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Link

These slides can be found on my webpage:

math.columbia.edu/˜fanzhou/files/beamer-SELie2025.pdf
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Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to
BGG resolutions.

It seems like many (most?) algebras appearing in categorification are
nil-Koszul.
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A Tale of Two Cities

symmetric functions  ! symmetric group representations
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The classical story – symmetric functions

We can consider two families of symmetric functions:
Let Schur functions be sλ
and let complete homogeneous functions be hα = hα1 · · · hαk

,
where hi is the sum of all monomials of degree i.

Jacobi-Trudi
The Jacobi-Trudi determinant identity:

sλ = det(hλi−i+j)i,j = det


hλ1

hλ1+1 · · · hλ1+ℓ−1

hλ2−1 hλ2 · · ·
...

. . .

hλℓ−ℓ+1 · · · hλℓ−1 hλℓ

 ,

This is an alternating sum.

6 / 54



Introduction KLR The JT algebra Main result #1 Soergel Main result #2 Proof strategy Details Further questions Future work

The classical story – symmetric groups

Two families of modules over Sn:
(Over C,) “Specht modules” Σλ exhaust irreducibles of Sn.
Given a composition α and Sα = Sα1

× · · · × Sαk
, the

“permutation module” Eα is

Eα := IndSn

Sα
triv .

This has dimension dimEα =
(

n
α1,···,αk

)
.

This decomposes as

Eλ = Σλ ⊕
⊕
µ▷λ

Σ⊕mµ
µ .

Category O
Compare to the JH filtration of Vermas ∆w◦0 in which Lw◦0 appears
as the top layer quotient, and

[∆w] = [Lw] +
∑
u>w

mu[Lu].

7 / 54



Introduction KLR The JT algebra Main result #1 Soergel Main result #2 Proof strategy Details Further questions Future work

The classical story – functions versus groups

Over C, RepSn is equivalent to symmetric functions via the
Frobenius character.
Letting zλ =

∏
i∈Z+

imimi! where mi = #{j : λj = i},
pλ = pλ1

· · · pλk
,

χ(M) =
∑
λ⊢n

tra(λ|M )
pλ

zλ
=

1

n!

∑
w∈Sn

tra(w|M )pλ(w).

This sends
χ :

⊕
n

K0(RepSn)
∼
−! Λ

Σλ 7−! sλ
Eλ 7−! hλ
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Question

Is there some highest-weight explanation/elucidation for this (the red
boxes)? More precisely:

Question
Find a quasi-hereditary A with a map CSn −! A such that

standard module Res
7−! permutation module

simple module Res
7−! Specht module

Moreover find a BGG resolution over A of simples by standards such
that restriction gives a resolution of Spechts by permutations ,
categorifying

sλ = det(hλi+j−i)i,j .
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Spoilers

This is done by considering a quotient of (cyclotomic) KLR.
λ // α, ω // Rω

α

Define a quotient R̊λ by Rω
α −↠ R̊λ

R̊λ is quasi-hereditary with weight poset an ideal in Sℓ(λ).
The “dominant” simple L1 will have a BGG resolution by Vermas
∆w.
Under CSn −! Ĥn −! Ĥω

α
∼
−! Rω

α −! R̊λ (Brundan-Kleshchev
[BK09]), this becomes a resolution of the Specht module Σλ by
permutation modules.
Homological computations are made diagrammatically via
Soergel. (“R̊λ is Morita-equivalent to a nil-Koszul algebra.”)
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Previously

This topic has been explored before in e.g. works of Zelevinsky,
Arakawa-Suzuki, Orellana-Ram.
Their works port the BGG resolution from category O to some
variant of Sn by using an exact (“Arakawa-Suzuki”) functor.
Those works inspired this project.
We would like to elucidate the highest-weight structure ‘natively’.
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The KLR algebra – generators

R =
⊕

α Rα. The monoidal generators are

i i i i i i ± 1 i j

degree 0 2 −2 1 0

where |j − i| > 1.
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The KLR algebra – relations

i i

−
i i

=
i i

−
i i

=
i i

,

i i

= 0,

i i ± 1

= ±

i i ± 1

∓

i i ± 1

,

i i ± 1 i

=

i i ± 1 i

±

i i ± 1 i

;
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The KLR algebra – relations

i j

=

i j

for |i− j| > 1,

i j

=
i j

for i ̸= j,

i j

=
i j

for i ̸= j,

i j k

=

i j k

for (j, k) ̸= (i± 1, i).
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The KLR algebra – cyclotomic relation

Given ω ∈ Λ+,
Rω

α := Rα/⟨yα
∗
c1

(ω)

1 ec = 0⟩.

Diagrammatically:
α∗
i (ω)

i

· · ·
= 0.
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Rλ

Let ϖi be fundamental weights, contλ be the (multi)set of contents of
λ where the top-left box has content δ.
We will let Rλ = Rω

α , where

α =
∑

i∈contλ

αi

and
ω = ϖδ +ϖδ−1 + · · ·+ϖδ−ℓ(λ)+1.

This is requiring

(δ − k + 1)

· · ·
= 0,

c

· · · = 0

for 1 ≤ k ≤ ℓ(λ) and c ̸∈ {δ − k + 1}1≤k≤ℓ(λ).
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Dominance order

For partitions: λ ⊵ µ if

k∑
i=1

λi ≥
k∑

i=1

µi ∀ k.

For multi-partitions: λ ⊵ µ if

m−1∑
j=1

|λ(j)|+
k∑

i=1

λ
(m)
i ≥

m−1∑
j=1

|µ(j)|+
k∑

i=1

µ
(m)
i ∀ m, k.

17 / 54



Introduction KLR The JT algebra Main result #1 Soergel Main result #2 Proof strategy Details Further questions Future work

Cellular structure

Rω
α is cellular under the dominance order due to Hu-Mathas [HM10].

Details are too involved.
As an example: let n = δ = 2, λ = , so α = α1 + α2, ω = ϖ2 +ϖ1;
let 1 be black and 2 be red. (

0

)

( )

(
0
)
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Cellular structure

As an example: let n = δ = 2, λ = , so α = α1 + α2, ω = ϖ2 +ϖ1;
let 1 be black and 2 be red.

 1
2
0


 1

2
0



(
1

2

) (
2

1

)
(

1

2

)
(

2

1

)
=

(
0
1 2

)
(
0
1 2

)

Multiplication only goes upwards.
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In fact,
= = 0.

A cellular algebra is quasi-hereditary iff every cell has an idempotent.
We want a quasi-hereditary A, so we want to kill this nilpotent cell.
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Quotienting the cyclotomic KLR

There is an alternative ordering, the coarsened order of Uglov, on
multi-partitions.
A result of Bowman [Bow17] says the cellular structure of Rλ

respects this.
This justifies the construction

R̊λ := R̊ := Rλ/⟨ν⟩ν multi-row.

This algebra is very easy to write down explicitly, simply keep
the cells labeled by one-row multi-partitions.
This algebra is quasi-hereditary with poset Wλ = {w : w ≤ wλ}.
It is also equivalent to a quotient of (a principal central block of)
category O for slℓ(λ).
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Example: R̊λ for λ = , n = 3, δ = 2

(
1 2

3

) (
1 3

2

) (
2 3

1

)

(
1 2

3

)
2 3 1 2 1 3 1 2 3

(
1 3

2

)
2 3 1 2 1 3 1 2 3

(
2 3

1

)
2 3 1 2 1 3 1 2 3

(
0
1 2 3

)

(
0
1 2 3

)
1 2 3
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The BGG resolution

Theorem (Z.)

There is a (finite) BGG resolution in Mod R̊λ, namely a resolution of
the simple module L1 by Vermas,

0 −! ∆wλ
−! · · · −!

⊕
ℓ(w)=k

∆w −! · · · −! ∆1 −! L1 −! 0.

When restricted to the action of Sn via the map
CSn ↪−! Ĥn −↠ Ĥω

α
∼
−! Rω

α −↠ R̊λ, this resolution becomes

· · · −!
⊕

ℓ(w)=k

Ew◦λ −! · · · −! Eλ −! Σλ −! 0.

Decategorifying this resolution via alternating sum of Frobenius
character/cycle index series recovers Jacobi-Trudi:

sλ = det(hλi−i+j)i,j .
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The homological information we need to prove this is

Ext•R̊λ
(∆w, L1).

We will compute this by using Morita equivalence to a Soergel
calculus.
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Soergel calculus – generators

Monoidally generated by:

degree 0 1 −1 0 0

as well as their upside-down flips.
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Soergel calculus – relations
1-color:

=

=

= 0

+ = 2
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Soergel calculus – relations

2-color (adjacent):

= +

=

− = −

Distant colors pull apart.
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Soergel calculus – cyclotomic relation

The “cyclotomic condition” for Soergel calculus is setting barbells at
the far left to zero:

· · · = 0
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Our choice for Soergel
Let

Sλ = {w : ℓ(w) ≤ ℓ(wλ), w is a subword of some reduced word for wλ}.

We will consider

Sλ := C⊗R End

 ⊕
w∈Sλ

BSw

.

In other words we take cyclotomic Soergel calculus with endpoints
w ∈ Sλ.
This is a cellular algebra via the light leaves basis of Elias-Williamson
[EW16].
It is Morita-equivalent to R̊λ:

Mod R̊λ
∼= ModSλ,

so that
Ext•Sλ

(∆w, L1) = Ext•R̊λ
(∆w, L1).
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Example: sl2

When we set λ = , we get the classical description of category O for
sl2:
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Cellular structure

Compare this to: let n = δ = 2, λ = , so α = α1 + α2, ω = ϖ2 +ϖ1;
let 1 be black and 2 be red.

 1
2
0


 1

2
0


(

1

2

) (
2

1

)
(

1

2

)
(

2

1

)
=

(
0
1 2

)
(
0
1 2

)
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Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and
relations are generated in degree 2.

Definition
A quadratic graded algebra A (A0 = k) is “Koszul” if ExtA(k,k) is
nonzero only when the homological degree agrees with the Koszul
degree.

This is the “homological concentration” we want.
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Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S

•−

λ of Sλ generated by lollipops
which is essentially a polynomial ring.
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· · ·

ith

· · ·

jth

· · ·
=

· · ·

ith

· · ·

jth

· · ·
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Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S

•−

λ of Sλ generated by lollipops
which is essentially a polynomial ring.

S

•−

λ is Koszul under the Soergel grading.
Moreover

Sλ

L
⊗

S

•−

λ

kew = ∆w,

so that
RHomSλ

(∆w,□) = RHom
S

•−

λ

(kew,□).

In particular

Ext•Sλ
(∆w, L1) = Ext•

S

•−

λ

(kew,ke1) = ewS

•−

,!

λ e1 = k[−ℓ(w)].

This is the homological information needed to prove the BGG
resolution.
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The space ewS

•−

,!

λ e1 = k[−ℓ(w)] is spanned by

. . .

w

!
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Comment on nil-Koszulity

Last year we showed that nil-Brauer (due to
Brundan-Wang-Webster) was nil-Koszul.
Two algebras (due to Khovanov-Sazdanović), categorifying the
Hermite and Chebyshev polynomials, are also nil-Koszul.
Now one more algebra (cyclotomic Soergel) is on the list.
It seems lots of algebras appearing in categorification are
nil-Koszul.
Why?
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Projective resolutions of Vermas

Incidentally the statement that Sλ

L
⊗

S

•−

λ

kew = ∆w gives us a projective

resolution of Vermas , using that S

•−

is essentially a polynomial ring.
There is an explicit Koszul resolution

S

•−

⊗K S

•−

,!,∨,• ≃ kew.

This is a free S

•−

-resolution, so use it to compute the derived
tensor.
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Projective resolutions of Vermas

Corollary
We have a resolution

S ⊗K S

•−

,!,∨,•ew ≃ ∆w;

the maps are

d : S ⊗K S

•−

,!,∨
k ew −! S ⊗K S

•−
,!,∨
k−1 e

w

x⊗ P (

•−

1e
w, · · · ,

•−

ne
w) 7−!

∑
ways to write P=

•−

i
·P ′

x ·

•−

i ⊗ P ′,

where P ∈ S

•−

,!,∨
k is a degree k anti-commutative polynomial in the

lollipops.
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Proof strategy

1 First key idea: “weight theory” −! stratification of the module
category −! “filtration” of the identity functor −! spectral
sequence converging to any object.

In particular, we can apply this to simple objects.
Terms of this spectral sequence involve homological information,
in the form of certain Ext groups.
Concentration of these Ext groups (cf. “Kostant modules”) imply
a “BGG resolution”.
This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum
[AMGR22], and Dhillon [Dhi19].

2 Second key idea: This homological information can be computed
using Koszul methods.

Slogan
Koszulity of half of A is intimately connected to BGG resolutions.

Then we can use a naive resolution to compute these Ext groups.
The spectral sequence is a resolution for modules which are
Koszul over half of A.
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Thank you!

Thank you for coming to my talk!
Questions
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Algebraic recollement

The stratification will have recollements on each level. Details
unimportant.
By the DModA/AeA −! DModA −! DMod eAe setup of
[CPS88], set A = A≥θ and e = eθ to get:

⊥ ⊥
D− ModA>θ D− ModA≥θ D− ModAθ

⊥ ⊥

ιθ ȷθ=eθ□

ι∗θ=A>θ
L
⊗

A≥θ□

ι!θ=
⊕

i RHom
A≥θ (A

>θ1i,□)

ȷθ! =A≥θeθ⊗
Aθ□

ȷθ∗=
⊕

i Hom
Aθ (e

θA≥θ1i,□)
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Stratification and spectral sequences

Let Θ be sufficiently nice.
There is a spectral sequence (functorial in the input □)

Ep,q
1 =

⊕
ℓ(θ)=−p

∆(θ)⊗AθExt
−(p+q)
A (∆(θ),□†)∗ =⇒ Ep,q

∞ = gr−p Hp+q(□),

where ∆(θ) :=
⊕

λ∈θ ∆
lλ(θ)
λ = A≥θeθ. deg dr = (r, 1− r):

p

q
E1

••
•

•
•
•

•

•
•
•· · ·

. . .

· · · =⇒ p

q
E∞

•L0

Remark: Cf. Koszul duality.
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To obtain a resolution, we need the Ext groups to be
concentrated in certain degrees.
Idea: Koszul objects have good Ext concentration properties.

Definition
A quadratic graded algebra A (A0 = k) is “Koszul” if ExtA(k,k) in
nonzero only when the homological degree agrees with the Koszul
degree.
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Example: category O for sl2

It is classical that L0 has concentrated Ext groups:

Ext0(∆0, L0) = C, Ext0(∆−2, L0) = 0

Ext1(∆0, L0) = 0, Ext1(∆−2, L0) = C.

Then the spectral sequence above exactly recovers the BGG
resolution.
Remark: It can also recover the standard filtration of projectives.
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The algebra controlling this

Recall that the principal block of O(sl2) is Morita equivalent to
the 5-dimensional algebra Asl2 spanned by

The subalgebra A−
sl2

of this spanned by

is Koszul.
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Some predicted questions

Is there a monoidal product on R̊ =
⊕

λ R̊λ categorifying the
Littlewood-Richardson structure?
What does this say about positive characteristic?
Is R̊λ itself nil-Koszul?
What about the skew Jacobi-Trudi identity for skew Schur
functions?
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Fact #1

The proof of Koszulness of End(
⊕

w ∆w) boils down to

Theorem (Jantzen?)

In the Bruhat graph of Sn, the only intervals of length 3 which can
appear are either 2-crowns, 3-crowns, or 4-crowns:

, ,

(In fact this is true for any Weyl group.)
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Key Fact #2

Compare the fact that the constant term of every Pu,w is 1 to

Theorem (Phillip Hall)

In a poset, if µ(u,w) is the Mobius function, then

µ(u,w) =
∑
i≥0

(−1)i(number of chains of length i between u,w),

where 1 < s is a chain of length 1.

Theorem
The Mobius function of the symmetric group is
µ(u,w) = (−1)ℓ(w)−ℓ(u).
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Thank you!

Thank you for coming to my talk!
Questions
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Non-split decomposition

Lauda’s Uq(sl2) is triangular-based.
However, it does not have a subalgebra like Uq(sl2)

−.
Instead, one needs to work with a bigger object Uq(sl2)

♭, which
actually is a subalgebra.
Categorification: projectives categorify Lusztig’s canonical basis.

Question
What do the standard modules correspond to?
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Stratifications within stratifications

The affine oriented Brauer category is triangular-based.
However, this structure alone does not utilize the obvious
ordering on the simples of each Cartan.
By using the stratification of Ĥn above, we should obtain finer
stratifications.
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Koszul duality

We are using the inverse Koszul duality of [BGS96], and we flip the
axes and swap the roles of A and A!.

KA+ : D
∠
ModA+ −! D ∠ModA+,!,

where

KA+ = sh(K
L
⊗A+ refl□) = shRHomA−(K, refl□†)∗.

Here shM = M [n] if M is concentrated in Koszul degree n, and
refl(M)j = M−j .
Then the spectral sequence looks like

∆⊗A◦ KA+(□).
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