GAUGE THEORY AND TOPOLOGY: AN INTRODUCTION PRELIMINARY SYLLABUS

FRANCESCO LIN

Location and time. Università di Pisa, November-December 2025.

Contents. The goal of the course is to explore the interplay between topology and gauge theory, starting from the Dirac monopole (1931) up to the advent of Seiberg-Witten theory in low-dimensional topology (1994). The course will be roughly divided in following the three parts (each consisting of 6-8 hours):

- (1) The equations of gauge theory. Magnetostatics in \mathbb{R}^3 . Connections on principal bundles and their curvature, Chern-Weil and Chern-Simons theory, the Yang-Mills(-Higgs) functional, Bogomolnyi bounds, ASD equations and the BPST instanton, BPS monopoles.
- (2) Analytic construction of moduli spaces. Foundations of differential topology in infinite dimensions: Sobolev spaces, Fredholm operators, elliptic regularity, Hodge theory. Case study: the vortex equations and symmetric products of a surface.
- (3) Spin geometry and Seiberg-Witten theory. Clifford algebras, spin geometry and Dirac operators. Seiberg-Witten equations and construction of the invariants, proof of the Thom conjecture. Time permitting: introduction to Floer homology.

Along the way, we will: explain why the solutions to the Seiberg-Witten equations are called monopoles; motivate why the symmetric products of a surface appear in Heegaard Floer homology; try to discuss some of the physical interpretations behind the objects and constructions we consider; write down as many explicit solutions to gauge theoretic equations as possible.

References. I will post handwritten notes for the lectures; the plan is to eventually turn them into an introductory graduate level textbook, so any feedback on them is very welcome.

Some books we will follow are:

- Roe Elliptic operators, asymptotic methods and topology;
- Donaldson, Kronheimer The geometry of 4-manifolds;
- Morgan The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds;
- Manton, Sutcliffe Topological Solitons.
- Hamilton Mathematical gauge theory.
- Wald Advanced classical electrodynamics.

We will also refer to papers in the literature as the course progresses, for example:

- Garcia-Prada A direct existence proof for the vortex equations over a compact Riemann surface;
- Kronheimer, Mrowka The genus of embedded surfaces in the projective plane;
- Taubes The Seiberg-Witten invariants and symplectic forms.

Prerequisites. First graduate level courses in analysis, differential geometry, differential and algebraic topology. Basic notions of classical electrodynamics will be helpful for context.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY

Email address: f12550@columbia.edu