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1. Trace Formula for finite groups

Let G be a finite group and let I' be a subgroup of G. We consider
the C-vector space of functions

V= {¢:G—>C‘¢(7x)=¢(m), ‘v’veF,‘v’xEG}.
We can think of V' as the C-vector space of automorphic forms on I'\G.
Definition 1.1. (Inner product on V) For ¢1, ¢y € V we define
(01, 02) = Z P1(z)p2()
zel\G
Definition 1.2. (Orthonormal basis for V) Let I'z € I'\G and

define 1r, € V by
1 ifxrelz,
1r.(z) := { / .

0 otherwise.

The functions 1r, for distinct cosets I'z form an orthonormal basis for
V' with respect to the above inner product.

Definition 1.3. (The kernel function K(z,y)) Let G be a finite
group and f : G — C. Let I" be a subgroup of G. For x,y € G we
define the kernel function

Ki(z,y) = f(z " yy)
yel’

Definition 1.4. (The linear map Ky) Let ¢ € V.. We define a linear
map Ky :V — V where for ¢ €V we have Kf(<z§) €V where

(Kpo) () = Y Kplw,y) - o(y).
yel'\G

Definition 1.5. (Trace of a linear map on a finite dimensional
vector space) Let V' be a complex vector space with basis vy, vy, . .., Uy.
A linear map L :V — V satisfies

L(v;) = Z Zaiijj, (for alll1 <i<nanda;; € C).
i=1 j=1
Then associated to L we may define the matriz Ay, = (ai7j)1<ij<n. The
trace of L (denoted Tr(L)) is defined to be o

n
= E Qi 55
i=1

i.e., it is the trace of the matriz Ay,
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Remarks on eigenvalues of a matrix: It is well known that for a
matrix A with complex coefficients a; ;, (1 <14, j < n) that

e Tr(A) = sum of the eigenvalues of A;
e Det(A) = product of the eigenvalues of A.

We now compute the action of the linear map Ky : V' — V on the
orthonormal basis given in definition 1.2. Let z € T'\G. We have

<Kf 1Fz> Z K¢(x,y) - 1r.(y)

It follows that the matrix A, associated to the linear map K is

iven b (K , ) and
given by 7z, 2) PG an

Proposition 1.6. (Trace formula for a finite group G) Let G be
a finite group and let T' be a subgroup of G. Let CI[I'| denote the set
of conjugacy classes {0*170 ‘ o€ F} with v € I'. For v € T" we also
define

I, = {0 el | o o = 7},
Gy={9eCG|gvg=1}

It follows that

N= ¥ B S s,

~ECI[T] zeG.y\G
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Proof. We have

Tr(Ky) = Z Ky(z,2)

=2 2 1)

2€T\G vel

= Z Z Z f(z_l-a_lya-z)

zel'\G v€Cl[I'] o€, \I"

2D SC R

~eCII] 2eT'\G cel',\I'

- X )

YECIT] 26T \G

= > > > flgr)tyg2)

~v€ECII] 26€G/\G g€l \G,

= > >, > fEaTg)

~eCII] 2zeG4\G g€l \Gy

=2 2. > )

~eCI[T] zeGW\G g€l \G

> Ly X )

YECI ZGG \G

The trace formula has two sides:

# (G
Tr( Kf Z A (T, Z f z~ 7z
~eCI[T] zeGW\G

-
geometric side

spectral side

where the geometric side consists of a sum over conjugacy classes.

2. Trace Formula for the infinite additive group R and
subgroup Z

Consider the additive group G = R and subgroup of rational integers
I' = Z. Following the recipe in §1, we define the C vector space of
smooth functions

:{¢:R_>C‘¢(I+n)=¢(:v), Vn € Z, VxeR}.
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Definition 2.1. (Inner product on V) Let ¢y, ¢y € V. We define
the inner product

<¢2,¢2> = /@(w)mdx:/o ¢1<$>¢2—(3‘3)d1’

Z\R

Definition 2.2. (Orthonormal basis for V) Let e,(z) := *™™*. [t
is well known that every periodic function is a linear combination of
en(x) with n € Z. Furthermore

(ems €n) = /1 e2milm=—n)z g, _ {1 if m=n,
Y o O ‘

otherwise.

This establishes that the {e”}nez is an othonormal basis of V.

Definition 2.3. (The kernel function K¢(z,y)) Let f : R — C be a
Schwartz function, i.e., a smooth function all of whose derivatives have
rapid decay. For x,y € R we define the kernel function

Ki(z,y) : Zf —r+n+y).

neL

Definition 2.4. (The linear map Ky) Let ¢ € V. We define the
linear map Ky :V =V by

(s 0)w) = [ Kot o0) dy
Proposition 2.5. (The e, are eigenfunctions of K;) Let n € Z.
Then N
(Krea)(@) = f(=n) - enl2),

where f is Fourier transform of f given by ]?(5) = [T flx)-e ™ d.
Proof.

Kfen /Kfasy en(y) dy

/Zf ot y)- enly) dy
0 nez

oo

_ / =z +1) - enly) dy = / F() - enl+1) dy

= f(=n) - en(a),
since e, (z 4+ y) = en(z) - e, (y). O
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Proposition 2.6. (The trace formula for the additive group R)
The trace formula for the group R and subgroup I' = Z 1is given by

Yo fm) = > fn)

neL neZ
—— ——
spectral side geometric side

Remark: The trace formula is the well known Poisson summation
formula.

Proof. We have shown that e,, is an eigenfunction of the linear map K

-~

with the eigenvalue f(n). The trace of Ky is given by the sum of the

-~

eigenvalues which is just > f(n). To find the geometric side we must
neZ

/OlK(x,x) dx:/lzjv(n) dx:Zf(n).

neL neZ

compute

Note that since the additive group Z is abelian there is only one con-
jugacy class, namely 7Z itself. O

3. The Selberg Trace Formula for SL(2,R) (Spectral Side)

Let G = SL(2,R) and I = SL(2,Z). We also require the maximal
compact subgroup

K =SO(2,R) = { (_cgi(&)) ig;%)))

In this case we define the vector space V' as a space of smooth functions
¢ given by

V::{¢:G—>C‘gb(vgk):¢(g), vy eT, Vk € K, vgeG}.

0§9<27T}.

By the Iwasawa decomposition it is known that every ¢ € G can be
uniquely expressed in the form

B Y wy 2 ( cos(0) sin(0)
9=\ o Y3 —sin(f) cos(0)
for some 0 < 0 < 27w, x € R, y > 0.

The action of SL(2,R) on the upper half plane h := {z +iy | z €
R,y > 0} given by

a b _az+b wb
(C d) = (V(Cd)ESL(Q,R), vZeh),
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establishes a one-to-one correspondence between GG/K and b given by
yz xy 2 ( cos(f) sin(0)) . yr oaxyTz) . ‘
( 0 y2 ) (— sin(f) cos(0) "~ \o Yz =Tt

1 _1
Notation involving z: We shall use the notation z = <y02 xy_f) €

y 2
G/K and also z = x + iy € b interchangeably. The usage will depend
on the context of the discussion.

Definition 3.1. (Petersson inner product on V') For ¢1,¢, € V
we define the inner product

(or.02) = [ orlo)alg) g

N\G/K
where d* g denotes the left invariant measure on the coset space '\G/ K.

1 _1
If z = (5‘12 i 12) € G/K then the Petersson inner product can be

0 y 2
written in a simple explicit manner as

(n02) = [[ @ T

zel'\b

We may then define £2 (I'\G/K) as the Hilbert space completion of
V. This space had been studied by Maass and elements of £? (T'\G/K)
which are eigenfunctions of the Laplacian with rapid decay at the cusp
are termed Maass forms for SL(2,7Z).

Definition 3.2. (The space L?, of cusp forms) We let L2,

denote the Hilbert space of Maass forms for SL(2,7Z). It can be shown
that each Maass form ¢ vanishes at the cusp, i.e., lim ¢(x + iy) = 0.
Y—00

It was not known before Selberg’s work on the trace formula whether
infinitely many such Maass forms existed or not. In addition to the
Maass forms there are are also Eisenstein series which are eigenfunc-
tions of the Laplacian but are not in £2.

1 m

Definition 3.3. Let 'y, := {(0 1

)} . Let s € C with Re(s) > 1.
meZ

We define the Eisenstein series

E(z,s) ::% S In(yz)

VEL\T
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Theorem 3.4. (Fourier expansion of Eisenstein series) The Eisen-
stein series F(z,s) has the Fourier expansion

2m°\/y 1 ;
E(z,s) = "+ M(s)y' "+ o~ ¥ o1 a5(n)|n" 2 K, 1 (2m|n[y)e*™
T(5)C(2s) 22 2

where
_ Ts-3) s 1) N
MO =V e o
d>0
Ks(y)_%/o e brletd) o L
Proof. See [Gol06]. O

Corollary 3.5. (Growth of the Eisenstein series at the cusp) Let
s € C with with Re(s) > 1. Then |E(z,s)| < y®®) and |E(z,s)—y°| <
Yyt ReG) g5y — o0,

Definition 3.6. (The kernel function K;) Let f : K\G/K — C.
For z, 2" € SL(2,R) we define the kernel function
Ki(z,2) =) f ('),
vyerl

provided the sum converges absolutely.

Proposition 3.7. (Properties of K;) For all z,2" € SL(2,R) the
Kernel function Ky (given in the above definition) satisfies the follow-
g properties:

o K¢(zk, k') = K¢(2,7), vV kK e K),
o Ky(vz,7'2) = K¢ (2, 7), (V.7 el).
Proof. Exercise for the reader. O

To facilitate the computation of the trace of the linear operator Ky
Selberg chose a class of especially nice test functions f which we now
describe.

Definition 3.8. (The function 7) We define the function 7 : G — C
by

(9) =a* + >+ +d* -2, (forg:(‘;g)GG)
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1 _
Proposition 3.9. (Properties of 7) Let z = <y02 xy_l > , and let

y 2

N

2 = <y/é v /_1;> € G/K. Then we have
0 o>
(i) 7(k) =0, (VEkeK),
(ii) 7(kz) = 7(2k) = 7(2), VkeK),

(iii) T(Z_IZ/) _ (l’ - $/)2 + (y - y/)2 _ |Z - Z/|2
yy' vy
/|2

oz — o> |z—

(iv) for all o € SL(2,R).

Proof. Exercise for the reader. 0

Im(cz) - Im(c2’)  yy

Definition 3.10. (Selberg’s kernel function) Let f : Rt — C be
a smooth function satisfying f(t) <. |t + 2|7 . Then for g,q €

SL(2,R), we define
Zf( 9 79)

vyel
Theorem 3.11. (Growth of Selberg’s kernel function at the
1 -1 /l / /_l
cusps ) Let z = (y2 xy_f), =Y xy_; € G/K. Then,
0 y =2 0 4y 2
for every e > 0 and y,y’ > 1, we have

o ||Ks(z,2)] < Z‘f(T(Z‘Wz’))( < YY)

yel

> ’f(dz*l’wl))‘ < (')

yeI-Ts

Proof. We compute

‘f(7(2_12/>> ‘ _ <(w - x’)zy;(y - y’)Q)
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Next, for o € I', we adopt the notation that z, = az’ = x4 + iy,. It
follows that

wien- 855

a€To\I' €T e

- 3 syt

€l \I' meZ

_ Z Zf<($—$a—ﬂ;);a+(y—ya)2)

a€lo\I' meZ

2

3 z(x—zza Py

a€lo\I' meZ
—1—¢
SR AN ((90 —aq —m)’+ y2>
a€l\I! meZ

Now, we can bound the latter sum above as follows.

C1—¢ 0o
Z ((m S L y2> <y +/ (02 +y?) "1 du
meZ 0

< y—1—2€'

It immediately follows from corollary 3.5 and the above calculations
that

Kf(Z, Z’) < y_eE(Z,,1+€) <e VY E<y,)1+e‘

This proves the first assertion.
For the second assertion we calculate the partial sums over I', \I'

‘f(T(z’lfyz >‘ <Ly Z < (yy')
v €T—To Peoy # Foo
since |E(z,1+ €) — y'*¢| < y~¢ by corollary 3.5. O
Definition 3.12. (The integral operator K;) Let z € ii. Then for

¢ € L2(T\bh) we define the integral operator K; : L2(T'\bh) — L*(T'\b)

by
dx'dy’
(Kso)(2 /Kfzz Z) é)y

I\b

Remarks Since Ky is symmetric, i.e., Ky (z z) Ky (z’ z), we see
that K; also satisfies the bound |Kf(z 2| < ye(y')C Tt follows
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that for every z € b that

da:’d dx'dy’
(o)) < | [ I P Tk [ e T
(v')?
I'\h I'\b
o, dx'dy’ o dx'dy’
<<z,e Yy 2 ; . / ¢ z ;
/( ) (v')? 9() (v')?
'\b '\b
= 0..(1).

This shows that the integral defining the integral operator Ky converges
absolutely.

Definition 3.13. (Hilbert-Schmidt Operator) Let X be a locally
compact space with a positive Borel measure. Assume that L2(X) is a
separable Hilbert space. Let K : X x X — C be L? in each variable.
We define the integral operator

/ K(z,y) ¢(y) dy, ((/56 £2(X)>.

The integral operator K is said to be of Hilbert-Schmidt type if

// K (2, )2 dzdy < oo,

XxX

Theorem 3.14. (Hilbert-Schmidt) A Hilbert-Schmidt operator as
in definition 3.13 is a compact operator. If K 1is self adjoint then
the space L2(X) has an orthonormal basis of eigenfunctions ¢1, ¢a, . . .
where Ko; = N+, (1 =1,2,3,...) and \; — 0 asi — oco. If the sum of
the eigenvalues converges absolutely, then we say K is of trace class and

the trace of the operator K is given by| Tr(K) = Z i = / K(z,x)dx
- X

Proof. See [Bum97] O

Warning: The integral operator K; given in definition 3.12 is not
Hilbert-Schmidt since it can be shown that

2 dedy da'dy’ _
//'Kf(z’z)| (v)? (y)?

\b I'\b

We shall now construct a modification of the integral operator K.
The modification will be done in two steps.
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Definition 3.15. (First modification of K;) We define

1
Ki(z,2') == Kg(z,2') — / Ki(z,2 +1t) dt.
0

Proposition 3.16. Let z € h. Fiz a fundamental domain for T'\h
given by

D= {z = ‘ ~1/2 <Re(z) <1/2, |2| > 1.}
If ¢ € L2, then we have

cusp

Kf¢ / Ki(z, ) dgij (K} 0)(2).

Proof.

/ (/ Ky 0 i) o) Tt = [ wote ([ Lo — 1 i) T,

O

Definition 3.17. (Second modification of K;) We define

Kf(z,2) = Ks(z,2) =) _ f (M) .

/
nel vy

Theorem 3.18. (Growth of the Modified Kernel at the Cusps)
Let z=x 41y, 2 = 2" +iy € b. Then for every e >0 and all y,y’ > 1

Rote )| < )+ [ Ir0)] an

0

Proof. We calculate

o 2
K#(z 2 — Kf(zz /Kfzz—l—t dt—Zf(‘Zz—jLnl)
neL vy
1 1 9
_ t —
0 0 ne’ y neL

Ofle(z,zUrt) dt + 7f (%) d(t — [t]).

—00
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The first term above is bounded by (yy')~¢ by theorem 3.11. For the
second term we apply integration by parts.

7f(<x—x'+t>2+<y—y’>2) it 1)

E vy’
% o t2 AW
K yy
% t2 YAV x t2 YAV 2
<</‘df( +(y/y)>‘:/f,( +(y/y)>_/dt‘
. vy J Yy vy |
put 7= tXF(;J—/y/)Q

< [1rwdr
0

We have proved that )Kf(z,z’) — Kp(2,2)] < ()~ + [|f'(r)] dr
0

The theorem follows from theorem 3.11 which says | K f (z,2")] < (yy')~.
U

Theorem 3.19. (The Kernel function [?f is Hilbert-Schmidt
and of Trace Class) The kernel function K; defines an integral
operator Ky : L2 — L2 which is Hilbert-Schmidt i.e., it satisfies

cusp cusp
2 dxdy dx

~ du’
//‘Kf(z,z’) —g<oo.
D D

T /
w)? ()
Furthermore, when restricted to the space L2, we have K; = IN(f. For

cusp

f real valued the integral operator K £ L2 — Ll 15 self-adjoint
and of trace class with trace given by

Tr([?f) = /I?f(z,z) cgc)léy

Proof. 1t follows from theorem 3.18 that

~ 2 dxdy dx'dy’ _ dxdy dx'dy
Ki(2,2)] —= < // yy' )" +1 — K 1.
//) 12 (¥)? (v)? <( ) )
D D D D

(¥)? (¥)?
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Proposition 3.20. (The integral operator K; commutes with
the Laplacian) For z =x + iy € b let

2 2
denote the Laplacian on L*(T\bh). Then A,K; = K;A,.
Proof. First note (by a brute force verification) that

A Ky(z,2) =Ny Kp(z,2').

We compute, using integration by parts (Green’s theorem), that

(Asz gb) (2) = /F\h <AZ/Kf(z,z’)) ¢(2,> d(z/f)lg/

- /m (_ (a(f/)? - a(f’)?) Kf(z’zl)) ) dody
0? 0?

= [ e (- (g + gty o)) s
— - Kp(z,2')- (Az’ (b(zl)) d(SUy/C)lZQJ
= (KA. 9)(2).

O

Let A € C and assume the eigenspace ker(A — \) is one dimensional.
Then since A and Ky commute, it would follow that if Agp = X\ - ¢
for some ¢ € L2(T'\h) and X € C, then for each f there would exist a
function hy(A) € C such that

Ky¢ =hg(A) - ¢.

We will now show the existence and uniqueness of h¢(\) using differ-
ential equations.

Proposition 3.21. (Eigenfunctions of A are eigenfunctions of
K;) Assume that A,¢(z) = X - ¢(2) for some ¢ € L*(T\h). Then for
every f : RT — C (satisfying f(t) < (t+2)717¢) there exists a unique
function hy : C — C such that

(K70)(2) = hy(A) - 6(2).
Proof. We follow [Hej76]. We want to prove (K¢)(z) = hs(N) - ¢(2)

which is equivalent to:
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(3.22)
|z — v2'|? ) n do'dy’ (|z—z’\2) . d'dy’
Fé; (y Im(v2') 7 () h/f gy ) o) (')

The Cayley transformation
c:h=U:={ueC||u <1}

which maps the upper half plane to the unit disk (taking i to 0) is given
by

(') == (z _}) 2= Zi - Z:, (V2 €p).

Z 4
It is easy to see that under this transformation
|dz'|  2dc|

Im(z)  1—|c|?
For fixed z = x+1y € h we define the modified Cayley transformation

. 1 _1 . _1
() )

2y
il —a)+y+y
which maps the upper half plane b to the unit disk 4 (taking z to 0).
Furthermore

=1—

A
vy’ 1— |w]*
Let us now make the change of coordinates z’ — w (2’) in the integral
3.22 and define ¢(z) := ¥(w). It follows that

[ (F195) wie) s = 1,0 900

1= fwl
i

where d 4 (w) denotes the area differential on 4. We must prove that
h¢(\) depends solely on f and .
If we convert to polar coordinates on 4 the above can be rewritten

[ () ([ v i) 2 w0

r=0
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This can be rewritten as
1

[(55) v o = - v

r=0

where
UH(w) = /Qﬂ\y(w-ei") df.
Note that 0
/O%xp (re”) do = /OQW\I/ (w-e?) do

for all w € U satisfying |w| = r from which it follows that ¥*(w) is a
radially symmetric function which depends only on r = |w| and, hence,
satisfies ZW*(w) = 0.

Furthermore, ¥* is also a radially symmetric eigenfunction of the
Laplacian and, therefore, satisfies the differential equation

d>v* 149+ 4\

- U* = 0.
dr? +r dr +(1—r2)2

(3.23)

Let A € C be fixed. A possible solution (up to a constant factor) to
(3.23) must be of the form

U (r) =7 (1 +air 4+ agr* + -+ ).

We calculate
1

“UH () =er 2 +ag(c+ Dret 4
r

U (r)=clc—Dr? +ai(c+ er +---
Now substitue into the differential equation and we get

4\

A Y = arfer i+

0=v*"(r)+ %\I/*,(T) +
It follows that ¢ = 0 and higher order terms are defined recursively
from the differential equation. There will be a second solution but it
will be of the form logr(1 + byr + ---) which is singular at the origin.
Since a regular solution W* exists and is uniquely determined it follows
that hy(\) exists and is also uniquely determined. U

Remark: The above proof shows that a solution to the equations

Ap=2rp,  (K;9)(2) = hy(M)e(2)
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can be made radially symmetric around z in the non euclidean sense.
Then A¢ = A¢ becomes an ordinary differential equation with a 1-
dimensional space of solutions regular near z. This yields the constant
h¢(A) as in the case of a one-dimensional eigenspace ker(A — \).

Definition 3.24. (The Abel Transform) Let f : Rt — C be a
smooth function such that f and f' are integrable on R*. For w > 0
we define the Abel transform

Qw) :=7f(w+£2)d5=7 10 g

t—w
provided the integral converges absolutely.

Proposition 3.25. (Inverse Abel Transform) Let Q(w) be the Abel
transform of f. Then

o0

f(t):_?l/Q’(terz)dw.

Proof. We have

;/Q’(t%—w?)dw:;//f’(t+w2+§2)dwd§

21 oo
—1
:_//f’(t+r2)rdrd9
T
0 0

:—/Ooof’(t+u)du _—

U

Definition 3.26. (Selberg Transform h;) Assume A¢ = (1 +1?)-¢
for some ¢ € L?(SL(2,Z)\b). Let f : RT — C be a smooth function
satisfying f(t) <. (t +2)717¢ for t > 0. Then the Selberg transform
is defined as the unique function h = hy : C — C for which we have
K¢ = hy(r) - ¢ as in proposition 3.21.

Proposition 3.27. (Evaluation of the Selberg transform) Let )
be the Abel transform of f as in definition 3.24. Then we have

h(r) = /OO Qe"—2+e™™) €™ du.

[e.e]



18 DORIAN GOLDFELD

Proof. Choose ¢(z) = y2+" in proposition 3.21. Now

1 62 82 1iir 1 1iir
S0 == (g ) o = (307)

Although 2" is not in £2 (SL(2, Z)\), the proof of proposition 3.21
still goes through. It follows that

h(r) - y2ti = 7 70 f ((:r — ')’ + (y — ?/)2> ()5 Lcjy’

vy y

0 —

Make the transformation

z—a dz’
g ey —7 dg == .
Vyy' vy’

Then

Y

. <7 2 \2 . d /
h(’f‘) . y§+zr _ / / f ((y yyﬁ/y) + 52) (y/)§+zr@ d§ _/y2
0 —o0

- [o () wrrviw

vy (0
0
1 y Y i a4y
:?JQ/Q(—,—QﬂL—)(y/) -
/ Y y y

Iiir > 1 ir dy/
=y / Q(?—2+y’)(y’) m
0

The result follows upon making the transformation 3’ = e*. O

Definition 3.28. (The Selberg transform Functions) Start with
a smooth function f : Rt — C satisfying f(t) <. (t +2)717¢. Selberg
defines the following functions:

Q(w) = /_OO flw+ €2) d, (Abel transform of f),

glu)=Q (" —2+¢"), (u € R),
h(r) = / g(w)e™ du, (Fourier transform of ¢)
1l | |
g(u) = o / h(r)e™™ dr, (inverse Fourier transform of h).
7r
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Explicit Example of the Selberg Transform

3
2

f =6+ Q)= (1+3) .

r

g(u) = sech(u), h(r) = 7 - sech <?> :

Since sech(u) = we see that g, h have exponential decay.

_2
el+e~ v

Proposition 3.29. Growth of the Selberg Transform Functions
Let € > 0. Then

FO) < (t4+2)77¢ Qw) < w2,
ou) <M nGr) < (I

Proof. Exercise for the reader. O

For z € b let ¢p(2) := \/g be the constant function of Petersson norm

one, and let ¢1,¢o,... denote an orthonormal basis of Maass forms
consisting of eigenfunctions of the Laplacian where Ag; = (}1 + rf) Oi
fori=1,2...

Theorem 3.30. (Selberg Spectral Decomposition) Let ¢y be the
constant function of Petersson norm one, and let ¢1, ¢9, ¢3, ... denote

an orthonormal basis of Maass forms consisting of eigenfunctions of
the Laplacian. Let F € L*(SL(2,Z)\h). Then for z € b

F(z) = Z (F,¢:)pi(z) + i / (F,E(%,1/2+1ir))E(z,1/2 + ir) dr.
Proof. See [Gol06]. O

Theorem 3.31. (Spectral Decomposition of K;) The Selberg
kernel function Ky : L*(SL(2,Z)\b) — L£*(SL(2,Z)\b) defined in
3.12 has the following spectral decomposition.

Ki(z,2') =
- Zh(n)@(z)MJr% / hr)E(z,1/2 4 ir)E(2/,1/2 +ir) dr
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It follows from theorem 3.31, that

[e.e]

1 . dxdy
(3.32) / Ky(z,2) — o / h(r) - |E(z,1/2 +ir)|* dr /7
SL2,Z)\b o
= / Z h T ¢z (bz dxdy Z h

sLe,z)\p =0

Unfortunately, each individual integral

dxdy
| K

SL(2,Z)\b
and
dxd
/ / (2 1/2 4 ir)? dr TV
y?
SL(QZ)\h —00

does not converge! Nevertheless, it turns out that each of these integrals
blows up in exactly the same way, so that when they are subtracted
one is left with a finite value.

We, therefore, modify (3.32) as follows. First we modify the kernel
function Ky by subtracting the contribution from the parabolic conju-
gacy classes of SL(2,Z). A matrix v = (2%) € SL(2,Z) is parabolic if
|Tr(vy)| = |a + d| = 2. Associated to v we have the conjugacy class

] i= {0t | o € SL(2,2))
and the centralizer
L,:={0€SL(2,Z) | dy=n~d}.
We define
K;(z,z') = Ky(z,2') — Z Z f( 1‘2_52/|2 )
(Imz)(Imd=")

v€Conjp,, (T') d€[y]
2
— K / o |Z -z |

(&)= ((Imz)(lmz’)

|z — oyo 12|
D DD DI 7 )
(Imz) (Imoyo—12")
v€Conj,,, (I') o€l \I'
y#EI

where Conj,, (I') is a set of representatives of parabolic matrices in
I' = SL(2, Z) under conjugation.
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be a parabolic matriz. Then

Lemma 3.33. Let v # +(§9)
(47) |meZ) - £T.,

I, ={+

O o

Furthermore, {£ (§ ) | m € Z} constitutes a set of representatives of
parabolic matrices in SL(2,7Z).

Proof. Exercise for the reader. O

Let

1

57 $2+92 Z 1a yﬁy}
denote a fundamental domain for SL(2,Z)\b truncated at Y > 1. We
rewrite the left side of (3.32) as

DY::{x+zyEb‘ —53 x <

o0

1 _ dxdy
34 K - — |B(z,1/2 ?
(3.34) / 1(:2) 4ﬂ/h<r> B2+ i) dr | 2
SL
) dud dxd
/Kf = /f xy—l—hmI(Y)
Y =00
where

|z — oyo12)? dx dy
> 2 N e 3)) 5
DY eConjpa(I) o€l\D
y#F+l

- Y > (et
1 1 B
v€Conj,,, (T') o€l \T Imo Z)(Imfya Z) Yy
y#EED

3 )

MmeZ o€+l \I'
m£0

<[z e

z=0y= 0777”1;%

Hence
1

Y
_ / / ( ) dady / / VI E(z,1)24ir) 2 drdxdy
0 MmEZ y

Y
m#0 DY e
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On combining ( 3.32 ) and (3.34) we obtain the following preliminary
version of the Selberg Trace Formula.

Proposition 3.35. (Preliminary Trace Formula) Let ¢y be the
constant function of Petersson norm one, and let ¢1, @9, @3, ... denote
an orthonormal basis of Maass forms satisfying A¢; = (i + 7“]2) ¢j. Let

1 1
DY::{x—i—iyeh‘ —nggg, x2+y221,y§Y}

denote a fundamental domain for SL(2,Z)\b truncated at'Y > 1.
Then

o Ly dedy | 7f(0)

Zh(rj) = /Kf(z,z) 2 + 3 —1—}/12201(}/)
0 swenw

Spectral Side

where

I(Y) rg]ngf( >dxdy // (2,1/2 +ir)[? dri‘”;l?j

DY —oo
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4. The Selberg Trace Formula for SL(2,R) (Geometric Side)
A matrix (¢4) € SL(2,R) is of 3 types:
e Parabolic with |a + d| = 2,
e Hyperbolic with |a 4 d| > 2,
e Elliptic with |a +d| < 2.
We can decompose SL(2,7Z) as a union over distinct conjugacy classes

SLe,zZ)=  |J o

conj. classes a

where [a] denotes the conjugacy class given by
[a] :=={oao™! | 0 € SL(2,Z)}.

Let ¢g = /3/m and let ¢1, ¢o, ... be an orthonormal basis of Maass
cusp forms for £2,, (SL(2,Z)\h) each satisfying Ap; = (1/4 +12) ¢;.

cusp
Fix Selberg transform functions as in definition 3.28. We assume that

h(r) = h(—r). The Selberg Trace Formula for SL(2,7Z) is the identity

b)) = Cd) + Y C(P) + Y CR) + C(co),
j=0 P hyperbolic R elliptic
conj. classes conj. classes

Spectral Side N ~/

~-
Geometric Side

where C(Id) is the contribution of the Identity element, C'(P) is the
contribution of a hyperbolic conjugacy class [P], while C'(R) is the
contribution of an elliptic conjugacy class [R], and C(c0) is the con-
tribution of the sum of non-identity parabolic conjugacy classes minus
the contribution of the continuous spectrum. In the following sections
of these notes we will explicitly evaluate each of these contributions
based on the preliminary trace formula derived in proposition 3.35.

4.1. The Identity Contribution C(Id). The identity contribution

C(Id) is just the term ”T(O) in proposition 3.35. We want to express

C(Id) in terms of the test function h. The final result is.

o0

1
Proposition 4.1. |C(Id) = D / rtanh(7r) h(r) dr.

—00
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4.2. The Contribution C(co). Following proposition 3.35, we define

— Jim /Zf( ) // ]Ez1/2+2r)]2drdmylg
m7£0

DY —oo

Proposition 4.2. For s € C, let
I'(s —1/2)((2s — 1
M(s) = Val(s —1/2)¢(2s — 1)
I'(s)¢(2s)
Let h(r) be an even function, holomorphic in some strip |Im(r)| < 3+
for € > 0 which satisfies h(r) = O (eI} for r € R. Then

o0

C(o0) = —% h(r) {I%(l—l—ir)—i-Re <%’(1/2+z’7’))} dr
+#(1/2) —¢(0) log 2.

Proof. The result follows from the next two lemmas.

Lemma 4.3. For' Y — oo we have

/Zf( ) = 4(0)og (v/2) + "

MEZ
m#0

o0

B )1%(1+z7")d7" + o(lof/Y).
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Proof. After transforming, y — %

1 1
Z—zlogx+co+(’)<—>,
m T

m=1

, and using

along with

for y < 1/Y we obtain

/Zf( ) 7(2 %)f(yz)dy

meZ 1<m<yY
m=£0 1/Y

[e.e]

=2 / log(yY) + co] f ( dy + O
1Y 1/Y

[l f

Since |f| < 1, and f(y) < y~'17¢ as y — oo we have
1 y 272 logY
;W —/ ;

Further, using the bound |f \ < 1, we see that

Y ?

—_
?\8
=
< |
N
Q.
||
—_
“<\ﬁ<

1Y
1
[ rostor) +| s v < 3
0
It follows that

/Zf() 7( %)f(?f)dy

mMEZ I/Y Smgyy

m#0
2(logY) /f dy+2/f (logy + co) dy + O(o;g/ )
0 0

o0

1 logY
=g(0)(logY + o) —|—§/f logy— + O(Og )
0

Y
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Next, by the Selberg transform,

[e.e]

/(logy) ﬁ=——//\/_logy Q' (w) dw dy

:__//flogy Q' (w) dy duw

w=0 y=0

_ ! _log(wy) () duw
] [ s

(.

~
This integral = 7r( logw — 2log 2).

—/ (logw — 2log 2) Q' (w)dw
0

_ / (logw) Q'(w) dw — 2(log2)g(0)

~
0 Letw=¢e%+e % -2
o0

- / log (" + e —2) g'(u) du — 2(log2)g(0)

Observe that e* +e ™% — 2 = e“(l — e*“)2 so that
log (e“ +e " — 2) =u+2log (1 — e_”) .

It follows that

!(logy)f(y)% = —20/1og (1—e™) g'(u) du — O/UQ’(U) du — 2(log 2)g(0)

= —2/log (1 — 67“) g (u) du + @ — 2(log 2)g(0).

Now
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It follows that

o [e.o] o0

—2/log (1—e™) dg(u) = L / h(r)r /e"“ log (1 —e™") du| dr.
T
0 —00 0
Further,
. i iru u (1 —ir
—zr/e log(l—e ) du:—rél—_”;—c@

0

If we insert this into the above we obtain

—2/10g (1 — e*“) dg(u) = —2cog(0) — % / h(m% dr

0 —00

since h is even.
Combining all the previous computations completes the proof. [

Definition 4.4. (Truncated Eisenstein series ) Let Y > \/Tg We
define the truncated Eisenstein series EY (z,s) for 2 € D by
E Y
EY(Z,S) — (275) . f07"y< )
E(z,s) —y* = M(s)y' ™ fory=>Y.
Lemma 4.5. (Maass-Selberg relation) Let s = o + ir with o > 3
and r # 0. Then
/‘EY 2 dxdy B Y2 b — | M(s)]PY1-% N M@GE)Y?" — M(s)Y 2"

a 2 — 1 2ir

where fE T +iy,s) de =y* + M(s)y™*, M(s)M(1—s) =1, and
0

JAT(s— 1/2)((2s — 1)
MO =T e
Proof. See [Iwa95]. O

We would like to use the Maass-Selberg relation to evaluate the term

1 oo
= /|Ezl/2—|—z)|2

—00

dxdy g
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which occurs in C'(c0). There is an issue, however, because the Maass-
Selberg relation is for fD |EY(2, s) }2 d“dy while our goal is to compute
Jov | E(2,1/2+ir)|? digy. We get around this following a method which

was introduced by Selberg (see the Gottingen Lecture notes [Sel89)])
Define

E*(z,8) = E(z,8) —y* — M(s)y* .

Then for Y — oo we need to estimate the difference

1 o
dxd dxd
/‘EY(Z’S /lE |21Ey //| |2ZL'y
D =0y=Y

x
when s = u + i and % < u < 1. Now, with this choice of s,

Yy

271'5\/@ 1 ;
E*(z,8) = ———— o1_9s(n)|n|* "2 K 27| nly)errine
( ) ) F(S)<(28) ; 1-2 ( )| | s—%( | |y>
< e2r€—7ry'
The constants 2, 7 in the bound e?"e~™ are not optimal.

This bound follows from the exponential decay of the K-Bessel func-
tion (here we use the fact that ¢ + ¢! > 2) given by

u

VY- K _%+ir(27r|n|y) — g/eﬂ”'y(t*%)tu—éﬂr du
U
3
< €f§|n|7r

and the exponential decay of the Gamma function given by Stirling’s
asymptotic formula [D(u + ir)|? ~ 2r - [r|**~" e "l together with the
prime number theorem which says |¢(1 + 2ir)|~! < log|r|, for |r| > 1.

We immediately deduce that

d:vg’y :/’EY(Z,U—i—ZT)l + O( 4r —27rY)

D

/ Bz, 0+ ir)?
'DY
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It follows from the Maass-Selberg relation and the above computa-
tions that

dxdy
2
/47?/ E(z,1/2 +r)|" dr /2
1 y2o-l _yl=20 (1 —|M(c+ir)]?) - Y™
= — | h(r)- 1 d
4 (7’) gl_>m% ( 20—1 + 20 —1 "
1 % M(E —ir) V2 — M(L 4 i)y =2 s
+ e h(r) - (3 —ir) 57 (3 +ir) dr+0O | e Y / h(r)e*" dr
T e

—00 —00

=L(Y)+ L(Y)+ 0O (e®™)
since we have assumed that h(r) < el

Evaluation of I;(Y):

First of all, by the Selberg transform (see definition 3.28), we have

1 3 Y?o‘—l _ Y1—20'
— [ h(r)- lim
20— 1

4 o—1

) dr = g(0) log Y.

—00

It follows that

o+ 2'7’)|2) LYyt-2

dr.
20— 1

L(Y) = (0)1ogY+;T1$/h(r)- (1 ]

To evaluate the limit in the integral above above we consider the
Taylor expansion around o = % given by

1= Mo+ ir)M(o —ir) = 1 = M (1/2 +ir) M (1/2 — ir)
n [Mf <%+>M(%—) +M<%+z’r> M (g_ﬂ . (0_%)

+ {higher powers of o — 1/2}.

We obtain

L(Y)=g(0)logY + 8i7r / h(r) - [j\]é/((f +r) + M (f — ZT)] dr.




30 DORIAN GOLDFELD

Evaluation of I5(Y):

For the evaluation of I5(Y"), it is necessary to interpret the integrals
involved in the sense of Cauchy Principal Value, i.e.,

(4.6) /_OO @ dr = lim f(@) d

e—0 |z|>e €T

It is easy to see that if f is C* on R and decays moderately at +oo,
then the limit (4.6) exists.

Next, we compute

1 ML — i)Y — ML i)y R
[2<Y> = E / h(T) : 2 %r 2 dr
7 Re (M (3 —ir)sin (2rlogY)
_ L h(r) - ( <2 ) ) dr
47 r
h(0)M (1
( )4 () + o(1)

as Y — oo. This follows since F(0) = hm = f F(r bm (:T) dr which

is a well known result in the theory of Fourler mtegrals.
We have

h(0)M ()

L(Y) = 1

+ o(1).

0

4.3. Contribution of the Hyperbolic Conjugacy Classes C(P).

A matrix (¢%) € SL(2,Z) is termed hyperbolic if one of the following
three equivalent conditions is satisfied:

(1) |a+d| > 2,
aw; + b

cw; +b
(3) There exists unique n € SL(2,R) and p € R with |p| > 1 such that

() =n (b, )

Definition 4.7. If P = 1 (gp&)n*l € SL(2,Z) is hyperbolic with
\p| > 1, we define N(P) := p? to be the norm of P.

(2) (2%)has 2 distinct real fixed points wy, wy with = wy,
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Definition 4.8. (Centralizer I'p) Let P € SL(2,7Z) be hyperbolic.
We define the centralizer of P (denoted I'p) by

Tp:={0 € SL(2,Z) | 6P = P5}.

Lemma 4.9. Let P € SL(2,7Z) be hyperbolic. Then the centralizer I'p
15 the direct product of an infinite cyclic group generated by some Py €
SL(2,7Z) and the group {£1} of order 2. Here Py is itself hyperbolic
with the same fived points as P. Hence Tp = {+ Pt | ( € Z}.
Furthermore P = £F" for some m > 1, and this uniquely deter-
mines Py. The element Py is called a primitive hyperbolic element.

Proof. Assume § € I'p <= 0P = PJ.

We now show that this condition forces § to have the same fixed
points wy, wo as P. In fact, for i = 1,2, we have

This implies that one of the following two cases must hold:

case 1: dw; = wy, dwy = wg‘ or ‘case 2: dwy; = woy, dwy = wy |

We want to show case 2 cannot happen. In either case 6%w; = w;.
Now 0 must have at least one fixed point which cannot be w; or w,.
Further, fixed points of § must be fixed points of §2. It follows that §?
must have at least 3 distinct fixed points which is not possible unless
62 is &1 where I is the identity matrix.
So, we may assume 6> = +1 and § # =+ since we are in case 2. It
follows that 6 = (¢ _), hence tr(6) = 0.

c —a

It remains to show that tr(d) # 0. Let n € SL(2,R) such that

P = n(épg)n*l. Then 0 - (n(ép(]l)nl) = (U(Sp01>771> -0

which implies that

(rm)-(2.4) = (2.2 (o)

The only matrices in SL(2,R) that commute with (8 991 ) are diagonal
matrices of the form (“ 0 ) with u € R and w # 0. This implies that

0wt
o= (5.,%)
for some u € R*. This is a contradiction since the trace of n=1dn is
equal to the trace of § which is zero. We have thus proved that any

matrix 0 which commutes with a hyperbolic matrix P must have the
same fixed points wy, wy as P. It follows that T'p = {+ P} | ¢ € Z}
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Proposition 4.10. (Computation of C(P)) Let P € SL(2,7Z) be a
hyperbolic matriz where P = P (m > 1)and Py =1 (8 p91 ) n~! as

in lemma 4.9. Then

O(P) = log N (F) _g(log N(P)).
(N(P)% . N(P)—%)

Proof. The proof of proposition 4.10 is based on the following lemma.

Lemma 4.11. Let Py =1 <g p?l) n~! be a primitive hyperbolic matriz

in SL(2,7). Then a fundamental domain for (n~'Tp,n) \b is given by
D,={z=z+iyebh|zeR, 1<y<p’}.

¢
Proof. First of all n~'T'p, n = { gp?l) ‘ (e Z}. Let z € h. Then
(6’ p91> z = p?z. Clearly |J p* - D, =b. O

LeZ

We now go on to prove proposition 4.10.

|z — o Pro 2| dxdy

Cc(P) = / > )f <1m(z)-1m(aP5"a‘1Z)> v

SL(2,Z)\b a€lp \SL(2,Z

B loz — o P z|? dxdy
B Z / / (Im(az) . Im(oP&”z)) y?

o€l gy \SL(2.2) o-(spz)\0) - /
zZ— oz
-/ 2= R\ dedy
= Im(2) - Im (F§"2) v
Fpo\h ~ - L

This follows from proposition 3.9 (iv)
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Next, make the transformation z — n~1z. It follows from lemma 4.11
that

In~1z — Pé“n_lz|2 dxdy
P p—
cw= [ (Im(n‘12’) (B2 y
7771'(1_‘130\[))
_ / L= nPyn 'z dady
- (=) Tm (B2 |
(n*leon)\h

= ] 7 f |z — meZ‘Z dxdy
/ p2m y2 y2

2 o0
f (p*™ — 1)2 22+ y?\ dady
- /. f p2m ’ y? vz

To proceed further let x = y¢ in the last integral above. We obtain

2

C(P):Q]]O f((p%;?—;l).(urg)) &ydy

:210gN<p0>7 f(% (1+52)) e

Next, let

C(P) = log N(Py) N]L(D];)_Q : Q(N(P) +N(P)! - 2)
_ e N 1og v(p))
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4.4. Contribution of the Elliptic Conjugacy Class C'(R).

A matrix (¢%) € SL(2,Z) is termed elliptic if one of the following
conditions is satisfied:

(1) |a+d| <2,
(2) (2 %) has 2 complex conjugate fixed points,
(3) There exists unique n € SL(2,R) and k(6) = (%35 5n9) such that
(45) = nk(6) "
Definition 4.12. (Centralizer I'r) Let R € SL(2,Z) be elliptic. We
define the centralizer of R (denoted I'g) by
I'r:={0€ SL(2,Z) | 0R = Ro}.

Lemma 4.13. Let R € SL(2,7Z) be elliptic. Then the centralizer T'g

is a finite cyclic group of order e > 1 generated by some Ry € SL(2,7Z)

which is itself elliptic with the same fized points as R. Hence
Tr=Tg ={+R|(cZ,1<i<e}={R{| L€ Z,1<(< 2}

Furthermore R = Ry for some 1 < m < e, and this uniquely de-
termines Ry. The element Ry is called a primitive elliptic element and
takes the form Ry = nk(w/e)n~t.

Proof. Exercise for the reader. O

Proposition 4.14. (Computation of C(R)) Let R € SL(2,Z) be an
elliptic matriz of order e where R = £R' (with 1 < m < e) and

B cos (m/e) sin(m/e)

Fo =1 (- sin (7 /e) cos (ﬁ/e)> !

as i lemma 4.9. Then

1 o0 e 27r£nr
C(R) = -h(r)dr.
() 2e sin (%) / 14 e—27r (r) dr

Proof. We follow Kubota’s proof in [Kub73]. Our goal is to compute

|z — oRMo 2| dxdy
C(R) = E ‘
( ) / f (Im(z) . Im(UR(T)nO—le) yg
SL2,z)\h € R \SL(2,Z)

Now <_g?§((:;:)) z;lls({;é?)) acts as a rotation of angle 2* around i. A

fundamental domain for n~'T'z,7n is a hyperbolic sector of angle 2?”
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It follows (as in the proof of proposition 4.10) that

B 2 =R~ tzlF ) dudy
(415) OB = / f<1m(Z)-1m(nP6”77‘1 )) Y
(ﬂ’lFRon)\b

_ lff |z — nRym Lzl dxdy
e Im(z) - Im (nRy'n~'2) ) 4>
b

because it takes e images of (n*1F30 77)\[) to cover h exactly.
Now, let

—— ( cos (m /e) sin(mw/e>> _ <a —5),

—sin (mn/e) cos (mn/e) g «
We see that
_ az—f 2
1 &0 & < Bz4a dl’dy
e 0 / Im (228 y?
o ) -lm <,3z+oc)

_%Am/m CW?Hﬂ>d§y
() 4

Y
Next, make the change of variables (recall that § = —sin (m—) < 0):

t—52<%+2(:€ —1)+y)

2 1 2 2
dt = 45° (%)zdm 45 1/4+@xdx

dr Y
dt — 4|B|la/t + 432
It is clear that ¢ = ¢(x) is strictly increasing for 0 < z < oo, so

the minimum value of ¢ is 5% (y~* — y)2 .Now t = % (y~ ! — y)2 when

y—y = :I:%E. There are 2 cases.

_ Vity/t+4]8]2
(1)y_y ! :%T > Y= 214] = Y2,
—Vi+y/t+45%

(2)9—971:—% = Y= 3 T Y
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Hence 0 <t < oo and y; < y < yo. Furthermore

(ym v - 1>é = ((3/ — 1) (32 — y))é.

It follows that

2 Vi Vi dx dy
w 2] ] o(8)as
0 B2(y—1-y)?

_2 i y dy
B e/ / f) <4|ﬂ|x\/t+452> o Y

0 B2(y—1— )2

dy

2@|ﬂ|/m / y(y —y1)2 (y2 — y)

~~
This integral = 7 because y1y2 = 1

dt

[NIES

J/

o / t it
2|8l )\t + 4B

/ [ Qw)
= 5 NazrdEa | Vi

dt.

To proceed further we interchange integrals and then integrate by
parts to obtain

[e.9]

cR) = 2e|ﬁw/:/0\/452+t ) )

:ﬁ/Q )4 O/\/462+t —1)

- 505 / Qe M(iﬁiw?)] w

Finally, we obtain
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1 u _u
C(R) =5 [ o) L5 du
26_00 (65 — 6*5) + 462
1 (o.¢] u o (o] ‘
=7 / — e +u622 ; /h(r)e"u dr| du
Te %
s (ez e 2) + 40 s
1 o0 (o] u u .
=— [ h(r) / - ¢ +u62 : e dul| dr
471'6_ . (65 _ e’f) + 42
o 2tmr
1 e e
= d
2elB| ) 14e2m (r)dr
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5. The Selberg Trace Formula for SL(2,R)
We now state the complete version of the Selberg Trace Formula for
SL(2,R).
Theorem 5.1. Let h: C — C (with Fourier transform g) satisfy

(1) A(r) = h(—r) for allr € R.
(2) h(r) is holomorphic in the strip {Im < —i—e | for some € > 0}
(3) h(r) = O ((1 +r*)~17°) in the above strip.

Let ¢g be the constant function of Petersson norm one, and let ¢y, po,
denote an orthonormal basis of Maass cusp forms which satisfy

Ag; = (%—I—r?)gbi fori=1,2...

The Selberg trace formula is the following identity

Z h(r;) = E rtanh(7r) h(r) dr
e—1 1 o0 e_m
+ i / i — - h(r)dr
RZO — 2e sin (T)—oo 1+e2
—

primitive elliptic

N(Py)% —N(PO) )
NG
primitive hyperbolic
1 oo M |
- 1 - M(1/2
EESTT R

Here

AT(s — 1/2)((2s — 1)
M) =@

Proof. This follows immediately from propositions 4.1, 4.2, 4.10, 4.14
under the assumption that h(r) < e~°I"l is even and holomorphic in a
strip [Im(r)| < 5 + € for € > 0. We now show that the range in which
the trace formula holds can be extended by allowing the test function
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h to satisfy
hr)=0(1+7r*)7"7).
We define

/ !

w(r) = 1%(1 +ir) + Re (%(1/2 + ZT)) :

and move the last integral on the right side of the Selberg trace formula
in theorem 5.1 to the left side (spectral side) which then becomes

o0

;h(rj) + %/ h(r)w(r) dr.

—00

r2
We now choose h(r) = e~ #2 for R — oo, which satisfies the condition
h(r) < e "l and is even and holomorphic in the strip [Im(r)| < 1 +e.
It follows that
R

Z 1 + % w(r) dr = O (R?)

as R — oo. Quoting from Selberg’s Gottingen lectures ([Sel89], page
668) with some modifications in the choice of variables and citations
to previous equations:

This implies that all series and integrals occurring in theorem 5.1
converge absolutely if h(r) only satisfies the usual conditions mentioned
above. Also for a class of functions which satisfies these conditions
uniformly, convergence of series and integrals is seen to be uniform.
Considering now for a fized h(r) the class h(r)e=" with 0 < e < 1,
these constitute such a class, we have that for e > 0 that

h(r)e’”"2 < el

is satisfied and so proposition 4.2 is valid. Making ¢ — 0 we obtain
theorem 5.1.

There is one final point in the proof of theorem 5.1 that needs to
be clarified. It is necessary to make sure that the infinite sum over
primitive hyperbolic conjugacy classes converges absolutely.

Let Py =1n gp?l n~! be a primitive hyperbolic matrix with trace
t =p+p~t and norm N(Py) = p?. Now ¢ > 2, and

t+/Z—1 t+\/t2—4)2
p=——, — .
2

: v = (
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We will show in §6 that the number of distinct primitive hyperbolic
conjugacy classes Py with the same trace t is exactly the class number
of the real quadratic field Q (\/ 2 — 4) . Since it is known that this class

number is bounded by O ((t2 - 4)%+6> = O ('), it follows that
logN PO)
e log N(F,
Zmz N(R)E -~ Ry E) e V)

= logt
< g thte E % -g(mlogt)
t=3 m

2m 2
:1t +t

which converges absolutely because of the rapid decay of the function
g(u) as u — 0. O
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6. The Kuznetsov Trace Formula for SL(2,R)

There are two fundamental ways to express a group I' as a disjoint
union of interesting subsets of I'. The first way breaks I" into conjugacy
classes

I =Uhl W ={oo'|oeT}
g
This was the basis for the Selberg trace formula with I' = SL(2,Z).
The second basic way is with double cosets. Let H, K be subgroups of
I' acting by left and right multiplication, respectively. Then we have
the decomposition
r= |J HyK
YEH\T'/K

The double coset decomposition is the basis for the Kuznetsov trace
formula.

Definition 6.1. (Poincaré Series for SL(2,7Z)) Let p: R — C be a
smooth function satisfying

1+e¢ :
Y if0<y <1,
<

for some € > 0 and some fized constant C' > 1. Let

2= {(oh) ner)

denote the Borel subgroup of T' = SL(2,7Z). Then for z € b, we define
the Poincaré series Pp,(x,p) : h — C by

Pu(z.p) = Y p(m-Im(yz)) e2mmRe02),

~eB\T'

Let Pn(z,p), Qn(z,q) be two Poincaré series with m,n > 1 and
smooth functions p,q : R — C as in definition 6.1 . The Kuznetsov
trace formula is obtained by computing the Petersson inner product

(Pute . @l ) = [ Patzp) @) “

I'\h

in two different ways.

e First way, Spectral Side: Tuke the spectral expansion of Pp,(*, p)
and unravel Q,(*,q) in the inner product.

e Second way, Geometric Side: Compute the Fourier expansion
of P (x,p) by double coset decomposition and unravel Q, (%, q).
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7. The SL(2,R) Kuznetsov Trace Formula (Spectral Side)

We first need to show that P,,(x,p) € L2(T\h). Since p(y) < y' € it
easily follows from the growth properties of p that

|Pm(z,p)| < Z Im(vz)pFE

~yeB\I'
< ply) + Y Im(y2)"*
~eB\I'
v#L2
< 1.

where I, = (}¢). We have thus proved that P,,(x,p) € L2(T'\bh).
By the Selberg spectral decomposition given in theorem 3.31 we see
that

_ 2 (Pul,p). W%

o0

+1
47

—00

<7’m(*,p), E(x,1/2 + z'r)> E(2,1/2 +ir) dr.

It follows that the inner product of two Poincaré series is given by

(7.1)
(Pl 0). Qulr. @) = Z (P, p), Ziffi Qu(*,9))
—i—% Oo<73m(*,p), E(>x<,1/2—i—2'7“)><E(>x<,1/2—|—z'r)7 Qn(*,q)> dr

To proceed further we require formulae for the inner product of the
Poincaré series P,, with a Maass form or Eisenstein series.

Let ¢g be the constant function of Petersson norm one, and let
@1, P2, . .. denote an orthonormal basis of Maass cusp forms which sat-
isfy Ag; = (}1 + rf) ¢; for i = 1,2... BEach Maass form ¢; with j > 0
has a Fourier expansion of the form

ZA \/_Kzr 27T‘£’y) 27rz€x

140
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where

is the K-Bessel function.
Lemma 7.2. (Inner product of P,, with a Maass form ¢;)

ifj =0,
[ ply) K, (2my) d—g if 7 > 0.
0

0
(Prte.)s ) =3 4ty

N[
<

Proof. We compute
<73m(*,p), ¢j> = / Z p(m - Im(vz)) ZrimRe(r2) L () 7

I\h ~yeB\TI'
Timx dCL’dy
= [ ooy 55Ty Y
B\b
00 1 d
TIMT . Y
= / /62 ¢j(x +1ay) dz| - p(my) 7
0 N 0 g
This integrarz 0if j =0.
= A3(m) | VY K, (2mmy) - plmy) 5
0
Here we as\s,ume j#0.

Every Maass form ¢; for SL(2,7Z) is self dual so A;(m)
Next, we consider the inner product of P,, and E(x, s). The Fourier
expansion of the Eisenstein series is given in theorem 3.4. Let

27?501_25(m)m5_%

Alm. $) = =500 @)

denote the m™ arithmetic Fourier coefficient of F(z, ).

Lemma 7.3. (Inner product of P,, with an Eisenstein series)

1
m?2 Kir,(2my)
0

%wl &

<7> (+,p), E(*, s)>
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Proof. The proof is the same as the proof for a Maass form in lemma
7.2 . O

Proposition 7.4. (Kuznetsov trace formula, Spectral Side) Let
Pu(2,p), Qun(z,q) be Poincaré series. Define the Bessel transforms:

Pt = [ paem) S gt = [ o)
0 0
Then the spectral side of the Kuznetsov trace formula is

Qw\wh%

(Pt ). Qulss @) = Vimn i}Axm)Aj(m : p#(«zﬂ)?
\/_ (m 2" ZT> 4 (n, % + ir) - p™ (ir) g (ir) dr.

Proof. This follows immediately from (7.1) and lemmas 7.2, 7.3. O

8. The SL(2,R) Kuznetsov Trace Formula (Geometric Side)

To compute the geometric side of the Kuznetsov tace formula we
first need to rewrite the Poincaré series P, (%, p) as a sum over double
cosets B\I'/B. We require the following lemma.

Lemma 8.1. (Double coset decomposition of I' = SL(2,7Z)) Let
B={({m)|meZ}CT. Then

F—BUUU(>

c¢>0 d (mod c)

Proof. Let ¢ > 1. Then we have the matrix identity

o )6 )= (" i)

It follows that the couble coset B (] }) B is determined uniquely by ¢
and d (mod ¢) and this double coset is independent of the top row of

(a)- O
It follows from lemma 8.1 that the Poincaré series P,,(z,p) can be
rewritten in the following form.

TimT mim-Re( 221kt
Pale) =plm) 357 (1 )

c=1 deZ
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where the prime on the sum denotes that the sum is over (d,c) = 1.
Further a,b is chosen so that (¢%) € SL(2,Z). One checks that the
Poincaré series is independent of the choice of a, b.

The geometric side of the Kuznetsov trace formula involves classical
Kloosterman sums which we now define.

Definition 8.2. (Kloosterman Sum) Let m,n,c € Z with ¢ > 1.
The Kloosterman sum is defined by

/ - am+dn
S(m,n;c) = E e

1<a<c

where the prime on the sum denotes that (a,c) = 1. Further d is chosen
so that ad =1 (mod ¢).

Proposition 8.3. Kuznetsov tace formula, Geometric Side) Let
Pu(2,0), Qun(z,q) be Poincaré series. The geometric side of the Kuznetsov
trace formula is

@w@

<Pm(*,p), Q,,(, q)> = 5m,n/p(my)q(ny) o

T ster)

Zsmnc 2miz (2<2+1)+"y> dacdy
Yy

Proof. The proof of proposition 8.3 requires the Fourier expansion of
the Poincaré series given in the following lemma.

Lemma 8.4. (Fourier expansion of P,,(z,p)) We have

1
me(z,p)e_zwmx dr = Opmp - p(ny)
0

(e 9]

- my —2mix| 55— +n
+y- ) S(m,n;c) /p<m) ¢ (i ) g

c=1 o

1 m=n,

0 m#n,

1s Kronecker’s symbol.

where Oy, n = {
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Proof. We compute.

1
0

f

= O - P(My) +I,(2).

Z Z (|CZ - d|2> 627rim-Re(zzzi3)] 6—27rinx dr

c=1 deZ

Now
az—l—bia 1

cz+d ¢ clez+d)
Next let d = lc+ r. We see that Z,(z) is equal to

2mwim. Re(C m) —2min
/ZZZ () B

c=1l=—0c0 r=1
(r,e)=1

J/

~
Make the change of variables © — x — £ — %

—-T41

:f’: i Z / (|Cz|2> Q2rimBe(2—4:) —omin(a—t=2) g

c=1fl=—0c0 r=1 _
(r,c)=1

- . my 2mim-Re( =
:;S(m’”’c)/p(c2<x2+y2>)e )

~
Let = — xy.

o = . my —2miz( 5 +ny
_y';S(m,n,C)/p(m)e <2y< 2+1) )dx

)6727”'77,1

z

X

J/

U

The proof of proposition 8.3 follows from the above lemma together
with the fact that by unraveling 9,

') 1
. d
<Pm(*, p), Qn(*, q)> =/ /Pm(z,p)e‘%m dz| q(ny) y—?
0 0
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9. The Kuznetsov Trace Formula for SL(2,R)
We now state the complete version of the Kuznetsov Trace Formula

for SL(2,R).
Theorem 9.1. Let p,q: R — C be a smooth functions satisfying

14+e s

Yy ifo<y <1,

) < :
p(y),q(y) {y—C 1<y

for some € > 0 and some C > 1. Define the Bessel transforms

= /0 " 4 K (2my)

P = [ o) Ktz Y. gt
0 Y2

ZAj(f)\/gKirj(QW|€|y)e27er’ (] =1,2
0

Sl &

..) denote an

Let ¢i(z) =
orthonormal basis of Maass cusp forms where A¢; = (%L —i—?“?) o; for
1
i > 1. Let A(m, s) == 2= Ulr_(i)ég);)n = denote the m™ arithmetic Fourier

coefficient of E(z,s).
The Kuznetsov trace formula is the following identity

- (A (n p*(iry) ¢* (ir))
vmn ;Aa( )A;(n) s, B2)

n Vi”" A(m,1/2+ir) A(n,1/2 + ir) - p*(ir) g% (ir) dr
T

€ d 00 oo o0
Om,n / pimy)a(ny) =5+ > S(m,mic / /
0 e=1 0 —o0

yZ
MaiIIrTerm
m —27rzx( T +ny> da:dy
- . v(z2+1)
(i) - ¢ y

9.1. Kontorovich-Lebedev Transform. The Kuznetsov trace for-

mula involves a test function p : R — C and the transform
dy

p*(ir) == /OOO p(y) Kir (27y) e
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This type of transform is the well known Kontorovich-Lebedev trans-
form (see [Leb72]) which was originally developed for applications in
physics. The inverse transform (for a proof see [GKS11]) is given by

02 o) =1 [ PV ) mry

We also note the Mellin transform pair given by

. dy T+ r ()
KZ‘T27T 52 =
/0 VY Kir(2my) y

Amsts ’
] o+4ioco r (l 4 5+ir) T (l + sfir)
Kir 92 — 4 2 4 2 -5 d
Vikuom) = 5 o v ds,

1
for any o > —3.

It follows form (9.2) and the above Mellin transform that

(9:3) | ply) = L/ / P (ir) F(SQ_W)F(%)W—S:U%—S ds dr.

9.2. Explicit choice of the prp test function. We now present
an explicit choice of test function for the Kuznetsov trace formula for
SL(2,R) that is useful for many applications and generalizes to higher
rank groups. We let T" — oo+ be a large real variable and let R be
a sufficiently large (to be determined later) fixed positive real num-
ber. For applications it is convenient to define the test function on the
spectral side to be given by

N 2+ R+ 2a 24+ R -2«
S PSR (Y Ty ¢RI B )

The main reason for choosing this type of test function is that if we
assume, for example, that p = ¢ in the Kuznetsov trace formula given
in theorem 9.1 then the contribution of the Maass forms on the spectral
side will be

|pTR iry)| - €—2r§/T2 I <2+Pj#>’
ZA J <¢]a¢] ZA] <¢j7¢j>

i=1

Wthh will turn out to naturally count sums of weighted products of
Fourier coefficients A;(m)A;(n) of Maass forms with Lapace eigenvalue
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A\; < T?. This is due to the fact that \; = i+7“]2- so the function e~ 7/T’
is essentially supported on \; < T?. The constant R is needed later to
allow us to shift the contour in « of a certain integral without crossing
any poles of the Gamma function I" (@).

9.3. Bounds for the prr test function.

Proposition 9.5. Let € > 0 and R > 4 with 1 < a < %. Then for
y >0 and T — +oo we have

pT,R(y) < y%+2a Te+§+g—a'

Proof. We recall the identity (9.3) which states that pr g(y) is equal to

(9.6)
e’} €+100
1 1 /F s\ (8= e Py g(ir) dr
— — T S| ==
A 2mi ) 2 2 Y T(ir) D(—ir)
- nyaT)

We may shift the line of integration in the above integral Z(y, r) to the
line Re(s) = —2a where a > 0 and a ¢ Z. Since I' (3) has simple
poles at s = —2¢ —4r for £ € Z and ¢ > 0 it follows from Cauchy’s
residue theorem that

—2a+i00
1 s +ar §—ar\ _ 1_,
=g [ r(SE)r(ET) e
—2a—1i00
+ Z ( Res + Res )F(S+ir)F(S_ir) w_sy%—s
0<i<a s = —20+ir s=—20—ir 2 2
—2a+io00
1 S+ir s—ar 1
= — T I —S,,5—S d
zm‘/(z)(z)”yzs
—2a—1i00
+ Z (_1)6(27T24—iryé+2£—ir T(—(+ir) + 2W2€+iry%+2€+ir F(—E—ir)).
0<t<a

We plug this expression into (9.6) and make the change of variable
a =1r. It follows that
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= [ D(52) 0 (55) yi

#
= g Ma)(—a) o  Pral@)dsda
Re(a)=0 Re(s)=—2a

1 > (- (W%aymm—? +0)

7riR I 05 [(a)'(—a)

. 7T2Z+ocy%+2€+o¢ T(—(— a)) 4

T(a)T(—a) Prale) do

L[ ghreR TS (59T (el (et
N (@) (—a) dsda

- — (_1)2 7r%—0‘y5+24—0< I (2+IZ+20¢) T (2+R472a)
R Pl N e T B SRR

7T2€+ay%+2€+o¢ T (2+}i+2a) r (2+R4—2a) ) .2

(_06—1)(—0(—2)...(_0[_@‘F(a) .er? do

We will now bound the first of the three integrals I%}%(y). To do so

we use Stirling’s bound (for o,¢ € R with o fixed and || — o0) given
by

)] ~ o3 . -3
(9.7) |T'(o + it)] Vor 1t| ol
polynomial exponential

term term

Here |t|a_% is called the polynomial factor because it has polynomial
growth or decay in |t| as [t| — oo and e~ 2/l is called the exponential
term because it has exponential decay in |t| as [t| — oo.
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Thus, setting s = —2a +i£ and a = ir, we see that the first term for
pr.r(y) is bounded by

<< / / «% 1—\(2-&-1"7;1-&-204)1—\(2-&-11—204)1-\ (5-12—04) r (5504)
=0 Re(s)=—2a

I'(a)'(—a)
y%"s ds do
T1+e 00 E+1
<<y2+2a/ / (1+’ )K
Lo e o (Llerl) = (Lrle—r) ®

e (errie=ri=2i) ge g

We rewrite this as

Tite ~
1w < vt [ [ peew(-Fe) acar
r=0 £=—o0
where
R

(1+|§+r|) (1+ |§—r|)
is the polynomal term and
= (I€+7r[+lg—rl—2Ir])
is the exponential term. It is easy to see that £ > 0 for all £, r.

Definition 9.8. (Exponential zero set of £) The exponential zero
set of € is the set of all (&,r) € R? such that £ = 0.

Lemma 9.9. The exponential zero set of € := (|& +r|+ [ —r| —2|r|)

is given by the set of (§,r) satisfying

One observes that there is exponential decay in the region of inte-

gration of the integral I:(,,lg%(y) that is outside the exponential zero set.
It follows that

Tite

B
1—{—7“2
IO < g+ / / 1) o dE dr.
o, (1+&+r) 2 (1—§+r) R

To complete the proof we require the following lemma.
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Lemma 9.10. Suppose that C, C" > 0 (with C,C" # 1) and A > 0.

Then
A
/ _ dx < p-ymin {10,140, 040}
(I+z)=2 1+A—2) 2
=0
Proof. Exercise for the reader. 0

So using Lemma 9.10, we obtain

T1+6 r

|

1 —+1
IO() < yit / / Chald o de| dr
(I4+&+7r) 2 1—€+7r) 2

r=0 E=—r
NS

J/

~
Make the change of variable x = £ + r.

Ti+e 2r
1 Ry dz
<< y2+2a / 1 + r 2 / - - d?"‘
J. ( ) J, (1+x)1+22 (1—|—27’—:L’)1+22
T1+e
< y%+2a / (1 +r)§+1<2r)—%min{l+2a, 4a} dr
r=0

< y%-l—Qa T1+e X T%—i—l . T—%—a

< y%JrZa Tetg+3—a

as claimed.

We now bound the remaining two integrals: I:(F%g%(y), I:(F?%(y). We
have

2 g2l-ayzt2—a (2+R+2a) r (2+R—2a)
72 _ / o Y 4 4
ral¥) = 3 =2 —a) U —a) T(—a)

024 Re(a)=0

Since we have assumed 1 < a < % we may shift the line of integration
to Re(a) = 2¢ — a in the above integral without crossing any poles. It
then follows from Stirling’s asymptotic formula that for o = 2¢—2a+ir
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and 7" — oo we have the bound

Z / o2 2@ a +2€—o¢ r (2—}—114—2&) r (2—1—]?:1—20() p
2 . o

1—a)(2—a)---(€—a)-F(—a)

0<t<a

=2{—2a
T (2+R+4€f2a+2i7~) r (2+R74£+2a72ir)) ‘
< y%+a i Z 4 1 "
0<t<a 7, (1 +r])t- } ['(2a — 20 — zr)’

T1+e

l+a (1 +T)§
K y?2 . Z (1 +r>£ — T dr

o— L
o<t<a 7, _(1_’_77)211 26-3

1 R, 3
L y2teetataa

Thus we get the same bound as for I:(Flk(y) The estimation of Ig’%%(y) is
similar and gives the same bound. This completes the proof of propo-
sition 9.5.

O

9.4. Bounding the Geometric Side of the KTF.

We consider the Kuznetsov trace formula with test functions p =
q = pr,g With pr g given by (9.4). In this case, the geometric side is

(9.11)

(e 9]

G= ZSmnc//pTR(CZ $2+1)>pm(ny)

0 —o0
. m dxdy
. —2 _ .
exp < T (c2y(:v2 1) + ny)) ”

We will now use the pr g bound in proposition 9.5:

(9.12) praly) < y=teTate e (for 1 < a < R/4),

together with the Kloosterman bound

(9.13) S(m,n;c) < cate

The idea is to break the y-integral in (9.11) as follows
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and then to use different pr g bounds for pr g (W) and pr gr(ny)
which appear in (9.11).

In particular, we will use
pra(y) <yt TEtie
to estimate pr g (W) and we will use

praly) <yt e

to estimate pr g(ny).

Accordingly, we first consider the integral with 0 < y < 1. Then
after applying the above Kloosterman bounds we have to estimate

™ b _m A\ g
Z ¢ CZyQ (12 + 1)
e=1 y=0 z=—00

: {(ny)éﬂb T§+3“’} drdy
y

Here we take a = 1 and b = % — 1, which guarantees that the c-

sum and the z and y integrals converge. We then obtain the bound

o (17-) =0 (1),

Next, we consider 1 < y < oo. In this case, we must bound

: {(ny)éﬂb T};*?"’} drdy
y

Here we take a = %—1 and b = 1, which guarantees that the c-sum and
the x and y integrals converge. We again obtain the bound O (T %”).

We have now proved the following bound.
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Proposition 9.14. (Bounding the geometric side of KTF) Let

g ZgS(m,n;c)j]OpT,R (m)m

0 —oo
o m N dxdy
cexp | 27z | ———= + 1 .
P y@+1 Y y

donote the geometric side of the Kuznetsov trace formula. Then

g:o(T¥%>, (T — o).

9.5. Computation of the Main Term M in the KTF.

The main term M only contributes when m = n and is given by
M= m [ lpra)
0

To evaluate M we shall need the Plancherel formula which we now
derive. For a € C and y > 0, let W, (y) := \/y K.(27my) denote the
GL(2,R) Whittaker function. We have the Kuznetsov-Lebedev trans-
form pair:

b | dy
P () J@@)wuwyg
p<y> = E / p#(a/) Woé(y) F(Og)c;‘cz—a)

As a consequence we can now derive the Plancherel formula for the
G L(2) Whittaker transform

Proposition 9.15. (Plancherel Formula for GL(2)) Let p : [0, 0] —
C be a smooth function satisfying

e ifQ <y <1,

py) < {yc

Y if 1 <uy.
Then

2@21 #(ir 2 _dr
/|p(y)| 2 7T/|p ( )‘ ID(ir)[2
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Proof.
e oo X do dy
/lp "= O/p(y> ER( )=0 Pl T(@)l(—a) | 4?
:% / p#(a)/p(y) Wa(y) % F(OA)C;OE_OO
Re(a)=0 0
1 9 do
= / ‘p#(a)‘ ['(a)l'(—a)
Re(a)=0

n

We are now in a position to obtain an asymptotic formula for the
main term in the KTF as T' — +oo when the test functions p, ¢ are
chosen to be the same and equal to the pr p function given in (9.4).

Applying the Plancherel formula of proposition 9.15, the main term
M is given by

Vi d
M = m/lpT,R(y)|2 y_?;
0

‘ 2+R+2ir) r (2+R—2ir) ’

2m / 725 4 4 d
— T . .
‘ T(ir)T(—ir) '
It follows from Stlrhng s asymptotic formula
ID(o+ar) =2r- |7 e (o fixed, |r| — +o0)
that

2 —2y2
M o~ Tt )R ar
T

0

2
TR+2 m/ T +’ ’)RJrl

. TR+2

~ CO
for some constant ¢y > 0. With more care one can prove
M ~ COTR+2 + ClTR+1 + CQTR + -

for fixed real constants ¢, cq, 3, ...
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9.6. Explicit KTF for GL(2,R) with Error Term.
Theorem 9.16. Let R > 4 be fized and let

a2 /T2 2+R—|—201 2+R—2a
ptato = (LERY p (14 R0

Let ¢;(z) = gﬁ:Aj(é)\/gjKirj(277M|y)e2”£‘”, (j = 1,2,...) denote an
0

orthonormal basis of Maass cusp forms where A¢; = (21; —l—r?) o; for
1 >1. Let

2%301_23(m)m5_%

I(s)¢(2s)

denote the m'™ arithmetic Fourier coefficient of E(z, s).

A(m,s) ==

Then we have

mn 3 (m)A:(n .—‘p#(z"r’j)f
\/_ ;AJ( )AJ( ) <¢j7 ¢J>
+ T/A(m,1/2+ir) Al(n, 1/2+z‘r)-|p#(z'r)\2 dr

= O (T2 + e T 4 TR +--) + O (T%ﬁ) :

where cg > 0 and ¢y, co, ... are fixed real constants.

9.7. Bounding the Eisenstein term in the KTF.

The Eisenstein term is given by
vmn
AT

—00

A(m,1/2+ir) A(n, 12 +ir) - |p*(ir)|” dr

%0 —2r? ir —24r\ |2
< / e T (2+R4+2 )F (2+R4 22 )’ "
IT(1/2 +ir)¢(1 4 2ir)|

T1+6

<</ 1—|—]r|
]C + 2ir)|
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Here we have used Stirling’s asymptotic formula for the Gamma
funciton. To complete the estimation we require the prime number
theorem which says that (1 4 2ir) # 0 for any r» € R. A more quanti-
tative version is given by

C(142ir)~! < logr.

We have thus shown that the Eisenstein term in the Kuznetsov trace
formula is bounded by

4mn A(m,1/2+ir) A(n,1/2 +1ir) - ]p#(ir)|2 dr < THrTe
T

—00
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10. The Kuznetsov Trace Formula for GL(3,R)

Let h* := GL(3,R)/(O(3,R) - R*) and let Uz be the subgroup of
GL(3) consisting of upper triangular unipotent matrices. Every coset
representative in b3 can be written as ¢ = xy with the specific paramet-
rization

1z 713 y1Y2
(10.1) r = Ioxas |, y = (7 ;
1 1

(where 19, 713, 723 € R, 41,72 > 0) to assign coordinates on h3.
Let D? denote the invariant differential operators on b3, namely all
polynomials (with complex coefficients) in the variables

(0 o000
019’ a$137 890237 8y1’ 0ya
which are invariant under all GL(3,R) transformations.

Definition 10.2. (Langlands parameters) We define the Langlands
parameters for GL(3) to be complex numbers {a1, s, as} which satisfy
a1+ as +az = 0. By abuse of notation we often refer to the Langlands
parameters as a vector a = (aq, ag, a3).

Remark. These parameters are used to classify automorphic represen-
tations at the archimedean place.

An important role is played by the eigenfunctions I(x, a).

Definition 10.3. (The eigenfunction /(x,«)) Let a = (ay, g, as)
denote Langlands parameters. We define a power function on xy € b3

by
(10.4) I(zy,a) == yi_a?’ y;ral.

The function I(*, ) is an eigenfunction of D3.

2 2 2
aj+as+a3

Lemma 10.5. The Laplace eigenvalue of I(*,a) is 1 — 5

Proof. The Laplacian A on h? is the second order differential operator
given by

0? 0? 0? 0?
Ao 29 29 A W 2
Yi 02 Y2 02 + Y1Y2 01107 Yi (xm + ?/2) (3$i3
0? 0? 0?

2 2 2
—Yim s —Yams — 2YiT12 .
6%,3 85”1,2 0793071 3

The lemma can then be easily proved with a brute force computation.
O
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In order to develop the Kunetsov trace formula on SL(3,R) we need
to introduce the relevant Poincaré series. Recall from definition 6.1
that the Poincaré series for SL(2,R) is given by

Z p(m . Im(’yz)) 627rim~Re('yz)'
YEU2(Z)\SL(2,Z)

We need analogues of the test function p and the additive character
e2mmRe(2) when we move to SL(3,R).

Definition 10.6. (Additive character) Let M = (my,mq) € Z2.
We shall define an additive character vy = b3 — C as follows. First
of all for xy € b (with x,y as in (10.1)) we require Yar(zy) = Yar(x).
This guarantees that 1y is a character of the non-abelian unitary group
Us(R).

1 z12 1,3

Further, for x = <0 1 x2,3> € Us(R), we define

0 0 1

'QbM (27) = e27ri (m1 x1,2+ms2 302,3) ,

which satisfies Py (x - ") = Uy (x)pr(2)) for all x, 2" € Us(R).
Definition 10.7. (Test function p) Let p : h> — C be a smooth func-

tion satisfying p(xy) = p(y) for all x € U3(R) and all y = <y1§/2 y(o)l §)

with y1,ye > 0. We further assume that p(y) satisfies
ply) < yi'ys”,

1+b if0<y <1

Jor B; = .
—1-b ifl<y;

for sufficiently large b > 1 and
1=1,2.
We may now define the Poincaré series.

Definition 10.8. (Poincaré Series) Let M = (mq,msy) € Z? with
mimy # 0. Let p : h3 — C be a smooth test function as in definition

mimz 0 O

10.7 and define M* := ( 0 m (1)> . Then for g € b3, we define the
Poincaré series Py(*,p) : b3 — C by

Pulgp) = Y. p(M*-7g) bulyg).

YEU3(Z)\SL(3,Z)

Recall that a locally compact group G is termed Hausdorff provided
every pair of distinct elements in G lie in disjoint open sets. The general
linear group GL(n, R) is a locally compact Hausdorff topological group.
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Theorem 10.9. Let G be a locally compact Hausdorff topological group,
and let H be a compact closed subgroup of G. Let i be a Haar measure
on G, and let v be a Haar measure on H, normalized so that fH dv(h) =
1. Then there exists a unique (up to scalar multiple) quotient measure
i on G/H. Furthermore

[ f@ o~ [ B (/[ stamavin) ditorn

for all integrable functions f : G — C.
Proof. See Halmos 77777 O

Definition 10.10. (Left invariant measure on b ) Let g = zy € b?
with

I mp 23 Y1y2
r= I xe3 |, Y= (7
1 1
The left invariant measure d*g on b3 is given explicitly by

dy1dys
(Y192)?
Here d* g satisfies d*(ag) = d*g for all « € GL(3,R).

Proof. The group GL(3,R) is generated by Us(R), diagonal matrices
in GL(3,R) and the The Weyl group of GL(3,R) is given by

100 100 010 010 001 001
W3 = 010),(001),({100),(001),(100]),(010]) ¢.
001 010 001 100 010 100

It is enough to show that d* ¢ is invariant under these three subgroups.

ng = dl‘d’y = dl’172d$173d$273

It is clear that d*(xg) = d*g if x is an upper triangular matrix
with ones on the diagonal. This is because the measures dz;; (with
1 <i < j < 3) are all invariant under translation. One also checks
that d*(ag) = d* g for all diagonal matrices a € GL(3,R).

It remains to check the invariance of d*¢g under the Weyl group Wi.
Now, if w € W3 and

as 0 0
a=|0 a 0| €GL(3R)
0 0 aq

is a diagonal matrix, then waw™' is again a diagonal matrix whose

diagonal entries are a permutation of {aj,as,asz}. The Weyl group is
generated by the two transpositions wy,ws which interchange (trans-
pose) a; and a;y; when a is conjugated by w;. With a brute force
calculation one checks that d*(w;g) = d*g for i = 1,2.
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With this measure, one may show that the volume is

SL(3,Z)\h3

For M = (my,ms) and N = (ny,n9) let Pa(g,p), On(g,q) (with
mimanine # 0) be two Poincaré series with smooth functions p,q :
R — C as in definition 10.8. The Kuznetsov trace formula is obtained
by computing the Petersson inner product

(Putecp). et )= [ Pulor) Qula) a7
SL(3,2)\b?
in two different ways.

e First way, Spectral Side: Take the spectral expansion of Pys(*, p)
and unravel Qn(*,q) in the inner product.

e Second way, Geometric Side: Compute the Fourier expansion

of Pu(*,p) by double coset decomposition and unravel Qy(*,q).

10.1. Whittaker functions and Maass forms on h3.

We now define the canonically normalized Whittaker function on
G L(3,R) which appears in the Fourier expansion of automorphic forms
for SL(3,Z).

Definition 10.11. Let w; := (
for g € GL(3,R), the function

—OO
oo
[e=le) g

> and o = (a1, g, a3) € C3. Then

1+ocj—04k

r
Wit(g) = H % / I(wsug, ) 11,41(u) du

1<j<k<3 T 2

Us(R)

defined as an absolutely convergent integral for Re(ay — ) > 0 and
Re(ag — a3) > 0 extends to a holomorphic function on the set of all
{OZEC?’ ‘ a1+a2+a3:0}.

Remark. The integral is Jacquet’s integral representation. The prod-
uct of Gamma factors is included so that W= is invariant under all
permutations of aq, g, 3. Moreover, even though Jacquet’s integral
often vanishes identically as a function of «, this normalization never
does. If g is a diagonal matrix in GL(n,R) then the value of WX (g) is
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independent of sign, so we drop the . We also drop the =+ if the sign
is +1.

Jacquet’s Whittaker function is characterized (up to scalar multiples
depending on «) by the following properties:

o SWE(g) = \s(a) - WE(g), (for all § € D*, g € GL(3,R)),

WE(ugzk) = v(u)WE(g), (for all u € U3(R), g € GL(3,R),
z € R, k € O5(R)),

(y192y3) Y W5 (diag(y)) = O(1), (for any N >0 and y; > 1),

e W= is entire in a,

e W¥ =WZ where o is any permutation of a = (ay, ag, a3).

Definition 10.12. (Maass cusp form for SL(3,Z)) A Maass cusp
form ¢ : SL(3,Z)\b*> — C for SL(3,Z) is a joint eigenfunction of D?
which satisfies a bound of the form

p(xy)| <n (y1y2ys) ™™

in the range y1,yo,ys > 1, for any N > 0. If the eigenvalues of ¢ agree
with those of I1(x,a) then we term « the Langlands parameters of ¢.
The Maass form is termed a Hecke eigenform if it is a simultaneous
ergenfunction of all the Hecke operators.

Theorem 10.13. (Fourier expansion of Maass forms) Let ¢ :
h3 — C be a Maass cusp form for SL(3,7Z) with Langlands parameters
a = (a1, a,a3) € C2. Then for g € GL(3,R)

w- Y XY %WFW (M* (g (1)) g),

’YEUQ(Z)\SLQ(Z) m1=1 ma7#0
where M = (my, my) and M* = (mlm [m | ) with myme #£ 0..
1

11. The SL(3,R) Kuznetsov Trace Formula (Spectral Side)

By the Selberg spectral decomposition for GL(3,R) first proved by
Langlands 777 we have

PM(g>p) = Z <PM(*7p)> ¢J> <zj,(;i>

Jj=0

+ {Eisenstein contribution}.
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Lemma 11.1. (Inner product of P,; with a Maass form ¢;) Let
M = (my, my) with mymg # 0. Then

0 ifj =0,
<PM(*;p)a ¢j> T 28 W (M) - p(Mry) St gpj s 0,
00

Proof. Let I' = SL(3,Z). We compute

<7’M(*,p), ¢j>=/ > p(M*yg) vu(rg) - 6i(9) dg

F\hS veUs (Z)\F

= p(M*y) ¥u(z) 6;(g) d*g

~
This integral = 0 if j = 0.

[e.9]

A0 [ [ duyyd
_ Al )//Wam (My) - p(M7y) 2
mi1me
0 0

(yiy2)3

J/

VvV
Here we assume j # 0.

<73M(*, p), On(x, q)> _ Z (P (*,p), Zj’%’ On(*,q))

+ {Eisenstein Contribution}

P* (09) F D)
<¢j’ ¢]>

+ {Eisenstein Contribution}.

= M1M2MN1 N2 Z AJ(M>AJ (N)
j=1
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11.1. Eisenstein contribution.

There are two types of Eisenstein series for GL(3,R), corresponding
to whether one takes a minimal or maximal parabolic subgroup. Let

B = and Py =

S O *
S *x %
O S
O % ¥
S *x %
EE

denote the Borel and a specific maximal parabolic, respectively. Any
parabolic subgroup of GL(3) is conjugate to a standard parabolic, (i.e.,
one containing 53), and the only other standard parabolics of G are P o
(defined analogously to P, 1, but instead with zero entries in the bottom
two entries of the first column) and the full group G itself.

Definition 11.2. (Borel Eisenstein series) The Borel Eisenstein
series for G = GL(3,R) is defined for Re(ay — ) and Re(as—ag) > 1

by the absolutely convergent sum

EB(Q,Oé) = Z I(f}/gaa% (g S bg)7

YEU3(Z)\SL(3,Z)

and for general o by meromorphic continuation.

Definition 11.3. (Induced Maass form ® associated to P, ;) Let

* % % 1 0 = * 0

Poy = * ok % =10 1 =« * %
0 0 = 0 0 1 0 0 =

- —

Let ¢ : GL(2,R) — C be a Maass cusp form left-invariant under
SL(2,Z). Let K = O(3,R). The Maass form ® is then defined on
GL(3,R) = P21 (R)K by the formula

®(nmk) ::¢<(gg)), (ne NP1, me MP, k€ K),

where m € MP21 has the form m = (

* OO
\_/

o0 e
oo
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Definition 11.4. (Langlands Eisenstein series twisted by ®)
Consider the parabolic subgroup Pa; with induced Maass form ® as
in the above definition. Let s = (1/2 4 s1,—1 — 2s1) with s; € C and
let « = (s1 —1/2,81 + 1/2,—2s1). The Langlands FEisenstein series
determined by this data is defined by

(115) EP2,1,¢(g>a) = Z (I)(’}/g) ’ [(’yg,O{)
v € (P2, 1ND)\T

as an absolutely convergent sum for Re(sy) sufficiently large, and it
extends to s; € C by meromorphic continuation.

In particular, if F is any one of the two Eisenstein series defined
above, then for M = (my, my) as above, we have

/ E(ug, s)Ya(u) du = MWQ(M*g),

[mymy|
Us(Z)\Us(R)

where W, is a Whittaker function and Ag(M,«) is termed the M
arithmetic Fourier coefficient of E. The first coefficient of E is defined
to be Ap((1,1), «). Furthermore, we have

AE(M7 Oé) = AE((L 1),0[) ’ )‘E(Mv Oé)-
where Ag(M, a) is the M Hecke eigenvalue of E and A\g((1,1),a) = 1.

Theorem 11.6.

(1) Let a = (a1, 9,a3) € C* with ay + ay + a3 = 0. Then the
first coefficient Ap,((1,1), ) of the GL(3,R) Borel Eisenstein series
is equal (up to a nonzero constant) to
-1

(11.7) (C*(1+a1—az)C*(1+az—a3)C*(1+a1—as))

(2) Let s = (1 4+ 51, =1 = 2s1), @ = (51 — 1/2,51 + 1/2,—251), and
let ¢ be a Maass form for SL(2,7) with Petersson norm one. Then
the first coefficient Ag,  ,((1,1),a) of the GL(3,R) Eisenstein series
Ep,, a(g, ) induced from ¢ is equal to

—1
(11.8) <L*(1,Ad V2. L (1 + 331)>
times an explicit non zero constant which is independent of ¢.

We can now state the Eisenstein contribution to the Langlands spec-
tral decomposition of the Poincaré series.
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Proposition 11.9. Let ¢;,7 = 1,2,... denote an orthonormal basis
of Maass cusp forms for SL(3,7Z). Then the Eisenstein contribution in
the spectral decomposition of Par(*,p) is given by

/ / (Pu(,p), B+, ) ) Ex (g, @) dodas

Re(al):% Re(az):%

We can now state the spectral side of the Kuznetsov trace formula
for GL(3,R).

Proposition 11.10. (Kuznetsov trace formula, Spectral Side)
Let Pua(z,p), Qn(2,q) be Poincaré series. Define the Bessel trans-
forms:

://Wa n yi
(ylyz)

0 0
://Wa Y1 y2'
y1y2)

0 0

Then the spectral side of the Kuznetsov trace formula is

p# (a) ¢# (a))

<77M(*, p), Qn(*, q)> = M1MaN1Ny iAj<M)Aj(N)

j=1 (05, 95)
p*(a) ¢ (a)
/ _1 =1 C* 1—|—CY1_052)C*<1—|-042—a3)<‘*(1+a1_&3) doqdog

0 p*(a) ¢# (@)
+ﬁ Z / L*(l,Ad ¢)1/2 X L*((b, 14+ 331) dov.
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