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1. Introduction

Let K = Q[
√

D] be a real quadratic extension of discriminant D > 0. Hecke
(in 1918) [He] was the first to introduce the notion of a Grössencharakter
on ideals of K. Actually, Hecke defined Grössencharakters for an arbitrary
algebraic number field, but we shall not need this here. A Grössencharakter
ψ is defined on principal fractional ideals (β) of K by

ψ((β)) =
∣

∣

∣

∣

β

β′

∣

∣

∣

∣

πik
log ϵ

.

Here β′ is the image of β under the non-trivial automorphism of K/Q and
ϵ > 1 is a fundamental unit of OK , the ring of integers of K. (Note that
ψ((β)) is independent of the generator β.) Then ψ is extended to all ideals
j as follows: If jh = (β), define ψ(j) to be an h th root of ψ((β)) so that

ψ(jh) = ψ((β)) =
∣
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β

β′
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log ϵ
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In view of (1) below, for the purposes of defining the Hecke L-function, it
does not matter how the character ψ is extended to non-principal ideals.
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Let b be a fractional ideal of K. The Hecke L-function with Grössencha-
rakter ψ associated to the ideal class A of b−1 is defined to be

L(s,ψ, A) =
∑

∈A

ψ(a)

(Na)s

=(Nb)s

ψ(b)

∑

0 ̸=(β) ⊆

ψ((β))

|N(β)|s , (1)

where N denotes the norm from K to Q. Hecke [He] then showed that
L(s,ψ, A) has a meromorphic continuation to all s with at most a simple
pole at s = 1 and satisfies a functional equation in s '→ 1 − s.

Siegel [Si] found another proof of the functional equation by considering
the hyperbolic Fourier expansion of the real analytic Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s.

for the full modular group Γ = SL2(Z). Here

Γ∞ =
{(

1 m
0 1

)

: m ∈ Z
}

is the stabilizer of the cusp ∞.
Let f(z) = ∑

n≥1 ane2πinz be a weight two cuspform for Γ0(N), normal-
ized so that a1 = 1. Define the modular symbol

⟨γ, f ⟩ = −2πi
∫ γτ

τ

f(z)dz

for γ ∈ Γ0(N) and τ ∈ H∗ = H ∪ Q ∪ {i∞}, where H denotes the upper
half plane. Note that the modular symbol does not depend on the choice of
τ ∈ H∗, and by writing

〈(

∗ ∗
c d

)

, f
〉

= −2πi
∫ i∞

−d/c
f(z)dz,

we may extend the definition of the modular symbol to matrices which are
not necessarily in Γ0(N).

In a series of papers ([Go2], [Go3], [O’S1], [O’S2], [D-O’S]) the Eisen-
stein series twisted by modular symbols were introduced and studied. These
Eisenstein series are of interest because of the information they give on
the value distribution properties of modular symbols, which have in turn
been linked to Szpiro’s discriminant conjecture and the abc-conjecture, see
e.g. [Go1].

The Eisenstein series twisted by modular symbols are defined by

E∗(z, s) =
∑

γ∈Γ \Γ
⟨γ, f ⟩Im(

σ−1γz
)s

,
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where a ∈ Q ∪ {i∞} is a cusp of Γ = Γ0(N),

Γ = {γ ∈ Γ0(N) : γa = a}
is the stabilizer of a in Γ, and σ ∈ SL2(R) is uniquely determined by the
conditions

σ−1a = ∞, σ−1Γ σ = Γ∞.

The E∗(z, s) are not automorphic, but for all γ ∈ Γ, they satisfy the relation

E∗(γz, s) = E∗(z, s) − ⟨γ, f ⟩E (z, s),

where
E (z, s) =

∑

γ∈Γ \Γ
Im

(

σ−1γz
)s

is the ordinary real analytic Eisenstein series for Γ associated to the cusp a.
The Eisenstein series E (z, s) has a meromorphic continuation in s to

the entire complex plane and the column vector

E(z, s) = t(E 1(z, s), E 2(z, s), ...)

(with the ai running over all inequivalent cusps) satisfies the functional
equation

E(z, s) = Φ(s)E(z, 1 − s).

If Γ0(N) has r inequivalent cusps, then the so-called scattering matrix Φ(s)
is an r × r matrix with entries φ indexed by pairs of cusps of Γ0(N).
These entries may be given explicitly in terms of divisor sums and Gamma
functions, see e.g. [Hej]. Similar properties hold for E∗(z, s). In particular,
E∗(z, s) has a meromorphic continuation to C and the column vector

E∗(z, s) = t(E∗
1
(z, s), E∗

2
(z, s), ...

)

satisfies

E∗(z, s) = Φ(s)E∗(z, 1 − s) + Φ∗(s)E(z, 1 − s) (2)

where again, Φ∗(s) is an r × r matrix with entries φ∗ indexed by pairs of
cusps of Γ0(N). The functional equation (2) was first established in [O’S1].
In O’Sullivan’s paper, the new scattering matrix Φ∗(s) was given as an
infinite sum over double cosets. Using the results developed in Sect. 4 of
this paper, we show

Theorem 1. Let Φ and Φ∗ be as in (2). Then

φ∗ (s) = T φ (s),

where

T = 2πi
∫

f(w)dw.
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This theorem was established by the first author in collaboration with
O’Sullivan, and we thank him for allowing us to include it here.

Following Siegel [Si] we will show that it is possible to obtain the
hyperbolic Fourier expansion of E∗(z, s) which in turn leads to a new type
of zeta function twisted by a modular symbol. We now describe the zeta
functions which arise.

Let

ρ =
(

α β
γ δ

)

be a hyperbolic matrix in Γ0(N), i.e., |α + δ| > 2. The two fixed points
of ρ,

w = β +
√

(α+ δ)2 − 4
2γ

, w′ = β −
√

(α+ δ)2 − 4
2γ

lie in the real quadratic field K = Q[
√

D], D = (α+ δ)2 − 4. We let ϵ and
ϵ−1 be the two eigenvalues of ρ. We make the following assumptions:

A1: The level N is squarefree.
A2: The eigenvalue ϵ is a fundamental unit of OK and ϵ > 1.
A3: The modular symbol ⟨ρ, f ⟩ = 0.

The first two assumptions may be relaxed at the expense of some added
complications. The third assumption is essential for the hyperbolic Fourier
expansion of Sect. 5.

To state our main result, we introduce some more notation. Since we
have assumed N is squarefree, inequivalent cusps of Γ correspond to the
divisors of N. For each divisor v of N, with corresponding cusp a ∼ 1/v,
we denote by J the fractional ideal of K generated by 1 and vw,

J = {cvw + d : c, d ∈ Z}.
For j = pw + q ∈ K with p, q ∈ Q we define j ′ = pw′ + q. For cw + d
an integer in K, we define

⟨cw + d, f ⟩ =
〈(

∗ ∗
c d

)

, f
〉

= −2πi
∫ i∞

−d/c
f(w)dw.

Let χ(v)
0 denote the trivial Dirichlet character mod v and extend χ(v)

0 to OK

by defining χ(v)
0 (cw+ d) = χ

(v)
0 (d). Fix an integer n. Associated to χ(v)

0 we
have the Grössencharakter ψ defined on principal ideals of OK by

ψ((cw + d)) = χ
(v)
0 (d)

∣

∣

∣

∣

cw + d
cw′ + d

∣

∣

∣

∣

− πin
log ϵ

.

The principal object of study in this paper is the L-function L∗(s,ψ)
which is defined as a Dirichlet series

L∗(s,ψ) =
∑

0 ̸=( j) ⊆
⟨ j, f ⟩ψ(( j))(N j)−s,
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where the sum is taken over all non-zero principal ideals contained in J .
We view L∗(s,ψ) as a twist, by the modular symbol ⟨·, f ⟩, of the classical
Hecke L-function

L (s,ψ) =
∑

0 ̸=( j) ⊆
(N j)−sψ(( j)).

Let

Gn(s) =
Γ

(

1
2

(

s − πin
log ϵ

))

Γ
(

1
2

(

s + πin
log ϵ

))

Γ(s)
.

Define

ξ (s,ψ) = Gn(s)
(N(w − w′)/v)−s

2 log ϵ L
(

2s,χ(v)
0

)
L (s,ψ)

and

ξ∗(s,ψ) = Gn(s)
(N(w − w′)/v)−s

2 log ϵ L
(

2s,χ(v)
0

)

[

T ∞L (s,ψ) + L∗(s,ψ)
]

.

Let
Λ∗(s,ψ) = t( · · · , ξ∗(s,ψ), · · · )

and
Λ(s,ψ) = t( · · · , ξ (s,ψ), · · · )

be the associated column vectors of L-functions.

Theorem 2. Assume A1–A3. Then the column vector L-functions Λ, Λ∗

have an analytic continuation to the complex plane and satisfy the functional
equation

Λ∗(s,ψ) = Φ(s)Λ∗(1 − s,ψ) + Φ∗(s)Λ(1 − s,ψ),

where Φ(s) (resp. Φ∗(s)) is the scattering matrix for E(z, s) (resp. E∗(z, s)).
Moreover, for n ̸= 0, L∗(s,ψ) has a simple pole at s = 1 with residue given
by

N(w − w′)L
(

2,χ
(v)
0

)

vVol(Γ0(N)\H)

∫ ϵ2

1
F (κ−1(ir))e

−πin
log ϵ

dr
r

,

with

κ =
(

1 −w
1 −w′

)

and F (z) = 2πi
∫ z f(w)dw, the antiderivative of f.
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2. Rankin-Selberg L-functions

We repeat and elaborate some of the definitions given in the previous section.
Define the Eisenstein series

E (z, s) =
∑

γ∈Γ \Γ
Im

(

σ−1γz
)s

and its derivative,

E ′ (z, s) = y
∂

∂ z̄
E (z, s)

= is
2

∑

γ∈Γ \Γ
Im

(

σ−1γz
)s j

(

σ−1γ, z
)2

∣

∣ j
(

σ−1γ, z
)∣

∣

2

where j(γ, z) = cz + d. The Eisenstein series have a Fourier expansion
given by

E (σ z, s) = δ ys + φ (s)y1−s +
∑

n ̸=0

φ (n, s)Ws(nz)

where Ws(z) is the Whittaker function

Ws(z) =
√

y
Γ(s)

Ks− 1
2
(2πy)e2πix,

and

Ks(y) = 1
2

∫ ∞

0
e− y

2

(

u+ 1
u

)

u−s du
u

is the Bessel function. The matrix

Φ(s) = (φ (s))

is called the scattering matrix of the Eisenstein series; it is the matrix
appearing in the functional equation of Sect. 1.

Fix an integer k ≥ 0. For σ =
(

a b
c d

)

∈ SL2(R), we define the slash

operator |σ of weight k operating on holomorphic functions f : H→ C by

f |σ(z) = (ad − bc)k/2(cz + d)−k f
(

az + b
cz + d

)

.

Let f be a holomorphic weight two cusp form for Γ with Fourier expansion

f |σ (z) =
∞

∑

1

f (n)e(nz)
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at the cusp a. Let

F (z) = 2πi
∫ z

f(w)dw.

We define the Eisenstein series twisted by a modular symbol

E∗(z, s) =
∑

γ∈Γ \Γ
⟨γ, f ⟩Im(

σ−1γz
)s

and the automorphic function

G (z, s) = E∗(z, s) − F (z)E (z, s).

It follows that

G (z, s) = −
∑

γ∈Γ \Γ
F (γz)Im

(

σ−1γz
)s

.

Let η1, η2, ... be an orthonormal basis of Maass cusp forms with Fourier
expansions given by

η j(σ z) =
∑

n ̸=0

b , j(n)
√

|n|yKir j (2π|n|y)e(nx).

Here, λ j = 1/4+r2
j denotes the eigenvalue of η j . We compute the Petersson

inner product ⟨ fE ′ (·, s)Im(·), η j⟩. We let z = x + iy ∈ H.

⟨ fE ′ (·, s)Im(·), η j⟩

=
∫

Γ\
f(z)η̄(z)E ′ (z, s)Im(z)

dx dy
y2

= is
2

∑

γ∈Γ \Γ

∫

Γ\
f(z)η̄(z)Im

(

σ−1γz
)s j

(

σ−1γ, z
)2

∣

∣ j
(

σ−1γ, z
)∣

∣

2 Im(z)
dx dy

y2

= is
2

∫ ∞

0

∫ 1

0
f |σ (z)η̄(σ z)(Imz)s+1dx

dy
y2

= i
2

Γ
(

s + 1
2 + ir j

)

Γ
(

s + 1
2 − ir j

)

πs22s+1Γ(s)
L (s, f ⊗ η),

where

L (s, f ⊗ η) :=
∑

n≥1

f (n)b̄ (n)

ns
.

The vector Eisenstein series satisfies the functional equation

E(z, s) = Φ(s)E (z, 1 − s)
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and after applying y ∂
∂ z̄ , we also obtain

E ′(z, s) = Φ(s)E ′(z, 1 − s).

Similarly, define the column vector of convolution L-functions L(s, f ⊗η).
Then the completed L-function

Λ(s, f ⊗ η j) := Γ
(

s + 1
2 + ir j

)

Γ
(

s + 1
2 − ir j

)

πs22s+1Γ(s)
L(s, f ⊗ η)

satisfies the functional equation

Λ(s, f ⊗ η j) = Φ(s)Λ(1 − s, f ⊗ η j).

This follows immediately from the representation

Λ (s, f ⊗ η j) = 2
i

〈

fE ′ (·, s)Im(·), η j
〉

and the functional equation for the Eisenstein series.
In the same way, we may show that

2
i

〈

fE ′ (·, s)Im(·), E
(·, 1

2 + ir
)〉

= Γ
(

s + 1
2 + ir

)

Γ
(

s + 1
2 − ir

)

πs22s+1Γ(s)
L

(

s, f ⊗ E
(

1
2 + ir

))

,

where we have defined

L
(

s, f ⊗ E
(

1
2 + ir

)) =
∑

n≥1

f (n)φ̄
(

n, 1
2 + ir

)

ns
.

As before, define the column vector of L-functions L(s, f ⊗ E ( 1
2 + ir))

and the completed L-function by

Λ
(

s, f ⊗E
(

1
2 +ir

)) := Γ
(

s + 1
2 + ir

)

Γ
(

s + 1
2 − ir

)

πs22s+1Γ(s)
L

(

s, f ⊗E
(

1
2 +ir

))

.

This satisfies the functional equation

Λ(s, f ⊗ E (1/2 + ir)) = Φ(s)Λ(1 − s, f ⊗ E (1/2 + ir)).
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3. A functional equation for G(z, s)

As in the previous section, let η1, η2, ... be an orthonormal basis of Maass
cusp forms. The Selberg spectral decomposition says that every g∈L2 (Γ\H)
which is orthogonal to the constants has the representation

g(z) =
∞

∑

j=1

⟨g, η j⟩η j(z)+
1

4π

∑

∫ +∞

−∞
⟨g, E (·, 1/2+ir)⟩E (z, 1/2+ir)dr.

We will use the Selberg spectral decomposition to obtain the meromorphic
continuation and functional equation for the Eisenstein series formed with
modular symbols.

Recall the definitions

F (z) = 2πi
∫ z

f(w)dw

and

G (z, s) = E∗(z, s) − F (z)E (z, s)

= −
∑

γ∈Γ \Γ
F (γz)Im

(

σ−1γz
)s

.

After a change of variables, we get

F (σ z) =
∑

n≥1

f (n)

n
e2πinz .

We define the column vector

G(z, s) = t(G (z, s)) = E∗(z, s) − F (z)E(z, s),

where F is the diagonal matrix diag(. . . , F (z), . . . ) indexed by inequiv-
alent cusps a. It is shown in [O’S2] that at each cusp G (z, s) → 0, for
Re(s) > 1/2. In particular, G (z, s) ∈ L2(Γ\H) and is orthogonal to the
constants for such s.

As in [Go3] one may compute the inner products of G (z, s) with the
Maass cusp forms and the Eisenstein series on the line Re(s) = 1/2. Doing
this, we find

⟨G (·, s), η j⟩ = Γ
(

s + 1
2 − ir j

)

Γ
(

s + 1
2 + ir j

)

L (s, f ⊗ η j)

πs−122s−1Γ(s)
(

s − 1
2 − ir j

)(

s − 1
2 + ir j

)

and
〈

G (·, s), E
(·, 1

2 + ir
)〉

= Γ
(

s + 1
2 − ir

)

Γ
(

s + 1
2 + ir

)

L
(

s, f ⊗ E
(

1
2 + ir

))

πs−122s−1Γ(s)
(

s − 1
2 − ir

)(

s − 1
2 + ir

) .
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In vector notation

⟨G(·, s), η j⟩ = 1
4π

Λ(s, f ⊗ η j)
(

s − 1
2 − ir j

)(

s − 1
2 + ir j

) (3)

and

〈

G(·, s), E
(

·, 1
2 + ir

)〉

= 1
4π

Λ
(

s, f ⊗ E
(

1
2 + ir

))

(

s − 1
2 − ir

)(

s − 1
2 + ir

) . (4)

Now, use the Selberg spectral decomposition to write G(·, s) as a series
expansion with coefficients given by the above inner products. Then from
the functional equation for the Rankin-Selberg L-functions together with
the fact that the denominators of (3) and (4) are invariant under s '→ 1 − s,
we deduce that

G(z, s) = Φ(s)G(z, 1 − s).

Note that a consequence of this functional equation is that G (z, s) is square
integrable for all s, Re s ̸= 1

2 .

4. Proof of Theorem 1

The functional equation for G(z, s) given in Sect. 3 may be combined with
the functional equation given in [O’S1] to give a very simple formula for
the entries of Φ∗. The equation in [O’S1] is

E∗(z, s) = Φ(s)E∗(z, 1 − s) + Φ∗(s)E(z, 1 − s).

Writing
E∗(z, s) = G(z, s) + F (z)E(z, s)

and using the functional equation for G(z, s) we get

Φ∗(1 − s)E(z, s) = F (z)E(z, 1 − s) − Φ(1 − s)F (z)E(z, s). (5)

Now replace z by σ z and compare the constant term in the Fourier
coefficients of both sides. For this we need,

constant term of E (σ z, s) = δ ys + φ (s)y1−s

constant term of F (σ z) = T

The constant term of F (σ z) is computed as follows:

F (σ z) = 2πi
∫ σ z

f(w)dw

= 2πi
∫

f(w)dw + 2πi
∫ σ z

f(w)dw

= T +
∑

n≥1

f (n)

n
e2πinz .
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Let a1, a2, . . . denote the inequivalent cusps of Γ0(N). Then the constant
term of the j th column on the left side of (5) is

∑

i

φ∗
j i

(1 − s)
[

δ i ys + φ i (s)y1−s],

and the j th column on the right side of (5) is

T j φ j (1 − s)ys −
∑

i

φ j i (s)T i φ i (s)y1−s.

Equating the terms involving ys, we get

φ∗
j

(1 − s)ys = T j φ j (1 − s)ys.

Hence, for any two cusps a, b,

φ∗ (s) = T φ (s),

as was to be shown.

5. The hyperbolic Fourier expansion for E∗(z, s)

Let ρ be a fixed hyperbolic matrix in Γ0(N). We recall the assumptions
made in the introduction:

A1: The level N is squarefree.
A2: The eigenvalues ϵ, ϵ−1 are fundamental units in OK and ϵ > 1.
A3: The modular symbol ⟨ρ, f ⟩ = 0.

We will compute the hyperbolic Fourier expansion of E∗(z, s) with respect
to ρ. By A3, E∗(ρz, s) = E∗(z, s).

Let w,w′ be the two real fixed points of ρ. Define

κ =
(

1 −w
1 −w′

)

.

Then

κρκ−1 =
(

ϵ
ϵ−1

)

.

The function E∗(κ−1z, s) is invariant under z '→ ϵ2z. Therefore, on the
positive imaginary axis (i.e. choosing z = ir), E∗(κ−1z, s) has the Fourier
expansion

E∗(κ−1(ir), s) =
∑

g∗(n, s)eπi n log r
log ϵ .

The Fourier coefficients are given by

g∗(n, s) = 1
2 log ϵ

∫ ϵ2

1
E∗(κ−1(ir), s)e−πi n log r

log ϵ
dr
r

.
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A set of inequivalent cusps for Γ0(N) is given by {1/v : v|N}. The
scaling matrix σ for the cusp a ∼ 1/v is given by

σ =
( √

N/v ∗√
Nv ∗

)

∈ SL2(R).

A direct computation shows that

Im
(

σ−1γκ−1(ir)
)

= (rv/N)(w − w′)−1

[(av − c)w′ + (bv − d)]2r2 + [(av − c)w + (bv − d)]2
.

As
(

a b
c d

)

ranges over elements in Γ \Γ, the pairs (av− c, bv− d) range

over distinct pairs of integers (c, d) such that c ≡ 0(v) and (c, d) = 1.
Furthemore, we observe that for

γ =
(

a b
c d

)

∈ Γ0(N),

the modular symbol
〈(

a b
c d

)

, f
〉

= −
〈(

d −b
−c a

)

, f
〉

= 2πi
∫ − bv−d

av−c

1/v

f(z)dz

= 2πi
∫ i∞

1/v

f(z)dz + 2πi
∫ − bv−d

av−c

i∞
f(z)dz

= T ∞ +
〈(

∗ ∗
av − c bv − d

)

, f
〉

.

(Recall our convention from the introduction for defining the modular sym-
bol ⟨γ, f ⟩ when γ is not in Γ0(N).)

Therefore,

E∗(κ−1(ir), s)

=
∑

γ∈Γ \Γ0(N)

⟨γ, f ⟩ Im
(

σ−1γκ−1(ir)
)s

=
∑

(c,d)=1
c≡0(v)

[

T ∞ +
〈(

∗ ∗
c d

)

, f
〉] (

rv/N(w − w′)

(cw′ + d)2r2 + (cw + d)2

)s

.
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We introduce the Möbius function µ which satisfies

∑

e|(c,d)

µ(e) =
{

1 (c, d) = 1
0 otherwise

to relax the condition (c, d) = 1, and conclude that

E∗(κ−1(ir), s) =
(rv/N(w − w′))s

L(2s,χ)

∑

(c,d) ̸=0
c≡0(N)

[

T ∞ +
〈(

∗ ∗
c d

)

, f
〉]

χ(d)

×
(

r
(cw′ + d)2r2 + (cw + d)2

)s

,

where χ = χ
(v)
0 is the trivial character mod v. Therefore

g∗(n, s) = (v/N(w − w′))s

2L(2s,χ) log ϵ

∑

(c,d) ̸=0
c≡0(N)

[

T ∞ +
〈(

∗ ∗
c d

)

, f
〉]

χ(d)Ic,d,

where

Ic,d =
∫ ϵ2

1

(

r
(cw′ + d)2r2 + (cw + d)2

)s

e−πi n log r
log ϵ

dr
r

=N(cw + d)−s

∣

∣

∣

∣

cw + d
cw′ + d

∣

∣

∣

∣

−πin
log ϵ

∫ ϵ2 cw′+d
cw+d

cw′+d
cw+d

(

r
r2 + 1

)s

eπi n log r
log ϵ

dr
r

.

In the previous expression, N(cw + d) := (cw + d)(cw′ + d).
In the notation of the introduction,

g∗(n, s) = (v/N(w − w′))s

2L(2s,χ) log ϵ

∑

j∈ , j ̸=0

⟨ j, f ⟩χ( j)(N j)−s

∣

∣

∣

∣

j
j ′

∣

∣

∣

∣

− πin
log ϵ

∫ ϵ2 j ′
j

j ′
j

,

where
∫ ϵ2 j ′

j

j ′
j

=
∫ ϵ2 j ′

j

j ′
j

(

r
r2 + 1

)s

e−πi n log r
log ϵ

dr
r

.

We write the sum over non-zero integers in the ideal J as a double sum
over principal ideals ( j) contained in J∞ and generators of ( j). Since ϵ
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generates the unit group, we have

∑

j∈
j ̸=0

⟨ j, f ⟩χ( j)(N j)−s

∣

∣

∣

∣

j
j ′

∣

∣

∣

∣

− πin
log ϵ

∫ ϵ2 j ′
j

j ′
j

=
∑

( j) ⊆ , j ̸=0

(N j)−s⟨ j, f ⟩
∣

∣

∣

∣

j ′

j

∣

∣

∣

∣

πin
log ϵ ∑

m∈

∫ ϵ−2(m+1) j ′
j

ϵ−2m j ′
j

(

r
r2 + 1

)s

e−πi n log r
2 log ϵ

dr
r

.

The inner sum over m divides the positive real axis into non-overlapping
intervals, thus the integral evaluates to

Gn(s) =
Γ

(

1
2

(

s − πin
log ϵ

))

Γ
(

1
2

(

s + πin
log ϵ

))

Γ(s)
.

We conclude that

g∗(n, s) =
(v/N(w − w′))s

2L(2s,χ) log ϵ
Gn(s)

∑

0 ̸=( j) ⊆
[T ∞ + ⟨ j, f ⟩]χ( j)(N j)−s

∣

∣

∣

∣

j
j ′

∣

∣

∣

∣

− πin
log ϵ

.

A similar but simpler computation gives the hyperbolic Fourier coeffi-
cients of the ordinary Eisenstein series:

E (κ−1(ir), s) =
∑

g (n, s)eπi n log r
log ϵ ,

with

g (n, s) = (v/N(w − w′))s

2L(2s,χ) log ϵ
Gn(s)

∑

0 ̸=( j) ⊆
χ( j)(N j)−s

∣

∣

∣

∣

j
j ′

∣

∣

∣

∣

− πin
log ϵ

.

6. Proof of Theorem 2

The proof of the first part of Theorem 2 now follows immediately from
the functional equation (2) and the results of the previous section. The
hyperbolic Fourier coefficients g∗(n, s) and g (n, s) must satisfy (2) as
well. But these Fourier coefficients are precisely the L-functions appearing
in the theorem.

We now compute the residue of L∗(s,ψ) at s = 1. It is known [O’S1]
that E∗(z, s) has a simple pole at s = 1 with residue given by

F (z)
Vol(Γ0(N)\H)

.
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Consequently,

Ress=1g∗(n, s) = 1
2 log ϵ Vol(Γ0(N)\H)

∫ ϵ2

1
F (κ−1(ir))e− πin

log ϵ
dr
r

.

But

g∗(n, s) = (v/N(w − w′))s

2 log ϵL(2s,χ)

(

T ∞L (s,ψ) + L∗(s,ψ)
)

.

Assume n ̸= 0. In this case, L (s,ψ) is entire [He]. Therefore,

Ress=1g∗(n, s) = v

2N(w − w′) log ϵ L(2,χ)
· Ress=1L∗(s,ψ).

Solving for the residue of the twisted Grössencharakter L-function,

Ress=1L∗(s,ψ) = N(w − w′) L(2,χ)

v · Vol(Γ0(N)\H)

∫ ϵ2

1
F (κ−1(ir))e

−πin
log ϵ

dr
r

.
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Vol. 2 (Zakopane-Kościelisko, 1997), de Gruyter, Berlin 1999, 849–865

[He] Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen, I. Math. Zeit. 1 (1918), 357–376; II, ibid 6 (1920), 11–51. In
Mathematische Werke. Vandenhoeck & Ruprecht, Göttingen (1983) 215–234,
249–289

[Hej] Hejhal, D.: The Selberg trace formula for PSL(2, ), Vol. I, Lecture Notes in
Mathematics, Vol. 548, Springer-Verlag, Berlin-New York 1976

[O’S1] O’Sullivan, C.: Properties of Eisenstein series formed with modular symbols.
J. Reine Angew. Math. 518 (2000), 163–186

[O’S2] O’Sullivan, C.: Towards a Proof of Goldfeld’s conjecture on Modular Symbols.
Preprint

[Si] Siegel, C. L.: Advanced Analytic Number Theory, Studies in mathematics 9, Tata
Institute of Fundamental Research, Bombay 1980


