p-Converse Theorem (CM Case)

Ye Tian

Morningside Center of Mathematics

July 22, 2019
JNT Biennial Conference

(Joint work with Burungale and Skinner)

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.

@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.

@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,
@ o E(F): Mordell-Weil group,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.

@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,
@ o E(F): Mordell-Weil group, finitely generated abelian group;

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

@ o E(F): Mordell-Weil group, finitely generated abelian group;
o II(E/F) = Ker(HY(F,E) — [[, H(F., E)), Shafarevich-Tate
group,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

@ o E(F): Mordell-Weil group, finitely generated abelian group;
o II(E/F) = Ker(HY(F,E) — [[, H(F., E)), Shafarevich-Tate
group, conjectured to be finite;

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

@ o E(F): Mordell-Weil group, finitely generated abelian group;
o II(E/F) = Ker(HY(F,E) — [[, H(F., E)), Shafarevich-Tate
group, conjectured to be finite;
o Sely=(E/Q) = Ker(H'(F, E[p>]) — [1, H*(F., E)):
p>°-Selmer group,

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.
@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

@ o E(F): Mordell-Weil group, finitely generated abelian group;
o II(E/F) = Ker(HY(F,E) — [[, H(F., E)), Shafarevich-Tate
group, conjectured to be finite;
o Sely=(E/Q) = Ker(H'(F, E[p>]) — [1, H*(F., E)):
p>°-Selmer group, cofinitely generated Z,-module. (Here p is

a prime),

Ye Tian p-Converse Theorem (CM Case)



Introduction
BSD conjecture

Let E be an elliptic curve over a number field F.

@ L(E/F,s): Hasse-Weil L-function, conjectured to be entire,
functional equation with central s = 1,

@ o E(F): Mordell-Weil group, finitely generated abelian group;
o II(E/F) = Ker(HY(F,E) — [[, H(F., E)), Shafarevich-Tate
group, conjectured to be finite;
o Sely=(E/Q) = Ker(H'(F, E[p>]) — [1, H*(F., E)):
p>°-Selmer group, cofinitely generated Z,-module. (Here p is
a prime),
They fit into an short exact sequence:

0— E(F)®z Qp/Zp — Selp=(E/F) — II(E/F)[p™] — 0
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Conjecture (Birch and Swinnerton-Dyer)

Let E be an elliptic curve over a number field F. Let r > 0 be an
integer and p a prime. Then the following are equivalent:

Q ords—1L(E/F,s)=r;
@ rankz E(F) = r and 1I(E/F) is finite;
© corankgz,Selp(E/F) =r.

Moreover, under these conditions, the formula holds:

LO(E/F,1) Tl ce- #UI(E/F)
r!-RE-QE/\/|DF\ B #E(F)%ors .

The p-part of BSD formula for E means that both sides
(conjecturally to be rational numbers) have the same p-valuation.
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The implication (3) = (1) is called p-converse. The p-converse

also arises naturally in the study of Goldfeld's conjecture.

Conjecture (D. Goldfeld)

In a quadratic twist family of elliptic curves over F (fixed a,b € F),
Eec{ny?=x3+ax+b, n€ FX/F*?}

ords—1L(E/F,s) takes values O (resp. 1) in density one among

members with sign +1 (resp. —1) in the functional equations of
their L-functions.

Theorem (A.Smith)

An analogue to Goldfeld conjecture, with ords—1L(E/Q,s)
replaced by coranky,Selyo(E/Q), holds for the family
{ny? = x3 — x, n € Z>1 square-free}.

Goldfeld conjecture for the above family will follows if one can
show the p = 2-converse (r = 0,1) for them.
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Assume that F = Q and p is an ordinary prime for E.

o
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For r = 0, Non-CM case is due to Skinner-Urban and CM
case is due to Rubin (Hsieh for F totally real).

Only since the last few years, there has been progress in the
case r =1. In non-CM case,

@ W. Zhang: (together with Kolyvagin conjecture), level raising
and rank lowering, Jochnowitz congruence, and
Skinner-Urban;

@ C. Skinner. BDP formula and Rankin-Selberg IMC divisibility
(Wan);

They established the p-converse results simultareously and
independently under different mild conditions. It seems that
these techniques at various stages require the big Galois image
condition on E[p]. In particular, the CM case is excluded. For
CM ordinary case over Q, Burungale-T 2017.
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The main result of this talk is the following.

Theorem (Burungale-Skinner-T)

Let E be an elliptic curve over a totally real field F with CM by M.

Let p be an ordinary prime for E. Then the p-converse for E /F
holds:

corankz,Sely~(E/F) =1 = ords—1L(E/F,s) =1,

provided that p { 6DFNEh,T/,F/F. Here Ng is the conductor of E, M

is the CM field of E and h™ is the relative class number.

v
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The role of Heegner Points in the Proof

Let E be an elliptic curve over Q and K an imaginary quadratic
field s.t. (E, K) satisfies the classical Heegner hypothesis:

o there exists A4 C Ok such that Ok /N ~ Z/NZ.

@ E has non-split semi-stable reduction at primes dividing
(Ng, Dk).
Therefore we have a CM point

P:=(C/0x — C/ N "1) € Xo(N)(Hk)

The classical Heegner point is constructed from the CM point via
modular parametrization f : Xo(N) — E:

yk = Try, kf(P) € E(K).
The Theorem of Gross-Zagier implies that
ords—1L(Ex,s) =1 < yk #0in E(K) ®z Q.
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e We may ask wether CM Iwasawa theory (GL1/M) can be
related to the CM p-converse (GL2/Q). For example,
Rubin’s two variable main conjecture for CM case over Q,
and Hsieh's divisibility in CM IMC for over totally real field.

@ But if one simply take K be the CM field M of E, the sign of
L-series L(E/M,s) is +1. In particular, Heegner construction
does not work.

@ On the other hand, the construction of Heegner points was
generalized to all self-dual Rankin-Selberg pair (g, x/K) over
totally real fields (even G-Z formula of YZZ).

@ The key in our approach is to choose a pair so that it fits into
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@ Let B be an abelian variety associated to g x x:

L(B/K,s) =[] L(s —1/2.8" x x°).

o Let V be an incoherent totally definite K/F-Hermitian space
of rank 2 with Hasse invariants given by

ev(V) = ev(g x x)xviv(=1), Vv
Let X be the unitary Shimura curve over K associated GU(V)
of certain level parametrizing B.

There is similarly Heegner point (from the modular
parametrization)

Yo € B(K)Q.
The Gross-Zagier formula of Yuan-Zhang-Zhang shows that yp # 0
if and only if L'(1/2,g x x) # 0. Similarly, the p-converse for
E/F is equivalent to the p-converse for B/K:

corankg,Sely<(B/K) =1 = yo #0.
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The similar Iwasawa tool can be introduced here. For a fixed prime
p|p of F and related p-adic anti-cyclotomic extension K, there is

a Heegner class
y € 5(B/Kx),

and the above p-converse to B/K follows from the following

Conjecture (HPMC in CM case)

Let g be a Hilbert form of parallel weight 2 with CM by K, x a
finite order Hecke character over K such that wg - x| AX = 1 and

sign(g x x) = —1. Let p be a prime such that K /F is p-ordinary.
Then in /\@P,

Char(S(B/Kx)/Ny)-Char(S(B/Kx)/Ny)" = Char(X(B/Koo)tors)j il
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o the Selmer group Selk(WV, X) is defined to be

Ker(H'(Gal(Ks/K), W @A) =[] H'(hw: W @7 A)).
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o Let L(V,X) be the Katz p-adic L-function. It interpolates the
L-values L(0,%A), where X is of infinite type kX + (1 — ¢)
with either

o k>1and Kk € Z>o[X] or
o k<1land kX +k € Zso[X].
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Here
o the Selmer group Selk(WV, X) is defined to be

Ker(H'(Gal(Ks/K), W @A) =[] H'(hw: W @7 A)).

weSUL S

o Let L(V,X) be the Katz p-adic L-function. It interpolates the
L-values L(0,%A), where X is of infinite type kX + (1 — ¢)
with either

o k>1and Kk € Z>o[X] or

o k<1land kX +k € Zso[X].
Under certain conditions (we assume in the theorem), Hsieh
established the divisibility

Theorem (Hsieh)

The following inequality of ideals in A\ holds:

Char(Selx(V, ¥)) C (L(V, X)).
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e Fix an embedding K ¢ Q — @p inducing v|p. Let p = vv.

o Let I = Gal(Kw/K), N = Gy[[l]], A* its Pontryagin dual.

o let T=T,B,M=T®NAN*, v,v,bad places € X (finite set).
The strict-Selmer group Sel**(B/Kx) of B over K, (Greenberg

condition at w|p, # p):
Ker(H'(Gk x, M) = H (K, M) x T1ex wip H (Kws M)).
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The p-adic L-function £ (B/K) € A, which interpolates the
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Conjecture (BDP Main Conjecture)
The Pontryagin dual X5t(B/Kx) of Sel®(B/Kx) is A-torsion and

Char(X*(B/Kx)) = (Z(B/Ks))-

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes,

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units,

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units, instead we use Eisenstein
congruence divisibility of Hsieh (for p-converse).

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units, instead we use Eisenstein
congruence divisibility of Hsieh (for p-converse).

Finally, we remark that the Euler system method might produce
another divisibility in HPMC,

Ye Tian p-Converse Theorem (CM Case)



Introduction

Recall CM IMC
ﬂfactorization
BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units, instead we use Eisenstein
congruence divisibility of Hsieh (for p-converse).

Finally, we remark that the Euler system method might produce
another divisibility in HPMC,so that complete CM IMC in certain
case,

Ye Tian p-Converse Theorem (CM Case)



Introduction
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BDP/LZZ formul
st-IMC [Lezformia | Hpmc
p-converse

@ The CM IMC when F = Q is established by Rubin using Euler
system of elliptic units and class number formula,and then the
p-converse and the p-part of BSD formula follows.

@ For CM Hilbert modular form of parallel weight 2 with trivial
central character and for ordinary primes, so far there is no
generalization of elliptic units, instead we use Eisenstein
congruence divisibility of Hsieh (for p-converse).

Finally, we remark that the Euler system method might produce
another divisibility in HPMC,so that complete CM IMC in certain
case, and also produce p-part of BSD formula for rank one E/F.
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o ords—1L(E,s) = rank E(Q) = corankz,Sel,~(E/Q) = 1 and,
o the full BSD formula for E/Q holds:

L'(E,1) _ [l,ce- #1(E/Q)
Q-R #E(Q)gor ‘

Moreover, prime p can be replaced by any positive integer n = 5
mod 8 such that Q(+/—n) has no ideal class of order 4.

It is easy to see 2°°-Selmer group of E has corank one. But we
showed the 2-converse by direct computation of Heegner points,
which is also used to establish positive density of congruent

numbers.
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