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This is Newton’s anagram, from his second letter to Leibniz (1677):
... The foundation of these operations is evident enough, in fact;
but because I cannot proceed with the explanation of it now, I have
preferred to conceal it thus: 6accdae13eff7i3l9n4o4qrr4s8t12ux.

decoded as:
Data aequatione quotcunque fluentes quantitates involvente,
fluxiones invenire; et vice versa.
[Given an equation involving any number of fluent quantities to find
the fluxions, and vice versa.]

and usually grossly translated as:

It is useful to solve differential equations.
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It is useful to solve differential equations.

300 years later, new paradigm:

It is (also) useful not to solve differential equations
... but study their structure.

Grothendieck: classical resolvant as descent datum, crystals

Sato, Kashiwara: solutions and cosolutions on equal footing;

algebraic analysis as homological theory of differential modules.
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Similar situation in algebraic singularity theory

Different perspectives on singularities:

- viewed as nuisances: get rid of them -> resolution of singularities.

- viewed as jewels of commutative algebra: cultivate and classify
them -> homological theory of singularities.
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Natural dichotomy between “mild" singularities and others:

Cohen-Macaulay singularities versus non-CM singularities.

CM singularities satisfy Serre duality, allow concrete calculations of
syzygies etc.

Homological characterization: (S,m): local ring.

[Auslander-Serre] S is regular⇔ every finite S-module has a finite
free resolution⇔ S/m has a finite free resolution.

[Peskine-Szpiro-Roberts] S is CM⇔ some nonzero S-module of
finite length has a finite free resolution.

Yves André Singularities and perfectoid geometry



logoslides

Reminder. (S,m): local ring, M: S-module.

x1, . . . , xd ∈ m
- is a system of parameters (s.o.p.) if S/xS has Krull dimension 0
- is an M-regular sequence if
M/(x1, . . . , xi−1)M

·xi→ M/(x1, . . . , xi−1)M injective (i = 1, . . . , d),
and M 6= xM.

M is a CM module (resp. S is a CM ring) if any system of
parameters x is M-regular (resp. S-regular).

- if S is CM, any CM module is a direct limit of finite CM modules
(Holm)

- if S is regular, an S-module is CM iff it is faithfully flat.
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What to do in front of a non-CM local ring S?

• first attitude - get rid of the problem: CM resolution

Theorem [Faltings ’78, Kawasaki ’00, Cesnavicius ’19]

S: quasi-excellent noetherian ring.
There exists a projective morphism Y → X = Spec S with Y CM,
which is an isomorphism over the CM locus of X .

Corollary [Cesnavicius]: every proper, smooth scheme over a
number field admits a proper, flat, Cohen-Macaulay model over the
ring of integers.
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• second attitude: look for (big) CM algebras (Hochster’s problem):
a not necessarily noetherian S-algebra T which is a CM S-module.

Y = Spec T → X = Spec S.

In the first approach (CM resolution), any s.o.p. on Y is regular, but
a s.o.p on X need not become a s.o.p. on Y .

In the second approach, any s.o.p. on X becomes regular on Y ,
but a s.o.p on Y needs not be regular.
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The second approach

- provides an efficient tool to investigate non CM singularities:
“ideal closure" theory
I ideal of S  Ī := IT ∩ S.

- replaces to some extent unavailable resolutions of singularities
(in residual char. p > 0).
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Main Theorem [A. ’16, ’18]

(Big) Cohen-Macaulay algebras exist, and are weakly functorial.

Questions:
what does this mean?
how is this proved?
what does this imply about singularities?
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What does this mean?

1) for any complete local ring S, there is a CM S-algebra T ,

2) for any chain of local homomorphisms S1 → . . .→ Sn of
complete local domains, there is a compatible chain
T1 → . . .→ Tn

of CM algebras for S1, . . .Sn respectively.

(conjectured by Hochster-Huneke, proved by them in equal
characteristic. )

Geometric form of 1):
For any regular ring R and any finite extension S, there is an
S-algebra T which is faithfully flat over R.
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3 applications in commutative algebra:

- direct summand conjecture [Hochster ’69]:
any finite extension S of a regular ring R splits (as R-module).

- another direct summand conjecture:
any ring S which is a direct summand (as S-module) of a regular
ring R is Cohen-Macaulay.

- syzygy conjecture [Evans-Griffiths ’81]:
any n-th syzygy module of a finite module M of projective
dimension > n has rank > n.
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How is this proved (in mixed characteristic)?

using deep ramification: perfectoid spaces.

Perfectoid valuation rings.
K : complete, non discretely valued field of mixed char. (0, p).
K o: valuation ring.
$ ∈ K o, p ∈ $pK o.

Proposition [Gabber-Ramero]

The following are equivalent:

• F : K o/$
x 7→xp

→ K o/$p is an isomorphism
• ΩK̄ o/K o = 0.

One then says that K o is perfectoid [Scholze] or deeply ramified
[Coates-Greenberg].

Ex: K o = W (k)〈p1/p∞〉, $ = p1/p.
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Perfectoid K o-algebras.
A: p-adically complete, p-torsionfree K o-algebra.

Definition [Scholze]

A is perfectoid if F : A/$ x 7→xp

→ A/$p is an isomorphism.

Glueing: perfectoid spaces over K .

Tilting: K [o := limF K o: complete perfect valuation ring of char. p.
K [: its field of fractions. Tilting equivalence (Scholze):

perfectoid spaces/K ↔ perfectoid spaces/K [.
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Ex: A = p-adic completion of K o[[x1/p∞
]]: perfectoid K o-algebra.

Adjoining p1/p∞
-roots of an element g ∈ A:

Theorem [A. ’16; improved by Gabber-Ramero ’19]

The completed p-root closure of A[g1/p∞
] is perfectoid and

faithfully flat over A.

[p-root closure of a p-adic ring R: elements r of R[1/p] such that
rpj ∈ R for some j > 0.]
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Almost algebra (Faltings, Gabber-Ramero): given a commutative
ring V and an idempotent ideal I, “neglect" V-modules killed by I.

This goes much beyond (Gabriel) categorical localization: notions
of almost finite, almost flat, almost etale...

Standard set-up: (V, I) = (K o, p
1

p∞ K o) as above; we say

p
1

p∞ -almost: “p
1

p∞ -almost zero" means “killed by p
1

p∞ ".

We need a non-standard set-up:
(V, I) = (K o[t1/p∞

], (pt)
1

p∞ K o[t1/p∞
]) as above; we say

(pt)
1

p∞ -almost.

 notion of (pt)
1

p∞ -almost perfectoid algebra.
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Perfectoid Abhyankar lemma

Abhyankar’s classical lemma: under appropriate assumptions
(tameness...), one can achieve etaleness of a given finite extension
by adjoining roots of the discriminant (rather than inverting it).

Analog for finite ramified extensions of perfectoid algebras:

Theorem [A. ’16]

A: perfectoid K o[t1/p∞
]-algebra: t 7→ g ∈ A nonzero divisor.

B′: finite etale A[1/pg]-algebra.
B: integral closure of A in B′.

Then B is (pt)
1

p∞ -almost perfectoid, and for any n > 0, B/pn is

(pt)
1

p∞ -almost faithfully flat and almost finite etale over A/pn.
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Application to CM algebras.

- S: complete local domain char. (0, p) with perfect residue field k
(for simplicity).
We want to construct a (big) CM S-algebra.

View S as a finite extension of some R = W (k)[[x ]] (Cohen).
Then an S-algebra is a CM S-algebra iff it is faithfully flat over R.

- g ∈ R such that S[1/pg] finite etale over R[1/pg].

- K o = W (k)〈p1/p∞〉: perfectoid valuation ring.
- A: completed p-root closure of K o[[x1/p∞

]][g1/p∞
]: perfectoid

and faithfully flat over R.
- B′ = A[1/pg]⊗R S: finite etale extension of A[1/pg].
- B: integral closure of A in B′

 (pg)
1

p∞ -almost perfectoid almost CM S-algebra.
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How to get rid of almost? 2 ways:

1) Hochster’s modifications.
2) Gabber’s trick: B  BN/B(N)  B̃ = Σ−1(BN/B(N)),
Σ: multiplicative system (pg)εi , εi → 0 ∈ N[1/p].

B almost perfectoid (pg)
1

p∞ -almost CM S-algebra⇒ B̃ perfectoid
CM S-algebra.

Weak functoriality uses similar techniques, but is more difficult...
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Theorem [A. ’18]

Any finite sequence R0
f1→ R1

f2→ · · · fn→ Rn of local
homomorphisms of complete Noetherian local domains, with R0 of
mixed characteristic, fits into a commutative diagram

R0

��

f1 // R1

��

f2 // · · · fn // Rn

��

R+
0

��

f1+
// R+

1

��

f2+
// · · · fn+

// R+
n

��

C0 // C1 // · · · // Cn

(1)

where
R+

i is the absolute integral closure of Ri ,
Ci is a perfectoid CM Ri -algebra if Ri is of mixed characteristic
(resp. a perfect CM Ri -algebra if Ri is of positive characteristic).
Moreover, the f +

i can be given in advance.
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Kunz’ theorem in mixed characteristic

• S: Noetherian ring of char. p. Kunz’ classical theorem (’69:
beginning of the use of F in commutative algebra):

S is regular⇔ S F→ S is flat⇔ there exists a perfect faithfully flat
S-algebra.

• S: Noetherian p-adically complete ring.

Theorem [Bhatt-Iyengar-Ma ’18]

S is regular⇔ there exists a perfectoid* faithfully flat S-algebra.

(Note: such an algebra is a CM S-algebra).
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Applications to singularities: symbolic powers

S: Noetherian ring, p: prime ideal.
Symbolic powers are defined by

p(n) := (pnSp) ∩ p.

If S = f. g. algebra over a field, p(n) = ideal of functions which

vanish at V (p) at order at least n (Zariski).

p(n) ⊃ pn,
p(n) = pn if p is generated by a regular sequence.

To compare p(n) and pn in general is a classical problem, with
applications in complex analysis, interpolation theory (fat points) or
transcendental number theory (Waldschmidt constants).
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Theorem [Ma, Schwede ’18]

S: excellent regular ring of dim. d.
For any prime p and any n, p(dn) ⊂ pn.

Proved by Ein-Lazarsfeld-Smith in char. 0 using subadditivity of the
“multiplier ideal"; by Hochster in char. p.
In mixed characteristic: new notion of multiplier ideal in which the
complex RΓ(Y ,OY ) attached to a resolution of V (p) is replaced by
a perfectoid Cohen-Macaulay algebra for Sp.
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Applications to singularities: rational singularities

Slogan: perfectoid CM algebras play somehow the role of
resolution of singularities in char. 0.

(S,m): local domain, essentially of finite type over C.
π : Y → Spec S: resolution of singularities.
Grauert-Riemenschneider: R iΓ(Y , ωY ) = 0 for i > 0,
Local duality: Hj

m(RΓ(Y ,OY )) = 0 for j < dim S.
RΓ(Y ,OY ) ∈ Db(S): “derived avatar" of a CM algebra.
In mixed characteristic or in char. p, replace this object by suitable
(big) Cohen-Macaulay S-algebras.
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Reminder: S (as before) “is" a rational singularity if and only if
RΓ(Y ,OY ) ∼= S.

(Grauert-Riemenschneider+duality: any rational singularity is CM).

Question: how to check that a singularity is rational
without computing a resolution?
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Criteria by reduction mod. p, after spreading out (Hara, Smith,
Mehta-Srinivas):

S rational singularity
⇔ (S mod. p) F -rational singularity for all p >> 0

(i.e. CM + top local cohomology = simple Frobenius module).

Theorem [Ma, Schwede]

S rational singularity ⇔ (S mod. p) F-rational singularity for
some p.

For small p, checkable property on Macaulay2.
Perfectoid CM S-algebras (existence and weak functoriality) serve
here as a bridge between char. p and char. 0, to prove that the
algorithm works
(application of p-adic techniques to complex algebraic geometry).
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