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1. Introduction.

The Godement-Jacquet L-function associated to the discrete subgroup SL(n, Z)
(with n > 2) acting on

b := GL(n,R)/(O(n,R) - R¥)

was first introduced in [Godement-Jacquet, 1972] where its analytic properties:
holomorphic continuation, functional equation, Euler product, etc. were ob-
tained by a generalization of Tate’s thesis [Tate, 1950]. Later, [Jacquet-Piatetski-
Shapiro-Shalika, 1979] obtained a different derivation of the construction of the
Godement-Jacquet L-function by the use of Whittaker models.

Following [Goldfeld, 2006], we review a classical construction of the Godement-
Jacquet L-function. In order to do this, it is necessary to introduce the following
notation. Let

zn = x(n)-y(n) € h"

with
lziox13- - T Y1y2 - Yn—1
1 mo3--+  xo4m Y1y2 - Yn—2
z(n) = : , y(n) = ,
lep_an n
1 1

(where z; j € Rfor 1 <i < j<mnandy >0for1<i<n-—1)bein Iwasawa
reduced form. Define U, (R) to be the subgroup of SL(n,R) consisting of upper
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triangular unipotent matrices and let

luipurz -+ uipy
1 ugz -+ wugp
u =
1 Unp—1,n
1

denote a generic element of U, (R), where the superdiagonal elements are relabeled
as

Uy = Up—1,my U2 = Un—-2n—1, ceey Up—1 = U1,2-

For m = (my,ma,...,m,_1) € Z" !, define 9, to be the character of U,(R)
defined by

%bm(u) — €2m' [m1U1+m2U2+---+mn71un71]'

For v = (v1,v9, -+ ,Up—1) € C" 7L and z, = x(n) - y(n) € h, as above, define
the function, I, : B — C, by the condition:

n—1ln—1
Iy(zn) = H H yi‘)i’jyja
i=1 j=1
where
ij ifi+j<n,
bij = ) N e
(n—i)(n—yj) ifi+j>n.
Set
[n/2]
(1)
1
wy, = . € SL(n,Z),

to be the long element of the Weyl group.

We may now define Jacquet’s Whittaker function Wjyacquet(2n; v, ¢¥m) by the
integral formula

WJvauet(zm v, ¢m) = / ( )Iu(wn U Zn) ¢m(u) d*u,
n(R

when R(v;) > 1 (for 1 < i < n — 1) and by meromorphic continuation to all
v € C" 1. The Whittaker function is characterized by the following properties.
First, it satisfies the relation

WJacquet(uzn; v, wm) = Ym (u) : WJacquet (Zn; v, ¢m)
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for all u € U, (R). Second, it is a square integrable function (for the Haar measure)
on a Siegel set 3 where

V3

zz{zehn‘ yi> 5 (1<i<n-—1), |zij| < (1§z'<j§n)}.

N =

Finally, the Whittaker function is also an eigenfunction of all the GL(n,R) in-
variant differential operators with the same eigenvalues as I,,.

Definition 1.1. (Maass form) Let n > 2. A Maass form for SL(n,Z) of
type v € C* 1 is a smooth function f : h™ — C which satisfies the following
conditions:

o f(vzn) = f(zn), Vy € SL(n,Z), z, € h™,
o f € L?(SL(n,Z)\b"),

e f is an eigenfunction of all the GL(n,R) invariant differential operators
(having the same eigenvalues as I,(zy)),

. S fluzp)du =0,
(SL(n,Z)NU\U

for all upper triangular groups U of the form

with 11 +ro—+---1, = n. Here I, denotes the r X r identity matriz, and x denotes
arbitrary real entries.

The Fourier expansion of a Maass form for SL(n,Z) was first derived in
[Piatetski-Shapiro, 1975], [Shalika, 1974]. The Fourier expansion takes the form
(see [Goldfeld, 2006])

(1.2) f(zn) = Z Z Z Z Aimll,---,ktf?ml)

VEUn—1(L\SL(n—1,Z) mi=1  mn—2=1 mu17#0 T |my| 2
k=1

’ WJacquet <M ’ (7 1> Zns V, wl,...,l, Imn1|> >
Mp—1
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where

myp-ccMp-2- |mn71|

A(mi,...,mp—1) € C.

mimg |’
mi
1

We may now give the definition of the Godement-Jacquet L-function.

Definition 1.3. (Godement-Jacquet L-function) Let s € C with R(s) >
"TH, and let f(z,) be a Maass form for SL(n,Z), with n > 2 as in definition 1.1,
which is an eigenfunction of all the Hecke operators. We define the Godement-
Jacquet L-function, L¢(s), by the absolutely convergent series

=5 A1, yme = [ énls)
m=1 p
where

(14)  p(s) = (1 C AW, D)p = AL, p,... Dp =4

-1
(1) AL pp T (1))

It is natural to consider multiple Dirichlet series associated to f of the type

m,.. ,m
(1.5) L1, 5nc1) Z Z 1 snnll),

mi=1 Mp—1=1 My

where s1,82,...,8,-1 € Cwith R(s;) >1(1<i<n-— 1). Such a series was first
considered by [Bump, 1984] in the case n = 3. Bump proved the identity

_ Li(s1)Ly(s2)

m1,mz Ly
Z Z C(s1+ s2)

mi1=1mo=1

where A(my, m2) are the Fourier coefficients of a Maass form f (normalized Hecke
eigenform) for SL(3,Z) and f denotes the dual of f. In [Bump-Friedberg, 1990],
a generalization of this double Dirichlet series, and above identity, was obtained
by considering the product of the standard and exterior square L-functions, i.e.,
a Rankin-Selberg construction involving two complex variables, one from the
Eisenstein series, and one of “Hecke” type.

The multiple Dirichlet series of the type (1.5) are not, in general, expected to
have meromorphic continuation to all C*~! when n > 4 (see [Brubaker-Bump-
Chinta-Friedberg-Hoffstein, 2005]). It is expected that they have natural bound-
aries.
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Question 1.6. One may ask if there exist multiple Dirichlet series associated to
Maass forms for SL(n,Z) with n > 4 beyond the series of Bump-Friedberg type
[Bump-Friedberg, 1990]?

A multiple Dirichlet series is said to be perfect if it satisfies a finite group
of functional equations and has meromorphic continuation in all its complex
variables. The main object of this paper is to construct, by the employment of
a simple integral operator, classes of perfect multiple Dirichlet series associated
to Maass forms on SL(n,Z). Our construction makes use of a rank lowering
map which maps automorphic forms for SL(n,Z) (with n > 3) into automorphic
forms for SL(n—1,7), i.e., the rank is lowered by one. The rank lowering map is
given by a single Mellin transform and a restriction of variables. It has the very
interesting property that the cuspidal image of a Maass form f for SL(n,Z) is an
an infinite sum of Maass forms for SL(n — 1,Z) weighted by twists of L by the
Godement-Jacquet L-functions of the Maass forms on SL(n — 1,Z). In theorem
2.4, the cuspidal projection of the rank lowering map is precisely computed. The
rank lowering linear map also satisfies natural functional equations so iterations
of this map can be used to construct perfect multiple Dirichlet series.

2. Rank lowering linear maps acting on automorphic forms.

Fix n > 2 and s € C with R(s) sufficiently large. We shall construct a rank
lowering linear map (denoted PI') acting on automorphic forms for the group
SL(n + 1,Z) and mapping them to automorphic forms for SL(n,Z) which is a
discrete group of lower rank.

Definition 2.1. (rank lowering linear map) Fiz n > 2 and s € C with R(s)
sufficiently large. For f an automorphic form for SL(n + 1,7Z), define

P2 () () = 7f () (")) - (- Dente))” 0
)

where I, is the n X n identity matriz. It is assumed that f has sufficient decay
properties so that the above integral converges absolutely and uniformly on com-
pact subsets with R(s) sufficiently large. This will be the case, for example, if f
is a Maass form as in definition 1.1.

Fix a constant D > 1. An automorphic form f(z,) for SL(n,Z) is said to be
strongly L? if for any fixed subset

Y:{yglvyb?"'yfr} (Wlth1§€1<<€r§n—l)7
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or Y = the empty set, we have
(2.2) 1fGa)l < [T o™
Yi¢Y

for all N =1,2,3,..., and all z, € b, satisfying the condition that y; > D for
y; ¢ Y. Here, the <—constant in (2.2) depends at most on f, N, D, and the values
of the fixed variables 0 < y,, € Y. Note that this constant may blow up as a
particular y,, — 0.

Since a fundamental domain for SL(n,Z)\h" is contained in a Siegel set (see
[Goldfeld, 2006]), it easily follows that strongly L? implies £2 in the usual sense.

The key properties of the rank lowering map are given in the next proposition.

Proposition 2.3. Fixn > 2 and s € C with R(s) sufficiently large. Then the
rank lowering linear map Pl (as given in definition 2.1) maps strongly L? auto-
morphic forms for SL(n+1,7) to strongly L? automorphic forms for SL(n,Z).

Proof: First we show that P'(f) is well defined on h", i.e., that
PY(f)(zn - k- 11n) = P () (2n)
for all k € O(n,R) and all » € R*. Since (¥,) € O(n + 1,R) and f is right
invariant by O(n + 1,R) it immediately follows that
PY(£)(zn - k) = PY(£) (2n).

It remains to show that P ( f) is right invariant by rI,, for r € R*. Clearly, we
may assume r > (. The invariance follows from the computation:

Pr(f)(r - zm) = Zf ((zn 1) (ryoln 1>> s <yg : Det(zn)>s CZO

= P:(fﬂzn)v

after making the transformation yo — <.

If v € SL(n,Z) then (7,) € SL(n + 1,Z). Since f is automorphic for
SL(n + 1,Z) and Det ((7;)) = 1, it immediately follows from definition 2.1
that

P (f)(vzn) = PI(f) (2n)
for all v € SL(n,Z). This shows that P*(f) is automorphic for SL(n, Z).

Next, we establish the strongly L? property. Fix a set Y = {yp,..., s }. It
follows from the definition 2.1 and the bounds (2.2) that for fixed s with R(s)
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sufficiently large and N > nR(s) that

s = [ (=) () ™ 2
T ) ™ 2

< (D” Det(z,)%®) + / - Det(z,) %) dy0> . H y;

b Yo YigY

< [Tw"

YigY

for N' = N — n%(s). In the estimation of the first integral above, we have used
the fact that since f is automorphic and is bounded on a fundamental domain it
is bounded everywhere.

g

Next, we will apply the rank lowering operator to Maass forms. It is neces-
sary to show that Maass forms are strongly L?. This is a long tedious compu-
tation which we omit but is based on the fact that the bound (2.2) holds for
Jacquet’s Whittaker function. This was first established in [Jacquet-Piatetski-
Shapiro-Shalika, 1979]. It is easy to show that (2.2) holds on GL(2) by classical
estimates for the K-Bessel function. In theorem 2.1 [Stade, 1990], it is proved
that Jacquet’s Whittaker function on GL(n) can be written as an integral of the
classical K-Bessel function multiplied by another Jacquet Whittaker function for
GL(n —2). The bound (2.2) can then be obtained by induction. Alternatively, it
is also possible to obtain sharp bounds by the methods in §7 in [Jacquet, 2004].

The following theorem gives the contribution of the discrete spectrum to the
rank lowering map defined on Maass forms. It shows that this contribution is a
Rankin-Selberg convolution.

Theorem 2.4. Fix n > 2 and s € C, sufficiently large. Let f be an even
Maass form of type v € C" for SL(n + 1,Z). For every (mi,ma,...my) €
Z", let A(mq,...,my,) be the corresponding Fourier coefficient of f. Let ¢ be a
Maass form of type A € C"! for SL(n,Z). For every (r1,...rn_1) € Z" 1, let
B(ri,...,rn_1) be the corresponding Fourier coefficient of ¢. Let (, ) denote the
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Petersson inner product on SL(n,Z)\h™. Then

(Pr(), ) = Y -y Al B ) ()

(n+1—k)(s+3)

mi1=1 mp=1 mk
k=1
where
Yoy1y2 - - Yn—1
00 00 Yoy1 - Yn—2
GV,A(S) = / e / WJacquet T y Uy 1/}1,...,1
0 0
Yo
1
Y1y2 - - Yn—1
Yt Yn—2 n—1 n—1 dy
- —k)(s—k ;
: WJacquet .. 7A7¢1,...,1 H y]E/‘n o=k) H 71
" k=0 i=o i
1

Note that a similar theorem can be obtained for odd Maass forms.

Proof: To compute the inner product, we will use the Rankin-Selberg unfold-
ing technique. The first step will be to write the Fourier expansion of P'(f) as
a sum over the coset representatives of U, (Z)\SL(n,Z). With this expansion, we
can unfold the integral over SL(n,Z)\h™ to obtain an integral over U,(Z)\h".
The computation goes as follows.

P = Y o A,

mi,.mn=1 yeUn(Z)\SL(n,2) ] m,
k=1

o n In n s d
: / WJvauet (M <’7Z 1> <y0 1> , UV, ¢17-.-71> (yo : Det(zn)> L ’
0 Yo

where M is as in definition 1.2.

Now let z,(7) be the Iwasawa form of z,. There exists k(v) € O(n,R) and
d(v) € diag(n,R) such that vz, = z,(7)k(7)d(y). Note that taking determinants
implies

Det(z) = |d(+)|" Det(zn(7)).
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Hence

[e.9]

) = 3 yo A

n
mi,..,mn=1 veU,(Z)\SL(n,Z) H my
k=1

-/OOO Wiacquet (M (Zn(V) 1) <yo\d(’)’)\fn 1) , U, ¢1,...,1> (3/3 : Det(zn)>s C;léo‘

As before, we make the change of variables yo|d(7y)| — yo. Consequently

) = S o A ),

n
mi,.mn=1 yeUn(Z)\SL(n,2) [] m,
k=1

* Zn(7) > <yOIn > s dyo
. Wiacquet | M U1 O Detz, -
/0 Jacquet < ( 1 1 ’11[)1 1 (yO (’Y)) Y0

When f is a Maass form for SL(3,7Z), for example, the above calculation gives
P2(f) as follows:

2 . i A(ml,m2)
LARICER D DU DR
mi,ma=1 ~eUs(Z)\SL(2,Z) 12
n|11m2y|gy
0 cz+d S d
Yy 2s @Yo
. W, , U, e(moRe(vz)) ——%- —_.
/0 Jacquet miYo ¢1,1,1 ( 2 (’Y )) |CZ—|—d|2S Yo %0

1

The above calculations give another proof of the invariance of PJ'(f) under
SL(n,Z).
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The inner product can now be evaluated by unfolding. We have

(o) = [ PO B a

SL(n,Z)\h"
= A mi,. 7mn
= Z Z n( n+1 k)k / / ¢ Zn
m1,.mn=1 y€Un(Z)\SL(n,Z) H my, SL(nZ)\br
n In s *k d
'WJacquet (M (Z ) < 1) 7w1, L1 > : Det(zn(/y))) d*zn %
> A ml, .
Z l_n[ (n+1 k)k
mi,..,mp=1 m n
AL W@\
n In n 5 % d
'WJacquet <M <Z 1) <y0 1) » Vs %,...,1) (?Jo 'Det(zn)> d Zn %
Consequently
n N m]J . 7m’l’L
<Ps (f)’ ¢> = Z (n+1 DL / / / /
mi,. 7mnfl

k:

WJacquet ( < ) » Vs w1,...,1>

. (h yg_k) sazn) e(maxy + - - -
k=0

d
+ mpxn—1) d*z(n) d*y(n) —yyo
0

i A(my,..,my,) B(ma, .., my,)

n (”+1 k) (2k—1 / /
mi,..,mp=1 H mk )

k=1

n—1
. WJacquet (M (yo ‘ y(n) 1) y Vs 1/’1,...,1) ( H yg—k>
k=0

m2..MpY1--Yn—1

. n—1
. WJacquet )

— 1
—k(n—k dy;
y Vs 1/]1,...,1 H Y. (n=k) H ﬂ .
may1 i
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Now, in the above integral, make the change of variables

mi+1Yi — Y
for each 7 from 0 to n — 1. The theorem follows.

We now show that the rank lowering map applied to a Maass form satisfies
natural functional equations. Recall the long element

+1

of the Weyl group of SL(n + 1,7).
Theorem 2.5. (Functional Equations) Fiz n > 2 and let s € C with R(s)

sufficiently large. Let f be a Maass form of type v € C" for SL(n+1,7). Define

the contragredient Maass form f by f(z) = f(w'z~'w). Then P! (f) has analytic
continuation to all s € C and satisfies the following functional equations:

(i) Pr(f)(za) = P2(F)(2,1)
(i) PEH(PL(S) = P (P (),

where v1 = %81 + n+152 and vg = —%82 + ”T_lsl. By iterating the rank lowering
map, perfect multzple Dirichlet series may be created.

Proof: We compute, for (s) > 1

9

PL(f) (o) = 701“ () (")) (s Dette)” 22
0

— O/lf <(zn 1) (yoln 1>> , (T‘J(T)L'Det(zn))s GSJ;)
+17f <<Zn 1) <onn 1)) ' (yg'Det(zn))s CZ)O
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— O/lf <w <Z” 1) <yOI” 1>> . (y{} : Det(zn))s (ZO

In the first integral above, make the change of variables y% — 1o. Note that
the second integral converges absolutely for any s € C since the Maass cusp form
f has rapid decay as yg — oo. It follows that

B0 e = 17 f<<tzn1 1) <y0[n 1)) (et (1)) dy’?
! ]of <<Zn 1) <onn 1>> ‘ (yg : Det(zn))s CZ)O.

Let 7, denote the Iwasawa form of ‘2,1, so that
Tn = tZ;l k(2n) d(2n),
for some
k(zn) € O(n,R)
and
d(z,) € diag(n,R).
By the Iwasawa decomposition, we have the following equivalence:

(’fznl 1) <yOIn 1) _ <7‘n 1) <yod(zn)ln 1> mod (O(n +1,R)diag(n + 1, R)).

It is then clear from this representation that as yo — oo, the contragrediant
Maass form f will have rapid decay.

Consequently, both the first and second integrals in (2.7) converge absolutely
for any s € C and define holomorphic functions on all of C. The function
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pr ( f) (zn) can then be defined for every s € C by analytic continuation. It
follows that for any s € C,

Pt = () (%)) - (6 -pere)” 8
1
+ ff ((tz’:1 1) (yOI" 1)) . <yg -Det ("2, ) )_s dyy;j

= P (f)(zn)-

The last line gives the functional equation P! (f)(z,) = P"( f )tz h).

n

The second functional equation in theorem 2.5 does not involve the contra-
gredient. We shall deduce it by a double iteration of the rank lowering linear
map.

Let v1,v2 be as in the statement of theorem 2.5. We compute, for £(s1), R(s2),
R(v1), R(ve) all simultaneously sufficiently large:

PP () (zn-1) =

_ Ji n Zn— Yoln— n— 1 dyo
- O/PSQ(f) << 11> ( 0 11>) : (y() l‘Det(anl)) %
_ 7070]0 Zn—1 . Yoln—1 . <y_11n >

0 0 1 1 !

. (yﬁl yo! Det(zn_l)>82 . (%l—l . Det(zn_l))81 dy-1 dyo

Yy-1 Yo
X Zn—1 Y—1yodn—1
= //f 1 Y—1
00 1 1

_ s1+s2 dy_1 d
V) (Det(z, ) S H0
Y-1 Yo
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-
0 0 1
Sy
=/
0 0 1
Sy

Il
o3

It follows that

PLH PR () (zam1) = 770f
00

nsg

“Y_1" Yo

n—1)(s1+s sit+s2 dy_1 d
(n—1)(s1+s2) <Det(zn_1)> 1Te2 dy—1 Yo

Dorian Goldfeld and Meera Thillainatesan

Zn—1 Y—1yodn—1
1 Y-1
1 1
s1+s2 dy_1 d
y( Disrta) (Det(zn,1)> T ay-1 Yo
Yy-1 Yo
Y-1Y0ln—1
1
s1+s2 d
(() )(s1+s2) (Detzn1>l 2 aYy—-1 aYo
Y-1 Yo
Y-1Yodn—1 I
1 1
Y1 1
si+s2 dy_1 d
(061 (D, 1)) Dot o
Yy-1 Yo
Y—1yoln—1
1
Y-1
s1+s2 dy_1 d
1) (e, )" 1 don,
Y-1 Yo

yOIn—l
1
Yy-1
1

Yy-1 Yo '

1

In the above integral, let’s make the successive transformations: y_; — = and

then yg — y—_1y09. We obtain

Yy—
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® Zn—1 Y—1yodn—1
1

P (PR () (20n) = / f v
0

) 1 1
s1+s2 dy_l %

Sy 12 (y—lyo)(n_l)(51+52) (Det(znfl)) y-1 Y

o0

s Zn—1 Yoln—1
1
00 1 1

o dy—1 dyo
y-1 Yo

n ,n—1 v2 n—1
“\Y-1Y Det(2,,-1) “\Y% Det(zn-1)

where v; and vy are as given in the statement of the theorem.

1]
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