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Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to
BGG resolutions.

It seems like many (most?) algebras appearing in categorification are
nil-Koszul.

Slogan

In good cases, Koszul duality with respect to the nil-algebra is the
BGG resolution.

This is the case for Soergel, which we discuss here, and
Temperley-Lieb.
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What to think of:
o If you are a representation theorist:
o (central block of) category O for sl,, (n = 2,3).
o If you are a geometer:
o constructible sheaves on the flag variety SL,, /B w.r.t. the Bruhat
stratification (n = 2, 3).
o If you do diagrammatic algebra (the central perspective today):

o modules over “(cyclotomic) Soergel calculus” (endomorphism
algebra of some Soergel/Bott-Samelson (bi)modules).
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Soergel calculus S is a (graded) algebra spanned by diagrams.
Multiplication is stacking diagrams vertically.

AL

as well as their upside-down flips.

Diagrams are generated by:

degree 0

Each string is colored by a node of the Dynkin diagram. Red and
black are adjacent, blue and black are distant.

We will consider only diagrams whose top/bottom boundaries are
subwords of some redex for wg € S,,. (More generally subwords of
some redex for wy € Sy(»).)
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S for sl is a 5-dimensional algebra equivalent to O%(sly):

8 /75



Example: sly

S for sl is a 5-dimensional algebra equivalent to O%(sly):

8 /75



Introduction

Soergel calculus — relations

1-color:

9 /75



Intro

Soergel calculus — relations

2-color (adjacent):

10 / 75



Int

Soergel calculus — relations

2-color (adjacent):

Distant colors pull apart.

10 / 75



Introduction

Soergel calculus — relations

2-color (adjacent):

Distant colors pull apart. (There is also a tetrahedral relation.)
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the far left to zero:
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Introduction

Example: OV (sl3) mod simples labeled by s152, 515951
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Koszul

Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and
relations are generated in degree 2:

0—>q—>®'A1—>A—>0.
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Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and
relations are generated in degree 2:

0—>q—>®'A1—>A—>0.

Definition

A quadratic graded algebra A (Ap = K) is “Koszul” if Ext 4 (K, K) is
nonzero only when the homological degree agrees with the Koszul
degree.
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Koszul dual algebra

If A is Koszul, then
Exty (K, K) = A',

where

A! = ®. AT/qJ-

is the “quadratic dual” or “Koszul dual” algebra. (Here g~ C @ * A7 is
the orthogonal complement to q under the pairing

(0@ ¢)(vew) = pw)P(v).)
Multiplication is inherited from the tensor algebra.

Warning: need to be careful about left vs right.
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Koszul dual coalgebra

There is also a dual coalgebra,
Al= AW
with . _ '
A=A @q@ AP

(2

Comultiplication is

$1®"'®$n'—>Z(fcl®"'®$i)®($i+1®"'®$n)-

K2
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Koszul

Soergel (sly) example

Consider the subalgebra ST for sly spanned by

¢

) ’

This is Koszul by letting deg({) = 1. This is not so surprising because

ST is “morally” C[z]/z2.

The Koszul dual algebra ST+ is spanned by

9 T b

)

while the Koszul dual coalgebra St is spanned by

i ‘ i

) )

Note: the upside-down flipping is happening because we need to be

careful about left vs right.
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Koszul

Note we could just as easily have considered S~ spanned by

which is also Koszul.
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Note we could just as easily have considered S~ spanned by

which is also Koszul.

This is simply the “upside-down flipping” anti-involution applied to
St ie. 8 =7(8T).
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Koszul

Soergel (sl3) example

For the example with 4 cells, consider the subalgebra S* spanned by

:

:

)

!
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Soergel (sl3) example

For the example with 4 cells, consider the subalgebra S* spanned by

:

. .

) ) )

IoTl

)

The comultiplication on the Koszul dual coalgebra S sends e.g.

S T¥ T

_‘_i - -‘--l-i)@) i
N I R |
.
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Koszul

Soergel (sl3) example

For the example with 4 cells, consider the subalgebra S* spanned by

I R

) 7 ) ) ) ) ) )

The comultiplication on the Koszul dual coalgebra S sends e.g.

A:Ei _ I'}_}( ' _4,__1_1)® i
+ li®l i_l ‘® li

(T

This is secretly saying something about BGG differentials.
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Koszul

Another way to think of this is the relation in S~
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Koszul

Another way to think of this is the relation in S~

18':_31' cs
which is because
[y =41 5

(This is morally the Sym-/\ duality.)
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Koszul

Nil-Koszulity

Let A be a “highest weight” algebra (e.g. quasi-hereditary or
triangular-based [Bru23|).
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Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or
triangular-based [Bru23|). Suppose A has a “nil-algebra” A~ C A such
that

L >
A®@y- ke® = A(w) = A=Ye".

Then
RHom 4 (A(w),0) = RHom 4 - (ke®, O0).

If A~ is Koszul, then A is said to be “nil-Koszul.”
Then

Theorem (Z.)

S is nil-Koszul, with §~ := 7(S™) as the nil-algebra with the Soergel
grading.
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Then we have the analogue of Kostant:
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Koszul

Homological information

Then we have the analogue of Kostant:

L
RHomg (A, Lig) = RHomg (S ®s- ke, Liq)
= RHomg- (ke®, keld)
— €w87’!€id

= ¢ k{~t(w))

spanned by the diagram

lw
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Koszul

Reconstruction

This type of homological information already allows us to
“reconstruct” the trivial module via Vermas.

22 / 75



Koszul

Reconstruction

This type of homological information already allows us to
“reconstruct” the trivial module via Vermas. There is some
(infinity-)categorical machinery allowing one to reconstruct the
identity functor from a stratification using this type of homological
information.

22 / 75



Koszul

Reconstruction

This type of homological information already allows us to
“reconstruct” the trivial module via Vermas. There is some
(infinity-)categorical machinery allowing one to reconstruct the
identity functor from a stratification using this type of homological
information. A concrete shadow is a (functorial) spectral sequence of
Vermas.

22 / 75



Koszul

Reconstruction

This type of homological information already allows us to
“reconstruct” the trivial module via Vermas. There is some
(infinity-)categorical machinery allowing one to reconstruct the
identity functor from a stratification using this type of homological
information. A concrete shadow is a (functorial) spectral sequence of
Vermas.

In this talk we will forgo this in favor of Koszul duality.
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Koszul

Koszul duality

One perspective on Koszul duality, for example in Positselski’s work,
is that Koszul duality is a functor (equivalence) between derived
dg-modules over an algebra and coderived dg-comodules over its
Koszul dual coalgebra:
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Koszul

Koszul duality

One perspective on Koszul duality, for example in Positselski’s work,
is that Koszul duality is a functor (equivalence) between derived
dg-modules over an algebra and coderived dg-comodules over its
Koszul dual coalgebra:

Alerd

/\

D Mod“¢ 4 ~ coD coMod“® A
A®g0O
Here ®" is a tensor product “twisted” by a “twisting cochain”
7: A' — A defined by killing everyone except A} = A;.
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Koszul

The twisting

The differential on A' ®" [J is given by

d"(c®@v) =d(c) ® v+ (—=1)“ec@ d(v) + (-1)IDler) @ T(c@))v
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Koszul

The twisting

The differential on A' ®" [J is given by
d"(c®@v) =d(c) ® v+ (—=1)“ec@ d(v) + (-1)IDler) @ T(c@))v
and on A ®" [ is given by

I (a®u) = d(@) ® u+ (~1)"a® d(w) + (-1 ar(u1) @ uge).
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Koszul

Example: Soergel (sls)
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Koszul

In higher rank

In higher rank, what we have is
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Koszul

In higher rank

In higher rank, what we have is

~ L —1 _ L + AT Qi T
Id =S ®stgyrs- ICS+ oKs+ =S Rstgrs- ST Qg ST @ .

In particular, applying this to Lig recovers the BGG resolution.
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Jacobi-Trudi

A Tale of Two Cities

symmetric functions «— symmetric group representations
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We can consider two families of symmetric functions:
o Let Schur functions be sy

o and let complete homogeneous functions be hy = hq, - - - ha,,
where h; is the sum of all monomials of degree 1.

Jacobi-Trudi

The Jacobi-Trudi determinant identity:

h>\1 h)\1+1 h)\1+271
hy,_1 h :
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The classical story — symmetric functions

We can consider two families of symmetric functions:
o Let Schur functions be sy

o and let complete homogeneous functions be hy = hq, - - - ha,,
where h; is the sum of all monomials of degree 1.

Jacobi-Trudi

The Jacobi-Trudi determinant identity:

h>\1 h)\1+1 h)\1+271
hy,_1 h :
Sy = det(hki—iﬂ‘)m = det Az—1 A2 ,
hy,—e41 -+ hy-1 by,

This is an alternating sum.
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The classical story — symmetric groups

o Two families of modules over S,,:
@ (Over C,) “Specht modules” ¥ exhaust irreducibles of S,,.

o Given a composition a and S, =S4, X - -+ X S,,, the
“permutation module” E, is

E, = Indgz triv.

This has dimension dim F, = ( " )

0,0,

o This decomposes as

Ex=X\o i
p>A

Category O

Compare to the JH filtration of Vermas A, in which L9 appears
as the top layer quotient, and

[Aw] = [Luw] + Z My [Ly].

u>w
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Jacobi-Trudi

The classical story — functions versus groups

@ Over C, Rep S, is equivalent to symmetric functions via the
Frobenius character.
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The classical story — functions versus groups

@ Over C, Rep S, is equivalent to symmetric functions via the
Frobenius character.

o Letting z) = [[;cz, ™'m;! where m; = #{j : A; = i},
Px = DPx, """ P>

= tra Alar)7 )22 = Z tra(w|ar)Paw)-

AFn n! weSy

o This sends
x: @D Ko(RepS,) = A
n

EAF—>SA

Ey) — hy
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Question

Is there some highest-weight explanation/elucidation for this (the red
boxes)?
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Jacobi-Trudi

Question

Is there some highest-weight explanation/elucidation for this (the red
boxes)? More precisely:

Question

Find a quasi-hereditary A with a map CS,, — A such that

standard module £ permutation module
simple module Res Specht module
Moreover find a BGG resolution over A of simples by standards such
that restriction gives a resolution of Spechts by permutations,

categorifying
sx = det(hx,45-i)i -
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e Under CS,, — ’;qn — ﬁg = Ry — 7°€>\ (Brundan-Kleshchev
[BK09]), this becomes a resolution of the Specht module ¥, by
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0N~~~ a,w ~— RY

@ Define a quotient R by R —» R

Ry is quasi-hereditary with weight poset an ideal in Sy(y).

The “dominant” simple Ly will have a BGG resolution by Vermas
Ay

e Under CS,, — ’;qn — 7—A[§ = Ry — 7°€>\ (Brundan-Kleshchev
[BK09]), this becomes a resolution of the Specht module ¥, by
permutation modules.

o Homological computations are made diagrammatically via
Soergel. (“R is Morita-equivalent to a nil-Koszul algebra.”)
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Previously

o This topic has been explored before in e.g. works of Zelevinsky,
Arakawa-Suzuki, Orellana-Ram.
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Previously

e This topic has been explored before in e.g. works of Zelevinsky,
Arakawa-Suzuki, Orellana-Ram.

o Their works port the BGG resolution from category O to some
variant of S, by using an exact (“Arakawa-Suzuki”) functor.

@ Those works inspired this project.

o We would like to elucidate the highest-weight structure ‘natively’.
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KLR

The KLR algebra — generators
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The KLR algebra — generators

R = @, Ra. The monoidal generators are

i i it 1 i J
2 1 0

i i i

degree 0 2 —

where |j —i| > 1.
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KLR

The KLR algebra — relations

for |i — j| > 1,

XX

-
[
.

X
X

for i # j,
X o X iz

- for (j, k) # (i £ 1,4).

<
x>
<
e
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The KLR algebra — cyclotomic relation

Given w € Ay,
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KLR

The KLR algebra — cyclotomic relation

Given w € Ay,

Diagrammatically:
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R\

Let w; be fundamental weights, cont A be the (multi)set of contents of
A where the top-left box has content 4.
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Let w; be fundamental weights, cont A be the (multi)set of contents of
A where the top-left box has content 4.
We will let Ry = R, where

o = E (673

i€cont A

and
W= w5+ W51+ + W5_g(r)+1-

tH- -

(6 —k+1) c

This is requiring

]
fOI‘lSkSE(/\) andc€{6*k+1}1gk§go\).
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For partitions: A > p if
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Dominance order

For partitions: A > p if
k k
ShzYw vk
i=1 i=1

For multi-partitions: A > p if

m—1 k m—1 k
AL+ STA > ST+ 37w o, k.
j=1

j=1 =1 i=1
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Cellular structure

RY is cellular under the dominance order due to Hu-Mathas [HM10].
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Details are too involved.
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(o)
0

\
)
()

49 / 75



Cellular structure

As an example: let n=90=2, A\=H, so a = a1 + as, w = wy + w;
let 1 be black and 2 be red.

50 / 75



KLR

Cellular structure

As an example: let n=90=2, A\=H, so a = a1 + as, w = wy + w;
let 1 be black and 2 be red.

50 / 75



KLR

Cellular structure

As an example: let n=90=2, A\=H, so a = a1 + as, w = wy + w;
let 1 be black and 2 be red.

50 / 75



KLR

Cellular structure

As an example: let n=90=2, A\=H, so a = a1 + as, w = wy + w;
let 1 be black and 2 be red.

=) |1 ]

Multiplication only goes upwards.
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KLR

Compare this to the earlier:
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In fact,

-5
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In fact,

-5

A cellular algebra is quasi-hereditary iff every cell has an idempotent.
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In fact,

-5

A cellular algebra is quasi-hereditary iff every cell has an idempotent.
We want a quasi-hereditary A, so we want to kill this nilpotent cell.
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The JT algebra

Quotienting the cyclotomic KLR

@ There is an alternative ordering, the coarsened order of Uglov, on
multi-partitions.
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The JT algebra

Quotienting the cyclotomic KLR

@ There is an alternative ordering, the coarsened order of Uglov, on
multi-partitions.

o A result of Bowman [Bowl7] says the cellular structure of Ry
respects this.

o This justifies the construction
RA =R:= RA/<V>V multi-row”

o This algebra is very easy to write down explicitly, simply keep
the cells labeled by one-row multi-partitions.

o This algebra is quasi-hereditary with poset Wy = {w : w < wy}.

o It is also equivalent to a Soergel calculus depending on W,.
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Main result #1

The BGG resolution

Theorem (Z.)

R A is nil-Koszul.
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Theorem (Z.)

Ry is nil-Koszul. There is a (finite) BGG resolution in Mod Ry,
namely a resolution of the simple module L; by Vermas,

0— Ay, — - — @ Ay — -+ — Ay — L1 — 0.
L(w)=k

When restricted to the actlon of S,, via the map
CS, — H, —» ’H‘*’ = RY —» ’RA, this resolution becomes

- — @ Eyox — - — Ex — X\ — 0.
L(w)=

Decategorifying this resolution via alternating sum of Frobenius
character/cycle index series recovers Jacobi-Trudi:

sy = det(hx; —it)i,j-

There is a positive characteristic version too.
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Thank you!

Thank you for coming to my talk!
Questions
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Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

57 / 75



Main result #2

tttttttttttt



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

59 / 75



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.
S, is Koszul under the Soergel grading.

59 / 75



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

S, is Koszul under the Soergel grading.

Moreover

L
Sx B ke = A,

59 / 75



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

S, is Koszul under the Soergel grading.

Moreover

L
Sx B ke = A,

so that
RHoms, (Ay,0) = RHomS; (kev,O).

59 / 75



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

S, is Koszul under the Soergel grading.

Moreover

L
Sx B ke = A,

so that
RHoms, (Ay,0) = RHomS; (kev,O).

In particular

Ext$, (Aw, L) = Ext_ (ke®, ke') = e¥S; e = k[—£(w)].
A

59 / 75



Main result #2

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S, of Sy generated by lollipops
which is essentially a polynomial ring.

S, is Koszul under the Soergel grading.

Moreover

L
Sx - ke¥ = Ay,
so that
RHoms, (Ay,0) = RHomS; (ke®, ).

In particular
Ext$, (Aw, L) = Ext_ (ke®, ke') = e¥S; e = k[—£(w)].
A

This is the homological information needed to prove the BGG
resolution.
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Main result #2

The space ewS;’!el = k[—¢(w)] is spanned by

lw

w
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Main result #2

Comment on nil-Koszulity

o Last year we showed that nil-Brauer (due to
Brundan-Wang-Webster) was nil-Koszul.
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Comment on nil-Koszulity

o Last year we showed that nil-Brauer (due to
Brundan-Wang-Webster) was nil-Koszul.

o Two algebras (due to Khovanov-Sazdanovié), categorifying the
Hermite and Chebyshev polynomials, are also nil-Koszul.

o Now one more algebra (cyclotomic Soergel) is on the list.

o It seems lots of algebras appearing in categorification are
nil-Koszul.

o Why?
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projective resolution of Vermas
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Main result #2

Projective resolutions of Vermas

L
Incidentally the statement that Sy ® sy ke® = A,, gives us a

projective resolution of Vermas, using that S~ is essentially a
polynomial ring.

@ There is an explicit Koszul resolution

S @ STV ~ ke,

o This is a free S™-resolution, so use it to compute the derived
tensor.
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Main result #2

Projective resolutions of Vermas

Corollary

We have a resolution

SRk STHV%eY ~ Ay;
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Main result #2

Projective resolutions of Vermas

Corollary

We have a resolution
S®Kk STHV %Y ~ Ay
the maps are
d: S ®k Sk_’!’vew — S ®k Sk__’!ivew
T® P(—1€%,,—ne®) —> Z z-—; QP

ways to write P=—;-P’/

where P € S Vs a degree k anti-commutative polynomial in the
lollipops.
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@ First key idea: “weight theory”
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Proof strategy

@ First key idea: “weight theory” — stratification of the module
category — “filtration” of the identity functor — spectral
sequence converging to any object.

e In particular, we can apply this to simple objects.

e Terms of this spectral sequence involve homological information,
in the form of certain Ext groups.

o Concentration of these Ext groups (cf. “Kostant modules”) imply
a “BGG resolution”.

o This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum
[AMGR22|, and Dhillon [Dhil9].

@ Second key idea: This homological information can be computed
using Koszul methods.

Koszulity of half of A is intimately connected to BGG resolutions.
e Then we can use a naive resolution to compute these Ext groups.

o The spectral sequence is a resolution for modules which are
Koszul over half of A.
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Algebraic recollement

o The stratification will have recollements on each level. Details
unimportant.
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Algebraic recollement

o The stratification will have recollements on each level. Details
unimportant.

e By the DMod A/AeA — D Mod A — D Mod eAe setup of
[CPS88], set A = AZ% and e = €’ to get:

L
15=A~"® 500 =A2%® 4,600

/\ﬂ

D-ModA>® — “  , D-ModA>’ — 2 =2, D~ Mod A°

N NS

1y=ED,; RHom ,>¢ (A>°17,0) 72=@, Hom 4 (e’ AZ°1" )
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Stratification and spectral sequences
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@ There is a spectral sequence (functorial in the input )

BV = P AO)@aExt,PT(A0),00) = ELI =g HPYI(D),
0)=—p

x(0)
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Stratification and spectral sequences

o Let © be sufficiently nice.
@ There is a spectral sequence (functorial in the input )

BV = P AO)@aExt,PT(A0),00) = ELI =g HPYI(D),

£0)=—p
where A(0) == @,y Al)\*(e) = A2%"Y. degd, = (r,1—7):
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Stratification and spectral sequences

o Let © be sufficiently nice.
@ There is a spectral sequence (functorial in the input )

BV = P AO)@aExt,PT(A0),00) = ELI =g HPYI(D),

£0)=—p
where A(0) == @,y Al)\*(e) = A2%"Y. degd, = (r,1—7):
q q
El Eoo

e

)

oo o0

5P S Lo p

Remark: Cf. Koszul duality.
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o To obtain a resolution, we need the Ext groups to be
concentrated in certain degrees.
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o To obtain a resolution, we need the Ext groups to be
concentrated in certain degrees.

o Idea: Koszul objects have good Ext concentration properties.

Definition

A quadratic graded algebra A (4Ap = k) is “Koszul” if Ext4(k, k) in
nonzero only when the homological degree agrees with the Koszul
degree.
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Example: category O for sl

o It is classical that Ly has concentrated Ext groups:
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Example: category O for sl

o It is classical that Ly has concentrated Ext groups:
EXtO(Ao, Lo) = (C7 EXtO(A,Q,Lo) =0
Ext'(Ao,Lo) =0,  Ext'(A_y, Lg) =C.

o Then the spectral sequence above exactly recovers the BGG
resolution.

o Remark: It can also recover the standard filtration of projectives.
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Some predicted questions

@ Is there a monoidal product on R = D, R A categorifying the
Littlewood-Richardson structure?

What does this say about positive characteristic?
Is 7% itself nil-Koszul?

o What about the skew Jacobi-Trudi identity for skew Schur
functions?
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Non-split decomposition

o Lauda’s U,(sly) is triangular-based.
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Non-split decomposition

o Lauda’s U,(sly) is triangular-based.
e However, it does not have a subalgebra like U, (sl3) .

o Instead, one needs to work with a bigger object U, (sl5)°, which
actually is a subalgebra.

o Categorification: projectives categorify Lusztig’s canonical basis.

Question

What do the standard modules correspond to?

70 / 75



Stratifications within stratifications

@ The affine oriented Brauer category is triangular-based.
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Stratifications within stratifications

@ The affine oriented Brauer category is triangular-based.

o However, this structure alone does not utilize the obvious
ordering on the simples of each Cartan.

o By using the stratification of ’}-A[n above, we should obtain finer
stratifications.
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Koszul duality

We are using the inverse Koszul duality of [BGS96], and we flip the
axes and swap the roles of A and A'.

K4+ : D> Mod AT — D™ Mod AT,

where
L
K 4+ = sh(K ® 4+ refl(]) = shRHom 4 (K, refl(17)*.
Here sh M = M|[n] if M is concentrated in Koszul degree n, and

reﬂ(M)j = M_j.
Then the spectral sequence looks like

A ® g0 ICA+(|:|)
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The differential in Koszul duality

Let us briefly explain the sign rules for the twisted tensor product.
Given A & M, and letting C' = A' be the Koszul dual coalgebra, we
have that C' ®™ M is a dg C-comodule where the coaction is on the
first entry and the differential is:

d7(c®@v) =d(C) @ v+ (-1)e@d(v) + (-1)lDleq) @ 7(c@))v.

co
Similarly, given a comodule C C' N, we obtain A ®” N a dg
A-module, where the action is on the first entry and the differential is

I (a®u) = d(@) ® u+ (~1)"a® d(w) + (~1)1 ar(u1) @ uge).

Let us briefly explain what the coderived category is. The cheap thing

to do is to say that it is the localization of the category of

(cocomplete, meaning that N is the union of the kernels of

N-——T™" ® N) dg C-comodules at the class of morphisms which

become quasi-isomorphisms under the functor A ®” [J. The longer

thing to say is that the coderived category is the quotient category of

the homotopy category of dg comodules by the minimal triangulated
subcategory closed under infinite direct sums which contains the
totalization comodules of all exact triples of C-comodules. 74 ) 75
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Our choice for Soergel

Let

Sy ={w : L(w) < l(w)y), w is a subword of some reduced word for wy}.

We will consider

S, =C®pgEnd @ BSH

WESH

In other words we take cyclotomic Soergel calculus with endpoints

w € S).

This is a cellular algebra via the light leaves basis of Elias-Williamson
[EW16]. )

It is Morita-equivalent to Ry:

Mod R = Mod Sy,

so that
EXt:S'A (Aw, Ll) = EXt;é)\ (Aw, Ll)
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