New zeta integrals associated with real prehomogeneous vector spaces Wen-Wei Li @ Peking University

ath Conferen

The photo is borrowed from WikiCommons https://commons.wikimedia.org/wiki/File: Porto_Cetraro_Inverno.JPG

Genesis: Tate's thesis (1950)

We want to study the *L*-function $L(s, \chi) = \prod_v L(s, \chi_v)$ where $\chi : K^{\times} \setminus \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$ is a continuous character, *K* is a number field, and *v* ranges over places of *v*.

Goals

- Represent the local *L*-factors *L*(*s*, χ_v) as the GCD of zeta integrals.
- Interpret the local and global functional equations of L as the symmetry of zeta integrals under the Fourier transform *F* of Schwartz–Bruhat functions.

Local theory

- F: local field with norm $|\cdot|$.
- $\mathcal{S}(F)$: the space of Schwartz–Bruhat functions on F,
- $\chi: F^{\times} \to \mathbb{C}^{\times}$: continuous character, $\check{\chi} := \chi^{-1}$.
- Fix Haar measures. For all $\xi \in \mathscr{S}(F)$, define

$$Z(s,\chi,\xi)=Z(\chi|\cdot|^s,\xi):=\int_{F^\times}\chi(t)\xi(t)|t|^s\,\mathrm{d}^\times t.$$

Facts:

- Convergence for $\operatorname{Re}(s) \gg 0$.
- Meromorphic continuation to all $s \in \mathbb{C}$.
- Tate's local functional equation: $\exists \gamma(s, \chi)$, meromorphic in s, such that for all ξ

$$Z\left(\check{\chi}|\cdot|^{1-s},\mathcal{F}\xi\right)=\gamma(s,\chi)Z\left(\chi|\cdot|^{s},\xi\right).$$

Generalization 1: Godement-Jacquet (local)

Integral representation for standard *L*-functions for GL_n . Idea:

 $\operatorname{GL}_n \hookrightarrow \operatorname{Mat}_{n \times n}$, $\operatorname{GL}_n \times \operatorname{GL}_n$ -equivariantly.

Let π be an admissible representation of $GL_n(F)$, and $\check{v} \otimes v \in \check{\pi} \otimes \pi$. The zeta integral is

$$Z(s, \pi, v \otimes \check{v}, \xi) := \int_{\mathsf{GL}(n,F)} \xi(x) \underbrace{\langle \check{v}, \pi(x)v \rangle}_{\text{matrix coefficient}} |\det(x)|^{s + \frac{n-1}{2}} d^{\times}x$$

where $\xi \in \mathscr{S}(\operatorname{Mat}_{n \times n}(F))$ and the Haar measures are chosen.

References:

- R. Godement and H. Jacquet. *Zeta functions of simple algebras*. Springer LNM 260, 1972.
- D. Goldfeld and J. Hundley, *Automorphic representations and L-functions for the general linear group*, Vol 2. CUP, 2011.
 - Convergence for $\operatorname{Re}(s) \gg 0$.
 - Meromorphic continuation.
 - Functional equation with respect to $\mathscr{F} : \mathscr{S}(\operatorname{Mat}_{n \times n}(F)) \to \mathscr{S}(\operatorname{Mat}_{n \times n}(F)) + \text{gamma factor} \gamma(s, \pi).$

Further generalizations: the doubling zeta integrals, etc.

Generalization 2: Sato's zeta integrals (local)

Consider the data (G, ρ, X):

- ρ : linear representation of a reductive group *G* on an *F*-vector space *X*.
- \exists ! Zariski-open dense orbit X^+ in X (=: prehomogeneity) and $\partial X := X \setminus X^+$ is a hypersurface f = 0 where $f \in F[X]$.

In this case,

- (G, ρ, X) is a **regular** PREHOMOGENEOUS VECTOR SPACE (PVS) over *F*. So is its contragredient $(G, \check{\rho}, \check{X})$;
- *f* is a **relative invariant**: there exists a unique homomorphism $\chi : G \to \mathbb{G}_m$ such that ${}^g f = \chi(g)f$ for all $g \in G$.

We call χ the eigencharacter of f.

Fix Haar measure on X(F) and define the zeta integral as

$$Z(s,\xi):=\int_{X(F)}\xi|f|^s\,\mathrm{d} x,\quad \xi\in\mathcal{S}(X(F)),\ s\in\mathbb{C}.$$

For simplicity, assume f is irreducible and $X^+(F)$ is a single G(F)-orbit.

M. Sato's Fundamental Theorem (1961): local version

- Convergence for $\operatorname{Re}(s) \gg 0$.
- Meromorphic continuation to all s.
- Functional equation with respect to $\mathscr{F} : \mathscr{S}(X(F)) \to \mathscr{S}(\check{X}(F)) + \text{gamma factor depending only on } s.$

General case. If *f* decomposes into *n* irreducibles, one must replace *s* by $(s_1, ..., s_n)$. The finitely many G(F)-orbits in $X^+(F)$ are intertwined in the functional equation. So γ -factor $\rightsquigarrow \gamma$ -matrix.

Incomplete list of references for Mikio Sato's fundamental theorem:

- F. Satō, On functional equations of zeta distributions. Automorphic forms and geometry of arithmetic varieties, 465–508, Adv. Stud. Pure Math., 15, Academic Press, Boston, MA, 1989.
- T. Kimura, *Introduction to prehomogeneous vector spaces*. Translations of Mathematical Monographs, 215. American Mathematical Society, Providence, RI, 2003.

Example (cf. Godement–Jacquet)

Let $G := \operatorname{GL}_n \times \operatorname{GL}_n$ acts linearly on $X := \operatorname{Mat}_{n \times n}$ by left and right translations. Then $X^+ = \operatorname{GL}_n$ and one can take $f = \det$. This PVS is "self-dual".

Observation. The PVS zeta integral in this case = the Godement–Jacquet integral for $\pi = triv$.

Both rely on embedding a homogeneous *G*-space in some *G*-variety on which Schwartz functions, Fourier transforms, etc. are available. Cf. **Braverman–Kazhdan–Ngô theory**.

Remarks

- The L-functions obtained from PVS are usually degenerate (: it involves very few automorphic representations).
- On the other hand, Sato's Fundamental Theorem is based on simple geometric reasoning, whilst the Godement–Jacquet functional equation requires *ad hoc* arguments over $F = \mathbb{R}$ (reduction to Tate's thesis, etc.)

Best hope

Seek a COMMON GENERALIZATION, and try to establish the expected properties, in the local case at least.

Hereafter, we consider only the case $F = \mathbb{R}$.

The PVS in question

Consider:

- G: connected reductive group over \mathbb{R} .
- $\rho: G \to GL(X)$ a linear representation of *G* on *X*.
- $X^+ \subset X$: the Zariski-open *G*-orbit.
- $\partial X = X \setminus X^+$: a hypersurface. We may take $f \in \mathbb{R}[X]$ such that $\partial X = \{f = 0\}$ and $f \ge 0$ on $X(\mathbb{R})$.

These imply that (G, ρ, X) and its contragredient $(G, \check{\rho}, \check{X})$ are both regular PVS's.

Assumption on sphericity

We assume that the homogeneous *G*-space X^+ is **absolutely spherical**, i.e. $X^+ \times_{\mathbb{R}} \mathbb{C}$ has an open dense Borel orbit.

If we drop the assumption on ∂X , the resulting data (G, ρ, X) are also known as **multiplicity-free spaces** under *G*. Over \mathbb{C} :

- V. Kac (1980) classified the irreducible multiplicity-free spaces.
- A. Leahy and Benson–Ratcliff achieved the general classification (1996—1997).

Well-known examples:

- $G := \operatorname{GL}_n$ acting on $X := \operatorname{Sym}^2 \mathbb{R}^n$ or $\bigwedge^2 \mathbb{R}^n$. Ditto for the hermitian version.
- $G := E_6 \times \mathbb{G}_m$ acting on a 27-dimensional *X*.

Fact. For any π : irreducible Casselman–Wallach representation of $G(\mathbb{R})$, the \mathbb{C} -vector space

$$\mathcal{N}_{\pi}(X^+) := \operatorname{Hom}_{G(\mathbb{R}), \operatorname{cts}}(\pi, C^{\infty}(X^+))$$

is finite-dimensional.

For any π , a vector v in π and $\eta \in \mathscr{N}_{\pi}(X^{+})$, call

 $\eta(v)\in C^\infty(X^+(\mathbb{R}))$

a generalized matrix coefficient of π .

- They are directly related to relative harmonic analysis / relative Langlands program.
- Those π for which N_π(X⁺) ≠ {0} are said to be distinguished by X⁺.
- The case when X^+ is a symmetric space is well-known.

In many cases, dim
$$\mathscr{N}_{\pi}(X^+) > 1$$
.

A hasty generalization

Fix (G, ρ, X) . Assume FOR SIMPLICITY that ∂X and $\partial \check{X}$ are both irreducible, say $\partial X = \{f = 0\}$ with f irreducible.

Definition

For any π , v and $\eta \in \mathscr{N}_{\pi}(X^{+})$, set

$$Z(s,\pi,v,\eta,\xi) := \int_{X^+(\mathbb{R})} \eta(v) \ \xi \ |f|^s$$

where $s \in \mathbb{C}$ and $\xi \in \mathscr{S}(X(\mathbb{R}))$.

Questions in increasing difficulty

- **1** Convergence for $\operatorname{Re}(s) \gg 0$?
- 2 Meromorphic continuation?
- Some sort of functional equation with respect to $\mathscr{F} : \mathscr{S}(X(\mathbb{R})) \to \mathscr{S}(\check{X}(\mathbb{R}))$?

Remark

To get a canonical definition, we shall take η and ξ valued in **half-densities**. Advantages:

- The properties of *N*_π(X⁺) are unaltered. In fact, the line bundle of half-densities on X⁺(ℝ) can be G(ℝ)-equivariantly trivialized by some power of |*f*|.
- Better normalization of zeta integrals (eg. remove the $|\det|^{n/2}$ in Godement–Jacquet).
- \mathscr{F} : $\mathscr{S}(X(\mathbb{R})) \to \mathscr{S}(\check{X}(\mathbb{R}))$ becomes equivariant and truly canonical.

We will BYPASS this issue in this talk.

Related works

- Bopp–Rubenthaler (2005): for a class of symmetric $X^+ \hookrightarrow X$, and π : minimal spherical principal series.
- L., in Springer LNM 2228 (2018): general framework, including a discussion of the non-Archimedean case.
- L., Towards generalized prehomogeneous zeta integrals, in Springer LNM 2221 (2018): for symmetric X⁺; no discussion of functional equations.

We will NOT discuss the global setting in this talk. Cf.

- H. Saito, *Explicit form of the zeta functions of prehomogeneous vector spaces*. Math. Ann. 315 (1999), no. 4, 587–615.
- T. Ibukiyama, H. Saito, *On zeta functions associated to symmetric matrices I—III*. (The above are mainly for $\pi = \text{triv}$)
- Y. Sakellaridis, *Spherical varieties and integral representations of L-functions*. (2012).

Convergence

The convergence of $Z(s, \pi, v, \eta, \xi)$ for $\operatorname{Re}(s) \gg 0$ (uniformly in η , v) can be reduced to the following

Fact

There exist

 a continuous semi-norm *q* on the underlying Fréchet space of *π*,

```
• a Nash function p: X^+(\mathbb{R}) \to \mathbb{R}_{\geq 0},
```

such that $|\eta(v)| \le q(v)p$ for all v.

Fix a maximal compact subgroup $K \subset G(\mathbb{R})$. The fact above follows from either

- 1 the moderate growth of the Casselman–Wallach representation π , or
- 2 that when v is K-finite, $\eta(v)$ satisfies a **regular holonomic** differential system on X^+ arXiv:1905.08135

Meromorphic continuation

Based on the estimates before, the meromorphic continuation of $Z(s, \pi, v, \eta, \xi)$ to all $s \in \mathbb{C}$ follows by the standard technique via the Bernstein–Sato *b*-functions.

Steps:

- **1** Reduce to K-finite v.
- 2 Use the **holonomicity** of the $D_{X_{\mathbb{C}}^+}$ -module generated by $\eta(v)$, which is established in arXiv:1905.08135 or [Aizenbud–Gourevitch–Minchenko, 2016].

The sphericity of X^+ is crucial here.

Towards the functional equation

- Pick $h \in \mathbb{R}[X]$ such that h is a relative invariant, $h \ge 0$ on $X(\mathbb{R}), \{h = 0\} = \partial X$ and $d \log h : X^+ \xrightarrow{\sim} \check{X}^+$. This is possible by the regularity of the PVS.
- Fact: there exists $\check{h} \in \mathbb{R}[\check{X}]$ with the same properties such that $\check{h} \circ d \log h = 1/h$ and $h \circ d \log \check{h} = 1/\check{h}$. They are relative invariants with opposite eigencharacters.
- To simplify matters, consider only the integral Z_X(s, η, v, ξ) = ∫_{X⁺(ℝ)} η(v)ξh^s: meromorphic family of tempered distributions on X(ℝ). Ditto for Z_X(s, ň, v, ξ).

For generic *s*, the distribution $Z(s, \check{\eta}, v, \mathscr{F}(\cdot))|_{X^+(\mathbb{R})}$ is smooth (by elliptic regularity, essentially). Express it as

$$\gamma(s,\check{\eta})(v)\cdot|h|^{-s}, \quad \gamma(s,\check{\eta})\in\mathcal{N}_{\pi}(X^+).$$

The γ -matrix $\gamma(s, \cdot) : \mathscr{N}_{\pi}(\check{X}^+) \to \mathscr{N}_{\pi}(X^+)$ is meromorphic in s.

A comparison with known cases of functional equations leads to the following $^{1} \ensuremath{\mathsf{n}}$

Theorem-to-prove

For all $\check{\eta}$, v and all $\xi \in \mathscr{S}(X(\mathbb{R}))$,

$$Z_{\check{X}}\left(s,\check{\eta},v,\mathscr{F}\xi\right)=Z_{X}\left(-s,\gamma(s,\check{\eta}),v,\xi\right)$$

as meromorphic functions in s.

- \mathscr{F} depends on the choice of a $\psi : \mathbb{R} \to \mathbb{C}^{\times}$.
- Let δ(s) be the distribution (LHS RHS), meromorphic in s. The γ-matrix is defined precisely to make

$$\mathfrak{d}(s)|_{X^+(\mathbb{R})}=0.$$

¹It might be simpler to start with η rather than $\check{\eta}$.

- **1** Take v to be a K-finite vector in π .
- 2 It suffices to show $\mathfrak{d}(s) = 0$ for *s* in some open ball off the poles.
- 3 There exists L ∈ Z_{≥1} such that h^Lb(s) = 0 for all s in any given compact subset.

Definition of Capelli operators

- $C := \check{h}^L \otimes h^L \in \mathbb{R}[\check{X}] \otimes \mathbb{R}[X] \hookrightarrow \text{Diff}_{\check{X}}$. It is *G*-invariant.
- For all s ∈ C, let C_s := h^{-s} ∘ C ∘ h^s: analytic G(ℝ)-invariant differential operator on X⁺(ℝ).

$$\underbrace{h^L}_{\text{diff. op.}} \cdot \left(\check{\eta}(v) \check{h}^s \right) = C_s \left(\check{\eta}(v) \right) \check{h}^{s-L} \quad \text{in } C^{\infty}(\check{X}^+(\mathbb{R})), \ \forall s.$$

Equality still holds when both sides are extended to tempered distributions on $\check{X}(\mathbb{R})$ by zeta integrals.

One can infer from $h^L \mathfrak{d}(s) = 0$ (for *s* in some ball *B*) that

$$Z_{\check{X}}\left(s-L,\chi_{s},v,\mathcal{F}\xi\right)=Z_{X}\left(L-s,\gamma(s-L,\chi_{s}),v,\xi\right),\quad s\in B,$$

where $\chi_s := C_s \circ \check{\eta} \in \mathscr{N}_{\pi}(\check{X}^+)$ varies holomorphically with *s*.

- It remains to show (C_s)_∗ : N_π(X̃⁺) → N_π(X̃⁺) is injective (⇒ bijective) for generic s.
- As det(*C_s*)_{*} is holomorphic in *s*, we are reduced to the following

Lemma-to-prove

The function $s \mapsto \det(C_s)_*$ is not identically zero for $s \in \mathbb{Z}$.

Ideas of the proof

- **1** Set $\mathscr{Z}(\check{X}) = \text{Diff}(\check{X})^G$. Then $C_s \in \mathscr{Z}(\check{X})$ for all $s \in \mathbb{Z}$.
- **2** Fact: $\mathscr{Z}(\check{X})$ is commutative (: sphericity). Break $\mathscr{N}_{\pi}(\check{X}^+)$ into generalized eigenspaces $\mathscr{N}^{(\lambda)}$, where $\lambda : \mathscr{Z}(\check{X}) \to \mathbb{C}$.
- **3** Goal: Show that the eigenvalue $\lambda(C_s)$ on each $\mathcal{N}^{(\lambda)}$ is nonzero, for general $s \in \mathbb{Z}$.

This turns out to be a question of algebraic geometry or invariant theory.

Strategy

Use Knop's Harish-Chandra isomorphism

$$p: \mathscr{Z}(\check{X}) \simeq \mathbb{C}\left[\rho + \mathfrak{a}_{\check{X}}^*\right]^{W_{\check{X}}},$$

so that λ is a point of the variety $(\rho + \mathfrak{a}_{\check{X}}^*)/\!\!/ W_{\check{X}}$ of "infinitesimal characters".

- 2 Show that C → C_s corresponds to translating λ in some explicit direction determined by the eigencharacter of h.
- 3 It will ultimately follow from Knop's study of the Capelli operators *C* that $s \mapsto \lambda(C_s) \neq 0$ for generic *s*.

The REGULARITY of the PVS (G, ρ, X) plays a pivotal role here.

Reference:

F. Knop, Some remarks on multiplicity free spaces. In: Representation theories and algebraic geometry (Montréal, PQ, 1997), 301–317.

Remarks

- The proof also works without the simplifying assumptions.
- In the setting considered by Mikio Sato (π = triv, without sphericity assumption on X⁺), one can express C_s ∘ ň in terms of the *b*-function of the PVS. The γ-matrix has also been determined in numerous cases.
- Very little can be said about $\gamma(s, \check{\eta})$ in our general setting.

Thanks for your attention

Last update: July 28, 2019 Talks given on: July 23 and 26, 2019