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Abstract.

1. Introduction

In 1801, in the Disquisitiones Arithmeticae [Gau01], Gauss introduced the
class number h(d) as the number of inequivalent binary quadratic forms of discrim-
inant d. Gauss conjectured that the average value of h(d) is 2π

7ζ(3)

√
|d| for negative

discriminants d. This conjecture was first proved by I. M. Vinogradov [Vin18] in
1918. Remarkably, Gauss also made a similar conjecture for the average value of
h(d) log(εd), where d ranges over positive discriminants and εd is the fundamen-
tal unit of the real quadratic field Q(

√
d). Of course, Gauss did not know what

a fundamental unit of a real quadratic field was, but he gave the definition that
εd = t+u

√
d

2 , where t, u are the smallest positive integral solutions to Pell’s equation
t2 − du2 = 4. For example, he conjectured that

d ≡ 0 (mod 4) →
∑
d≤x

h(d) log(εd) ∼
4π2

21ζ(3)
x

3
2 ,

while

d ≡ 1 (mod 4) →
∑
d≤x

h(d) log(εd) ∼
π2

18ζ(3)
x

3
2 .

These latter conjectures were first proved by C. L. Siegel [Sar94] in 1944.
In 1831, Dirichlet introduced his famous L–functions

L(s, χ) =
∞∑

n=1

χ(n)
ns

,

where χ is a character (mod q) and <(s) > 1. The study of moments∑
q

L(s, χq)m,

say, where χq is the real character associated to a quadratic field Q(
√

q), was not
achieved until modern times. In the special case when s = 1 and m = 1, the value of
the first moment reduces to the aforementioned conjecture of Gauss because of the
Dirichlet class number formula (see [Dav00], pp. 43-53) which relates the special
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value of the L–function L(1, χq) with the class number and fundamental unit of the
quadratic field Q(

√
q).

Let

L(s) =
∞∑

n=1

a(n)n−s

be the L–function associated to a modular form for the modular group. The main
focus of this paper is to obtain meromorphic continuation and growth estimates in
the complex variable w of the Dirichlet series∫ ∞

1

∣∣∣∣L(1
2

+ it

)∣∣∣∣k t−w.

We shall show, by a new method, that it is possible to obtain meromorphic contin-
uation and rather strong growth estimates of the above Dirichlet series for the case
k = 2. It is then possible, by standard methods, to obtain asymptotics, as T →∞,
for the second integral moment ∫ T

0

|L(σ + it)|2 dt.

In the special case that the modular form is an Eisenstein series this yields asymp-
totics for the fourth moment of the Riemann zeta-function.

Moment problems associated to the Riemann zeta-function ζ(s) =
∞∑

n=1
n−s

were intensively studied in the beginning of the last century. In 1918, Hardy and
Littlewood [HL18] obtained the second moment∫ T

0

|ζ ( 1
2 + it)|2 dt ∼ T log T,

and in 1926, Ingham [Ing26], obtained the fourth moment∫ T

0

|ζ ( 1
2 + it)|4 dt ∼ 1

2π2
· T (log T )4.

Heath-Brown (1979) [HB81] obtained the fourth moment with error term of the
form ∫ T

0

|ζ ( 1
2 + it)|4 dt ∼ 1

2π2
· T · P4(log T ) + O

(
T

7
8+ε
)

,

where P4(x) is a certain polynomial of degree four.

Let f(z) =
∞∑

n=1
a(n)e2πinz be a cusp form of weight κ for the modular group

with associated L–function Lf (s) =
∞∑

n=1
a(n)n−s. Anton Good [Goo82] made a

significant breakthrough in 1982 when he proved that∫ T

0

∣∣∣Lf

(κ

2
+ it

)∣∣∣2 dt = 2aT (log(T ) + b) +O
((

T log T
) 2

3
)

for certain constants a, b. It seems likely that Good’s method can apply to Eisenstein
series.

In 1989, Zavorotny [Zav89], improved Heath-Brown’s 1979 error term to∫ T

0

|ζ ( 1
2 + it)|4 dt ∼ 1

2π2
· T · P4(log T ) + O

(
T

2
3+ε
)

.
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Shortly afterwards, Motohashi [Mot92], [Mot93] slightly improved the above error
term to

O
(
T

2
3 (log T )B

)
for some constant B > 0. Motohashi introduced the double Dirichlet series [Mot95],
[Mot97] ∫ ∞

1

ζ(s + it)2ζ(s− it)2t−w dt

into the picture and gave a spectral interpretation to the moment problem.
Unfortunately, an old paper of Anton Good [Goo86], going back to 1985,

which had much earlier outlined an alternative approach to the second moment
problem for GL(2) automorphic forms using Poincaré series has been largely for-
gotten. Using Good’s approach, it is possible to recover the aforementioned results
of Zavorotny and Motohashi. It is also possible to generalize this method to more
general situations, for instance see [DG], where the case of GL(2) automorphic
forms over an imaginary quadratic field is considered. Our aim here is to explore
Good’s method and show that it is, in fact, an exceptionally powerful tool for the
study of moment problems.

Second moments of GL(2) Maass forms were investigated in [Jut97], [Jut05].
Higher moments of L–functions associated to automorphic forms seem out of reach
at present. Even the conjectured values of such moments were not obtained un-
til fairly recently (see [CF00], [CG01], [CFK+], [CG84], [DGH03], [KS99],
[KS00]).

Let H denote the upper half-plane. A complex valued function f defined on H
is called an automorphic form for Γ = SL2(Z), if it satisfies the following properties:

(1) We have

f

(
az + b

cz + d

)
= (cz + d)κf(z) for

(
a b
c d

)
∈ Γ;

(2) f(iy) = O(yα) for some α, as y →∞;
(3) κ is either an even positive integer and f is holomorphic, or κ = 0, in

which case, f is an eigenfunction of the non-euclidean Laplacian ∆ =
− y2

(
∂2

∂x2 + ∂2

∂y2

)
(z = x+ iy ∈ H) with eigenvalue λ. In the first case, we

call f a modular form of weight κ, and in the second, we call f a Maass
form with eigenvalue λ.

In addition, if f satisfies ∫ 1

0

f(x + iy) dx = 0,

then it is called a cusp form.
Let f and g be two cusp forms for Γ of the same weight κ (for Maass forms we

take κ = 0) with Fourier expansions

f(z) =
∑
m6=0

am |m|
κ−1

2 W (mz), g(z) =
∑
n 6=0

bn |n|
κ−1

2 W (nz) (z = x + iy, y > 0).
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Here, if f, for example, is a modular form, W (z) = e2πiz, and the sum is restricted
to m ≥ 1, while if f is a Maass form with eigenvalue λ1 = 1

4 + r2
1,

W (z) = W 1
2+ir1

(z) = y
1
2 Kir1(2πy)e2πix (z = x + iy, y > 0),

where Kν(y) is the K–Bessel function. Throughout, we shall assume that both f
and g are eigenfunctions of the Hecke operators, normalized so that the first Fourier
coefficients a1 = b1 = 1. Furthermore, if f and g are Maass cusp forms, we shall
assume them to be even.

Associated to f and g, we have the L–functions:

Lf (s) =
∞∑

m=1

amm−s; Lg(s) =
∞∑

n=1

bnn−s.

In [Goo86], Anton Good found a natural method to obtain the meromorphic con-
tinuation of multiple Dirichlet series of type

(1.1)
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt,

where Lf (s) and Lg(s) are the L–functions associated to automorphic forms f
and g on GL(2, Q). For fixed g and fixed s1, s2, w ∈ C, the integral (1.1) may be
interpreted as the image of a linear map from the Hilbert space of cusp forms to C
given by:

f −→
∫ ∞

1

Lf (s1 + it)Lg(s2 − it) t−w dt.

The Riesz representation theorem guarantees that this linear map has a kernel.
Good computes this kernel explicitly. For example when s1 = s2 = 1

2 , he shows
that there exists a Poincaré series Pw and a certain function K such that

〈f, P̄wg〉 =
∫ ∞

−∞
Lf

(
1
2

+ it

)
Lg

(
1
2

+ it

)
K(t, w) dt,

where 〈 , 〉 denotes the Peterson inner product on the Hilbert space of cusp forms.
Remarkably, it is possible to choose Pw so that

K(t, w) ∼ |t|−w, (as |t| → ∞).

Good’s approach has been worked out for congruence subgroups in [Zha].

There are, however, two serious obstacles in Good’s method.
• Although K(t, w) ∼ |t|−w as |t| → ∞ and w fixed, it has a quite different

behavior when t � |Im(w)|. In this case it grows exponentially in |t|.
• The function 〈f, P̄wg〉 has infinitely many poles in w, occurring at the

eigenvalues of the Laplacian. So there is a problem to obtain polynomial
growth in w by the use of convexity estimates such as the Phragmen-
Lindelöf theorem.

In this paper, we introduce novel techniques for surmounting the above two
obstacles. The key idea is to use instead another function Kβ , instead of K, so
that (1.1) satisfies a functional equation w → 1 − w. This allows one to obtain
growth estimates for (1.1) in the regions <(w) > 1 and −ε < <(w) < 0. In order to
apply the Phragmen-Lindelöf theorem, one constructs an auxiliary function with the
same poles as (1.1) and which has good growth properties. After subtracting this
auxiliary function from (1.1), one may apply the Phragmen-Lindelöf theorem. It
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appears that the above methods constitute a new technique which may be applied
in much greater generality. We will address these considerations in subsequent
papers.

For <(w) sufficiently large, consider the function Z(w) defined by the absolutely
convergent integral

(1.2) Z(w) =

∞∫
1

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w dt.

The main object of this paper is to prove the following.

Theorem 1.3. Suppose f and g are two cusp forms of weight κ ≥ 12 for
SL(2, Z). The function Z(w), originally defined by (1.2) for <(w) sufficiently large,
has meromorphic continuation to the half-plane <(w) > −1, with at most simple
poles at

w = 0,
1
2

+ iµ, −1
2

+ iµ,
ρ

2
,

where 1
4 +µ2 is an eigenvalue of ∆ and ζ(ρ) = 0; when f = g, it has a pole of order

two at w = 1. Furthermore, for fixed ε > 0, and ε < δ < 1− ε, we have the growth
estimate:

(1.4) Z(δ + iη) �ε (1 + |η|)2−
3δ
4 ,

provided |w|, |w − 1|, |w ± 1
2 − µ|,

∣∣w − ρ
2

∣∣ > ε with w = δ + iη, and for all µ, ρ, as
above.

Note that in the special case when f(z) = g(z) is the usual SL2(Z) Eisenstein
series at s = 1

2 (suitably renormalized), a stronger result is already known (see
[IJM00]) for <(δ) > 1

2 . It is remarked in [IJM00] that their methods can be
extended to holomorphic cusp forms, but that obtaining such results for Maass
forms is problematic.

2. Poincaré series

To obtain Theorem 1.3, we shall need two Poincaré series, the second one
being first considered by A. Good in [Goo86]. The first Poincaré series P (z; v, w)
is defined by

(2.1) P (z; v, w) =
∑

γ∈Γ/Z

(=(γz))v

(
=(γz)
|γz|

)w

(Z = {±I}).

This series converges absolutely for <(v) and <(w) sufficiently large. Writing

P (z; v, w) =
1
2

∑
γ∈SL2(Z)

yv+w|z|−w
∣∣∣ [γ] =

∑
γ∈Γ∞\Γ

yv+w ·
∞∑

m=−∞
|z + m|−w

∣∣∣ [γ],

and using the well-known Fourier expansion of the above inner sum, one can im-
mediately write
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P (z; v, w) =
√

π
Γ
(

w−1
2

)
Γ
(

w
2

) E(z, v + 1)(2.2)

+ 2π
w
2 Γ
(w

2

)−1 ∞∑
k=−∞

k 6=0

|k|
w−1

2 Pk

(
z; v +

w

2
,
w − 1

2

)
,

where Γ(s) is the usual Gamma function, E(z, s) is the classical non-holomorphic
Eisenstein series for SL2(Z), and Pk(z; v, s) is the classical Poincaré series defined
by

(2.3) Pk(z; v, s) = |k|− 1
2

∑
γ∈Γ∞\Γ

(=(γz))v W 1
2+s(k · γz).

It is not hard to show that Pk(z; v, s) ∈ L2
(
Γ\H

)
, for |<(s)|+ 3

4 > <(v) > |<(s)|+ 1
2

(see [Zha]).
To define the second Poincaré series Pβ(z, w), let β(z, w) be defined for z ∈ H

and <(w) > 0 by

(2.4) β(z, w) =


1
i

− log z̄∫
− log z

[
2yeξ

(zeξ−1)(z̄eξ−1)

]1−w

dξ if <(z) = x ≥ 0 and

<(w) > 0 ,

β(−z̄, w) if x < 0,

where the logarithm takes its principal values, and the integration is along a ver-
tical line segment. It can be easily checked that β(z, w) satisfies the following two
properties:

(2.5) β(αz, w) = β(z, w) (α > 0),

and for z off the imaginary axis,

(2.6) ∆β = w(1− w)β.

If we write z = reiθ with r > 0 and 0 < θ < π
2 , then by (2.4) and (2.5), we

have

(2.7)

β(z, w) = β
(
eiθ, w

)
=

1
i

iθ∫
−iθ

[
2 eξ sin θ

(eξ+iθ − 1)(eξ−iθ − 1)

]1−w

dξ

=

θ∫
−θ

[
2 eit sin θ

(ei(t+θ) − 1)(ei(t−θ) − 1)

]1−w

dt

=

θ∫
−θ

(
sin θ

cos t− cos θ

)1−w

dt

=
√

2π sin θ Γ(w) P
1
2−w

− 1
2

(cos θ),

where Pµ
ν (z) is the spherical function of the first kind. This function is a solution

of the differential equation

(2.8) (1− z2)
d2u

dz2
− 2z

du

dz
+
[
ν(ν + 1)− µ2

1− z2

]
u = 0 (µ, ν ∈ C).
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There is another linearly independent solution of (2.8) denoted by Qµ
ν (z) and

called the spherical function of the second kind. We shall need these functions for
real values of z = x and −1 ≤ x ≤ 1. For these values, one can take as linearly
independent solutions the functions defined by

(2.9) Pµ
ν (x) =

1
Γ(1− µ)

(
1 + x

1− x

)µ
2

F

(
−ν, ν + 1; 1− µ;

1− x

2

)
;

(2.10) Qµ
ν (x) =

π

2 sinµπ

[
Pµ

ν (x) cos µπ − Γ(ν + µ + 1)
Γ(ν − µ + 1)

P−µ
ν (x)

]
.

Here

F (α, β; γ; z) =
Γ(γ)

Γ(α)Γ(β)
·
∞∑

n=0

1
n!

Γ(α + n)Γ(β + n)
Γ(γ + n)

zn

is the Gauss hypergeometric function. We shall need an additional formula (see
[GR94], page 1023, 8.737-2) relating the spherical functions, namely

(2.11) Pµ
ν (−x) = Pµ

ν (x) cos[(µ + ν)π]− 2
π

Qµ
ν (x) sin[(µ + ν)π].

Now, we define the second Poincaré series Pβ(z, w) by

(2.12) Pβ(z, w) =
∑

γ∈Γ/Z

β(γz, w) (Z = {±I}).

It can be observed that the series in the right hand side converges absolutely for
<(w) > 1.

3. Multiple Dirichlet series

Fix two cusp forms f, g of weight κ for Γ = SL(2, Z) as in Section 1. Here f, g
are holomorphic for κ ≥ 12 and are Maass forms if κ = 0. Define

F (z) = yκf(z)g(z).

For compex variables s1, s2, w, we are interested in studying the multiple Dirichlet
series of type

∞∫
1

Lf (s1 + it) Lg (s2 − it) t−w dt.

As was first discovered by Good [Goo86], such series can be constructed by consid-
ering inner products of F with Poincaré series of the type that we have introduced
in Section 2. Good shows that such inner products lead to multiple Dirichlet series
of the form

∞∫
0

Lf (s1 + it) Lg (s2 − it) K(s1, s2, t, w) dt,

with a suitable kernel function K(s1, s2, t, w). One of the main difficulties of the the-
ory is to obtain kernel functions K with good asymptotic behavior. The following
kernel functions arise naturally in our approach.

First, if f, g are holomorphic cusp forms of weight κ, then we define:

(3.1) K(s; v, w) = 21−w−2v−2κ π−v−κ Γ(w + v + κ− 1) Γ(s) Γ(v + κ− s)
Γ
(

w
2 + s

)
Γ
(

w
2 + v + κ− s

) ;
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(3.2)

Kβ(t, w) =

21−κ π−κ−1
∣∣∣Γ(κ

2
+ it

)∣∣∣2
π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

Also, for 0 < θ < 2π, let W̃ 1
2+ν

(
eiθ, s

)
denote the Mellin transform of W 1

2+ν

(
ueiθ

)
.

Then, if f and g are both Maass cusp forms, we define K(s; v, w) and Kβ(t, w) with
t ≥ 0, by

(3.3)

K(s; v, w) =∑
ε1, ε2=±1

π∫
0

W̃ 1
2+ir1

(
ε1e

iθ, s
)

W̃ 1
2+ir2

(ε2 eiθ, v̄ − s̄) sinv+w−2(θ) dθ;

(3.4)

Kβ(t, w) =∑
ε1, ε2=±1

π∫
0

β
(
eiθ, w

)
sin−2(θ) W̃ 1

2+ir1

(
ε1e

iθ, it
)
W̃ 1

2+ir2
(ε2 eiθ, it) dθ.

We have the following.

Proposition 3.5. Fix two cusp forms f, g of weight κ for SL(2, Z) with asso-
ciated L-functions Lf (s), Lg(s). For <(v) and <(w) sufficiently large, we have

〈P (∗ ; v, w), F 〉 =
∞∫

−∞

Lf

(
σ − κ

2
+

1
2

+ it

)
Lg

(
v +

κ

2
+

1
2
− σ − it

)
K(σ + it; v, w) dt,

and

〈Pβ(∗ ; w), F 〉 =

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt,

where K(s; v, w), Kβ(t, w) are given by (3.1) and (3.2), if f and g are holomorphic,
and by (3.3) and (3.4), if f and g are both Maass cusp forms.

Proof. We evaluate

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2

by the unfolding technique. We have

I(v, w) =

=

∞∫
0

∞∫
−∞

f(z)g(z) |z|−wyv+w+κ−2 dx dy =

=

π∫
0

∞∫
0

f
(
reiθ

)
g (reiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ =

=
∑

m, n 6=0

ambn

|mn| 1−κ
2

π∫
0

∞∫
0

W 1
2+ir1

(
mreiθ

)
W 1

2+ir2
(nreiθ) rv+κ−1 sinv+w+κ−2(θ) dr dθ.
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By Mellin transform theory, we may express

W 1
2+ir1

(
mreiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
mueiθ

)
us du

u
r−s ds.

Making the substitution u 7→ u
|m| , we have

W 1
2+ir1

(
reiθ

)
=

1
2πi

∫
(σ)

∞∫
0

W 1
2+ir1

(
m

|m|
ueiθ

)
us

|m|s
du

u
r−s ds.

Plugging this in the last expression of 〈P (·; v, w), F 〉, we obtain

I(v, w) =
1

2πi

∫
(σ)

∑
m, n 6=0

ambn

|m|s+ 1−κ
2 |n| 1−κ

2

π∫
0

∞∫
0

W 1
2+ir1

(
m

|m|
ueiθ

)
us du

u

·
∞∫
0

W 1
2+ir2

(nreiθ) rv−s+κ dr

r
· sinv+w+κ−2(θ) dθ ds.

Recall that if f and g are Maass forms, then both are even. The proposition
immediately follows by making the substitution r 7→ r

|n| .

The second formula in Proposition 3.5. can be proved by a similar argument.
�

4. The kernels K(t, w) and Kβ(t, w)

In this section, we shall study the behavior in the variable t of the kernels

(4.1)
K(t, w) := K

(κ

2
+ it; 0, w

)
= 21−w−2κ π−κ Γ(w + κ− 1) Γ

(
κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
)

and Kβ(t, w) given by (3.2). This will play an important role in the sequel. We
begin by proving the following.

Proposition 4.2. For t � 0, the kernels K(t, w) and Kβ(t, w) are meromor-
phic functions of the variable w. Furthermore, for −1 < <(w) < 2, |=(w)| → ∞,
we have the asymptotic formulae

(4.3) K(t, w) = A(w) t−w ·
(

1 + Oκ

(
|=(w)|4

t2

))
,

(4.4)

Kβ(t, w) =

= 21−κ π−κ−1
∣∣∣Γ(κ

2
+ it

)∣∣∣2
π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

= B(w) t−w

(
1 +Oκ

(
|=(w)|3

t2

))
,

where

A(w) =
Γ(w + κ− 1)
22κ+w−1 πκ

and B(w) =
2πw− 1

2 Γ(w)Γ(w + κ− 1)
Γ(w + 1

2 )(4π)κ+w−1
.
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Proof. Let s and a be complex numbers with |a| large and |a| < |s| 12 . Using
the well-known asymptotic representation for large values of |s| :

Γ(s) =
√

2π · ss− 1
2 e−s

(
1 +

1
12 s

+
1

288 s2
− 139

51840 s3
+ O

(
|s|−4

))
,

which is valid provided −π < arg(s) < π, we have

Γ(s)
Γ(s + a)

= s−a
(
1 +

a

s

)−s−a+ 1
2

ea ·
(

1− 1
12 (s + a)

+ O
(
|s|−2

))(
1 +

1
12 s

+ O
(
|s|−2

))
.

Since |s| > |a|2, it easily follows that

( 1
2 − s− a) log

(
1 +

a

s

)
+ a =

a (1− a)
2 s

+
a3

6 s2
+ O

(
|a|2|s|−2

)
.

Consequently,

Γ(s)
Γ(s+a) = s−ae

a (1−a)
2 s + a3

6 s2
+ O(|a|2|s|−2) ·

(
1− 1

12 (s+a) + O
(
|s|−2

))
·
(
1 + 1

12 s + O
(
|s|−2

))
.

Now, we have by the Taylor expansion that

e
a (1−a)

2 s + a3

6 s2 = 1 +
a(1− a)

2s
+O

(
|a|4

|s|2

)
.

It follows that

(4.5)
Γ(s)

Γ(s + a)
= s−a

(
1 +

a(1− a)
2s

+O
(
|a|4

|s2|

))
.

Now

K(t, w) = 21−w−2κ π−κ Γ(w + κ− 1)
Γ
(

κ
2 + it

)
Γ(κ

2 − it)
Γ
(

w
2 + κ

2 + it
)
Γ
(

w
2 + κ

2 − it
) .

We may apply (4.5) (with s = κ
2 ± it, a = w

2 ) to obtain (for t →∞)

K(t, w) = Γ(w+κ−1)
22κ+w−1 πκ

∣∣κ
2 + it

∣∣−w ·
(
1 + O

(
|w|4

κ2+t2

))
= Γ(w+κ−1)

22κ+w−1 πκ t−w ·
(
1 + O

(
|w|4
t2

))
.

This proves the asymptotic formula (4.3). �

We now continue on to the proof of (4.4). Recall that

Kβ(t, w) =
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1

π
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.

We shall split the θ–integral into two parts. Accordingly, we write

Kβ(t, w) =

=
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1


|=(w)|−

1
2∫

0

+

π
2∫

|=(w)|−
1
2

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ.
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First of all, we may assume t � |=(w)| 32+ε. Otherwise, the asymptotic formula
(4.4) is not valid. ∫ π

2

|=(w)|−
1
2

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

� eπte
− 2t√

|=(w)| · max
|=(w)|−

1
2≤θ≤π

2

∣∣β(eiθ, w
)∣∣

� eπte−|=(w)|1+ε

,

since t � |=(w)| 32+ε and β
(
eiθ, w

)
is bounded. It follows that

Kβ(t, w) =
4
∣∣∣Γ(κ

2 + it
)∣∣∣2

(2π)κ+1

|=(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) cosh[t(2θ − π)] dθ

+ O
(
e−|=(w)|1+ε

)
=

2
∣∣∣Γ(κ

2 + it
)∣∣∣2 · eπt

(2π)κ+1

|=(w)|−
1
2∫

0

β
(
eiθ, w

)
sinκ−2(θ) e−2θt dθ

+O
(
e−|=(w)|1+ε

)
.

Now, for θ � |=(w)|− 1
2 , we have

β
(
eiθ, w

)
=

θ∫
−θ

(
sin θ

cos u−cos θ

)1−w

du

= 2(sin θ)1−w · θ
1∫
0

(
cos(θu)− cos(θ)

)w−1
du

= 2(sin θ)1−w · θ
1∫
0

(
θ2 (1−u2)

2! − θ4 (1−u4)
4! + θ6 (1−u6)

6! − · · ·
)w−1

du

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ( 1
2+w) + θ2(w−1)

6

(
− 2Γ(w)

Γ( 1
2+w) + Γ(1+w)

Γ( 3
2+w)

)
+ · · ·

]

=
√

π 21−w(sin θ)1−w · θ2w−1

[
Γ(w)

Γ( 1
2+w)

(
1 + θ2h2(w) + θ4h4(w) + θ6h6(w) + · · ·

)]
,

where

h2(w) =
1− w2

6 + 12w
, h4(w) =

(w − 1)(−21− 5w + 9w2 + 5w3)
360(3 + 8w + 4w2)

,

h6(w) =
(1− w)(3 + w)(465− 314w − 80w2 + 14w3 + 35w4)

45360(1 + 2w)(3 + 2w)(5 + 2w)
, · · ·

and where h2`(w) = O
(
|=(w)|`

)
for ` = 1, 2, 3, . . . , and

Γ(w)
Γ
(

1
2 + w

)(1 + θ2h2(w) + θ4h4(w) + θ6h6(w) + · · ·
)

converges absolutely for all w ∈ C and any fixed θ.
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We may now substitute this expression for β
(
eiθ, w

)
into the above integral for

Kβ(t, w). We then obtain

Kβ(t, w) =

=

˛̨̨̨
˛Γ
(

κ
2 +it

)˛̨̨̨
˛
2

·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

|=(w)|−
1
2∫

0

(sin θ)κ−w−1θ2w−1 e−2θt

(
1 + θ2h2(w) + · · ·

)
dθ

+ O
(
e−|=(w)|1+ε

)
=

˛̨̨̨
˛Γ
(

κ
2 +it

)˛̨̨̨
˛
2

·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

|=(w)|−
1
2∫

0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+O
(
e−|=(w)|1+ε

)
=

˛̨̨̨
˛Γ
(

κ
2 +it

)˛̨̨̨
˛
2

·eπt Γ(w)

2κ+w−1π
1
2 +κ Γ( 1

2+w)

∞∫
0

θκ+w−2 e−2θt

(
1 + θ2h̃2(w) + θ4h̃4(w) + · · ·

)
dθ

+ O
(
e−|=(w)|1+ε

)
=

˛̨̨̨
˛Γ
(

κ
2 +it

)˛̨̨̨
˛
2

·eπt Γ(w)Γ(κ+w−1)

tκ+w−1·4κ+w−1π
1
2 +κ Γ( 1

2+w)

(
1 + O

(
|=(w)|3

t2

))
,

where, in the above, h̃2`(w) = O
(
|=(w)|`

)
for ` = 1, 2, . . . .

If we now apply the identity∣∣Γ (κ
2 + it

)∣∣2 = t · |1 + it|2|2 + it|2|3 + it|2 · · ·
∣∣κ
2 − 1 + it

∣∣2 π
sinh πt

= 2πtκ−1e−πt
(
1 + Oκ

(
t−2
))

in the above expression, we obtain the second part of Proposition 4.2. �

For t smaller than |=(w)|2+ε, we have the following

Proposition 4.6. Fix ε > 0, κ ≥ 12. For −1 < <(w) < 2 and 0 ≤ t �
|=(w)|2+ε, with =(w) →∞, we have∣∣∣sin(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

∣∣∣ �κ t
1
2 |=(w)|κ− 3

2 .

Proof. Let g(w, θ) denote the function defined by

g(w, θ) = Γ(w) P
1
2−w

− 1
2

(cos θ).

We observe that

(4.7)
sin
(πw

2

)
g(1− w, θ) − cos

(
πw
2

)
g(w, θ) =

= − cos πw

2 cos
(

πw
2

) [g(w, θ) + g(w, π − θ)] .

To see this, apply (2.10) and (2.11) with ν = − 1
2 and µ = 1

2 − w. We have:

g(1− w, θ) = g(w, θ) sinπw − 2
π

Γ(w) Q
1
2−w

− 1
2

(cos θ) cos πw;

g(w, π − θ) = g(w, θ) cos πw +
2
π

Γ(w) Q
1
2−w

− 1
2

(cos θ) sinπw.
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Multiplying the first by sinπw, the second by cos πw, and then adding the resulting
identities, we obtain

g(1− w, θ) sinπw + g(w, π − θ) cos πw = g(w, θ),

from which (4.7) immediately follows by adding g(w, θ) cos πw on both sides.
Now, if f and g are holomorphic, it follows from (2.7), (3.3), and (4.7) that

(4.8)

sin
(

πw
2

)
Kβ(t, 1− w)− cos

(
πw
2

)
Kβ(t, w)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 cos πw

cos
(

πw
2

)
π
2∫

0

[g(w, θ) + g(w, π − θ)]

sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cos πw

cos
(

πw
2

) π∫
0

P
1
2−w

− 1
2

(cos θ)

sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ.

By (2.9), we have

P
1
2−w

− 1
2

(cos θ) =
1

Γ(w + 1
2 )

cot
1
2−w

(
θ

2

)
F

(
1
2
,
1
2
;w +

1
2
; sin2

(
θ

2

))
.

Invoking the well-known transformation formula

F (α, β; γ; z) = (1− z)−αF

(
α, γ − β; γ;

z

z − 1

)
,

we can further write

P
1
2−w

− 1
2

(cos θ) =
cos−w− 1

2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ(w + 1

2 )
F

(
1
2
, w;w +

1
2
;− tan2

(
θ

2

))
.

Now, represent the hypergeometric function on the right hand side by its inverse
Mellin transform obtaining:

(4.9)

P
1
2−w

− 1
2

(cos θ) =
1

Γ( 1
2 )Γ(w)

cos−w− 1
2

(
θ

2

)
sinw− 1

2

(
θ

2

)
· 1

2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz.

Here, the path of integration is chosen such that the poles of Γ( 1
2 + z) and Γ(w + z)

lie to the left of the path, and the poles of the function Γ(−z) lie to the right of it.
It follows that

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

= −2
1
2−κ π−κ− 1

2

∣∣∣Γ(κ

2
+ it

)∣∣∣2 Γ(w) cos(πw)
cos
(

πw
2

) π∫
0

cos−w− 1
2
(

θ
2

)
sinw− 1

2
(

θ
2

)
Γ( 1

2 )Γ(w)

·

 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

tan2z

(
θ

2

)
dz

 · sinκ− 3
2 (θ) cosh[t(2θ − π)] dθ.
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In the above, we apply the identity sin(θ) = 2 sin
(

θ
2

)
cos
(

θ
2

)
; after exchanging

integrals and simplifying, we obtain

(4.10)

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w) =

∣∣∣Γ(κ
2 + it

)∣∣∣2
2πκ+1

cos(πw)
cos
(

πw
2

)
· 1
2πi

i∞∫
−i∞

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz.

Note that sin
(

πw
2

)
Kβ(t, 1−w)− cos

(
πw
2

)
Kβ(t, w) satisfies a functional equa-

tion w 7→ 1 − w. We may, therefore, assume, without loss of generality, that
=(w) > 0. Fix ε > 0. We break the z–integral in (4.10) into three parts according
as

−∞ < =(z) < − ( 1
2 + ε)=(w), − ( 1

2 + ε)=(w) ≤ =(z) ≤ ( 1
2 + ε)=(w),

( 1
2 + ε)=(w) < =(z) < ∞.

Under the assumptions that =(w) → ∞ and 0 ≤ t � =(w)2+ε, it follows easily
from Stirling’s estimate for the Gamma function that

−i( 1
2+ε)=(w)∫
−i∞

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)=(w)
)

,

i∞∫
i( 1

2+ε)=(w)

∣∣∣∣Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

∣∣∣∣ dz = O
(
e−(π

2 +ε)=(w)
)

,

and, therefore,

(4.11)

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

= −

∣∣∣Γ(κ
2 + it

)∣∣∣2
2πκ+1

cos πw

cos
(

πw
2

) · 1
2πi

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·
π∫

0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ dz

+ O
(
e−ε=(w)

)
.
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Next, we evaluate the θ–integral on the right hand side of (4.11):

(4.12)

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
cosh[t(2θ − π)] dθ

=
e−πt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e2tθ dθ

f +
eπt

2

π∫
0

cosκ−w−2z−2

(
θ

2

)
sin2z+w+κ−2

(
θ

2

)
e−2tθ dθ

= e−πt

π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e4tθ dθ

+eπt
π/2∫
0

cosκ−w−2z−2(θ) sin2z+w+κ−2(θ) e−4tθ dθ,

where for the last equality we made the substitution

θ 7→ 2θ.

Using the formula (see [GR94], page 511, 3.892-3),

∫ π/2

0

e2iβx sin2µ x cos2ν x dx =

= 2−2µ−2ν−1
(
eπi(β−ν− 1

2 ) Γ(β − ν − µ)Γ(2ν + 1)
Γ(β − µ + ν + 1)

F (−2µ, β − µ− ν; 1 + β − µ + ν;−1)

+ eπi(µ+ 1
2 ) Γ(β − ν − µ)Γ(2µ + 1)

Γ(β − ν + µ + 1)
F (−2ν, β − µ− ν; 1 + β + µ− ν;−1)

)
,

which is valid for <(µ), <(ν) > − 1
2 , one can write the first integral in (4.12) as

23−2κ
∑

ε=±1

e−επt ·
(
eπi

(1−κ+w+2z−4itε)
2

Γ(2− κ− 2itε)Γ(−1 + κ− w − 2z)
Γ(1− 2itε− w − 2z)

· F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1)

+ eπi
(−1+κ+w+2z)

2
Γ(2− κ− 2itε)Γ(−1 + κ + w + 2z)

Γ(1− 2itε + w + 2z)

· F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1))
)
.
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If we replace the θ–integral on the right hand side of (4.11) by the above expression,
it follows that

(4.13)

sin
(πw

2

)
Kβ(t, 1− w)− cos

(πw

2

)
Kβ(t, w)

= −

∣∣∣Γ(κ
2 + it

)∣∣∣2
22κ−2πκ+1

cos πw

cos
(

πw
2

) · ∑
ε=±1

e−επtΓ(2− κ− 2itε)

· 1
2πi

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

Γ( 1
2 + z)Γ(w + z)Γ(−z)

Γ(z + w + 1
2 )

·

(
eπi

(1−κ+w+2z−4itε)
2

Γ(−1 + κ− w − 2z)
Γ(1− 2itε− w − 2z)

· F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1)

+eπi
(−1+κ+w+2z)

2
Γ(−1 + κ + w + 2z)
Γ(1− 2itε + w + 2z)

· F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1))

)
dz

+ O
(
e−ε=(w)

)
.

To complete the proof of Proposition 4.6., we require the following Lemma.

Lemma 4.14. Fix κ ≥ 12. Let −1 < <(w) < 2, 0 ≤ t � |=(w)|2+ε, <(z) = −ε′

with ε, ε′ small positive numbers, and |=(z)| < 2|=(w)|. Then, we have the following
estimates:

F (2− κ− w − 2z, 2− κ− 2itε; 1− w − 2z − 2itε;−1) �
√

min{1, 2t, |=(w + 2z)|},

F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1) �
√

min{1, 2t, |=(w + 2z)|}.

Proof. We shall make use of the following well-known identity of Kummer:

F (a, b, c;−1) = 2c−a−bF (c− a, c− b, c;−1).

It follows that

(4.15)
F (2− κ− w − 2z, 2− κ− 2itε, 1− w − 2z − 2itε;−1)

= 22κ−3F (κ− 1− 2itε, κ− 1− w − 2z, 1− w − 2z − 2itε;−1)

and

(4.16)
F (2− κ + w + 2z, 2− κ− 2itε; 1 + w + 2z − 2itε;−1)

= 22κ−3F (κ− 1− 2itε, κ− 1 + w + 2z, 1 + w + 2z − 2itε,−1).

Now, we represent the hypergeometric function on the right hand side of (4.15) as

(4.17) F (a, b, c;−1) =
Γ(c)

Γ(a)Γ(b)
· 1
2πi

δ+i∞∫
δ−i∞

Γ(a + ξ)Γ(b + ξ)Γ(−ξ)
Γ(c + ξ)

dξ,

with

a = κ− 1− 2itε

b = κ− 1− w − 2z

c = 1− w − 2z − 2itε.
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This integral representation is valid, if, for instance, −1 < δ < 0. We may also shift
the line of integration to 0 < δ < 1 which crosses a simple pole with residue 1.
Clearly, the main contribution comes from small values of the imaginary part of ξ.

If, for example, we use Stirling’s formula

Γ(s) =
√

2π · |t|σ− 1
2 e−

1
2 π|t|+i

(
t log |t|−t+ π

2 ·
t
|t| (σ− 1

2 )
)
·
(
1 +O

(
|t|−1

) )
,

where s = σ + it, 0 ≤ σ ≤ 1, |t| � 0, we have

(4.18)

∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)
Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� e
π
2

(
−|W−ξ|+|2t+W−ξ|−|ξ|−|ξ−2t|

)

· t
3
2−κ W

3
2−κ |W − ξ|− 3

2+κ+δ |ξ − 2t|− 3
2+κ+δ

√
2t + W

|ξ| 12+δ |2t + W − ξ| 12+δ
,

where W = =(w + 2z) ≥ 0. This bound is valid provided

min
(
|W − ξ|, |2t + W − ξ|, |ξ|, |ξ − 2t|

)
is sufficiently large. If this minimum is close to zero, we can eliminate this term
and obtain a similar expression. There are 4 cases to consider.

Case 1: |ξ| ≤ W, |ξ| ≤ 2t. In this case, the exponential term in (4.18)
becomes e0 = 1 and we obtain∣∣∣∣Γ(a + ξ)Γ(b + ξ)Γ(c)Γ(−ξ)

Γ(a)Γ(b)Γ(c + ξ)

∣∣∣∣� |ξ|− 1
2 .

Case 2: |ξ| ≤ W, |ξ| > 2t. In this case the exponential term in (4.18)
becomes

+e
π
2

(
−W+ξ+2t+W−ξ−|ξ|−|ξ|+2t

)
which has exponential decay in (|ξ| − t).

Case 3: |ξ| > W, |ξ| ≤ 2t. Here, the exponential term in (4) takes the form

e
π
2

(
−|ξ|+W+2t+W−ξ−|ξ|−2t+ξ

)
which has exponential decay in (|ξ| −W ).

Case 4: |ξ| > W, |ξ| > 2t. In this last case, we get

e
π
2

(
−|ξ|−W+2t+W+|ξ|−2|ξ|−2t

)
if ξ is negative. Note that this has exponential decay in |ξ|. If ξ is positive,
we get

e
π
2

(
−|ξ|+W+|2t+W−ξ|−2|ξ|+2t

)
.

This last expression has exponential decay in (2|ξ| − W − 2t) if 2t + W − ξ > 0.
Otherwise it has exponential decay in |ξ|.

It is clear that the major contribution to the integral (4.17) for the hypergeo-
metric function will come from case 1. This gives immediately the first estimate in
Lemma 4.14. The second estimate in Lemma 4.14. can be established by a similar
method. �
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We remark that for t = 0, one can easily obtain the estimate in Proposition
4.6. by directly using the formula (see [GR94], page 819, 7.166),∫ π

0

P−µ
ν (cos θ) sinα−1(θ) dθ = 2−µπ

Γ(α+µ
2 )Γ(α−µ

2 )
Γ( 1+α+ν

2 )Γ(α−ν
2 )Γ(µ+ν+2

2 )Γ(µ−ν+1
2 )

,

which is valid for <(α ± µ) > 0, and then by applying the Stirling’s formula. It
follows from this that

sin
(πw

2

)
Kβ(0, 1− w)− cos

(πw

2

)
Kβ(0, w) � |=(w)|κ−2.

Finally, we return to the estimation of sin
(

πw
2

)
Kβ(0, 1−w)−cos

(
πw
2

)
Kβ(0, w)

using (4.13) and Lemma 4.14. If we apply Stirling’s asymptotic expansion for the
Gamma function, as we did before, it follows (after noting that t,=(w) > 0) that∣∣∣sin(πw

2

)
Kβ(0, 1− w)− cos

(πw

2

)
Kβ(0, w)

∣∣∣
� t

1
2

i( 1
2+ε)=(w)∫

−i( 1
2+ε)=(w)

|=(w + 2z)|κ− 3
2

=(w)
1
2 (1 + |=(z)|) 1

2 |=(w + 2z + 2εt)| 12
√

min{1, 2t, |=(w + 2z)|} dz

� t
1
2=(w)κ− 3

2 .

This completes the proof of Proposition 4.6. �

5. The analytic continuation of I(v, w)

To obtain the analytic continuation of

I(v, w) = 〈P (∗; v, w), F 〉 =
∫ ∫

Γ\H
P (z; v, w)f(z)g(z) yκ dx dy

y2
,

we will compute the inner product 〈P (∗; v, w), F 〉 using Selberg’s spectral theory.
First, let us fix u0, u1, u2, . . . an orthonormal basis of Maass cusp forms which are
simultaneous eigenfunctions of all the Hecke operators Tn, n = 1, 2, . . . and T−1,
where

(T−1 u)(z) = u(−z̄).

We shall assume that u0 is the constant function, and the eigenvalue of uj , for
j = 1, 2, . . . , will be denoted by λj = 1

4 + µ2
j . Since the Poincaré series Pk(z; v, s)

(k ∈ Z, k 6= 0) is square integrable, for |<(s)| + 3
4 > <(v) > |<(s)| + 1

2 , we can
spectrally decompose it as

(5.1)

Pk(z; v, s) =
∞∑

j=1

〈Pk(∗; v, s), uj〉uj(z)

+
1
4π

∞∫
−∞

〈Pk(∗; v, s), E(∗, 1
2 + iµ)〉E(z, 1

2 + iµ) dµ.

Here we used the simple fact that 〈Pk(∗; v, s), u0〉 = 0.
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We shall need to write (5.1) explicitly. In order to do so, let u be a Maass cusp
form in our basis with eigenvalue λ = 1

4 + µ2. Writing

u(z) = ρ(1)
∑
ν 6=0

cν |ν|−
1
2 W 1

2+iµ(νz),

then by (2.3) and an unfolding process, we have

〈Pk(∗; v, s), u〉 = |k|− 1
2

∞∫
0

1∫
0

yv W 1
2+s(kz) u(z)

dx dy

y2

= ρ(1)
∑
ν 6=0

cν√
|kν|

∞∫
0

1∫
0

yv−1 W 1
2+s(kz) W 1

2+iµ(−νz)
dx dy

y

= ρ(1) ck

∞∫
0

yv Ks(2π|k|y) Kiµ(2π|k|y)
dy

y

= π−v ρ(1)
8

ck

|k|v
Γ
(−s+v−iµ

2

)
Γ
(

s+v−iµ
2

)
Γ
(−s+v+iµ

2

)
Γ
(

s+v+iµ
2

)
Γ(v)

.

Let G(s; v, w) denote the function defined by

(5.2) G(s; v, w) = π−v−w
2

Γ
(−s+v+1

2

)
Γ
(

s+v
2

)
Γ
(−s+v+w

2

)
Γ
(

s+v+w−1
2

)
Γ
(
v + w

2

) .

Then, replacing v by v + w
2 and s by w−1

2 in (5.2), we obtain

(5.3)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, u

〉
=

ρ(1)
8

ck

|k|v+ w
2
G( 1

2 + iµ; v, w).

Next, we compute the inner product between Pk

(
z; v+ w

2 , w−1
2

)
and the Eisen-

stein series E(z, s̄). This is well-known to be the Mellin transform of the constant
term of Pk

(
z; v + w

2 , w−1
2

)
. More precisely, if we write

Pk

(
z; v+

w

2
,
w − 1

2

)
= yv+ w

2 + 1
2 Kw−1

2
(2π|k|y)e(kx)+

∞∑
n=−∞

an

(
y; v+

w

2
,
w − 1

2

)
e(nx),

where we denoted e2πix by e(x), then for <(s) > 1,〈
Pk

(
·; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
=

∞∫
0

a0

(
y; v +

w

2
,
w − 1

2

)
ys−2 dy.

Now, by a standard computation, we have

a0

(
y; v +

w

2
,
w − 1

2

)
=

∞∑
c=1

c∑
r=1

(r, c)=1

e

(
kr

c

) ∞∫
−∞

(
y

c2x2 + c2y2

)v+ w+1
2

·Kw−1
2

(
2π|k|y

c2x2 + c2y2

)
e

(
−kx

c2x2 + c2y2

)
dx.
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Making the substitution x 7→ x
c2 and y 7→ y

c2 , we obtain〈
Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(∗, s̄)

〉
=

∞∑
c=1

τc(k) c−2s ·
∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2π|k|y
x2 + y2

)
· e
(

−kx

x2 + y2

)
dx dy.

Here, τc(k) is the Ramanujan sum given by

τc(k) =
c∑

r=1
(r,c)=1

e

(
kr

c

)
.

Recalling that
∞∑

c=1

τc(k) c−2s =
σ1−2s(|k|)

ζ(2s)
,

where for a positive integer n, σs(n) =
∑

d|n ds, it follows after making the substi-
tution x 7→ |k|x, y 7→ |k|y that〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
(5.4)

= |k|s−v−w
2 −

1
2 · σ1−2s(|k|)

ζ(2s)

∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy.

The double integral on the right hand side can be computed in closed form
by making the substitution z 7→ − 1

z . For <(s) > 0 and for <(v − s) > −1, we
successively have:

∞∫
0

∞∫
−∞

ys+v+ w−3
2

(x2 + y2)v+ w+1
2

·Kw−1
2

(
2πy

x2 + y2

)
e

(
− k

|k|
x

x2 + y2

)
dx dy(5.5)

=

∞∫
0

∞∫
−∞

ys+v+ w−3
2 (x2 + y2)−s ·Kw−1

2
(2πy) e

(
k

|k|
x

)
dx dy

=

∞∫
0

ys+v+ w−3
2 Kw−1

2
(2πy) ·

∞∫
−∞

(x2 + y2)−s e

(
k

|k|
x

)
dx dy

=
2−v−w

2 +1 πs−v−w
2

Γ(s)

∞∫
0

yv+ w
2 −1 Kw−1

2
(y) Ks− 1

2
(y) dy

=
G(s; v, w)
4 π−s Γ(s)

.

Combining (5.4) and (5.5), we obtain

(5.6)
〈

Pk

(
∗; v +

w

2
,
w − 1

2

)
, E(·, s̄)

〉
= |k|s−v−w

2 −
1
2 · σ1−2s(|k|)

4 π−s Γ(s) ζ(2s)
G(s; v, w)
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Using (5.1), (5.3) and (5.6), one can decompose Pk

(
·; v + w

2 , w−1
2

)
as

Pk

(
z; v +

w

2
,
w − 1

2

)(5.7)

=
∞∑

j=1

ρj(1)
8

c
(j)
k

|k|v+ w
2
G( 1

2 + iµj ; v, w) uj(z)

+
1

16π

∞∫
−∞

1
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
σ2iµ(|k|)
|k|v+ w

2 +iµ
G( 1

2 − iµ; v, w)E(z, 1
2 + iµ) dµ.

Now from (2.2) and (5.7), we deduce that

π−
w
2 Γ
(w

2

)
P (z; v, w) = π

1−w
2 Γ

(
w − 1

2

)
E(z, v + 1)(5.8)

+
1
2

∑
uj−even

ρj(1)Luj (v + 1
2 )G( 1

2 + iµj ; v, w) uj(z)

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G( 1

2 − iµ; v, w)E(z, 1
2 + iµ) dµ.

The series corresponding to the discrete spectrum converges absolutely for (v, w) ∈
C2, apart from the poles of G( 1

2 + iµj ; v, w). To handle the continuous part of the
spectrum, we write the above integral as

1
4πi

∫
( 1
2 )

ζ(v + s)ζ(v + 1− s)
πs−1Γ(1− s)ζ(2− 2s)

G(1− s; v, w)E(z, s) ds.

As a function of v and w, this integral can be meromorphically continued by shifting
the line <(s) = 1

2 . For instance, to obtain continuation to a region containing
v = 0, take v with <(v) = 1

2 + ε, ε > 0 sufficiently small, and take <(w) large.
By shifting the line of integration <(s) = 1

2 to <(s) = 1
2 − 2ε, we are allowed to

take 1
2 − ε ≤ <(v) ≤ 1

2 + ε. We now assume <(v) = 1
2 − ε, and shift back the line

of integration to <(s) = 1
2 . It is not hard to see that in this process we encounter

simple poles at s = 1− v and s = v with residues

π
1−w

2
Γ
(

w
2

)
Γ
(

2v+w−1
2

)
Γ
(
v + w

2

) E(z, 1− v),

and

π
3
2−2v−w

2
Γ(v)Γ

(
2v+w−1

2

)
Γ
(

w
2

)
Γ(1− v)Γ

(
v + w

2

) ζ(2v)
ζ(2− 2v)

E(z, v)

= π
1−w

2
Γ
(

2v+w−1
2

)
Γ
(

w
2

)
Γ
(
v + w

2

) E(z, 1− v),

respectively, where for the last identity we applied the functional equation of the
Eisenstein series E(z, v). In this way, we obtained the meromorphic continuation
of the above integral to a region containing v = 0. Continuing this procedure, one
can prove the meromorphic continuation of the Poincaré series P (z; v, w) to C2.
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Using Parseval’s formula, we obtain

π−
w
2 Γ
(w

2

)
I(v, w) = π

1−w
2 Γ

(
w − 1

2

)
〈E(·, v + 1), F 〉(5.9)

+
1
2

∑
uj−even

ρj(1)Luj
(v + 1

2 )G( 1
2 + iµj ; v, w) 〈uj , F 〉

+
1
4π

∞∫
−∞

ζ(v + 1
2 + iµ) ζ(v + 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G( 1

2 − iµ; v, w) 〈E(·, 1
2 + iµ), F 〉 dµ,

which gives the meromorphic continuation of I(v, w). We record this fact in the
following

Proposition 5.10. The function I(v, w), originally defined for <(v) and <(w)
sufficiently large, has meromorphic continuation to C2.

We conclude this section by remarking that from (5.9), one can also obtain
information about the polar divisor of the function I(v, w). When v = 0, this issue
is further discussed in the next section.

6. Proof of Theorem 1.3

To prove the first part of Theorem 1.3, assume for the moment that f = g. By
Proposition 5.10, we know that the function I(v, w) admits meromorphic continu-
ation to C2. Furthermore, if we specialize v = 0, the function I(0, w) has its first
pole at w = 1. Using the asymptotic formula (4), one can write

(6.1) I(0, w) =

∞∫
−∞

|Lf ( 1
2 + it)|2 K(t, w) dt = 2

∞∫
0

|Lf ( 1
2 + it)|2 K(t, w) dt,

for at least <(w) sufficiently large. Here the kernel K(t, w) is given by (4.1). As
the first pole of I(0, w) occurs at w = 1, it follows from (4.3) and Landau’s Lemma
that

Z(w) =

∞∫
1

|Lf ( 1
2 + it)|2 t−w dt

converges absolutely for <(w) > 1. If f 6= g, the same is true for the integral defining
Z(w) by Cauchy’s inequality. The meromorphic continuation of Z(w) to the region
<(w) > −1 follows now from (4.3). This proves the first part of the theorem.

To obtain the polynomial growth in |=(w)|, for <(w) > 0, we invoke the func-
tional equation (see [Goo86])

cos
(πw

2

)
Iβ(w)− sin

(πw

2

)
Iβ(1− w)(6.2)

=
2π ζ(w) ζ(1− w)

(2w − 1) π−w Γ(w) ζ(2w)
〈E(·, 1− w), F 〉.

It is well-known that 〈E(·, 1−w), F 〉 is (essentially) the Rankin-Selberg convo-
lution of f and g. Precisely, we have:

(6.3) 〈E(·, 1− w), F 〉 = (4π)w−κΓ(κ− w) L(1− w, f × g).
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It can be observed that the expression on the right hand side of (6.2) has polynomial
growth in |=(w)|, away from the poles for −1 < <(w) < 2.

On the other hand, from the asymptotic formula (4), the integral

Iβ(w) :=

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt

is absolutely convergent for <(w) > 1. We break Iβ(w) into two integrals:

Iβ(w) =

∞∫
0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
Kβ(t, w) dt(6.4)

=

Tw∫
0

+

∞∫
Tw

:= I
(1)
β (w) + I

(2)
β (w),

where Tw � |=(w)|2+ε (for small fixed ε > 0), and Tw will be chosen optimally
later.

Now, take w such that −ε < <(w) < − ε
2 , and write the functional equation

(6.2) as

cos
(πw

2

)
I
(2)
β (w) =

(
sin
(πw

2

)
I
(1)
β (1− w) − cos

(πw

2

)
I
(1)
β (w)

)
(6.5)

+ sin
(πw

2

)
I
(2)
β (1− w)

+
2π ζ(w) ζ(1− w)

(2w − 1) π−w Γ(w) ζ(2w)
〈E(·, 1− w), F 〉.

Next, by Proposition 4.2,

I
(2)
β (w)
B(w)

=
∫ ∞

Tw

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w

(
1 +O

(
|=(w)|3

t2

))
dt

= Z(w)−
Tw∫
1

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
t−w dt + O

(
|=(w)|3

T 1−ε
w

)

= Z(w) +O
(

T 1+ε
w +

|=(w)|3

T 1−ε
w

)
.

It follows that

(6.6) Z(w) =
I
(2)
β (w)
B(w)

+ O
(

T 1+ε
w +

|=(w)|3

T 1−ε
w

)
.
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We may estimate
I
(2)
β (w)

B(w) using (6.5). Consequently,

I
(2)
β (w)
B(w)

(6.7)

=
1

B(w)

[(
tan

(πw

2

)
I
(1)
β (1− w) − I

(1)
β (w)

)
+ tan

(πw

2

)
I
(2)
β (1− w)

+
2π ζ(w) ζ(1− w)

cos
(

πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1− w), F 〉

]
.

We estimate each term on the right hand side of (6.7) using Proposition 4.2 and
Proposition 4.6. First of all

tan
(

πw
2

)
I
(1)
β (1− w) − I

(1)
β (w)

B(w)
(6.8)

=
sin
(

πw
2

)
I
(1)
β (1− w) − cos

(
πw
2

)
I
(1)
β (w)

cos
(

πw
2

)
B(w)

=
∫ Tw

0

Lf

(
1
2

+ it

)
Lg

(
1
2
− it

)
· t

1
2 |=(w)|κ− 3

2

|=(w)|κ−2−ε
dt

� T
3
2+ε

w |=(w)| 12+ε.

Next, using Stirling’s formula to bound the Gamma function,

tan
(

πw
2

)
I
(2)
β (1− w)

B(w)
(6.9)

=

∞∫
Tw

Lf (·)Lg(·)
B(1− w)
B(w)

t−1− ε
2

(
1 +O

(
|=(w)|3

t2

))
dt

= O

(
B(1− w)
B(w)

·
(

1 +
|=(w)|3

T 2
w

))

�

∣∣∣∣∣Γ(1− w)Γ(1− w + κ− 1)Γ
(

1
2 + w

)
Γ(w)Γ(w + κ− 1)Γ

(
3
2 − w

) ∣∣∣∣∣ ·
(

1 +
|=(w)|3

T 2
w

)
� |=(w)|1+2ε +

|=(w)|4+2ε

T 2
w

.

Using the functional equation of the Riemann zeta-function (6.3), and Stirling’s
asymptotic formula, we have

(6.10)

∣∣∣∣∣ 2π ζ(w) ζ(1− w)
B(w) cos

(
πw
2

)
(2w − 1) π−w Γ(w) ζ(2w)

〈E(·, 1− w), F 〉

∣∣∣∣∣�ε |=(w)|1+ε.

Now, we can optimize Tw by letting

T
3
2+ε

w |=(w)| 12+ε =
|=(w)|3

T 1−ε
w

=⇒ Tw = |=(w)|.

Thus, we get
Z(w) = O

(
|=(w)|2+2ε

)
.
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One cannot immediately apply Phragmen-Lindelöf principle as the above func-
tion may have simple poles at w = 1

2 ± iµj , j ≥ 1. To surmount this difficulty,
let

(6.11) G0(s, w) =
Γ
(
w − 1

2

)
Γ
(

w
2

) [
Γ
(

1− s

2

)
Γ
(

w − s

2

)
+ Γ

(s

2

)
Γ
(

w + s− 1
2

)]
,

and define J (w) = Jdiscr(w) + Jcont(w), where

(6.12) Jdiscr(w) =
1
2

∑
uj−even

ρj(1)Luj
( 1

2 )G0( 1
2 + iµj , w) 〈uj , F 〉

and

Jcont(w)(6.13)

=
1
4π

∞∫
−∞

ζ( 1
2 + iµ) ζ( 1

2 − iµ)
π−

1
2+iµ Γ( 1

2 − iµ) ζ(1− 2iµ)
G0( 1

2 − iµ, w)〈E(·, 1
2 + iµ), F 〉 dµ.

In (6.13), the contour of integration must be slightly modified when <(w) = 1
2 to

avoid passage through the point s = w.
From the upper bounds of Hoffstein-Lockhart [HL94] and Sarnak [Sar94], we

have that ∣∣∣ρj(1) 〈uj , F 〉
∣∣∣ �ε |µj |N+ε,

for a suitable N. It follows immediately that the series defining Jdiscr(w) converges
absolutely everywhere in C, except for points where G0( 1

2 + iµj , w), j ≥ 1, have
poles. The meromorphic continuation of Jcont(w) follows easily by shifting the line
of integration to the left. The key point for introducing the auxiliary function J (w)
is that

I(0, w) − J (w) (<(w) > −ε)
(may) have poles only at w = 0, 1

2 , 1, and moreover,

cos
(πw

2

)
J (w)

has polynomial growth in |=(w)|, away from the poles, for −ε < <(w) < 2. To
obtain a good polynomial bound in |=(w)| for this function, it can be observed
using Stirling’s formula that the main contribution to Jdiscr(w) comes from terms
corresponding to |µj | close to |=(w)|. Applying Cauchy’s inequality, we have that∣∣∣∣Jdiscr(w)

2A(w)

∣∣∣∣ � 1
|A(w)|

·

( ∑
uj

|µj |<2|=(w)|

|ρj(1) 〈uj , F 〉|2
) 1

2

·

( ∑
uj

|µj |<2|=(w)|

L2
uj

( 1
2 ) |G0( 1

2 + iµj , w)|2
) 1

2

.

Using Stirling’s asymptotic formula, we have the estimates
1

|A(w)|
� |=(w)|−<(w)−κ+ 3

2 e
π
2 |=(w)|

|G0( 1
2 + iµj , w)| �ε |=(w)|

<(w)
2 − 3

4+εe−
π
2 |=(w)| (<(w) < 1 + ε).



26 ADRIAN DIACONU AND DORIAN GOLDFELD

Also, Hoffstein-Lockhart estimate [HL94] gives

|ρj(1)|2 �ε |=(w)|εeπ|µj |,

for µj � |=(w)|. It follows that∣∣∣∣Jdiscr(w)
2A(w)

∣∣∣∣ � |=(w)|−
<(w)

2 −κ+ 3
4+2ε ·

( ∑
uj

|µj |<2|=(w)|

eπ|µj | · |〈uj , F 〉|2
) 1

2

·

( ∑
uj

|µj |<2|=(w)|

L2
uj

( 1
2 )

) 1
2

.

A very sharp bound for the first sum on the right hand side was recently obtained
by Bernstein and Reznikov (see [BR99]). It gives an upper bound on the order
of |=(w)|κ+ε. Finally, Kuznetsov’s bound (see [Mot97]) gives an estimate on the
order of |=(w)|1+ε for the second sum. We obtain the final estimate

(6.14)
∣∣∣∣Jdiscr(w)

2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 7
4+4ε (<(w) < 1 + ε).

It is not hard to see that the same estimate holds for Jcont(w)
2A(w) . To see this, we

apply in (6.3) the convexity bound for the Rankin-Selberg L–function together
with Stirling’s formula. It follows that

|〈E(·, 1
2 + iµ), F 〉| �ε |µ|κ+ε e−

π
2 |µ|.

Then,∣∣∣∣Jcont(w)
2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 3
4+2ε

2|=(w)|∫
−2|=(w)|

|ζ( 1
2 + iµ)|2

|ζ(1− 2iµ)|
dµ (<(w) < 1 + ε).

By the well-known bounds

|ζ(1 + it)|−1 � 1,

T∫
0

|ζ( 1
2 + it)|2 dt �ε T 1+ε,

we obtain

(6.15)
∣∣∣∣Jcont(w)

2A(w)

∣∣∣∣ �ε |=(w)|−
<(w)

2 + 7
4+3ε (<(w) < 1 + ε).

It can be easily seen that the function

Z(w) − J (w)
2A(w)

(<(w) > −ε)

(may) have poles only at w = 0, 1
2 , 1. We can now apply Phragmen-Lindelöf

principle, and Theorem 1.3 follows. �

Finally, we remark that the choice of the function G0(s, w) defined by (6.11) is
not necessarily the optimal one. We were rather concerned with making the method
as transparent as possible, and in fact, the exponent 2−2δ instead of 2− 3

4δ should
be obtainable.
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