihedral subgroup of order 2(q + 1) which is equal to N(Tq) the
normalizer of a non-split torus Tq. The group Tq is obtained as follows: Let Fq2 be the
field of order q2, (Fq2)∗ acts on Fq2 by multiplication. The latter is a 2-dimensional
vector space over Fq. The elements of norm 1 in (Fq2)∗ induce the subgroup Tq of
SL2(Fq).

(3) A = Aq-a subgroup of SL2(Z/qZ) which is isomorphic to Alt(5) -the alternating
group on 5 letters.

The number of conjugates of every subgroup is small, so it suffices to count only
subgroups of SL2(Z/mZ) whose projection to SL2(Z/qZ) (for q|m) is either B,D, or
A.

Let S ⊆ {q1 . . . , qt} be the subset of the prime divisors ofm for which the projection
of H is in Aqi and S the complement to S. Let m =

∏
q∈S
q and H the projection of H

to SL2(Z/mZ). So H is a subgroup of index at most n in SL2(Z/mZ) and the kernel
N from H → H is inside a product of |S| copies of Alt(5). As every subgroup of
Alt(5) is generated by two elements, N is generated by at most 2 logm

log log n ≤ 2 logn
log log n

generators, which are all from a group of order 60|S| ≤ 60t ≤ 60
log n

log log t . We, therefore,
conclude that given H the number of possibilities for H is at most 602(log n)2/(log log n)2

which is small w.r.t. n�(n).

We can, therefore, assume that S = φ and all the projections of H are either into
groups of type B or D.

Now, if Bq is the Borel subgroup of SL2(Z/qZ) it has a normal unipotent cyclic
subgroup Uq of order q. Let now S be the subset of {q1, . . . , qt} for which the pro-
jection is in B and S-the complement. Then H ≤ ∏

q∈S
Bq ×

∏
q∈S
Dq. Let H be the

projection of H to
∏
q∈S
Bq/Uq ×

∏
q∈S
Dq. The kernel is a subgroup of the cyclic group
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U =
∏
q∈S
Uq. By Proposition 4.1 we know that given H, there are only few possibilities

for H. We are, therefore, led to counting subgroups in L =
∏
q∈S
Bq/Uq ×

∏
q∈S
Dq. Let

E now be the product
∏
q∈S
Bq/Uq×

∏
q∈S
Tq and for a subgroup H of L we denote H∩E

by M .

Our next goal will be to show that given H in E, the number of possibilities for H
is small. To this end we formulate first two easy lemmas, which will be used in the
proof of Proposition 5.4 below. This Proposition will do for us the main reduction.

Lemma 5.1. Let H be a subgroup of U = U1 × U2, for i = 1, 2 denote Hi = πi(H)
where πi is the projection from U to Ui, and H0

i = H ∩ Ui. Then:

(i) H0
i is normal in Hi and Hi/H

0
1 � H2/H

0
2 with an isomorphism ϕ induced by

the inclusion of H/(H0
1 ×H0

2 ) as a subdirect product of H1/H
0
1 and H2H

0
2 ,

(ii) H is determined by:

(a) Hi for i = 1, 2

(b) H0
i for i = 1, 2

(c) the isomorphism ϕ from H1/H
0
1 to H2/H

0
2 .

Proof. See [ ]. �

Definition 5.2. Let U be a group and V a subnormal subgroup of U . We say that V
is co-poly-cyclic in U of co-length � if there is a sequence V = V0 � V1 � . . . � V� = V
such that Vi/Vi−1 is cyclic for every i = 1, . . . , �.

Lemma 5.3. Let U be a group and F a subgroup of U . The number of subnormal
co-poly-cyclic subgroups V of U containing F and of co-length � is at most [U : F ]�.

Proof. For � = 1, V contains [U,U ]F and so it suffices to prove the lemma for the
abelian group U = U/[U,U ]F and F = {e}. For an abelian group U , the number of
subgroups V with U/V cyclic is equal, by Pontrjagin duality to the number of cyclic
subgroups. This is clearly bounded by |U | ≤ [U : F ]. If � > 1, then by induction the
number of possibilities for V1 as in Definition 5.2 is bounded by [U : F ]�−1. Given
V1, the number of possibilities for V is at most [V1 : F ] ≤ [U : F ] by the case � = 1.
Thus, V has at most [U : F ]� possibilities. �
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Proposition 5.4. Let D = D1 × . . . × Ds where each Di is a finite dihedral group
with a cyclic subgroup Ti of index 2. Let T = T1 × . . . × Ts, so: [D : T ] = 2s. The
number of subgroups H of D whose intersection with T is a given subgroup L of T is
at most |D|822s2 .

Proof. Denote Fi =
∏
j≥i
Di. We want to count the number of subgroups H of D with

H ∩ T = L. Let Li = projFi
(L) i.e., the projection of L to Fi, and L̃i+1 = Li ∩ Fi+1,

so L̃i+1 ⊆ Li+1. Let Hi be the projection of H to Fi. Given H, the sequence
(H1 = H,H2, . . . , Hs) is determined and, of course, vice versa. We will actually
prove that the number of possibilities for (H1, . . . , Hs) is at most |D|822s2 .

Assume now that Hi+1 is given. What is the number of possibilities for Hi? Well,
Hi is a subgroup of Fi = Di × Fi+1 containing Li, whose projection to Fi+1 is Hi+1

and its intersection with Fi+1, which we will denote by X, contains L̃i+1. By Lemma
5.2, Hi is determined by Hi+1, X, Y, Z and ϕ where Y is the projection of Hi to Di,
Z = Hi ∩Di and ϕ is an isomorphism from Y/Z to Hi+1/X. Now, every subgroup
of the dihedral group is generated by two elements and so the number of possibilities
for Y and Z is at most |Di|2 each, and the number of automorphisms of Y/Z is also
at most |Di|2.

Let us now look at X : X is a normal subgroup of Hi+1 with Hi+1/X isomorphic to
Y/Z, so it is meta-cyclic. Moreover, X contains L̃i+1. So by Lemma 5.3, the number
of possibilities for X is at most [Hi+1 : L̃i+1]2.

Now [Hi+1 : L̃i+1] ≤ [Hi+1 : Li+1][Li+1 : L̃i+1]. We know that [Hi+1 : Li+1] =
[projFi+1H] ≤ |H : L| ≤ 2s and [Li+1 : L̃i+1] = [projFi+1(Li) : Fi+1 ∩ Li] ≤ |Di|. So,
[Hi+1 : L̃i+1] ≤ 2s · |Di|.

Altogether, given Hi+1 (and L and hence also Li’s and L̃i’s) the number of pos-
sibilities for Hi is at most |Di|822s. Arguing, now by induction we deduce that the
number of possibilities for (H1, . . . , Hs) is at most |D|822s2 as claimed. �

Let’s now get back to SL2: Proposition 5.4 implies, in the notations before Lemma
5.1, that when counting subgroups of L =

∏
q∈S
Bq/Uq ×

∏
q∈S
Dq, we can count instead

the subgroups of E =
∏
q∈S
Bq/Uq ×

∏
q∈S
Tq where Tq is the non-split tori in Sq (so Tq

is a cyclic group of order q + 1 while Bq/Uq is a cyclic group of order q − 1).
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A remark is needed here: Let H be a subgroup of index at most n in SL2(Z/mZ)
which is contained in X =

∏
q∈S
Bq ×

∏
q∈S
Dq and contains Y =

∏
q∈S
Uq ×

∏
q∈S

{e}. By

our analysis in this section, these are the groups which we have to count in order to
determine α+(SL2(Z)). We proved that for counting them, it suffices for us to count
subgroups of X0/Y where X0 =

∏
q∈S
Bq ×

∏
q∈S
Tq. Note though that replacing H with

its intersection with X0, may enlarge the index of H in SL2(Z/mZ). But the factor
is at most 2logm/ log logm = m1/ log logm ≤ n1/ log log n. As n→ ∞ with n this factor is
small with respect to n. By the remark made in §1, we can deduce that our original
problem is now completely reduced to the following extremal problem on counting
subgroups of finite abelian groups:

§7. Counting abelian groups

The aim of this section is to solve a somewhat unusual extremal problem concern-
ing the number of subgroups of abelian groups. The result we prove is the crucial
ingredient in obtaining a sharp upper bound for the number of congruence subgroups
of SL(2,Z).

For an abelian p-group G, we denote by Ωi(G) the subgroup of elements of order
dividing pi. Then Ωi(G)/Ωi−1(G) is an elementary abelian group of order say pλi

called the i-th layer of G. We call the sequence λ1 ≥ λ2 ≥ . . . ≥ λr the layer type of
G.

Denote by
[
λ
ν

]
p

the p-binomial coefficient, that is, the number of ν dimensional

subspaces of a λ-dimensional vector space over Z/pZ.

It is easy to see that the following holds.

Proposition 6.1.

(i) pν(λ−ν) ≤
[
λ
ν

]
p

≤ pν · pν(λ−ν).

(ii) max
[
λ
ν

]
p

is attained for ν = [λ2 ] in which case
[
λ
ν

]
p

= p
1
4λ

2+0(λ) holds as

λ→ ∞.

We need the following well-known formula (see[Bu]).
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Proposition 6.2. Let G be an abelian p-group of layer type λ1 ≥ λ2 . . . . The number
of subgroups H of layer type ν1 ≥ ν2 . . . is

∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

. �

We need the following estimate.

Proposition 6.3.

∏
i≥1

pνi(λi−νi) ≤
∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

≤ pν1
∏
i≥1

pνi(λi−νi).

Proof. By Proposition 6.1 we have

∏
i≥1

pνi+1(λi−νi)

[
λi − νi+1

νi − νi+1

]
p

≤
∏
i≥1

pνi(λi−νi) · p(νi−νi+1)((λi−νi+1)−(νi−νi+1)) · p(νi−νi+1)

= pν1
∏
i≥1

pνi+1(λi−νi) · p(νi−νi+1)(λi−νi) = pν1
∏
i≥1

pνi(λi−νi)

The lower bound follows in a similar way. �

Corollary 6.4. Let G be an abelian group of order pα and layer type λ1 ≥ λ2 ≥
. . . ≥ λr. Then |G|−1

∏
i≥1

pλ
2
i /4 ≤ |Sub(G)| ≤ |G|2 ∏

i≥1

pλ
2
i /4 holds.

Proof. Considering subgroups H of layer type [λ1
2 ] ≥ [λ2

2 ] ≥ . . . we obtain that

|Sub(G)| ≥ ∏
i≥1

p[
λi
2 ](λi−[

λi
2 ]) ≥ p−ν ∏

i≥1

pλ
2
i /4 which implies the lower bound.

On the other hand, for any fixed layer type ν1 ≥ ν2 ≥ . . . the number of subgroups
H with this layer type is at most

pν1
∏
i≥1

pνi(λi−νi) ≤ |G|
∏
i≥1

pλ
2
i /4.

The number of possible layer types ν1 ≥ ν2 ≥ . . . of subgroups of G is bounded by
the number of partitions of the number α hence it is at most 2α ≤ |G|. This implies
our statement. �
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Let us make an amusing remark which will not be needed in the rest of the paper.
If G is an abelian p-group of the form G = Cx1 ×Cx2 × . . .×Cxt

then it is known
(see [LS]) that |End(G)| =

∏
j,k

gcd(xj , xk). Noting that
∏
j,k

gcd(xj , xk) =
∏
i≥1

pλ
2
i we

obtain that
|G|−1|End(G)| 14 ≤ |Sub(G)| ≤ |G|2|End(G)| 14 .

These inequalities clearly extend to arbitrary finite abelian groups G.
Propositions 6.2 and 6.3 will be used in conjunction with the following simple (but

somewhat technical) observations.
Let us call a pair of sequences of integers {λi}, {νi} good if λ1 ≥ λ2 ≥ . . . ≥ λr ≥

1, ν1 ≥ ν2 ≥ . . . ≥ νr ≥ 1 and λi ≥ νi for i = 1, 2, . . . , r.

Proposition 6.5. Let α, t be fixed positive integers. Consider good pairs of sequences
{λi}, {νi} such that

∑
i≥1

(λi + νi) ≤ α and λ1 ≤ t.

Under these assumptions the maximal value of the expression
∑
i≥1

νi(λi−νi) is also

attained by a pair of sequences {λi}, {νi} such that
(i) t = λ1 = λ2 = . . . = λr−1

(ii) for some 0 ≤ b ≤ r − 1 we have

ν1 = ν2 = . . . = νb = 1 + νb+1 = . . . = 1 + νr−1.

(iii) We have νi ≥ [ t3 ] except possibly for i = r if λr < t in which case we have
[λr

3 ] ≥ νr ≥ [λr

3 ].

Proof. Suppose that the maximum is attained for {λi}, {νi}. Let j be the smallest
index such that we have t > λj ≥ λj+1 > 0. Assume that λj+1 = . . . = λj+k and
λj+k ≥ λj+k+1 or j + k = r. The condition νj ≥ νj+1 implies that

νj((λj + 1) − νj) + νj+1((λj+1 − 1) − νj+1)

≥ νj(λj − νj) + νj+1(λj+1 − νj+1).

If λj+k = νj+k then we can clearly replace our sequences by another pair for which∑
i≥1

λj is strictly smaller and
∑
i≥1

νi(λi − νi) is the same. Otherwise, replacing λj by

λj + 1 and λj+1 by λj+1 − 1 we obtain a good pair of sequences for which {λi} is
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lexicographically strictly greater and for which
∑
i≥1

νi(λi−νi) is at least as large (hence

maximal).

It is clear that by repeating these two types of moves we eventually obtain a pair
{λi}, {νi} satisfying (i).

Now set β = ν1 + ν2 + . . .+ νr−1. Then
∑
i≥1

νi(λi − νi) = tβ − (ν2
1 + . . .+ ν2

r−1) + νr(λr − νr).

It is clear that if the value of such an expression is maximal, then the difference of
any two of the νj with j ≤ r − 1 is at most 1. This proves (ii).

Let us assume now that λr < t. Suppose that µ = νr−1 = . . . = νb+1 < [ t3 ]. This
implies that µ ≤ [ t3 ] − 1 and hence 3µ < t− 2.

We claim that µ(t− µ) < (µ+ 1)((t− 1) − (µ+ 1)). This reduces to

µ(t− µ) < (µ+ 1)(t− µ) − 2(µ+ 1)

2µ+ 2 < t− µ
and 3µ < t− 2 which is true.

By the claim replacing νj by νj + 1 and λj by t− 1 for b+ 1 ≤ j ≤ r− 1 we obtain
a good pair of sequences for which

∑
i≥1

νi(λi − νi) is strictly greater, a contradiction.

Hence we have νr−1 ≥ [ t3 ] ≥ [λr

3 ]. Using this a similar argument establishes that
νr ≥ [λr

3 ] (note that if νr < [λr

3 ] then replacing λr by λr−1 and νr by νr+1 we obtain
a good pair of sequences.

Suppose now that νr > |λr

3 |. This implies νr ≥ |λr

3 | + 1 and hence 3νr > λr + 2.
We claim that νr(λr − νr) < (νr − 1)((λr + 1) − (νr − 1)). This reduces to

νr(λr − νr) ≤ (νr − 1)(λr − νr) + 2(νr − 1)

λr − νr < 2νr − 2

λr + 2 < 3νr which is true.

By the claim replacing νr by νr − 1 and λr by λr + 1 we obtain a pair of good
sequences for which

∑
i≥1

νi(λi − νi) is strictly greater, a contradiction.
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Hence we have νr ≤ [λr3 ] as well.
Finally if λr = t then the first part of the previous argument establishes νr ≥

[ t3 ]. �
The main result of this section is the following.

Theorem 6.6. Let d be a fixed integer ≥ 1. Let n, r be positive integers. Let G be
an abelian group of the form G = Cx1 ×Cx2 × . . .×Cxt where at most d of the xi can
be the same. Suppose that r|G| ≤ n holds. Then the number of subgroups R of order
≤ r in G is at most n(γ+o(1))�(n) where γ = 3

4 − 1√
2
.

Proof. We start the proof with several claims.
Claim 1. t ≤ (1 + o(1))�(n).

Proof. This follows from t! ≤ n.

Claim 2. In proving the theorem, we may assume that t ≥ γ�(n).

Proof. For otherwise, every subgroup of G can be generated by γ�(n) elements hence
|Sub(G)| ≤ |G|γ�(n) ≤ nγ�(n).

Now let a(n) be a monotone increasing function which goes to infinity sufficiently
slowly. For example, we may set a(n) = log log log logn.

Let Gp denote the Sylow p-subgroup of G and let λp1 ≥ λp2 ≥ . . . denote the layer
type of Gp. Altogether the layers of the Gp comprise the layers of Gj . We call such
a layer essential if its dimension λp1 is at least �(n)

a(n) . Clearly the essential layers in
Gp correspond to the layers of a certain subgroup Ep of Gp (which equals Ωj(Gp) for
some j). Let us call E =

∏
Ep the essential subgroup of G.

Claim 3. Given E ∩ R we have at most no(�(n) (i.e., a small number of) choices
for R.

Proof. It is clear from the definitions that every subgroup of the quotient group G/E
can be generated by less than �(n)

a(n) elements. Hence the same is true for R/R ∩ E.
This implies the claim.

By Claim 3, in proving the theorem, it is sufficient to consider subgroups R of E.
Let v denote the exponent of E. It is clear from the definitions that we have

v�(n)/a(n) ≤ n, hence v ≤ (log n)a(n). Using well-known estimates of number theory [
] we immediately obtain the following.
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Claim 4. (i) the number z of different primes dividing v is at most a(n) log log n
log log log n .

(ii) The total number of divisors of v is at most log n
Ca(n)

log log log n for some constant
c > 0.

Claim 5. |G : E| ≥ (log n)(1+o(1))t.

Proof. Consider the subgroup Ei = E ∩ Cxi
. It follows that Ei is the subgroup of

elements of order dividing v in Cxi
. Set ei = |Ei| and hi = xi/ei. It is easy to see

that E =
∏
i≥1

Ei, hence |G : E| =
∏
i≥1

hi.

By Claim 4(ii) for the number s of different values of the numbers ei we have
s = (log n)o(1). We put the numbers xi into s blocks of size t1, . . . , ts according to
the value of ei.

By our condition on the xi it follows that at most d of the numbers hi corresponding
to a given block of size say tj are the same. Hence for some non-negative integers
tj1, tj2, . . . , tjd with

∑
r≥1

tjk = tj the product of the hi corresponding to this block is

at least
∏
k≥1

tjk!. Therefore |G : E| ≥ ∏
j,k

tjk!. Such a product is the smallest if the tjk

differ by at most 1 (given their number sd and their sum t) in which case we have
tjk ≥ [ tsd ].

Hence |G : E| ≥ ∏
j,k

tj,k! ≥
∏
j,k

( tjk

e )tjk ≥ ∏
j,k

( 1
e [

t
sd ])tjk = ( 1

e [
t
sd ])t.

Since sd = (logn)o(1) and by Claim 2 t ≥ γ logn
log log n we obtain that |G : E| ≥

(log n)(1+o(1))t as required.

Let us now choose a group G and a number r as in the theorem for which the
number of subgroups R ≤ E of order dividing r is maximal. To complete the proof it
is clearly sufficient to show that this number is at most n(γ+o(1))�(n).

Denote the order of the corresponding essential subgroup E by f and the index
|G : E| by m.

Using Propositions 6.2 and 6.3 we see that apart from an no(�(n)) factor (which we
ignore) the number of subgroups R as above is at most

(1)
∏
p

∏
i≥1

pν
p
i
(λp

i
−νp

i
) for some νpi , λ

p
i where

∏
p

∏
i≥1

pλ
p
i divides f and

∏
p

∏
i≥1

pν
p
i divides

r for all p. Assuming that such an f and r are fixed together with the upper bound
t for all the λpi , let us estimate the value of the expression (1).
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By Proposition 6.5 a maximal value of (1) is attained for a choice of the λpi , ν
p
i

such that for any given p there are at most 3 different pairs (pλ
p
i , pν

p
i ) equal to say

(pκ
p
1 , pµ

p
1 ), (pκ

p
2 , pµ

p
2 ) and (pκ

p
3 , pµ

p
3 ).

If there are say αpj pairs with (pλ
p
i , pλ

p
i ) equal to (pκ

p
j , pµ

p
j ) then take βpj to be the

largest number such that 2β
p
j ≤ pa

p
j .

Consider the expression

(2)
∏
p

3∏
j=1

2β
p
j
µp

j
(κp

j
−µp

j
).

Its value is less than that of (1) but by definition their ratio is bounded by (23z)t
2

(where z is the number of primes dividing v). Hence this ratio is ≤ 8�(n)2· a(n) log log n
log log log n ≤

n2�(n)
a(n)

log log log n = no(�(n)). To prove our theorems it is sufficient to bound the value of
(2) by n(γ+o(1))�(n).

It is clear that the value of the expression (2) is equal to the value of another
expression

(3)
∏
k≥1

2vk(λk−νk) which has
∑
p

3∑
j=1

βpj terms

and for which
∏
r≥1

2λk ≤ f, ∏
k≥1

2νk ≤ ν.

By Proposition (3) such an expression attains its maximal value for some sequences
{λ′k}, {ν′k} such that all but one of the λ′k, say λ′r are equal to t and we have
ν′1 = ν′2 = . . . = ν′b = 1 + ν′b+1 = . . . = 1 + ν′r−1 for some b ≤ r − 1.

Consider now the expression

(4)
∏
k≥1

2ν
′′
k (λ′′

k−ν′′
k )

where
t = λ′′1 = . . . = λ′′r−1 (λ′′r = 0)

and min(ν′1, ν
′
a) = ν′′1 = ν′′2 = . . . = ν′′r−1(v

′′
r = 0).

It easily follows that the value of (3) is at most 22t2 times as large as the value of
(4) and 22t2 = no(�(n)). Hence it suffices to bound the value of (4) by n(γ+o(n))�(n).
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To obtain our final estimate denote 2a by y, logtm by w (where m = |G : E|) and
set x = y · w.

For some constants between 0 and 1 we have y = xρ and ν′′1 = σt. Then
w = x1−ρ = y

1−ρ
ρ .

We have n ≥ m.f.r ≥ wt · yt · yσt hence log n ≥ t · log y(1 + σ + 1−ρ
ρ ).

By Claim 3 we have w ≥ (log n)(1+o(1)) hence (1 + o(1)) log logn ≤ logw =
1−ρ
ρ log y. Therefore

(log n)2

log log n
≥
t2(log y)2(1 + σ + 1−ρ

ρ )2

( 1−ρ
ρ log y)

(1+o(1)) = (1+o(1))t2 log y(1+σ+
1 − ρ
ρ

)2·( ρ

1 − ρ ).

The value of (4) is 2σt(1−σt) which as we saw is an upper bound for the number of
subgroups R (ignoring an no(�(n)) factor). Hence

log (number of subgroups R)

( (log n)2

log log n )

≤ (1 + o(1))
t2σ(1 − σ) log y

t2 log y(1 + σ − 1−ρ
ρ )2( ρ

1−ρ )

= (1 + o(1))
σ(1 − σ)( 1−ρ

ρ )

(1 + σ + 1−ρ
ρ )2

= (1 + o(1))
σ(1 − σ)ρ(1 − ρ)

1 + ρσ)2
.

As observed in section 3 the maximum value of σ(1−σ)ρ(1−ρ)
1+ρσ)2 is γ. The proof of the

theorem is complete. �
By using a similar but simpler argument, one can also show the following

Proposition 6.7. Let G be an abelian group of order n of the form
G = Cx1 ×Cx2 × . . .×Cxt where x1 > x2 > . . . > xt. Then |Sub(G)| ≤ n( 1

16+o(1))�(n).
This bound is attained if Cxi = t · i for all i.

Combining this result with an earlier remark, we obtain that n( 1
16+o(1))�(n) is the

maximal value of
∏
i,j

gcd(xi, xj) where the xi are different numbers whose product is

at most n.
Note that |Sub(G)| is essentially the number of subgroups R of order [

√
|G|] (see

[Bu]) for a strong version of this assertion. Hence Proposition 6.7 corresponds to the
case r ∼ √

n of Theorem 6.6.
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§9. SLd(Z) as d→ ∞.

In this section we prove the upper bound of Theorem 3. To this end, we will use
two facts on subgroups of “small” index in SLd(q):

Proposition 7.1. Let F be a finite field of order q, V = F d and
G = SL(V ) = SLd(F ).

(a) Every proper subgroup of G is of index at least qd.

(b) Let H be a subgroup of G of index smaller than q
2
g d

2
. Then V has a sequence

d of F [H]-submodules {0} = V0 < V1 < . . . < Vs = V such that:

(i) for every i = 1, . . . , s, Vi/Vi−1 is a simple H-module.

(ii) There exists i ∈ {1, . . . , s} such that W = Vi/Vi−1 has dimension at least
2
3d and the induction of H on W contains SL(W ).

Proof. (a) is well known - see [ ]. (b) is proved in [ ]. �

Note that (7.1)(b) implies that H can be put in a block form with one large block
and the others are much smaller.

Now, our goal is to bound sn(SLd(Z/mZ)) where m ≤ n (see Proposition ). By

Corollary 4.2, we can assumem is a product of primesm =
t∏

i=1

qi. Moreover, we count

only the essential subgroup (see ) so if H is a subgroup of U = SLd(Z/mZ) =
t∏

i=1

SLd(Z/qiZ), we can assume the projection of H to each factor SLd(Z/qiZ) is a

proper subgroup. Thus, by Proposition 7.1(a), the index of H in U is at least
∏
qdi ,

so n ≥ md, i.e., m ≤ n1/d.

Let H now be a subgroup of U and q one of the prime divisors ofm. The projection
of H to SLd(Z/qZ) will be denoted by H(q). We can bring H(q) to a block form as
in (7.1)(b(i)).

The number of block forms is small, so we can assume we are fixing the block form
and count only H with H(q) of a given block form. Moreover, we can use (again)
Proposition 4.1 to assume that H(q) is fully reducible. Indeed, the kernel of the
projection to the blocks (i.e., replacing the representation by its semisimplification) is
a unipotent group of bounded rank - so up to a small factor the number of the fully
reducible groups is the significant one.
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Now, if the index of H(q) is smaller than q
2
g d

2
there is a large block of dimension at

least 2
3d, on which H(q) acts as a subgroup containing SL(W ) (and inside GL(W )).

If there is no such block, we say that all the blocks are small.

If there is a large block, then we can assume that H acts on it by exactly SL(W )
(since the number of subgroups between SL(W ) and GL(W ) is small). It is also clear
that in this case SL(W ) is a direct factor of H and for counting purposes we can
consider H as inside GLd/3(Fq). We can, therefore, immediately consider the worst
case situation and assume that all the blocks of H(q) are small, and so the index of
H(q) is at least q

2
g d

2
. Hence the index of H is at least m

2
g d

2
so m

2
g d

2 ≤ n.
We now count the number of all subgroups H of U = SLd(Z/mZ). By Aschbacher-

Guralnick ([ ]) H is generated by a solvable subgroup plus one element. It suffices,
therefore, to count the solvable ones. Every such solvable subgroup is within a maxi-
mal solvable, and the number of the latter is small (≤ |U |C -see [ ]). So we can fix a
maximal solvable subgroup S of U and count its subgroup. Such S is equal to

∏
q|m
S(q)

where S(q) is the projection of S to SLd(Z/mZ). Moreover, S(q) is mapped onto its
“semisimplification” S(q), which is a fully reducible solvable subgroup of SLd(Z/mZ),
with a kernel N(q). So we get an exact sequence:

1 → N =
∏
q

N(q) → S =
∏
q

S(q) → S =
∏
q

S(q) → 1.

Now, N is nilpotent of rank ≤ d2 ([ ]) so using again Proposition 4.1, it suffices
to count the number of subgroups of S. By the Palfy-Wolf Theorem ([ ]), S(q) is of
order at most q3d and so |S| ≤ m3d.

Claim: rank(S) ≤ 3
2d

logm
log logm + d2 + 1.

Proof. By ([ ]) it suffices to prove that if p divides |S| and if P is the p-Sylow-
subgroup of S then rank(P ) ≤ 3

2d
logm

log logm + d2.

To this end, note that the projection of P to H(q) is fully reducible if q �= p and
as such it is known that its rank is at most 3

2d. While, if q = p, the rank is bounded
by d2. This proves the claim as m has at most logm

log logm prime divisors.

Putting all this together we deduce that (up to small factors) the number of sub-
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groups of SLd(Z/mZ) is bounded by

|S|rank(S) ≤ m3d( 3
2d

log m
log log m +d2)

≤ n
g

2d2 3d
3
2 d( g

2d2
log n

log log n +d2) ≤ n(93/23+o(1)�(n)

and the upper bound of Theorem 3 is proven. �
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