A new proof of the Jacquet-Rallis fundamental lemma

Raphaël Beuzart-Plessis

Université d'Aix-Marseille

JNT Biennial Conference, Cetraro, July 2019

Motivation: Gan-Gross-Prasad conjecture for unitary groups

- E/F quad ext of number fields, $W \subset V$ Hermitian spaces /E of dim n, n+1, $G = U(W) \times U(V) \hookleftarrow H = U(W)$ (diagonally) and $\pi = \pi_n \boxtimes \pi_{n+1} \hookrightarrow \mathcal{A}_{\text{cusp}}(G(F) \backslash G(\mathbb{A}))$ an irred cuspidal automorphic representation.
- Automorphic period : $\phi \in \pi \mapsto \mathcal{P}_H(\phi) = \int_{H(F) \setminus H(\mathbb{A})} \phi(h) dh$.
- Let $\pi_E = \pi_{n,E} \boxtimes \pi_{n+1,E}$ be the quadratic base-change to $GL_{n,E} \times GL_{n+1,E}$ (Mok, Kaletha-Minguez-Shin-White) and $L(s,\pi_{n,E} \times \pi_{n+1,E})$ the corresponding Rankin-Selberg L-function.

Conjecture (Gan-Gross-Prasad)

Assume that π_E is generic. We have

$$L(\frac{1}{2},\pi_{n,E} \times \pi_{n+1,E}) \neq 0 \Leftrightarrow \exists \pi'$$
 "in the same L-packet as π " st $\mathcal{P}_H \mid_{\pi'} \neq 0$.

- Refined version (Ichino-Ikeda, N. Harris) : $|\mathcal{P}_H(\phi)|^2 \sim L(\frac{1}{2}, \pi_{n,E} \times \pi_{n+1,E})$.
- There has been a lot of progress on these conjectures recently: W. Zhang, H. Xue, B.-P. (using Relative Trace Formulas)/ Jiang-L. Zhang, Ginzburg-Jiang-Rallis (automorphic descent)/ Grobner-Lin (by rationality results for special values of L-functions).

Jacquet-Rallis approach trough comparison of RTFs

- Jacquet and Rallis have proposed to attack these conjectures through a comparison of Relative Trace Formulas (RTF).
- RTF are analytic tools introduced by Jacquet that relate automorphic periods to more geometric distributions known as (relative) orbital integrals. Roughly, RTFs are associated to triples $H_1 \hookrightarrow G' \hookleftarrow H_2$ with G' reductive and can be thought as distributions on double coset spaces $H_1 \setminus G'/H_2$.

Jacquet-Rallis (simple) Relative Trace Formulas

• RTF for $H \setminus G/H$: For 'nice' test fns $f \in C_c^{\infty}(G(\mathbb{A}))$

$$\sum_{\delta \in \mathcal{H}(F) \backslash G_{rs}(F)/\mathcal{H}(F)} \mathcal{O}(\delta,f) = \sum_{\phi \in \mathcal{A}_{\mathsf{cusp}}(G)} \mathcal{P}_{\mathcal{H}}(\mathcal{R}(f)\phi) \overline{\mathcal{P}_{\mathcal{H}}(\phi)}$$

where the right sum runs over an ONB, R(f) is the right convolution by f, $G_{rs} \subset G$ is the open subset of *regular semi-simple* elts (i.e. trivial stabilizer and closed orbit) for the $H \times H$ -action and

$$O(\delta, f) = \int_{H(\mathbb{A}) \times H(\mathbb{A})} f(h_1 \delta h_2) dh_1 dh_2$$

are relative orbital integrals.

- Set $H_1 = \operatorname{GL}_{n,E} \hookrightarrow G' = \operatorname{GL}_{n,E} \times \operatorname{GL}_{n+1,E} \longleftrightarrow H_2 = \operatorname{GL}_{n,F} \times \operatorname{GL}_{n+1,F}$ with $\eta : H_2(F) \setminus H_2(\mathbb{A}) \to \{\pm 1\}.$
- ullet RTF for $H_1ackslash G'/(H_2,\eta)$: For 'nice' test fns $f'\in C_c^\infty(G'(\mathbb{A}))$

$$\sum_{\gamma \in \mathcal{H}_1(F) \setminus G'_{rS}(F)/\mathcal{H}_2(F)} \mathcal{O}(\gamma, f') = \sum_{\varphi \in \mathcal{A}_{\text{cusp}}(G')} \mathcal{P}_{\mathcal{H}_1}(R(f')\varphi) \overline{\mathcal{P}_{\mathcal{H}_2, \eta}(\varphi)}$$

where this time

$$O(\gamma, f') = \int_{H_1(\mathbb{A}) \times H_2(\mathbb{A})} f'(h_1 \gamma h_2) \eta(h_2) dh_1 dh_2.$$

Comparison

$$\begin{split} \sum_{\delta \in \mathcal{H}(F) \backslash G_{\text{rs}}(F)/\mathcal{H}(F)} \mathcal{O}(\delta, f) &= \sum_{\phi \in \mathcal{A}_{\text{cusp}}(G)} \mathcal{P}_{\mathcal{H}}(R(f)\phi) \overline{\mathcal{P}_{\mathcal{H}}(\phi)} \\ \sum_{\gamma \in \mathcal{H}_1(F) \backslash G_{\text{rs}}'(F)/\mathcal{H}_2(F)} \mathcal{O}(\gamma, f') &= \sum_{\phi \in \mathcal{A}_{\text{cusp}}(G')} \mathcal{P}_{\mathcal{H}_1}(R(f')\phi) \overline{\mathcal{P}_{\mathcal{H}_2, \eta}(\phi)} \end{split}$$

- Goal : compare these RTFs. Why? \mathcal{P}_{H_1} is a Rankin-Selberg period giving $L(\frac{1}{2},\pi_{n,E}\times\pi_{n+1,E})$ whereas $\mathcal{P}_{H_2,\eta}$ if the Flicker-Rallis period detecting image of base-change (i.e. autom repns of the form π_E) \leadsto from the GGP conj we expect spectral sides to "match".
- We will deduce this from a "matching" of geometric sides i.e. we need to produce sufficiently many test fns (f, f') st the LHS are equal. As in the paradigm of endoscopy we do this "orbit by orbit".
- Correspondence of orbits : $H(k)\backslash G_{rs}(k)/H(k) \hookrightarrow H_1(k)\backslash G'_{rs}(k)/H_2(k)$, $\delta \leftrightarrow \gamma$, for k = F or F_v .
- Orbital integrals are local : if $f = \prod_{\nu} f_{\nu}$, $f' = \prod_{\nu} f'_{\nu}$ then $O(\delta, f) = \prod_{\nu} O(\delta, f_{\nu})$, $O(\gamma, f') = \prod_{\nu} O(\gamma, f'_{\nu})$ (products of local orbital integrals) \leadsto we look for a local matching of functions.

Local matching and fundamental lemma

• v a place of F. We say that $f_v \in C_c^{\infty}(G_v)$ and $f_v' \in C_c^{\infty}(G_v')$ match (Not: $f_v \leftrightarrow f_v'$) if

$$O(\delta, f_{\nu}) = \Omega_{\nu}(\gamma) O(\gamma, f_{\nu}') \text{ for } G_{\nu, rs} \ni \delta \leftrightarrow \gamma \in G_{\nu, rs}'$$

 $O(\gamma, f_{\nu}') = 0$ if γ is not in the image of the corresp.

and where $(\Omega_{\nu})_{\nu}$ are *explicit* transfer factors st $\prod_{\nu} \Omega_{\nu}(\gamma) = 1$ for $\gamma \in G'_{rs}(F)$.

- For the global comparison to be effective we need :
 - Smooth Transfer: ∀f_V ∈ C_C[∞](G_V), ∃f'_V ∈ C_C[∞](G'_V) st f_V ↔ f'_V + a converse (W. Zhang p-adic case, H. Xue Arch case);
 - ▶ Fundamental Lemma (FL) : $\mathbf{1}_{G(\mathcal{O}_{v})} \leftrightarrow \mathbf{1}_{G'(\mathcal{O}_{v})}$ for a.a. v (Z. Yun in positive char, transferred to char zero (and $reschar(v) \gg 1$) by J. Gordon).

Theorem

The Jacquet-Rallis FL is true at v provided reschar(v) \neq 2 and "everything is unramified at v".

- Not a new result but the proof is substantially different (Harmonic analysis vs geometry of Hitchin fibrations+Model theory);
- J. Xiao: this FL implies the "usual" endoscopic fundamental lemma for unitary groups (theorem of Laumon-Ngô).

Statement of the FL for Lie algebras

• E/F unramified quad ext of p-adic fields, $O = O_F$. We consider the actions

$$U_n = \{g \in \mathsf{GL}_{n,E} \mid {}^T \overline{g}g = I_n\} \curvearrowright \mathfrak{h}_{n+1} = \{X \in \mathfrak{gl}_{n+1,E} \mid X = {}^T \overline{X}\}$$

and $\mathsf{GL}_{n,F} \curvearrowright \mathfrak{gl}_{n+1,F}$

by conjugation where $U_n \hookrightarrow U_{n+1}$ or $GL_n \hookrightarrow GL_{n+1}$ by $g \mapsto \begin{pmatrix} g & \\ & 1 \end{pmatrix}$.

• $X \in \mathfrak{h}_{n+1}$ or \mathfrak{gl}_{n+1} is regular semi-simple (for this action) iff the X-orbits of

$$e_{n+1} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
 and $e_{n+1}^* = (0, \dots, 0, 1)$ generate $E^{n+1} = M_{n+1,1}(E)$ and

 $E_{n+1} = M_{1,n+1}(E)$ resp.

Orbital integrals :

$$X\in\mathfrak{h}_{n+1}^{rs}, f\in C_c^\infty(\mathfrak{h}_{n+1})\rightsquigarrow O(X,f)=\int_{U_n}f(gXg^{-1})dg,$$

$$Y\in\mathfrak{gl}_{n+1}^{rs}, f'\in C_c^\infty(\mathfrak{gl}_{n+1})\rightsquigarrow O(Y,f')=\omega(Y)\int_{\mathrm{GL}_n}f'(gYg^{-1})\eta_{E/F}(\det g)dg$$
 where $\omega(Y)=\pm 1$ is a transfer factor and $\eta_{E/F}:F^\times\to F^\times/N(E^\times)=\{\pm 1\}.$

- Correspondence of orbits : $X \in \mathfrak{h}_{n+1}^{rs} \leftrightarrow Y \in \mathfrak{gl}_{n+1}^{rs}$ if they are $GL_n(E)$ conjugate inside $\mathfrak{gl}_{n+1}(E) \leadsto \mathfrak{h}_{n+1}^{rs}/U_n \hookrightarrow \mathfrak{gl}_{n+1}^{rs}/GL_n$.
- Matching of functions : $C_c^{\infty}(\mathfrak{h}_{n+1}) \ni f \leftrightarrow f' \in C_c^{\infty}(\mathfrak{gl}_{n+1})$ if

$$O(Y, f') = O(X, f)$$
 whenever $Y \leftrightarrow X$,

O(Y, f') = 0 o/w (i.e. if Y isn't in the image of the correp.).

• Jacquet-Rallis fundamental lemma (JRFL) for Lie algebras : $\mathbf{1}_{\mathfrak{h}_{n+1}(\mathcal{O})} \leftrightarrow \mathbf{1}_{\mathfrak{gl}_{n+1}(\mathcal{O})}$.

Proposition (Z. Yun)

When $p \neq 2$, JRFL for Lie algebras implies the original JRFL (for groups).

Theorem

JRFL for Lie algebras is true for any p.

The proof

We need to show that

$$(\star) \qquad O(Y, \mathbf{1}_{\mathfrak{gl}_{n+1}(O)}) = O(X, \mathbf{1}_{\mathfrak{h}_{n+1}(O)}) \text{ for } Y \leftrightarrow X,$$

(**)
$$O(Y, \mathbf{1}_{\mathfrak{gl}_{n+1}(O)}) = 0$$
 otherwise.

• The proof is by induction on n and a certain quad form q will play a crucial role :

$$X = \begin{pmatrix} X' & b \\ c & \lambda \end{pmatrix} \in \mathfrak{h}_{n+1} \text{ or } \mathfrak{gl}_{n+1} \mapsto q(X) = cb \in F$$

(here $X' \in \mathfrak{h}_n$ or \mathfrak{gl}_n , $b \in E^n$, $c \in E_n$ and $\lambda \in F$).

Important remarks:

- If $X \in \mathfrak{h}_{n+1}^{rs} \leftrightarrow Y \in \mathfrak{gl}_{n+1}^{rs}$ then q(X) = q(Y).
- Orbital integrals are locally constant on rs locus \Rightarrow just need to show (\star) and $(\star\star)$ when $q(Y) \neq 0$.

The induction hypothesis will only be used for the next lemma.

Lemma

$$(\star)$$
 and $(\star\star)$ hold when $|q(Y)| \geqslant 1$.

Proof of the lemma

• If |q(Y)| > 1: as q is invt and takes integral values on integral points

$$O(Y, \mathbf{1}_{\mathfrak{gl}_{n+1}(O)}) = O(X, \mathbf{1}_{\mathfrak{h}_{n+1}(O)}) = 0.$$

• If |q(Y)| = 1 (= |q(X)|): Up to conjugacy (by U_n or GL_n), we may assume

$$X = \begin{pmatrix} X' & \alpha e_n \\ \overline{\alpha} e_n^* & \lambda \end{pmatrix}, \ Y = \begin{pmatrix} Y' & \beta e_n \\ e_n^* & \lambda \end{pmatrix}$$

where $\alpha \in \mathcal{O}_E^{\times}$, $q(Y) = \beta = N(\alpha) \in \mathcal{O}^{\times}$ and $X' \in \mathfrak{h}_n^{rs} \leftrightarrow Y' \in \mathfrak{gl}_n^{rs}$.

Therefore, by the induction hypothesis, we just need to show

$$O(Y, \mathbf{1}_{\mathfrak{gl}_{n+1}(O)}) = O(Y', \mathbf{1}_{\mathfrak{gl}_n(O)}),$$

(B)
$$O(X,\mathbf{1}_{\mathfrak{h}_{n+1}(\mathcal{O})})=O(X',\mathbf{1}_{\mathfrak{h}_{n}(\mathcal{O})}).$$

• Both (A) and (B) are easy to check using that GL_{n-1} (resp. U_{n-1}) is the stabilizer of (e_n^*, e_n) (resp. of e_n) and that $GL_n(\mathcal{O})$ (resp. $U_n(\mathcal{O})$) acts transitively on vectors in $\mathcal{O}_n \oplus \mathcal{O}^n$ of pairing 1 (resp. vectors in \mathcal{O}_E^n of Hermitian norm 1)

Partial Fourier Transform and Weil representation

• Fix ψ : $F \to \mathbb{C}^{\times}$ unramified and let $\mathcal{F} \curvearrowright C^{\infty}_{c}(\mathfrak{h}_{n+1} \text{ or } \mathfrak{gl}_{n+1})$ be defined by

$$(\mathcal{F}\,f)\begin{pmatrix} X' & b \\ {}^{T}\overline{b} & \lambda \end{pmatrix} = \int_{E^{n}} f\begin{pmatrix} X' & c \\ {}^{T}\overline{c} & \lambda \end{pmatrix} \psi(\mathsf{Trace}_{E/F}({}^{T}\overline{c}b)) \mathit{dc},$$

$$(\mathcal{F}f')\begin{pmatrix} Y' & b \\ c & \lambda \end{pmatrix} = \int_{F^n \oplus F_n} f'\begin{pmatrix} Y' & b' \\ c' & \lambda \end{pmatrix} \psi(c'b+cb')db'dc'.$$

• Note that $\mathcal{F} \mathbf{1}_{\mathfrak{h}_{n+1}(O)} = \mathbf{1}_{\mathfrak{h}_{n+1}(O)}$ and $\mathcal{F} \mathbf{1}_{\mathfrak{gl}_{n+1}(O)} = \mathbf{1}_{\mathfrak{gl}_{n+1}(O)}$.

Theorem (W.Zhang)

If
$$C_c^{\infty}(\mathfrak{h}_{n+1}) \ni f \leftrightarrow f' \in C_c^{\infty}(\mathfrak{gl}_{n+1})$$
 then $\mathcal{F} f \leftrightarrow \mathcal{F} f'$.

- Weil representation : \exists repn $SL_2(F) \curvearrowright C_c^{\infty}(\mathfrak{gl}_{n+1})$ or \mathfrak{h}_{n+1} characterized by

 - $\qquad \qquad -1 \choose 1 \qquad f = \mathcal{F} f.$

Descent of Weil representations to orbital integrals

Set

$$\operatorname{Orb}(\mathfrak{h}) = \left\{ \operatorname{Orb}(f) : X \in \mathfrak{h}_{n+1}^{rs} \mapsto O(X, f) \mid f \in C_c^{\infty}(\mathfrak{h}_{n+1}) \right\}, \\
\operatorname{Orb}(\mathfrak{gl}) = \left\{ \operatorname{Orb}(f') : Y \in \mathfrak{gl}_{n+1}^{rs} \mapsto O(Y, f') \mid f' \in C_c^{\infty}(\mathfrak{gl}_{n+1}) \right\}.$$

• Both $\operatorname{Orb}(\mathfrak{h})$ and $\operatorname{Orb}(\mathfrak{gl})$ can be seen as spaces of functions on $\mathcal{A} = \mathfrak{gl}_{n+1}^{rs} / \operatorname{GL}_n \leftarrow \mathfrak{h}_{n+1}^{rs} / U_n$ (via extension by zero).

Proposition

The Weil representations descent to repns of $SL_2(F)$ on $Orb(\mathfrak{gl})$ coinciding on the intersection.

Proof:

- This is clear for the action of $\begin{pmatrix} 1 & F \\ & 1 \end{pmatrix}$ as q is invt and $X \leftrightarrow Y \Rightarrow q(X) = q(Y)$;
- For $w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ this follows from Zhang's result;
- Now, $SL_2(F) = \langle w, \begin{pmatrix} 1 & F \\ & 1 \end{pmatrix} \rangle$.

End of the proof

- Set $\Phi = \operatorname{Orb}(\mathbf{1}_{\mathfrak{gl}_{n+1}(\mathcal{O})}) \operatorname{Orb}(\mathbf{1}_{\mathfrak{h}_{n+1}(\mathcal{O})})$. We want : $\Phi(a) = 0$ for every $a \in \mathcal{A}$ st $q(a) \neq 0$.
- By the (first) lemma, for every $t \in \mathfrak{p}_F^{-1}$ and $a \in \mathcal{A}$ we have

$$\begin{pmatrix} 1 & t \\ & 1 \end{pmatrix} \Phi(a) = \psi(tq(a)) \Phi(a) = \left\{ \begin{array}{ll} \Phi(a) & \text{if } |q(a)| < 1, \\ 0 & \text{otherwise.} \end{array} \right. = \Phi(a)$$

(as ψ is unramified). Hence, Φ is fixed by $\begin{pmatrix} 1 & \mathfrak{p}_F^{-1} \\ & 1 \end{pmatrix}$.

• On the other hand, for $w = \begin{pmatrix} & -1 \\ 1 & \end{pmatrix}$ we have

$$w\Phi = \operatorname{Orb}(\mathcal{F} \, \mathbf{1}_{\mathfrak{gl}_{n+1}(\mathcal{O})}) - \operatorname{Orb}(\mathcal{F} \, \mathbf{1}_{\mathfrak{h}_{n+1}(\mathcal{O})}) = \operatorname{Orb}(\mathbf{1}_{\mathfrak{gl}_{n+1}(\mathcal{O})}) - \operatorname{Orb}(\mathbf{1}_{\mathfrak{h}_{n+1}(\mathcal{O})}) = \Phi$$

i.e. Φ is fixed by w .

- Since $SL_2(F) = \langle w, \begin{pmatrix} 1 & \mathfrak{p}_F^{-1} \\ & 1 \end{pmatrix} \rangle$, Φ is fixed by the whole action of $SL_2(F)$.
- In particular,

$$\Phi(a) = \begin{pmatrix} 1 & t \\ & 1 \end{pmatrix} \Phi(a) = \psi(tq(a))\Phi(a)$$

for every $a \in \mathcal{A}$ and $t \in F$ and this implies $\Phi(a) = 0$ when $q(a) \neq 0$.

Thank you!