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Link

These slides can be found on my webpage:

math.columbia.edu/˜fanzhou/files/beamer-KIAS2026.pdf
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Part I: Koszul
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Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to
BGG resolutions.

It seems like many (most?) algebras appearing in categorification are
nil-Koszul.

Slogan
In good cases, Koszul duality with respect to the nil-algebra is the
BGG resolution.

This is the case for Soergel, which we discuss here, and
Temperley-Lieb.
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Today’s example

What to think of:
If you are a representation theorist:

(central block of) category O for sln (n = 2, 3).
If you are a geometer:

constructible sheaves on the flag variety SLn /B w.r.t. the Bruhat
stratification (n = 2, 3).

If you do diagrammatic algebra (the central perspective today):
modules over “(cyclotomic) Soergel calculus” (endomorphism
algebra of some Soergel/Bott-Samelson (bi)modules).
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Soergel calculus – generators

Soergel calculus S is a (graded) algebra spanned by diagrams.

Multiplication is stacking diagrams vertically.

Diagrams are generated by:

degree 0 1 −1 0 0

as well as their upside-down flips.

Each string is colored by a node of the Dynkin diagram. Red and
black are adjacent, blue and black are distant.

We will consider only diagrams whose top/bottom boundaries are
subwords of some redex for w0 ∈ Sn. (More generally subwords of
some redex for wλ ∈ Sℓ(λ).)
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Example: sl2

S for sl2 is a 5-dimensional algebra equivalent to O0(sl2):
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Soergel calculus – relations
1-color:

=

=

= 0

+ = 2
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Soergel calculus – relations

2-color (adjacent):

= +

=

− = −

Distant colors pull apart. (There is also a tetrahedral relation.)
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Soergel calculus – cyclotomic relation

The “cyclotomic condition” for Soergel calculus is setting barbells at
the far left to zero:

· · · = 0
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Example: O0(sl3) mod simples labeled by s1s2, s1s2s1
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Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and
relations are generated in degree 2:

0 −! q −!
⊗

•A1 −! A −! 0.

Definition
A quadratic graded algebra A (A0 = K) is “Koszul” if ExtA(K,K) is
nonzero only when the homological degree agrees with the Koszul
degree.
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Koszul dual algebra

If A is Koszul, then
ExtA(K,K) ∼= A!,

where
A! :=

⊗•
A∗

1/q⊥
is the “quadratic dual” or “Koszul dual” algebra. (Here q⊥ ⊂

⊗ •A∗
1 is

the orthogonal complement to q under the pairing
(ϕ⊗ ψ)(v ⊗ w) = ϕ(w)ψ(v).)

Multiplication is inherited from the tensor algebra.

Warning: need to be careful about left vs right.
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Koszul dual coalgebra

There is also a dual coalgebra,

A
¡
:= A!,∨,

with
A

¡
n =

⋂
i

A⊗i
1 ⊗ q⊗A⊗n−i−2

1 .

Comultiplication is

x1 ⊗ · · · ⊗ xn 7−!
∑
i

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xn).
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Soergel (sl2) example
Consider the subalgebra S+ for sl2 spanned by

, , .

This is Koszul by letting deg( •−) = 1. This is not so surprising because
S+ is “morally” C[x]/x2.

The Koszul dual algebra S+,! is spanned by

!

,
!

,
!

,

while the Koszul dual coalgebra S+,¡ is spanned by
¡

,

¡

,

¡

.

Note: the upside-down flipping is happening because we need to be
careful about left vs right.
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Note we could just as easily have considered S− spanned by

, , ,

which is also Koszul.

This is simply the “upside-down flipping” anti-involution applied to
S+, i.e. S− = τ(S+).

17 / 75



Introduction Koszul Jacobi-Trudi KLR The JT algebra Main result #1 End Soergel Main result #2 Proof strategy Details Further questions Future work Extra slides

Note we could just as easily have considered S− spanned by

, , ,

which is also Koszul.

This is simply the “upside-down flipping” anti-involution applied to
S+, i.e. S− = τ(S+).

17 / 75



Introduction Koszul Jacobi-Trudi KLR The JT algebra Main result #1 End Soergel Main result #2 Proof strategy Details Further questions Future work Extra slides

Soergel (sl3) example

For the example with 4 cells, consider the subalgebra S+ spanned by

, , , , , , , , .

The comultiplication on the Koszul dual coalgebra S+,¡ sends e.g.

∆:

¡

−
¡

7−!

( ¡

−
¡)

⊗
¡

+

¡

⊗
¡

−
¡

⊗
¡

+

¡

⊗
( ¡

−
¡)

This is secretly saying something about BGG differentials.
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Another way to think of this is the relation in S−,!

!

= −
!

∈ S−,!

which is because
= ∈ S−.

(This is morally the Sym-
∧

duality.)
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Nil-Koszulity

Definition
Let A be a “highest weight” algebra (e.g. quasi-hereditary or
triangular-based [Bru23]).

Suppose A has a “nil-algebra” A− ⊂ A such
that

A
L
⊗A− kew = ∆(w) := A≥wew.

Then
RHomA(∆(w),□) = RHomA−(kew,□).

If A− is Koszul, then A is said to be “nil-Koszul.”

Then

Theorem (Z.)

S is nil-Koszul, with S− := τ(S+) as the nil-algebra with the Soergel
grading.
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Homological information
Then we have the analogue of Kostant:

Proposition

RHomS(∆w, Lid) = RHomS(S
L
⊗S− kew, Lid)

= RHomS−(kew,keid)

= ewS−,!eid

∼= qℓ(w)
k[−ℓ(w)],

spanned by the diagram

. . .

w

!

.
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Reconstruction

This type of homological information already allows us to
“reconstruct” the trivial module via Vermas.

There is some
(infinity-)categorical machinery allowing one to reconstruct the
identity functor from a stratification using this type of homological
information. A concrete shadow is a (functorial) spectral sequence of
Vermas.

In this talk we will forgo this in favor of Koszul duality.
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Koszul duality

One perspective on Koszul duality, for example in Positselski’s work,
is that Koszul duality is a functor (equivalence) between derived
dg-modules over an algebra and coderived dg-comodules over its
Koszul dual coalgebra:

DModdgA ∼ coD coModdgA¡

A
¡⊗τ

K□

A⊗τ
K□

Here ⊗τ is a tensor product “twisted” by a “twisting cochain”
τ : A¡ −! A defined by killing everyone except A¡

1
∼= A1.
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The twisting

The differential on A¡ ⊗τ □ is given by

dτ (c⊗ v) = d(c)⊗ v + (−1)|c|c⊗ d(v) + (−1)|c(1)|c(1) ⊗ τ(c(2))v

and on A⊗τ □ is given by

dτ (a⊗ u) = d(a)⊗ u+ (−1)|a|a⊗ d(u) + (−1)|a|+1aτ(u(−1))⊗ u(0).
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Example: Soergel (sl2)
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Example: sl3
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In higher rank

In higher rank, what we have is

Id ∼= S
L
⊗S+⊗KS− K−1

S+ ◦ KS+ = S
L
⊗S+⊗KS− S+ ⊗τ

K S+,¡ ⊗τ
K □.

In particular, applying this to Lid recovers the BGG resolution.
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Part II: Jacobi-Trudi
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A Tale of Two Cities

symmetric functions  ! symmetric group representations
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The classical story – symmetric functions

We can consider two families of symmetric functions:

Let Schur functions be sλ
and let complete homogeneous functions be hα = hα1 · · · hαk

,
where hi is the sum of all monomials of degree i.

Jacobi-Trudi
The Jacobi-Trudi determinant identity:

sλ = det(hλi−i+j)i,j = det


hλ1

hλ1+1 · · · hλ1+ℓ−1

hλ2−1 hλ2
· · ·

...
. . .

hλℓ−ℓ+1 · · · hλℓ−1 hλℓ

 ,

This is an alternating sum.
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The classical story – symmetric groups

Two families of modules over Sn:

(Over C,) “Specht modules” Σλ exhaust irreducibles of Sn.
Given a composition α and Sα = Sα1

× · · · × Sαk
, the

“permutation module” Eα is

Eα := IndSn

Sα
triv .

This has dimension dimEα =
(

n
α1,···,αk

)
.

This decomposes as

Eλ = Σλ ⊕
⊕
µ▷λ

Σ⊕mµ
µ .

Category O
Compare to the JH filtration of Vermas ∆w◦0 in which Lw◦0 appears
as the top layer quotient, and

[∆w] = [Lw] +
∑
u>w

mu[Lu].
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The classical story – functions versus groups

Over C, RepSn is equivalent to symmetric functions via the
Frobenius character.

Letting zλ =
∏

i∈Z+
imimi! where mi = #{j : λj = i},

pλ = pλ1
· · · pλk

,

χ(M) =
∑
λ⊢n

tra(λ|M )
pλ

zλ
=

1

n!

∑
w∈Sn

tra(w|M )pλ(w).

This sends
χ :

⊕
n

K0(RepSn)
∼
−! Λ

Σλ 7−! sλ
Eλ 7−! hλ
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imimi! where mi = #{j : λj = i},
pλ = pλ1

· · · pλk
,

χ(M) =
∑
λ⊢n

tra(λ|M )
pλ

zλ
=

1

n!

∑
w∈Sn

tra(w|M )pλ(w).

This sends
χ :

⊕
n

K0(RepSn)
∼
−! Λ

Σλ 7−! sλ

Eλ 7−! hλ
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Question

Is there some highest-weight explanation/elucidation for this (the red
boxes)?

More precisely:

Question
Find a quasi-hereditary A with a map CSn −! A such that

standard module Res
7−! permutation module

simple module Res
7−! Specht module

Moreover find a BGG resolution over A of simples by standards such
that restriction gives a resolution of Spechts by permutations,
categorifying

sλ = det(hλi+j−i)i,j .
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Spoilers

This is done by considering a quotient of (cyclotomic) KLR.

λ // α, ω // Rω
α

Define a quotient R̊λ by Rω
α −↠ R̊λ

R̊λ is quasi-hereditary with weight poset an ideal in Sℓ(λ).
The “dominant” simple L1 will have a BGG resolution by Vermas
∆w.
Under CSn −! Ĥn −! Ĥω

α
∼
−! Rω

α −! R̊λ (Brundan-Kleshchev
[BK09]), this becomes a resolution of the Specht module Σλ by
permutation modules.
Homological computations are made diagrammatically via
Soergel. (“R̊λ is Morita-equivalent to a nil-Koszul algebra.”)
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Previously

This topic has been explored before in e.g. works of Zelevinsky,
Arakawa-Suzuki, Orellana-Ram.

Their works port the BGG resolution from category O to some
variant of Sn by using an exact (“Arakawa-Suzuki”) functor.
Those works inspired this project.
We would like to elucidate the highest-weight structure ‘natively’.
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The KLR algebra – generators

R =
⊕

α Rα.

The monoidal generators are

i i i i i i ± 1 i j

degree 0 2 −2 1 0

where |j − i| > 1.
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The KLR algebra – relations

i i

−
i i

=
i i

−
i i

=
i i

,

i i

= 0,

i i ± 1

= ±

i i ± 1

∓

i i ± 1

,

i i ± 1 i

=

i i ± 1 i

±

i i ± 1 i

;
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The KLR algebra – relations

i j

=

i j

for |i− j| > 1,

i j

=
i j

for i ̸= j,

i j

=
i j

for i ̸= j,

i j k

=

i j k

for (j, k) ̸= (i± 1, i).
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The KLR algebra – cyclotomic relation

Given ω ∈ Λ+,

Rω
α := Rα/⟨yα

∗
c1

(ω)

1 ec = 0⟩.

Diagrammatically:
α∗
i (ω)

i

· · ·
= 0.
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Rλ

Let ϖi be fundamental weights, contλ be the (multi)set of contents of
λ where the top-left box has content δ.

We will let Rλ = Rω
α, where

α =
∑

i∈contλ

αi

and
ω = ϖδ +ϖδ−1 + · · ·+ϖδ−ℓ(λ)+1.

This is requiring

(δ − k + 1)

· · ·
= 0,

c

· · · = 0

for 1 ≤ k ≤ ℓ(λ) and c ̸∈ {δ − k + 1}1≤k≤ℓ(λ).
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Dominance order

For partitions: λ ⊵ µ if

k∑
i=1

λi ≥
k∑

i=1

µi ∀ k.

For multi-partitions: λ ⊵ µ if

m−1∑
j=1

|λ(j)|+
k∑

i=1

λ
(m)
i ≥

m−1∑
j=1

|µ(j)|+
k∑

i=1

µ
(m)
i ∀ m, k.
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Cellular structure

Rω
α is cellular under the dominance order due to Hu-Mathas [HM10].

Details are too involved.
As an example: let n = δ = 2, λ = , so α = α1 + α2, ω = ϖ2 +ϖ1;
let 1 be black and 2 be red. (

0

)

( )

(
0
)
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Cellular structure

As an example: let n = δ = 2, λ = , so α = α1 + α2, ω = ϖ2 +ϖ1;
let 1 be black and 2 be red.

 1
2
0


 1

2
0



(
1

2

) (
2

1

)
(

1

2

)
(

2

1

)
=

(
0
1 2

)
(
0
1 2

)

Multiplication only goes upwards.
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Compare this to the earlier:
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In fact,
= = 0.

A cellular algebra is quasi-hereditary iff every cell has an idempotent.
We want a quasi-hereditary A, so we want to kill this nilpotent cell.
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Quotienting the cyclotomic KLR

There is an alternative ordering, the coarsened order of Uglov, on
multi-partitions.

A result of Bowman [Bow17] says the cellular structure of Rλ

respects this.
This justifies the construction

R̊λ := R̊ := Rλ/⟨ν⟩ν multi-row.

This algebra is very easy to write down explicitly, simply keep
the cells labeled by one-row multi-partitions.
This algebra is quasi-hereditary with poset Wλ = {w : w ≤ wλ}.
It is also equivalent to a Soergel calculus depending on Wλ.
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Example: R̊λ for λ = , n = 3, δ = 2
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The BGG resolution

Theorem (Z.)

R̊λ is nil-Koszul.

There is a (finite) BGG resolution in Mod R̊λ,
namely a resolution of the simple module L1 by Vermas,

0 −! ∆wλ
−! · · · −!

⊕
ℓ(w)=k

∆w −! · · · −! ∆1 −! L1 −! 0.

When restricted to the action of Sn via the map
CSn ↪−! Ĥn −↠ Ĥω

α
∼
−! Rω

α −↠ R̊λ, this resolution becomes

· · · −!
⊕

ℓ(w)=k

Ew◦λ −! · · · −! Eλ −! Σλ −! 0.

Decategorifying this resolution via alternating sum of Frobenius
character/cycle index series recovers Jacobi-Trudi:

sλ = det(hλi−i+j)i,j .

There is a positive characteristic version too.
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Thank you!

Thank you for coming to my talk!
Questions
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Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S−
λ of Sλ generated by lollipops

which is essentially a polynomial ring.
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Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” S−
λ of Sλ generated by lollipops

which is essentially a polynomial ring.

S−
λ is Koszul under the Soergel grading.

Moreover
Sλ

L
⊗S−

λ
kew = ∆w,

so that
RHomSλ

(∆w,□) = RHomS−
λ
(kew,□).

In particular

Ext•Sλ
(∆w, L1) = Ext•S−

λ
(kew,ke1) = ewS−,!

λ e1 = k[−ℓ(w)].

This is the homological information needed to prove the BGG
resolution.
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The space ewS−,!
λ e1 = k[−ℓ(w)] is spanned by

. . .

w

!
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Comment on nil-Koszulity

Last year we showed that nil-Brauer (due to
Brundan-Wang-Webster) was nil-Koszul.

Two algebras (due to Khovanov-Sazdanović), categorifying the
Hermite and Chebyshev polynomials, are also nil-Koszul.
Now one more algebra (cyclotomic Soergel) is on the list.
It seems lots of algebras appearing in categorification are
nil-Koszul.
Why?
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Hermite and Chebyshev polynomials, are also nil-Koszul.

Now one more algebra (cyclotomic Soergel) is on the list.
It seems lots of algebras appearing in categorification are
nil-Koszul.
Why?

61 / 75



Introduction Koszul Jacobi-Trudi KLR The JT algebra Main result #1 End Soergel Main result #2 Proof strategy Details Further questions Future work Extra slides

Comment on nil-Koszulity

Last year we showed that nil-Brauer (due to
Brundan-Wang-Webster) was nil-Koszul.
Two algebras (due to Khovanov-Sazdanović), categorifying the
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Projective resolutions of Vermas

Incidentally the statement that Sλ

L
⊗S−

λ
kew = ∆w gives us a

projective resolution of Vermas

, using that S− is essentially a
polynomial ring.

There is an explicit Koszul resolution

S− ⊗K S−,!,∨,• ≃ kew.

This is a free S−-resolution, so use it to compute the derived
tensor.
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Projective resolutions of Vermas

Corollary
We have a resolution

S ⊗K S−,!,∨,•ew ≃ ∆w;

the maps are

d : S ⊗K S−,!,∨
k ew −! S ⊗K S−,!,∨

k−1 ew

x⊗ P (−1e
w, · · · ,−ne

w) 7−!
∑

ways to write P=−i·P ′

x · −i ⊗ P ′,

where P ∈ S−,!,∨
k is a degree k anti-commutative polynomial in the

lollipops.
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Proof strategy

1 First key idea: “weight theory”

−! stratification of the module
category −! “filtration” of the identity functor −! spectral
sequence converging to any object.

In particular, we can apply this to simple objects.
Terms of this spectral sequence involve homological information,
in the form of certain Ext groups.
Concentration of these Ext groups (cf. “Kostant modules”) imply
a “BGG resolution”.
This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum
[AMGR22], and Dhillon [Dhi19].

2 Second key idea: This homological information can be computed
using Koszul methods.

Slogan
Koszulity of half of A is intimately connected to BGG resolutions.

Then we can use a naive resolution to compute these Ext groups.
The spectral sequence is a resolution for modules which are
Koszul over half of A.
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Algebraic recollement

The stratification will have recollements on each level. Details
unimportant.

By the DModA/AeA −! DModA −! DMod eAe setup of
[CPS88], set A = A≥θ and e = eθ to get:

⊥ ⊥
D− ModA>θ D− ModA≥θ D− ModAθ

⊥ ⊥

ιθ ȷθ=eθ□

ι∗θ=A>θ
L
⊗

A≥θ□

ι!θ=
⊕

i RHom
A≥θ (A

>θ1i,□)

ȷθ! =A≥θeθ⊗
Aθ□

ȷθ∗=
⊕

i Hom
Aθ (e

θA≥θ1i,□)
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Stratification and spectral sequences

Let Θ be sufficiently nice.

There is a spectral sequence (functorial in the input □)

Ep,q
1 =

⊕
ℓ(θ)=−p

∆(θ)⊗AθExt
−(p+q)
A (∆(θ),□†)∗ =⇒ Ep,q

∞ = gr−pHp+q(□),

where ∆(θ) :=
⊕

λ∈θ ∆
lλ(θ)
λ = A≥θeθ. deg dr = (r, 1− r):

p

q
E1

••
•

•
•
•

•

•
•
•· · ·

. . .

· · · =⇒ p

q
E∞

•L0

Remark: Cf. Koszul duality.
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To obtain a resolution, we need the Ext groups to be
concentrated in certain degrees.

Idea: Koszul objects have good Ext concentration properties.

Definition
A quadratic graded algebra A (A0 = k) is “Koszul” if ExtA(k,k) in
nonzero only when the homological degree agrees with the Koszul
degree.
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Example: category O for sl2

It is classical that L0 has concentrated Ext groups:

Ext0(∆0, L0) = C, Ext0(∆−2, L0) = 0

Ext1(∆0, L0) = 0, Ext1(∆−2, L0) = C.

Then the spectral sequence above exactly recovers the BGG
resolution.
Remark: It can also recover the standard filtration of projectives.
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Some predicted questions

Is there a monoidal product on R̊ =
⊕

λ R̊λ categorifying the
Littlewood-Richardson structure?
What does this say about positive characteristic?
Is R̊λ itself nil-Koszul?
What about the skew Jacobi-Trudi identity for skew Schur
functions?
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Non-split decomposition

Lauda’s Uq(sl2) is triangular-based.

However, it does not have a subalgebra like Uq(sl2)
−.

Instead, one needs to work with a bigger object Uq(sl2)
♭, which

actually is a subalgebra.
Categorification: projectives categorify Lusztig’s canonical basis.

Question
What do the standard modules correspond to?
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Stratifications within stratifications

The affine oriented Brauer category is triangular-based.

However, this structure alone does not utilize the obvious
ordering on the simples of each Cartan.
By using the stratification of Ĥn above, we should obtain finer
stratifications.
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Koszul duality

We are using the inverse Koszul duality of [BGS96], and we flip the
axes and swap the roles of A and A!.

KA+ : D
∠
ModA+ −! D ∠ModA+,!,

where

KA+ = sh(K
L
⊗A+ refl□) = shRHomA−(K, refl□†)∗.

Here shM =M [n] if M is concentrated in Koszul degree n, and
refl(M)j =M−j .
Then the spectral sequence looks like

∆⊗A◦ KA+(□).
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The differential in Koszul duality
Let us briefly explain the sign rules for the twisted tensor product.
Given A

⟳

M , and letting C = A¡ be the Koszul dual coalgebra, we
have that C ⊗τ M is a dg C-comodule where the coaction is on the
first entry and the differential is:

dτ (c⊗ v) = d(C)⊗ v + (−1)|c|c⊗ d(v) + (−1)|c(1)|c(1) ⊗ τ(c(2))v.

Similarly, given a comodule C
co⟳

N , we obtain A⊗τ N a dg
A-module, where the action is on the first entry and the differential is

dτ (a⊗ u) = d(a)⊗ u+ (−1)|a|a⊗ d(u) + (−1)|a|+1aτ(u(−1))⊗ u(0).

Let us briefly explain what the coderived category is. The cheap thing
to do is to say that it is the localization of the category of
(cocomplete, meaning that N is the union of the kernels of
N −! C

⊗n ⊗N) dg C-comodules at the class of morphisms which
become quasi-isomorphisms under the functor A⊗τ □. The longer
thing to say is that the coderived category is the quotient category of
the homotopy category of dg comodules by the minimal triangulated
subcategory closed under infinite direct sums which contains the
totalization comodules of all exact triples of C-comodules. 74 / 75
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Our choice for Soergel
Let

Sλ = {w : ℓ(w) ≤ ℓ(wλ), w is a subword of some reduced word for wλ}.

We will consider

Sλ := C⊗R End

 ⊕
w∈Sλ

BSw

.
In other words we take cyclotomic Soergel calculus with endpoints
w ∈ Sλ.
This is a cellular algebra via the light leaves basis of Elias-Williamson
[EW16].
It is Morita-equivalent to R̊λ:

Mod R̊λ
∼= ModSλ,

so that
Ext•Sλ

(∆w, L1) = Ext•R̊λ
(∆w, L1).
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