NATURAL BOUNDARIES AND THE CORRECT
NOTION OF INTEGRAL MOMENTS OF L-FUNCTIONS

ADRIAN DIACONU, PAUL GARRETT AND DORIAN GOLDFELD

ABSTRACT. It is shown that a large class of multiple Dirichlet series which arise naturally in the
study of moments of L—functions have natural boundaries. As a remedy we consider a new class of
multiple Dirichlet series whose elements have nice properties: a functional equation and meromorphic
continuation. We believe this class reveals the correct notion of integral moments of L—functions.

§1. Introduction

The problem of obtaining asymptotic formulae (as 1" — oo) for the integral moments

T
(1.1) /0 (s +it)[*dt  (forr=1,2,3,...)

is approximately 100 years old and very well known.. See [CFKRS] for a nice exposition of this
problem and its history. Following [Be-Bu|, we note that it was proved by Carlson that if 0 > 1— %

then
T fo'e)
/ |C(o +it) > dt ~ [Z d.(n)>n=27| - T, (T — o).
0 n=1
Furthermore -
> de(n)’n =¢(s)” [[ P (p70)
n=1 D
where

Poa) = (1— )" ,g; (7" - 1>2 "

Now Esterman [E| showed that the Euler product [[, P-(s) is absolutely convergent for R(s) > 3
and that it has meromorphic continuation to Re(s) > 0. He also proved the disconcerting theorem
that if 7 > 3 then the Euler product [, P-(s) has a natural boundary on the line %(s) = 0.
Estermann’s result was later generalized by Kurokowa (see [K1, K2]) to a much larger class of Euler
products. This situation, where an innocuous looking L—function has a natural boundary, is now
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called the Estermann phenomenon. A very interesting instance where the Estermann phenomenon
occurs is for L-functions formed with the arithmetic Fourier coefficients a(n),n =1,2,3,... of an
automorphic form on GL(2), say. The L—functions

> a(nn, > lam)PPn~,

both have nice properties: meromorphic continuation and functional equation, but the L—function
o

(1.2) > la(n)n=
n=1

will have a natural boundary if » > 3. Thus the L—function defined in (1.2) does not have the
correct structure when r > 3. It is now generally believed that the “correct notion” of (1.2) is the
rt" symmetric power L—function as in [S].

Another approach to obtain asymptotics for (1.1) is to study the meromorphic continuation (in
the complex variable w) of the zeta integral

(1.3) Z.(w) = /loo IC(L +it) >tV dt,

for r a positive rational integer where this integral is easily shown to be absolutely convergent if
R(w) sufficiently large. Such an approach was pioneered by Ivié¢, Jutila and Motohashi [I, J, ILJM,
M3] and somewhat later in [DGH].

One of the aims of this paper is to give a rough sketch of a proof that the function Z,.(w), for
r > 3, has a natural boundary at R(w) = % For simplicity of exposition, we shall consider (1.3)
only in the special case when r = 3. There is an infinite class of other examples of this phenomenon
where our method of proof should generalize. For instance,

/ |<@(i>(é+it)l4t‘wdt=/ C(% 4+ it)L(% +it, x—a)|* t* dt,
1 1

which is compatible with Z(w), should also have a natural boundary.
In view of the fact that the Estermann phenomenon occurs for the integrals (1.1), (1.3) we
believe that the classical 2r-th integral moment of zeta

T
(1.4) / C(3 + i) at

does not have the correct structure when r > 3. It is therefore doubtful that substantial advances
in the theory of the Riemann zeta-function will come from further investigations of (1.4).

The final goal of this paper is to provide an alternative to (1.4) in the same spirit that the
symmetric power L—function is an alternative to (1.2). Accordingly, in §3, we introduce what we
believe to be the “correct notion” of integral moment of L—functions.



NATURAL BOUNDARIES AND THE CORRECT NOTION OF INTEGRAL MOMENTS OF L-FUNCTIONS3

§2. Multiple Dirichlet series with natural boundaries

For sq1,...,s,, and w € C with sufficiently large real parts, let
(2.1) Z(S81y.+ s Spyw) = / C(s1 +it)C(sy —it) - C(sp + it)((s, —it) ™ dt.
1

This multiple Dirichlet series was considered in [DGH], and it is more convenient to study this
function rather than Z,.(w). Specializing r = 3, we can write

% /1 (%>2t C(SQ + Zt)<(82 — lt)C(Sg + Zt)C(S?, _ Zt) 1~ dt.

(mn)

Z(817827S37w) - Z

m,n

The reason why Z3(w) should have a natural boundary is based on a simple idea. The inner
integral admits meromorphic continuation to C3. For s, = s3 = %, this function should have
infinitely many poles on the line R(w) = %, where the position of the poles depends on m,n. As
m,n — oo the number of poles in any fixed interval will tend to infinity. Summing over m, n
“all these poles form” a natural boundary. Accordingly, the main difficulty is to meromorphically

continue the integral
(2.2) / (%)t Cso +it)C (52 — it)C(s3 + it)C(s3 — it) % dt,
1

as a function of s, s3, w to C? (see also Motohashi [M2] and [M3], where the integral (2.2) with
t~" replaced by a Gaussian weight is studied). When m = n = 1, the meromorphic continuation
of (2.2) was already established by Motohashi in [M1]. Although this integral can certainly be
studied by his method, the approach we follow is based on the more general ideas developed in
[G], [Di-Gol], [Di-Go2], [Di-Gal] and [Di-Ga-Go]. Using our techniques, it is possible to study in
a unified way very general integrals attached to integral moments.

We remark that one can establish the meromorphic continuation of the slightly more general
integral

(2.3) /loo (%)itL(sl Fit, f) L(ss — it, f) 1% dt,

where f is an automorphic form on GL2(Q) and L(s, f) is the L—function attached to f. Note that
this implies the meromorphic continuation of an integral of type

2

/ L(s1 +it, f) L(s2 — it, f) Z anpn®t| Y dt (with a,, € C for 1 <n < N).
1 n<N

In fact, it is technically easier to study the integral (2.3) when f is a cuspform on SLs(Z) than the
corresponding analysis of (2.2). Accordingly, to illustrate our point, we shall discuss, for simplicity,
the case when f is a holomorphic cuspform of (even) weight x for SLy(Z). Then f has a Fourier
expansion

f(z) = > ae™ (z=x+iy, y>0).
/=1
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For m, n two coprime positive integers, consider the congruence subgroup

T = {(‘c‘ Z) € SLy(Z) ‘ b=0 (mod m), c=0 (mod n)}.

Then, the function F@(z) =y~ f (
satisfying

2 2) f(2) is ', p—invariant. For v € C, let ¢(2) be a function

w(pz) = pYp(z) (for p >0 and z =z + iy, y > 0),
and (formally) define the Poincaré series
(2.4) P(zp) = > oly2),

where Z is the center of I'y, ,,. To ensure convergence, one can choose for instance

(2.5) o(2) = y(ﬁyfy)

where v, w € C with sufficiently large real parts. This type of Poincaré series were introduced by
Anton Good in [G].

Let (, ) denote the Petersson scalar product for automorphic forms for the group Iy, . As in
[Di-Gol], we have the following.

Proposition 2.6. Let m and n be two coprime positive integers, and let P(z;p), Fn and Ty,
be as defined above. For o > 0 sufficiently large and ¢ defined by (2.5), we have

r2m) "I (w + v+ Kk —1) m\©
(P py) - T ) ()
o it I(o +it)T — o —it
/ (T) L(o+it, f)L(v+ K —0 —it, f) - —— (o +it) (UJK’ ) B
o\ F(Y+o+it)L (¥ +v+r—0—it)

As we already pointed out, the above proposition (with appropriate modifications) remains valid
if the cuspform f is replaced by a truncation of the usual Eisenstein series E(z,s) (for instance,
on the line R(s) = 1), or a Maass form. On the other hand, using Stirling’s formula, it can be
shown that the kernel in the above integral is (essentially) asymptotic to t=*, as t — oo. This fact
holds whether f is holomorphic or not. It follows that the meromorphic continuation of (2.3) can
be obtained from the meromorphic continuation (in w € C) of the Poincaré series (2.4).

The meromorphic continuation of the Poincaré series (2.4) can be obtained by spectral theory!,

as in [Di-Gol]. To describe the contribution from the discrete part of the spectrum, let

n(z) =y2 Y p(0) Ky (27|lly) 2™
(=0

IThe Poincaré series P(z, ) is not square-integrable. Just after an obvious Eisenstein series is subtracted, the
remaining part is not only in L? but also has sufficient decay so that its integrals against Eisenstein series converge
absolutely (see [Di-Gol], [Di-Go2] and [Di-Gal]).
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(K,(y) is the K-Bessel function) be a Maass cuspform (for the group I'y,,) which is an
eigenfunction of the Laplacian with eigenvalue % + p?. We shall need the well known transforms

Vi » 27" 1 1
2 —w —2milxy — wW—3 1 _
[ e e = S ()t Gy, (R0 > 3)
and
00 v— %—i +v—w %—H’ +v—w —%—i +v+w —%—i—i +v+w
[T IE e e
Yy D \y) 1, \Y)— = )
: y I'(v)

which is valid provided R(v+w) > 3 and R(w—v) < 3. (These conditions hold if  is real, i.e.,
if we assume Selberg conjecture). Unfolding the integral, and applying the above transforms,
one obtains

(2.7)

(P(,0),m) 1 /°°/°° +1< y )w - Coits dady
AR 4RIV AR I — p(l) K;,(27|lly) e =™ —=
(n,m) () S S Va2 +y? g; : y?

1 L oo o0 B ‘ d d
= p(0) / / (L4 2%) " K, (2w ly) e ity 2
<77777> Z#O 0 oo y
27r2 —_— w—1 ra V4w dy
= oy 2 AT [ K @nltl) Ko 2l
nmn 2/ 20 0 Yy
I —ipto I tipto —1 —iptvtw — L triptvtw
PTG ) Al G Al G S Al G )
= vt 5, 1) w w .
2(n,n) L(v+3)0(3)

Here L(s,n) is the L—function associated to 7. Note that the above computation is valid (all
integrals and infinite sums converge absolutely) provided v, w have large real parts. The identity
(2.7) then extends by analytic continuation. The ratio of products of gamma functions in the right
hand side of (2.7) has simple poles at v + w = % =+ i with corresponding residues

. %:Fi +v
v F(:I:w)f‘(%) )

()

For R(w) > %, the above residues are almost always non-zero (this should be true, but not
easy to justify). There is also a factor (n, F'») in the spectral decomposition, which
should be non-zero for most 7’s. This can probably be verified when f is the Eisenstein
series F(z,s) on SLy(Z). Also, assume that the subspace with eigenvalue } + u? is one

dimensional. When v = 0, we know that
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by Waldspurger. Furthermore, if the sign of the functional equation of L(s,7) is +1,
we expect L(1,7) # 0 almost always. It also follows from Weyl’s law that the number of such
poles with imaginary part in the interval [~T,T] is ~ T? as T — oo. Summing over m, n, we see
from the above argument that the function

Zm_zéﬁ(31)<P(-, ), Fﬁ>

m,n

with the choices 0 = £/2 and v = 0 has a natural boundary at f(w) = % In a similar manner one
may show that the function Z(s1,1/2,1/2,w), in particular, has meromorphic continuation to at

most R(s1) > 3 and R(w) > 5

2"

§3. The correct notion of integral moment

In [Di-Ga-Go], we propose a mechanism to obtain asymptotics for integral moments of GL,. (r > 2)
automorphic L—functions over an arbitrary number field. In particular, it reveals what we believe
should be the correct notion of integral moments. Our treatment follows the viewpoint of [Di-
Gal], where second integral moments for G Lo are presented in a form enabling application of the
structure of adele groups and their representation theory. We establish relations of the form

moment expansion = / Pé - |f|*> = spectral expansion,
ZAGLT(k)\GLr(A)

where Pé is a Poincaré series on GL, over number field k, for cuspform f on GL,(A). Roughly, the
moment expansion is a sum of weighted moments of convolution L—functions L(s, f ® F'), where F
runs over a basis of cuspforms on GL,_1, as well as further continuous-spectrum terms. Indeed,
the moment-expansion side itself does involve a spectral decomposition on GL,_1. The spectral
expansion side follows immediately from the spectral decomposition of the Poincaré series, and
(surprisingly) consists of only three parts: a leading term, a sum arising from cuspforms on G L,
and a continuous part from GL,. That is, no cuspforms on GL, with 2 < ¢ < r contribute.

In the case of GLy over Q, the above expression gives (for f spherical) the spectral decomposition
of the classical integral moment

|G Pe

—00

for suitable smooth weights g(t).

In the simplest case beyond G Ls, take f a spherical cuspform on GLj3 over Q. We construct a
weight function I'(s, v, w, fo, Fixo) depending upon complex parameters s, v, and w, and upon the
archimedean data for both f and cuspforms F' on G Ly, such that I'(s, v, w, feo, OO) has explicit
asymptotic behavior, and such that the moment expansion arises as an integral

P9 1Py = 3 g [ RS @ B TG0 s P s

/ZAGL:S (@Q\GL3(A) F on GLo

+ — / / L(s1,f® E(k)SQ)]2 -T'(s1,0,w, foo,E(k_)52 o) ds2 dsy.
47” 27” R(s1)=} mez)—— 1 o
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Here, for R(s2) = 1/2, write 1 — s5 in place of $2, to maintain holomorphy in complex-conjugated
parameters. In this vein, over Q, it is reasonable to put

L(si —s2+4,f) - L(s1 +52— %, f)

Lisi, f @ BY) = Lisi, f @ BYY,,) = (2 2)

(finite-prime part)

since the natural normalization of the Eisenstein series Eg; ) on GLy contributes the denominator
((2s3). In the above expression, F' runs over an orthonormal basis for all level-one cuspforms on
GLs, with no restriction on the right K. —type. The Eisenstein series Egk) run over all level-
one Eisenstein series for GL2(Q) with no restriction on K.,—type denoted here by k. The weight
function I'(s, v, w, foo, Foo) can be described as follows. Let U(R) denote the subgroup of GL3(R)

of matrices of the form <I2 1> . For w € C, define ¢ on U(R) by

(B 7) = arler)

and set
1 r1 I3
,(/) 1 — 627ri(x1+z2)
1

Then, the weight function is (essentially)

D (s, 0,1, foos Foo) = |pr(1)]? - / / / / / (2y)" = (12~} K(h, m)
(] 0O 0

O2(R) O2(R)

ty
(" Je ()
1
L t/y/ L y/
w (M () )
1

dy dt , dy dt’
dk—y—dk:’ e
y? ye v

where: pp(1) is the first Fourier coefficient of F,

and
K(h, m) = / o(u) (huh_ ) ¥(mum™ Y du.
U(R)

Here W, , and W, ; denote the Whittaker functions at oo attached to f and F, respectively.
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To obtain higher moments of automorphic L—functions such as (, we replace the cuspform f
by a truncated Eisenstein series or wavepacket of Eisenstein series. For example, for GL3, the
continuous part of the above moment expansion gives the following natural integral

2

[ gy meswa

R(s)=

where M is the smooth weight obtained by summing over the K ,—types k the function I' above.

For applications to Analytic Number Theory, one finds it useful to present, in classical language,
the derivation of the ezplicit moment identity, when r = 3 over Q. To do so, let G = GL3(R), and
define the standard subgroups:

R (GRRN NR (ClF AP (C |

Let N be the unipotent radical of standard minimal parabolic in H, that is, the subgroup of
upper-triangular unipotent elements in H, and set K = O3(R).
For w € C, define ¢ on U by

o 7) = (e E

We extend ¢ to G by requiring right K—invariance and left equivariance

©(9) <UEC,g€G,m:<A d)eZH).

More generally, we can take suitable functions (see [Di-Gal], [Di-Ga2]) ¢ on U, and extend them
to G by right K—-invariance and the same left equivariance.
For R(v) and R(w) sufficiently large, define the Poincaré series

det A
a2

v

p(mg) =

(3.1) Pé(g) = Pé(giv,w) = > ¢(vg) (9€@G)
VEH(Z)\SLa(2)

where H(Z) is the subgroup of SL3(Z) whose elements belong to H. Note that H(Z) ~ SLy(Z).
To see that the series defining Pé(g) converges absolutely and uniformly on compact subsets of
G/ZK, one can use the Iwasawa decomposition to make a simple comparison with the maximal
parabolic Eisenstein series.

For a cuspform f of type = (1, p2) on SL3(Z) (right Z K—invariant), consider the integral

(32) I=1Iow) = [ Pegli@Pds.
ZSL3(Z)\G
Unwinding the Poincaré series, we write

I = / o(9) 1£(9)? dg.
ZH(Z)\G
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Next, we will use the Fourier expansion (see [Go])
617 62 .
By s = > > > “enl Wallog)  (witha(h, ) = a(tr, ~2)
VENZ\H(Z) =1 20 1 2]

where N(Z) is the subgroup of upper-triangular unipotent elements in H(Z), L = diag(¢142,¢1,1),
and W, is the Whittaker function. Then the integral I further unwinds to

(3.4) =5 a%ﬂé?) b/ (9) Wu(Lg)f(g) dg

b, b2 ZN(Z)\G

Now, let P; be the (minimal) parabolic subgroup of G of upper-triangular matrices, and let K3
be the subgroup of K fixing the row vector (0,0,1). Using the Iwasawa decomposition

G=P - K, P=(HZ)-U=P K,

we can write (up to a constant) the right hand side of (3.4) as

(3.5) =y “ﬁ225f> t/1 o(hu) W,(Lhu) f (h) dh du.
b, b2 (N(Z)\H)xU

-1
The constant involved is < i) K, 1 dk:)

One of the key ideas is to decompose the left H(Z)-invariant function f(hu) along H(Z)\H.
Accordingly, we have the spectral decomposition

Fi) = [ o) [ o) Fomu) dm

() H(Z)\H
a(lh,0h) I
(36) = 3 S [am [ ) W@ am
1 gl 1*2
b6 (n) N@Z)\H

Plugging (3.6) into (3.5), we can decompose

61, 62 617 2 )
. I = E g I '
(3 7) e g 6, / ‘£1£2 ’g/g/‘ €1732751,£27

where, for fixed ¢y, o, 0], 05,

(38) In.pu.e = / / / o(hu) W, (Lhut) (h) T (L mae) 7i(m) dh dm du .
() (N@AH)XU NGN\H
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The integral over U in (3.8) is

/SO(U) W, (Lhu) W ,(L'mu) du

= W, (Lh) W, (L'm) K(Lh, L'm),

1 =1 xo
1/} 1 x5 — 62771'(1:1—‘,-3:3)‘
1

69 Inmay = [ [ [ eK@h Lm) W (Lh)n(h) W L'm)om) dhdm i,
(n) N(Z)\H N(Z)\H

where

Therefore,

For n € N and h € H, we have:

p(nh) = ¢(h),
K(Lnh, L'm) = K(Lh, L'm),
W, (Lnh) = ¢ (LnL™") W, (Lh).

Hence,
@(h) K(Lh, L'm) W, (Lh) n(h) W ,(L'm) 7(m) dh dm

N@\H NZ)\H
(3.10)

= / / @(h) K(Lh, L'm) W, (Lh) W ,(L'm)
N\H N\H

/ ¢ (LnL™ ") n(nh)dn - / ¥ (L'n'L' 1) 5(n'm) dn' dh dm.

N(Z)\N N(Z)\N

To simplify (3.10), let

( t 1)@ ). m- ( ’ )( ). wreom
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The functions 1 above are of the form |det|™® ® F with s € iR. In what follows, for convergence
purposes, the real part of the parameter s will necessarily be shifted to a fixed (large) o = R(s).
The shifting occurs in (3.6) (there is a hidden vertical integral in the integral over 7).

Remark. For every K—type k, we choose F in an orthonormal basis consisting of common
eigenfunctions for all Hecke operators T},. Furthermore, this basis is normalized as in Corollary 4.4
and (4.69) [DFI] with respect to Maass operators.

Note that
(3.11) / ¢ (LnL™") F(nh) dn = ”F(‘_\/%T)Wscm«lﬁzly 1) k)

N(Z)\N

(3.12) / Y (L'n'L' 1) F(n'm) dn’ = pF(_jé) W§R<<|£/2|y, 1> -k') ;
NN [£5]

where I/Vpi]R are the G Lo Whittaker functions attached to F. These functions can be expressed in
terms of the classical Whittaker function

yo e /"" M) (~u—a—F+HT(-u—a+f+1)
D(—a—-B+HT(~a+8+1)

Y du
o y-at,

where the contour has loops, if necessary, so that the poles of I'(u) and the poles of the function

cosf — sm9> € SOu(R),

o I 1 o . _
D(—u—a ﬁ+2)F( U a+ﬂ+2)areonopp081t681desof1t. For k <sin9 cos

we have (see [DFI])

WF%R<<y 1) k) N einFﬁ<y 1) = " Wig iy (4ny)  (y>0)

if F'is an eigenfunction of
P PN iy
ox2  Oy? Yor
with eigenvalue § + p2. In (3.11) and (3.12), the Whittaker functions are determined by the signs

of —¢y and —/), respectively. If F' corresponds to a holomorphic, or anti-holomorphic, cuspform,
there are no negative, or positive, respectively, terms in its Fourier expansion. We have

A, :y2<

WFTR<<y 1) k) = e Wiu«(y 1> = "W, moi(dmy)  (for k >k, 12,5 >0)

for F' corresponding to a holomorphic cuspform of weight .
Then, making the substitutions

t— — Yy — —

t— —, — =
0 s A AL
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we can write (3.10) as

A W] L] [

HNK HNK
K + Yy
- w (" WM<( )
1

t'y’ ,

(e )
1

/ !
ik WL gy At

y n y/2 77
where
K(h, m) = /g@(u)z/) (huh™") ¢ (mum™") du.
U
Recall that the Rankin-Selberg convolution L(s, f ® F) is given by

a(fy, 52))\F0@2)
(B l2)s 7

L(s,f@F) = L(s,f® Fp) = )

ly,02=1

where Fj is the basic ancestor of F, and A FO(E) is the corresponding eigenvalue of the Hecke operator
Ty. Since a(ly, l3) = a(l1, —{2), it follows from (3.7), (3.9) and (3.13) that

1= [ P9l

ZSL3(Z)\G
1 _
- Y o | Lerles iR Le fe )T ds
F in GLo m R(s)=0
where
(3.14)

/ / ()" (%) K (b, m)
0 0
ty
e ()
e
t/y/ /
w7 0) )

!
- dk @ @ dk’ d%g dr
t/
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1

with all four possible sign choices in the sum. Note that we have also replaced s by s — 3.

The kernel I',(s) can be expressed as a Barnes type (multiple) integral. To see this, note that

”(/J(huh_l) _ 627rit(u1 sin 04wuso cos 9)7 E(mum—l) — 6—27m‘t’(u1 sin 0’ +us cos 9/)7

with 0 < 6, 6’ < 27. Changing the variables u; = rcos ¢, ug =rsin¢ (r > 0 and 0 < ¢ < 27), one
can write

co 27

(3_15) K(h, m) _ / / 7“%0(7“) p2mirt sin(0+¢) 672wirt’sin(0’+¢) d(bﬁ
r
0 0
In (3.15), express the two exponentials using the Fourier expansion

zu sinf __ E J if@

l=—o0

+ Yy ) _ ikt (Y
w7 0) ) = ().

it follows that, up to a positive constant, I',(s) is represented by

Recalling that

(3.16)

" pe(ED)p(£D) / / // TSt (f 2y)573 / Jo(2mrt) J,. (2t dr
.
+ 0 0

0

ly t'y’ ’ )
_ —+ [y dy dt dy’ dt

' t - <y ) ' ( > S
2z 123 1 F,R 1 K 1 F,R 1 y2 t y 2 t

Here we have also used the well-known identity J_,(z) = (—=1)"J.(2).
To continue the computation, express both GL3(R) Whittaker functions in (3.16) as (see [Bu])

ty 1
W# t : — (27”)2/ /7r£1£2 V(gl’&)tl*&yl*éz d&, dés,
(01) (82)
where
Ve _ LTI (RN (R0 (S5 (e5)
Ds2) Ty D (S ’

the vertical lines of integration being taken to the right of all poles of the integrand. We shall
consider only the (+,+) part of (3.16), assuming x > 0 and

W (Y )) = Was, (am)
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Interchanging the order of integration and applying standard integral formulas (see [GR]), we write
the integrals of the (+,+) part of (3.16) corresponding to the above choice of W  as

F,R

p—3d+v) g — F(1+5—s—%+0)D(5+s—%

128 (27-”')4/ / / /V(fl’&)v(&’&)rgnfwl 2)1“()"”—51 +£1§

B) S > — U = — S1

(61) (62) (87) (d5) 2 2 2 2
F(l—s—fz—l—v—wFo)F(1—8—§2+U+WFO)

2 2
o N
M °>F< )
PESZICOEE) e ey dey ey
L(3)

This representation holds provided

01, 0o, 5/1, 55 > 0;
R(v) —RN(s) — 5 > —1; R(s) — 5, > 0;

% > 2R(s) — 87 > 0; —% > 2R(v) — 2R(s) — 01 > —2;
R(w) > 61 + 67 — 2R(v) >0

We remark that for all the other choices of WF%R, one obtains similar expressions.

For fixed Fy a Maass cuspform of weight zero, or a classical holomorphic (or anti-holomorphic)
cuspform of weight k., the corresponding archimedean sum over the K-types x in the moment
expansion can be evaluated using the effect of the Maass operators on Fy given explicitly in [DFI]
(see especially (4.70), (4.77), (4.78) and (4.83)).

We summarize the main result of this section in the following

Theorem 3.18. Let Pé(g) defined in (3.1) be the Poincaré series associated to ¢. Then, for
s, v, w € C with sufficiently large real parts, and f a cuspform on SLs3(Z), we have

1

Pdg)fdy = Y 5 [ Llow1-s feF)Lis fo )Ty ds
ZSL3(Z)\G FinGLy R(s)=0

where F' runs over an orthonormal basis for all level-one cuspforms together with vertical integrals
of all level-one Eisenstein series on GLo(Q), with no restriction on the right K —types. The weight
function T',(s) is given by

[ o lNNe oliNe olNNe o] o d
T, ZpF +1)p(£1) ////(ﬂy)”—sﬂ (t'2y) / I (2mrt) J(2mrt’)
"
0O 0 0 O 0

ty t/y ’ I3t
+ (Y 974 =+ [y dy dt dy' dt
- W, t ) WF,R( 1) W, t WF,]R< 1) *y2 7 7]/,2 T
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with all four possible sign choices in the sum.

84. Spectral decomposition of Poincaré series

We begin by showing that our Poincaré series Pé(g) is a degenerate GLj3 object (i.e., the
cuspforms on SL3(Z) do not contribute to its spectral decomposition). We have the following

Proposition 4.1. The Poincaré series Pé(g) is orthogonal to the space of cuspforms on SL3(Z).

Proof: Let f be a cuspform on SL3(Z) with Fourier expansion
glv 62
TR YD i DL R
NEN(Z\H(Z) €1=1 (370 2
Unwinding twice, it follows, as before, that
, 617 €2 o7
(4.2) Pé(g)f(g)dg = Z TR (9) W (Lg) dg.
ZSLs(Z)\G 1,62 ZN(Z)\G/K

Now, write g € G in Iwasawa form,

1z x9 Y1y2
g = 1 s Y1 (y1, y2 > 0, k € K)
1 1 d
y1y2 d L z1/y2 1 0 (x2—z123)/11Y2
= y1d 1 0 1 x3/Yy1 k.
d 1 0 0 1
Then
) L 0 (x2—2173)/y192
(4.3) o(9) = (yiy2)" | 0 1 r3/y1
0 O 1
and
' biyi|la]ys
(4.4) W(Lg) = e*riltamthm) .y o

1

Also, the integral in the right hand side of (4.2) can be written explicitly as

0o o) 0o 00 1

/ < dg :/ / / / / da:ldxgdxgd—%ld—gf.
o y1i v
Y2=

ZN(Z)\G/K y1=0 zz=—00 xa=—00 z1=0
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Letting
r1 =11, T9 = tg + t1t3, r3 = t3,

the inner integral over t; is

Ju—

e—27T’L'£2t1 dtl — 0

o

(since ¢ # 0). Thus,

Pé(g) f(g)dg = 0. O
ZSL3(Z)\G

Now write the Poincaré series as

Pélg) = Y. elvg) = > > w(Brg)

YEH(Z)\SL3(Z) YEP(Z)\SL3(2) BeU(Z)

where P(Z) denotes the subgroup of SL3(Z) with the bottom row (0,0,1). By the Poisson
summation formula, we have

> 1 ma Loy Y1y2
Yo oeBg) = > ¢ 1 ms 1 s "
BeU(Z) Mo, M3=—00 1 1 1
s I 21 @2+ ma Y192
= > ¥ 1 25+ ms3 Y1
M2, M3=—00 1 1
oo
— Z C()(Dmm ’m3)($1’ 1, y2) 627r2(m2z2+m3a:3)7
mz, m3=—00

where Cémz’mS)(xl, Y1, Yy2) is given by

1 0 (UQ — .’L‘1U3)/y1y2 )
Cg(amz’ms)(l"l, y1, y2) = (yiya)" / el 0 1 U3/Z/1 e milmauatmata) duy, dug
B2 0 0
(4.5) = (y%y2 “+1 e~ 2mi[mayiyata+(mazi+ma)yts] dto dts.
Rz

Therefore, denoting C(m2’m3)(:p1, Y1, yo) e2THmaz2tmazs) hy Pg(mg, ms3), we can write

[eo]

Pilg) = S Buglmamg).

YEP(Z)\SL3(Z) m2, mg=—00
Thus, by (4.5) we can decompose the Poincaré series Pé(g) as

(4.6) Pé(g) = C(p)- E*Y(g,v+1) + P& (g)
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where E%Y(g,v + 1) is the maximal parabolic Eisenstein series on SL3(Z) and

1 to
(47) C(QD) == /(p 1 t3 dtzdtg.

R2 1

To obtain a spectral decomposition, we need to present the Poincaré series Pé(g) with the
maximal parabolic Eisenstein series on SL3(Z) removed in a more useful way. To do so, we first
write

o0

pé* (g) = Z Z @'yg (m27 m3)

YEP(Z)\SL3(Z)  ™m2,mg=—00
(m2,m3)#(0,0)

= Z Z @g(iﬂ),

YEP(Z)\SL3(Z) $e(U(Z)\UR))"
P#1

where

For § € H(Z), we observe that

By 1) = /U o (uBg)Pu) du = /U (B uBg)du) du = /U (8 uBg) P () du
(48) - /U o(ug)B(BubT) du,

as p(Bg) = ¢(g) for 3 € H(Z) and g € G. Setting ¢%(u) = ¢(BuB™"), the last integral in (4.8) is
CHCIE
Consider the characters on U(Z)\U(R)

] 1 usg
P (u) = eFrimus m e Z* and u = 1 wus
1

Since every non-trivial character on U(Z)\U(R) is obtained as (¢™)?, for unique m € Z* and
B € PLY(Z)\H(Z), where P1'1(Z) is the parabolic subgroup of H(Z), it follows from (4.8) that

Pé(g) = Z Z Z Pprg(V™)

YyEP(Z)\SL3(Z) BePLY(Z)\H(Z) meZ*

= Z Z @'yg(@[)m)-

yePLLY(Z)\SL3(Z) meZ*

Let

0= * ok , U = 1 , U’ = 1 *
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Then

P&(g) = > > > / KUK ( / Cplu'u" Byg) dU’> du’”.

yEPY2(Z)\SL3(Z) BEPLY(Z)\O(Z) meLX
Setting
Bo) = [ elugdu,
the last expression of Pé*(g) becomes
@9 P = X DN D B O OET
VEPI2(@N\SLy(Z) pEPI@NO@) mezx VU

Let

(410) g = > 2 [ T s

BEPLH(Z)\O(Z) meL>
We shall need the following simple observation.

Lemma 4.11. We have the equivariance

qg b c
¢(pg) = lg|"** - la]” - d| 72" - &(g), forp= a € GL3(R)
d
Proof: Indeed, since
1 t qg b ¢ g b td+c q b 1 (td+c¢)/q
1 a = a = a 1 ,
1 d d d 1
we have
qa 1 (td+c)/q
$(pg) = /,sO(U’pg) du' = (@ -/Rw 1 g|dt = lg|" " [a]”|d| 7> G(g). O

Assuming g of the form

g = <a ;,) (a € R* and ¢’ € GL2(R)),

(we can always do using the Iwasawa decomposition), and decomposing it as

- (a ;2)(1 9’)’
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3(g) = lal+ -6(1 g,).

(1 D>9: < D*g,) (for D € GLy(R)),

it follows that ®(g) defined in (4.10) descends to a G Ly Poincaré series, with the corresponding
Eisenstein series removed, of the type studied in [Di-Gal], [Di-Gol], [Di-Go2]. Setting

we have

Since

1
g0(2)<1 f)z{é 1 z (x € R)

and extending it to GL2(R) by

90(2)((a d>gk> = ’2’3?1 - ¢®(g) (9 € GL2(R), k € O2(R)),

we can write

I I I L 7 (R D DUND Sl A OELI oL

BEPLH(Z)\SL2(Z) meLX

with N the subgroup of upper-triangular unipotent elements in GL2(R). Note that, for

I _w
(1) = e

we have
1 1
(4.13) ga(Z)(l T) =@ 1 | = ol 1 =z du’
1 U’ 1
> 2 2\ —% r(“z4) Lo
:/ (l—l—u +1:) 2du = 7 1,20 -(1—{—3:)2
e I'(%)

Then, by (2.2), (2.3) and (5.8) in [Di-Gol], it follows that, for an orthonormal basis of Maass
cuspforms which are simultaneous eigenfunctions of all the Hecke operators, we have the spectral
decomposition

a x _1 — 3V 1 . ‘37)—{—1 vt PAECT ,
ﬂI’( g,>—2 > pp(l)L<2+1F)g(2+wp, 5 W 1>Ia| et g'| "= F(g')

F—even

C3v—|— +s)((32”+§’—s)g( _S;3U+1

, —1) v+ et o' |~ E(d, 5) ds,

§R(s
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where

B L F( s+v+1)F(s+v)F(—s+v+w)F(s+v+w—1)
. _ vt3 2 2
g(s,’l},w) - F(w+1>1—w(v+ ) :

This decomposition holds provided R(v) and R(w) are sufficiently large. Hence, by (4.9) and (4.10),
Pé*(g) has the induced spectral decomposition from G L,

L% 1 —— _/3v 1 . 3v+1
PE(9) = 5 Y. A L(G +1LF)G(5 +im: =y —w—1) B(g.v+1)
F —even
((F+H3+8)F+35 -5 v+l i, vtl s 2s
g2 —1)E”(,——7,—>d.
—1+sr (1—s)C(2—2s) g( ° v ST T33) "
" =

By Godement’s criterion (see [Bo]), the minimal parabolic Eisenstein series E1! inside the integral

converges absolutely and uniformly on compact subsets of G/ZK for R(v) sufficiently large. The
meromorphic continuation of the Poincaré series Pé(g) in (v, w) € C? follows by shifting the contour
similarly to Section 5 of [Di-Gol], or Theorem 4.17 in [Di-Gal].

We summarize the main result of this section in the following theorem.

Theorem 4.14. For R(v) and R(w) sufficiently large, the Poincaré series Pé(g) associated to

(%) = (e ap ¥

has the spectral decomposition

, 2w
Pig) = —— - E*Xg,v+1)

1 — (3 1 3v+1
+ 3 Z pF(l)L< 5 +1, F)g(i—i-wp;T,w—l)E;’Q(g,v—i—l)

F—even

CEE4+L+9)¢(3E+3—5) 3v+41 11/ v+l s 2s
l—s; "= w—1)E" (g, —— — 2, 22) ds.
/ —1+SF (1—5)C(2— 2s) g( BTy v ) (g’ ) Ny

%(s)—

Final Remark. Let ¢ on U be defined by

w 2\ "2 wow.,,,. 1
s0<[2 u) - 217w\/7>r11(§)(1+||u|| ) T F(S 55 yare)

1 L(*5) ’

and consider the Poincaré series Pé(g) attached to this choice of . Representing the hypergeometric
function by its power series,

P87 = 5yl 2 it (<),

- !
L(@)l(3) = m! L(v+m)
and using the last identity in (4.13), it follows, as in [Di-Ga2], Section 3, that the Poincaré series

Pé(g) with v = 0 satisfies a shifted functional equation (involving an Eisenstein series) as w — 2—w
(see also [G] and [Di-Gol]).
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