

Koszul duality and categorifying Jacobi-Trudi

Fan Zhou

Columbia University

January 2026

Table of Contents

- 1 Introduction
- 2 Koszul
- 3 Jacobi-Trudi
- 4 KLR
- 5 The JT algebra
- 6 Main result #1
- 7 End
- 8 Soergel
- 9 Main result #2
- 10 Proof strategy
- 11 Details
- 12 Further questions
- 13 Future work
- 14 Extra slides

Link

These slides can be found on my webpage:

math.columbia.edu/~fanzhou/files/beamer-KIAS2026.pdf

Part I: Koszul

Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to BGG resolutions.

Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to BGG resolutions.

It seems like many (most?) algebras appearing in categorification are nil-Koszul.

Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to BGG resolutions.

It seems like many (most?) algebras appearing in categorification are nil-Koszul.

Slogan

In good cases, Koszul duality with respect to the nil-algebra *is* the BGG resolution.

Slogan

Slogan

Koszulity of half of A (“nil-Koszulity” of A) is intimately connected to BGG resolutions.

It seems like many (most?) algebras appearing in categorification are nil-Koszul.

Slogan

In good cases, Koszul duality with respect to the nil-algebra *is* the BGG resolution.

This is the case for Soergel, which we discuss here, and Temperley-Lieb.

Today's example

What to think of:

- If you are a representation theorist:

Today's example

What to think of:

- If you are a representation theorist:
 - (central block of) category \mathcal{O} for \mathfrak{sl}_n

Today's example

What to think of:

- If you are a representation theorist:
 - (central block of) category \mathcal{O} for \mathfrak{sl}_n ($n = 2, 3$).
- If you are a geometer:

Today's example

What to think of:

- If you are a representation theorist:
 - (central block of) category \mathcal{O} for \mathfrak{sl}_n ($n = 2, 3$).
- If you are a geometer:
 - constructible sheaves on the flag variety SL_n / B w.r.t. the Bruhat stratification ($n = 2, 3$).
- If you do diagrammatic algebra (the central perspective today):

Today's example

What to think of:

- If you are a representation theorist:
 - (central block of) category \mathcal{O} for \mathfrak{sl}_n ($n = 2, 3$).
- If you are a geometer:
 - constructible sheaves on the flag variety SL_n / B w.r.t. the Bruhat stratification ($n = 2, 3$).
- If you do diagrammatic algebra (the central perspective today):
 - modules over “(cyclotomic) Soergel calculus”

Today's example

What to think of:

- If you are a representation theorist:
 - (central block of) category \mathcal{O} for \mathfrak{sl}_n ($n = 2, 3$).
- If you are a geometer:
 - constructible sheaves on the flag variety SL_n / B w.r.t. the Bruhat stratification ($n = 2, 3$).
- If you do diagrammatic algebra (the central perspective today):
 - modules over “(cyclotomic) Soergel calculus” (endomorphism algebra of some Soergel/Bott-Samelson (bi)modules).

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams.

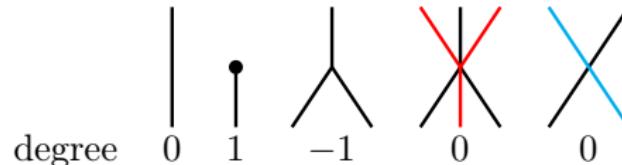
Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams.
Multiplication is stacking diagrams vertically.

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams. Multiplication is stacking diagrams vertically.

Diagrams are generated by:

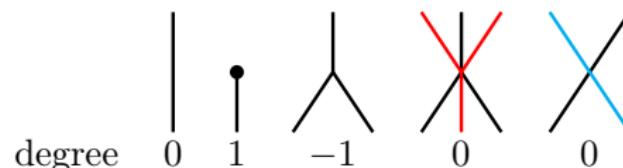


as well as their upside-down flips.

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams. Multiplication is stacking diagrams vertically.

Diagrams are generated by:



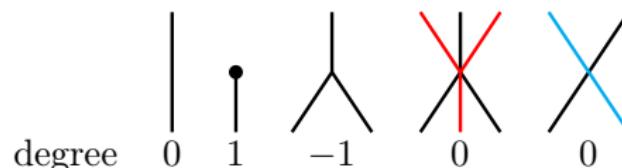
as well as their upside-down flips.

Each string is colored by a node of the Dynkin diagram.

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams. Multiplication is stacking diagrams vertically.

Diagrams are generated by:



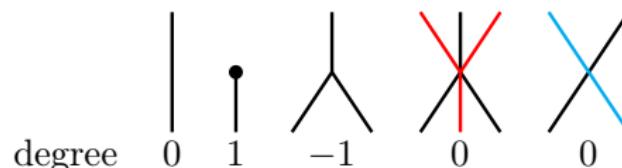
as well as their upside-down flips.

Each string is colored by a node of the Dynkin diagram. Red and black are adjacent, blue and black are distant.

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams. Multiplication is stacking diagrams vertically.

Diagrams are generated by:



as well as their upside-down flips.

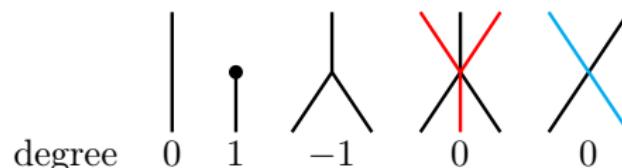
Each string is colored by a node of the Dynkin diagram. Red and black are adjacent, blue and black are distant.

We will consider only diagrams whose top/bottom boundaries are subwords of some redex for $w_0 \in S_n$.

Soergel calculus – generators

Soergel calculus \mathcal{S} is a (graded) algebra spanned by diagrams. Multiplication is stacking diagrams vertically.

Diagrams are generated by:



as well as their upside-down flips.

Each string is colored by a node of the Dynkin diagram. Red and black are adjacent, blue and black are distant.

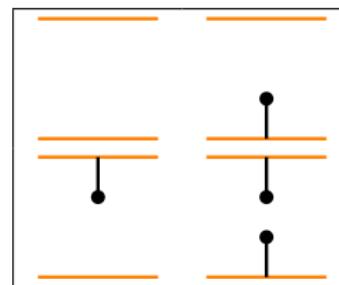
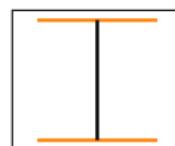
We will consider only diagrams whose top/bottom boundaries are subwords of some redex for $w_0 \in S_n$. (More generally subwords of some redex for $w_\lambda \in S_{\ell(\lambda)}$.)

Example: \mathfrak{sl}_2

\mathcal{S} for \mathfrak{sl}_2 is a 5-dimensional algebra equivalent to $\mathcal{O}^0(\mathfrak{sl}_2)$:

Example: \mathfrak{sl}_2

\mathcal{S} for \mathfrak{sl}_2 is a 5-dimensional algebra equivalent to $\mathcal{O}^0(\mathfrak{sl}_2)$:



Soergel calculus – relations

1-color:

$$\begin{array}{c} \text{Diagram 1: } \text{A circle with a vertical line and a diagonal line from bottom-left to top-right.} \\ = \\ \text{Diagram 2: } \text{A circle with three lines meeting at the top center.} \\ \\ \text{Diagram 3: } \text{A circle with a point on the left and three lines meeting at the top center.} \\ = \\ \text{Diagram 4: } \text{A circle with a vertical line.} \\ \\ \text{Diagram 5: } \text{A circle with a horizontal line.} \\ = 0 \\ \\ \text{Diagram 6: } \text{A circle with two points on the left and a vertical line.} \\ + \\ \text{Diagram 7: } \text{A circle with two points on the right and a vertical line.} \\ = 2 \\ \text{Diagram 8: } \text{A circle with two points on the right and a vertical line.} \end{array}$$

Soergel calculus – relations

2-color (adjacent):

$$\begin{array}{c} \text{Diagram 1: } \text{A circle with a black dot at the top, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 2: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \quad + \quad \text{Diagram 3: } \text{A circle with a red dot at the bottom-right, a red curve from top-right to bottom-right, and a black curve from top-left to bottom-left.} \\ \\ \text{Diagram 4: } \text{A circle with a black dot at the top-left, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 5: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \quad - \quad \text{Diagram 6: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \\ \\ \text{Diagram 7: } \text{A circle with a red dot at the bottom-right, a red vertical line from top to bottom, and a black vertical line from top to bottom.} \quad - \quad \text{Diagram 8: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \end{array}$$

Soergel calculus – relations

2-color (adjacent):

$$\begin{array}{c} \text{Diagram 1: } \text{A circle with a black dot at the top, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 2: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \quad + \quad \text{Diagram 3: } \text{A circle with a red dot at the bottom-right, a red curve from top-right to bottom-right, and a black curve from top-left to bottom-left.} \\ \\ \text{Diagram 4: } \text{A circle with a black dot at the top-left, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 5: } \text{A circle with a black dot at the top-left, a red curve from top-left to middle-right, and a black curve from middle-left to middle-right.} \\ \\ \text{Diagram 6: } \text{A circle with a red dot at the top-left, a black vertical line from top to bottom, and a black vertical line from bottom to bottom.} \quad - \quad \text{Diagram 7: } \text{A circle with a black dot at the top-left, a black vertical line from top to bottom, and a red vertical line from bottom to bottom.} \\ = \\ \text{Diagram 8: } \text{A circle with a black dot at the top, a black vertical line from top to bottom, and a black vertical line from bottom to bottom.} \quad - \quad \text{Diagram 9: } \text{A circle with a black dot at the top-left, a black vertical line from top to bottom, and a black vertical line from bottom to bottom.} \end{array}$$

Distant colors pull apart.

Soergel calculus – relations

2-color (adjacent):

$$\begin{array}{c} \text{Diagram 1: } \text{A circle with a black dot at the top, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 2: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \quad + \quad \text{Diagram 3: } \text{A circle with a red dot at the bottom-right, a red curve from top-left to middle-right, and a black curve from middle-left to middle-right.} \\ \\ \text{Diagram 4: } \text{A circle with a black dot at the top-left, a red diagonal line from top-left to bottom-right, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 5: } \text{A circle with a black dot at the top-left, a red line from top-left to middle-right, and a black line from middle-left to middle-right.} \quad + \quad \text{Diagram 6: } \text{A circle with a red dot at the bottom-right, a red curve from top-left to middle-right, and a black curve from middle-left to middle-right.} \\ \\ \text{Diagram 7: } \text{A circle with a red dot at the top-right, a red vertical line from top to bottom, and a black vertical line from top to bottom.} \quad - \quad \text{Diagram 8: } \text{A circle with a red dot at the top-left, a red vertical line from top to bottom, and a black vertical line from top to bottom.} \\ = \\ \text{Diagram 9: } \text{A circle with a black dot at the top, a black vertical line from top to bottom, and a black vertical line from top to bottom.} \quad - \quad \text{Diagram 10: } \text{A circle with a black dot at the top-left, a black vertical line from top to bottom, and a black vertical line from top to bottom.} \end{array}$$

Distant colors pull apart. (There is also a tetrahedral relation.)

Soergel calculus – cyclotomic relation

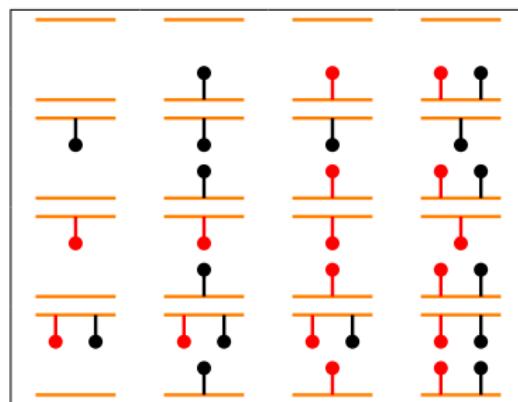
The “cyclotomic condition” for Soergel calculus is setting barbells at the far left to zero:

Soergel calculus – cyclotomic relation

The “cyclotomic condition” for Soergel calculus is setting barbells at the far left to zero:

$$\begin{array}{c} \text{---} \\ | \\ \bullet \quad \cdots \\ | \\ \text{---} \end{array} = 0$$

Example: $\mathcal{O}^0(\mathfrak{sl}_3)$ mod simples labeled by $s_1s_2, s_1s_2s_1$



Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and relations are generated in degree 2:

$$0 \longrightarrow \mathfrak{q} \longrightarrow \bigotimes^\bullet A_1 \longrightarrow A \longrightarrow 0.$$

Koszulity

A graded algebra is “quadratic” if it is generated in degree 1 and relations are generated in degree 2:

$$0 \longrightarrow \mathfrak{q} \longrightarrow \bigotimes^{\bullet} A_1 \longrightarrow A \longrightarrow 0.$$

Definition

A quadratic graded algebra A ($A_0 = \mathbb{K}$) is “Koszul” if $\text{Ext}_A(\mathbb{K}, \mathbb{K})$ is nonzero only when the homological degree agrees with the Koszul degree.

Koszul dual algebra

If A is Koszul, then

$$\mathrm{Ext}_A(\mathbb{K}, \mathbb{K}) \cong A^!,$$

Koszul dual algebra

If A is Koszul, then

$$\mathrm{Ext}_A(\mathbb{K}, \mathbb{K}) \cong A^!,$$

where

$$A^! := \bigotimes^{\bullet} A_1^* / \mathfrak{q}^\perp$$

is the “quadratic dual” or “Koszul dual” algebra.

Koszul dual algebra

If A is Koszul, then

$$\mathrm{Ext}_A(\mathbb{K}, \mathbb{K}) \cong A^!,$$

where

$$A^! := \bigotimes^{\bullet} A_1^* / \mathfrak{q}^\perp$$

is the “quadratic dual” or “Koszul dual” algebra. (Here $\mathfrak{q}^\perp \subset \bigotimes^{\bullet} A_1^*$ is the orthogonal complement to \mathfrak{q} under the pairing

$$(\phi \otimes \psi)(v \otimes w) = \phi(w)\psi(v).$$

Koszul dual algebra

If A is Koszul, then

$$\mathrm{Ext}_A(\mathbb{K}, \mathbb{K}) \cong A^!,$$

where

$$A^! := \bigotimes^{\bullet} A_1^* / \mathfrak{q}^\perp$$

is the “quadratic dual” or “Koszul dual” algebra. (Here $\mathfrak{q}^\perp \subset \bigotimes^{\bullet} A_1^*$ is the orthogonal complement to \mathfrak{q} under the pairing

$$(\phi \otimes \psi)(v \otimes w) = \phi(w)\psi(v).$$

Multiplication is inherited from the tensor algebra.

Koszul dual algebra

If A is Koszul, then

$$\mathrm{Ext}_A(\mathbb{K}, \mathbb{K}) \cong A^!,$$

where

$$A^! := \bigotimes^{\bullet} A_1^* / \mathfrak{q}^\perp$$

is the “quadratic dual” or “Koszul dual” algebra. (Here $\mathfrak{q}^\perp \subset \bigotimes^{\bullet} A_1^*$ is the orthogonal complement to \mathfrak{q} under the pairing $(\phi \otimes \psi)(v \otimes w) = \phi(w)\psi(v)$.)

Multiplication is inherited from the tensor algebra.

Warning: need to be careful about left vs right.

Koszul dual coalgebra

There is also a dual *coalgebra*,

$$A^! := A^{!, \vee},$$

Koszul dual coalgebra

There is also a dual *coalgebra*,

$$A^i := A^{!, \vee},$$

with

$$A_n^i = \bigcap_i A_1^{\otimes i} \otimes \mathfrak{q} \otimes A_1^{\otimes n-i-2}.$$

Koszul dual coalgebra

There is also a dual *coalgebra*,

$$A^i := A^{!, \vee},$$

with

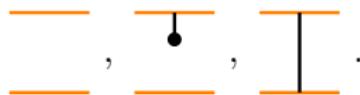
$$A_n^i = \bigcap_i A_1^{\otimes i} \otimes \mathfrak{q} \otimes A_1^{\otimes n-i-2}.$$

Comultiplication is

$$x_1 \otimes \cdots \otimes x_n \longmapsto \sum_i (x_1 \otimes \cdots \otimes x_i) \otimes (x_{i+1} \otimes \cdots \otimes x_n).$$

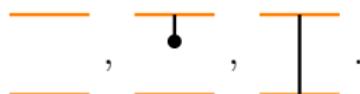
Soergel (\mathfrak{sl}_2) example

Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by



Soergel (\mathfrak{sl}_2) example

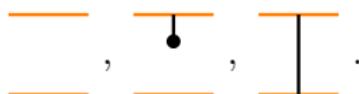
Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by



This is Koszul by letting $\deg(\bullet) = 1$.

Soergel (\mathfrak{sl}_2) example

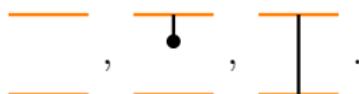
Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by



This is Koszul by letting $\deg(\bullet) = 1$. This is not so surprising because \mathcal{S}^+ is “morally” $\mathbb{C}[x]/x^2$.

Soergel (\mathfrak{sl}_2) example

Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by

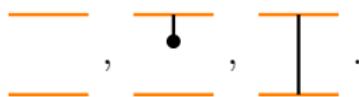


This is Koszul by letting $\deg(\bullet) = 1$. This is not so surprising because \mathcal{S}^+ is “morally” $\mathbb{C}[x]/x^2$.

The Koszul dual algebra $\mathcal{S}^{+,!}$ is spanned by

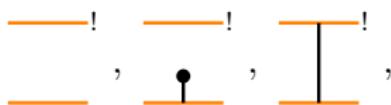
Soergel (\mathfrak{sl}_2) example

Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by



This is Koszul by letting $\deg(\bullet) = 1$. This is not so surprising because \mathcal{S}^+ is “morally” $\mathbb{C}[x]/x^2$.

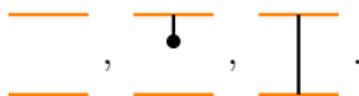
The Koszul dual algebra $\mathcal{S}^{+,!}$ is spanned by



while the Koszul dual coalgebra $\mathcal{S}^{+,!}$ is spanned by

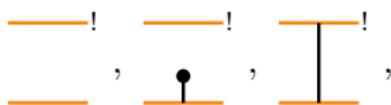
Soergel (\mathfrak{sl}_2) example

Consider the subalgebra \mathcal{S}^+ for \mathfrak{sl}_2 spanned by



This is Koszul by letting $\deg(\bullet) = 1$. This is not so surprising because \mathcal{S}^+ is “morally” $\mathbb{C}[x]/x^2$.

The Koszul dual algebra $\mathcal{S}^{+,!}$ is spanned by



while the Koszul dual coalgebra $\mathcal{S}^{+,!}$ is spanned by

Note: the upside-down flipping is happening because we need to be careful about left vs right.

Note we could just as easily have considered \mathcal{S}^- spanned by

which is also Koszul.

Note we could just as easily have considered \mathcal{S}^- spanned by

which is also Koszul.

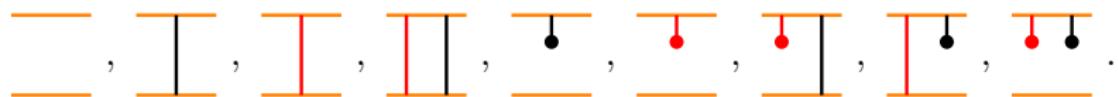
This is simply the “upside-down flipping” anti-involution applied to \mathcal{S}^+ , i.e. $\mathcal{S}^- = \tau(\mathcal{S}^+)$.

Soergel (\mathfrak{sl}_3) example

For the example with 4 cells, consider the subalgebra \mathcal{S}^+ spanned by

Soergel (\mathfrak{sl}_3) example

For the example with 4 cells, consider the subalgebra \mathcal{S}^+ spanned by



The comultiplication on the Koszul dual coalgebra $\mathcal{S}^{+,i}$ sends e.g.

$$\Delta: \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \longrightarrow \left(\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i - \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \right) \otimes \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array}^i + \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \otimes \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i - \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \otimes \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i + \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \otimes \left(\begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i - \begin{array}{c} \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \end{array} \begin{array}{c} \bullet \\ \bullet \end{array}^i \right)$$

Soergel (\mathfrak{sl}_3) example

For the example with 4 cells, consider the subalgebra \mathcal{S}^+ spanned by

The comultiplication on the Koszul dual coalgebra $\mathcal{S}^{+,i}$ sends e.g.

$$\Delta: \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \longrightarrow \left(\begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} - \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \right) \otimes \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array}$$

$$+ \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \otimes \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} - \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \otimes \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array}$$

$$+ \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \otimes \left(\begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} - \begin{array}{c} \text{Diagram} \\ \text{with } i \text{ dots} \end{array} \right)$$

This is secretly saying something about BGG differentials.

Another way to think of this is the relation in $\mathcal{S}^{-,!}$

$$\begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet ! = - \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet ! \in \mathcal{S}^{-,!}$$

Another way to think of this is the relation in $\mathcal{S}^{-,!}$

$$\begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet ! = - \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet ! \in \mathcal{S}^{-,!}$$

which is because

$$\begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet = \begin{array}{c} \text{---} \\ | \\ \text{---} \\ | \\ \text{---} \end{array} \bullet \in \mathcal{S}^{-}.$$

Another way to think of this is the relation in $\mathcal{S}^{-,!}$

$$\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \bullet ! = - \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \bullet ! \in \mathcal{S}^{-,!}$$

which is because

$$\begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \bullet = \begin{array}{c} \text{---} \\ | \\ \text{---} \end{array} \bullet \in \mathcal{S}^{-}.$$

(This is morally the Sym- \wedge duality.)

Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or triangular-based [Bru23]).

Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or triangular-based [Bru23]). Suppose A has a “nil-algebra” $A^- \subset A$ such that

$$A \stackrel{L}{\otimes}_{A^-} \mathbb{K}e^w = \Delta(w) := A^{\geq w}e^w.$$

Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or triangular-based [Bru23]). Suppose A has a “nil-algebra” $A^- \subset A$ such that

$$A \stackrel{L}{\otimes}_{A^-} \mathbb{k}e^w = \Delta(w) := A^{\geq w}e^w.$$

Then

$$\mathrm{RHom}_A(\Delta(w), \square) = \mathrm{RHom}_{A^-}(\mathbb{k}e^w, \square).$$

Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or triangular-based [Bru23]). Suppose A has a “nil-algebra” $A^- \subset A$ such that

$$A \stackrel{L}{\otimes}_{A^-} \mathbb{k}e^w = \Delta(w) := A^{\geq w}e^w.$$

Then

$$\mathrm{RHom}_A(\Delta(w), \square) = \mathrm{RHom}_{A^-}(\mathbb{k}e^w, \square).$$

If A^- is Koszul, then A is said to be “nil-Koszul.”

Nil-Koszulity

Definition

Let A be a “highest weight” algebra (e.g. quasi-hereditary or triangular-based [Bru23]). Suppose A has a “nil-algebra” $A^- \subset A$ such that

$$A \stackrel{L}{\otimes}_{A^-} \mathbb{k}e^w = \Delta(w) := A^{\geq w}e^w.$$

Then

$$\mathrm{RHom}_A(\Delta(w), \square) = \mathrm{RHom}_{A^-}(\mathbb{k}e^w, \square).$$

If A^- is Koszul, then A is said to be “nil-Koszul.”

Then

Theorem (Z.)

\mathcal{S} is nil-Koszul, with $\mathcal{S}^- := \tau(\mathcal{S}^+)$ as the nil-algebra with the Soergel grading.

Homological information

Then we have the analogue of Kostant:

Homological information

Then we have the analogue of Kostant:

Proposition

$$\begin{aligned}\mathrm{RHom}_{\mathcal{S}}(\Delta_w, L_{\mathrm{id}}) &= \mathrm{RHom}_{\mathcal{S}}(\mathcal{S} \overset{\mathsf{L}}{\otimes}_{\mathcal{S}^-} \mathbb{k}e^w, L_{\mathrm{id}}) \\ &= \mathrm{RHom}_{\mathcal{S}^-}(\mathbb{k}e^w, \mathbb{k}e^{\mathrm{id}}) \\ &= e^w \mathcal{S}^{-,!} e^{\mathrm{id}} \\ &\cong q^{\ell(w)} \mathbb{k}[-\ell(w)],\end{aligned}$$

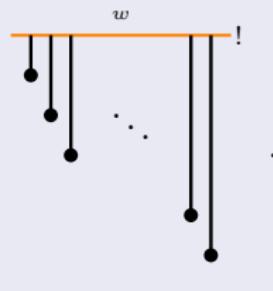
Homological information

Then we have the analogue of Kostant:

Proposition

$$\begin{aligned}
 \mathrm{RHom}_{\mathcal{S}}(\Delta_w, L_{\mathrm{id}}) &= \mathrm{RHom}_{\mathcal{S}}(\mathcal{S} \xrightarrow{\mathsf{L}} \mathbb{k}e^w, L_{\mathrm{id}}) \\
 &= \mathrm{RHom}_{\mathcal{S}^-}(\mathbb{k}e^w, \mathbb{k}e^{\mathrm{id}}) \\
 &= e^w \mathcal{S}^{-,!} e^{\mathrm{id}} \\
 &\cong q^{\ell(w)} \mathbb{k}[-\ell(w)],
 \end{aligned}$$

spanned by the diagram



Reconstruction

This type of homological information already allows us to “reconstruct” the trivial module via Vermas.

Reconstruction

This type of homological information already allows us to “reconstruct” the trivial module via Vermas. There is some (infinity-)categorical machinery allowing one to reconstruct the identity functor from a stratification using this type of homological information.

Reconstruction

This type of homological information already allows us to “reconstruct” the trivial module via Vermas. There is some (infinity-)categorical machinery allowing one to reconstruct the identity functor from a stratification using this type of homological information. A concrete shadow is a (functorial) spectral sequence of Vermas.

Reconstruction

This type of homological information already allows us to “reconstruct” the trivial module via Vermas. There is some (infinity-)categorical machinery allowing one to reconstruct the identity functor from a stratification using this type of homological information. A concrete shadow is a (functorial) spectral sequence of Vermas.

In this talk we will forgo this in favor of Koszul duality.

Koszul duality

One perspective on Koszul duality, for example in Positselski's work, is that Koszul duality is a functor (equivalence) between derived dg-modules over an algebra and coderived dg-comodules over its Koszul dual coalgebra:

Koszul duality

One perspective on Koszul duality, for example in Positselski's work, is that Koszul duality is a functor (equivalence) between derived dg-modules over an algebra and coderived dg-comodules over its Koszul dual coalgebra:

$$\begin{array}{ccc} & A^i \otimes_{\mathbb{K}} \square & \\ \text{D Mod}^{\text{dg}} A & \sim & \text{coD coMod}^{\text{dg}} A^i \\ \swarrow & & \searrow \\ & A \otimes_{\mathbb{K}} \square & \end{array}$$

Koszul duality

One perspective on Koszul duality, for example in Positselski's work, is that Koszul duality is a functor (equivalence) between derived dg-modules over an algebra and coderived dg-comodules over its Koszul dual coalgebra:

$$\begin{array}{ccc}
 & A^i \otimes_{\mathbb{K}} \square & \\
 \text{D Mod}^{\text{dg}} A & \sim & \text{coD coMod}^{\text{dg}} A^i \\
 \swarrow & & \searrow \\
 & A \otimes_{\mathbb{K}} \square &
 \end{array}$$

Here \otimes^τ is a tensor product “twisted” by a “twisting cochain” $\tau: A^i \rightarrow A$ defined by killing everyone except $A_1^i \cong A_1$.

The twisting

The differential on $A^i \otimes^\tau \square$ is given by

$$d^\tau(c \otimes v) = d(c) \otimes v + (-1)^{|c|} c \otimes d(v) + (-1)^{|c_{(1)}|} c_{(1)} \otimes \tau(c_{(2)})v$$

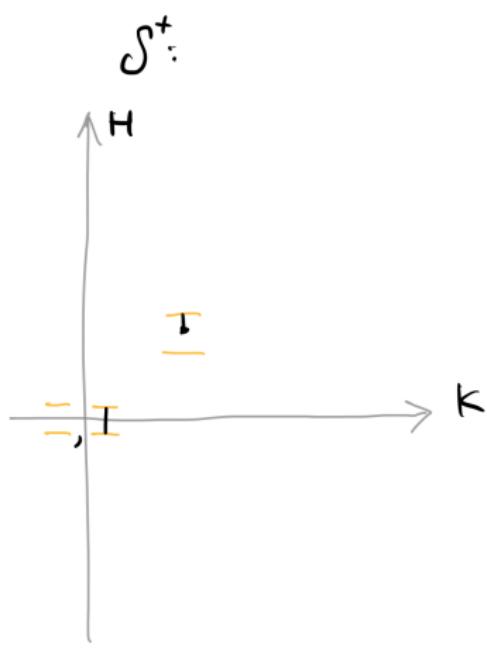
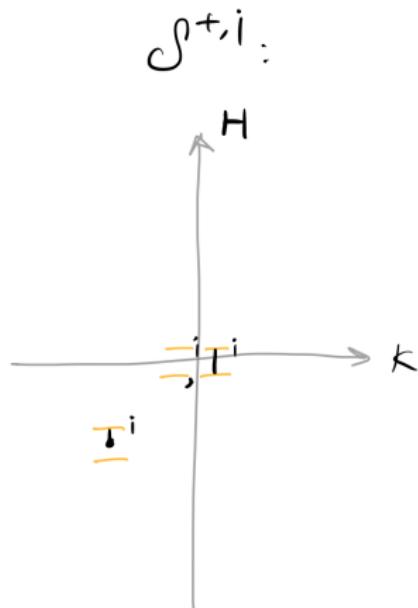
The twisting

The differential on $A^i \otimes^\tau \square$ is given by

$$d^\tau(c \otimes v) = d(c) \otimes v + (-1)^{|c|} c \otimes d(v) + (-1)^{|c_{(1)}|} c_{(1)} \otimes \tau(c_{(2)})v$$

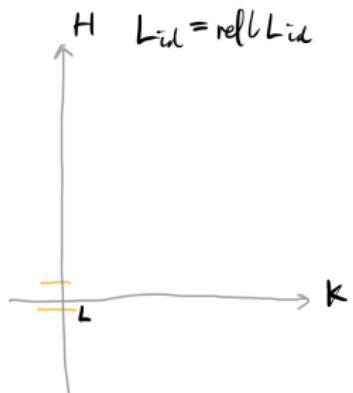
and on $A \otimes^\tau \square$ is given by

$$d^\tau(a \otimes u) = d(a) \otimes u + (-1)^{|a|} a \otimes d(u) + (-1)^{|a|+1} a \tau(u_{(-1)}) \otimes u_{(0)}.$$

Example: Soergel (\mathfrak{sl}_2)

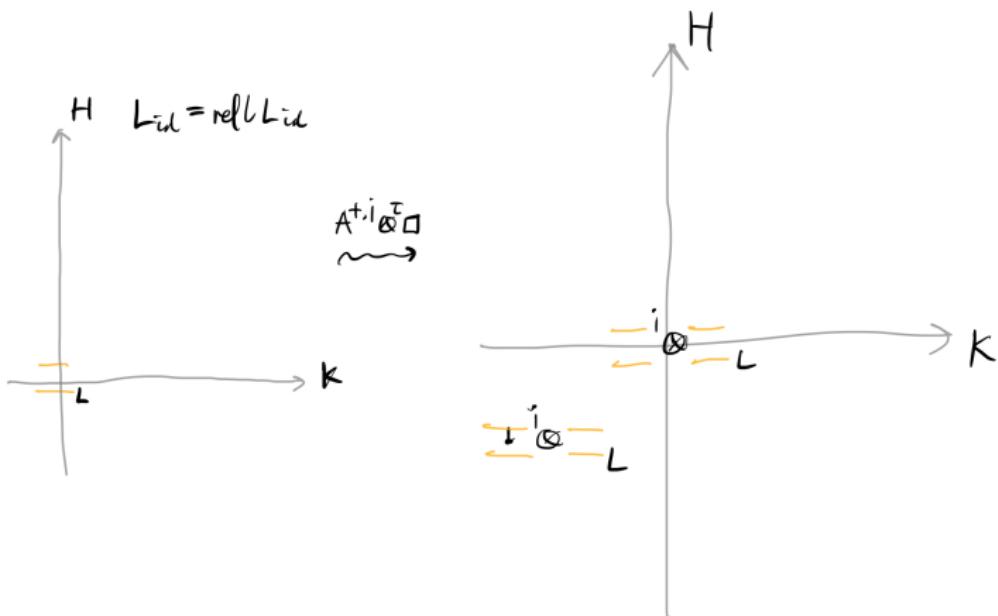
$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul dg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes \text{refl } \square)$$



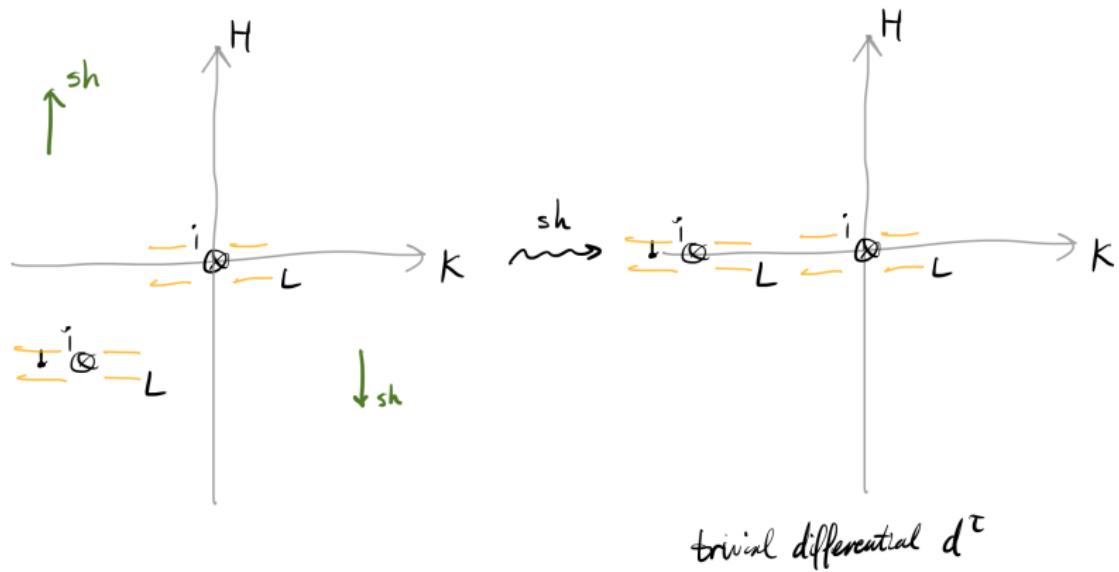
$$\text{refl}(M)_j = M_{-j} \quad , \quad \text{sh}(M) = M[u] \text{ if } M \text{ is in Koszul deg } n.$$

$$K_{A^+} = \text{sh}(A^{+,i} \otimes \square)$$



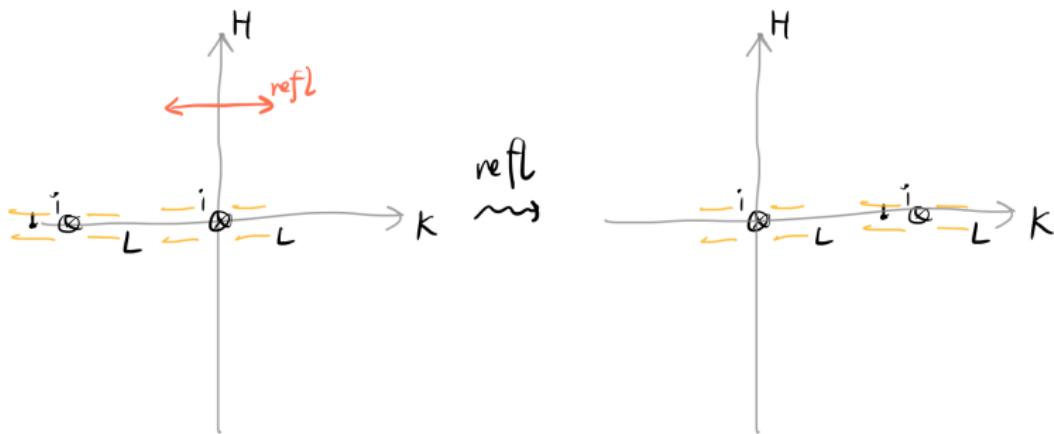
$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul deg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes_{\mathbb{K}} \text{refl } \square)$$



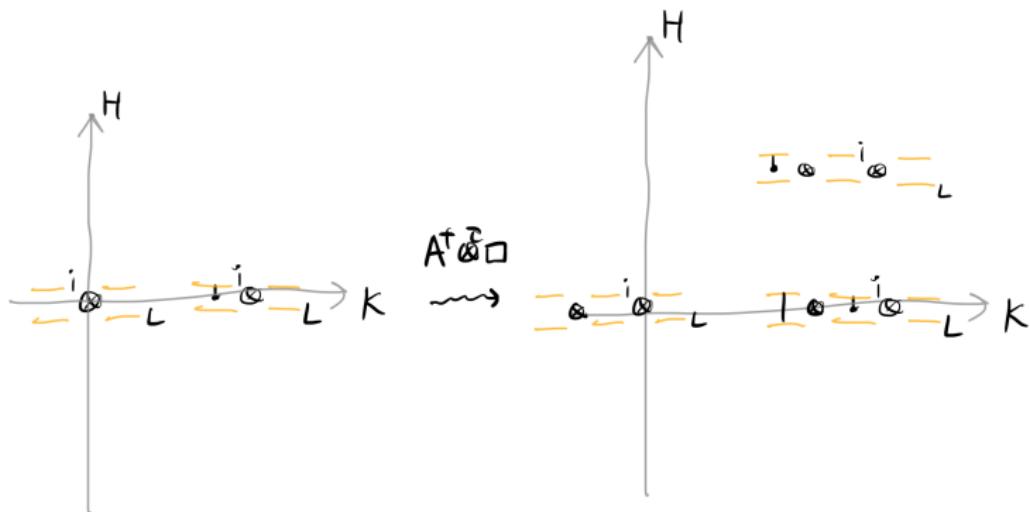
$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul deg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes_{\mathbb{K}} \text{refl } \square) \quad K_{A^+}^{-i} = \text{sh}(A^+ \otimes_{\mathbb{K}} \text{refl } \square)$$



$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul deg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes_{\mathbb{K}} \text{refl } \square) \quad K_{A^+}^{-1} = \text{sh}(A^+ \otimes_{\mathbb{K}} \text{refl } \square)$$



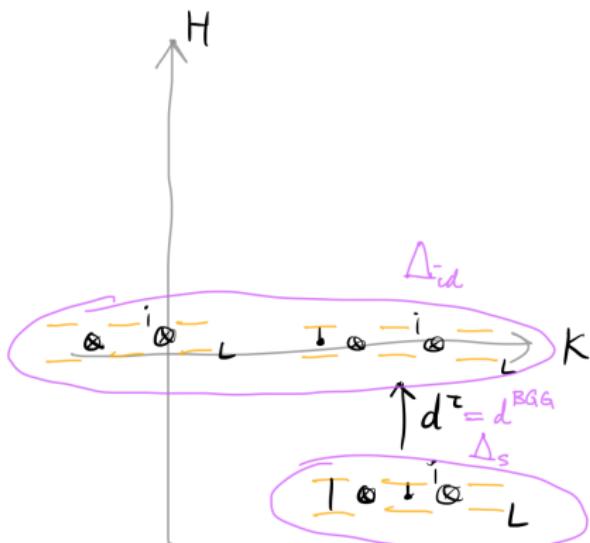
$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul deg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes_{\mathbb{K}} \text{refl } \square) \quad K_{A^+}^{-1} = \text{sh}(A^+ \otimes_{\mathbb{K}} \text{refl } \square)$$

$$d^\tau(a \otimes u) = (-1)^{|a|+1} a \tau(u_{c-1}) \otimes u_c$$

$\text{refl}(M)_j = M_{-j}$, $\text{sh}(M) = M[u]$ if M is in Koszul deg n .

$$K_{A^+} = \text{sh}(A^{+,i} \otimes_{\mathbb{K}} \text{refl } \square) \quad K_{A^+}^{-i} = \text{sh}(A^+ \otimes_{\mathbb{K}}^i \text{refl } \square)$$

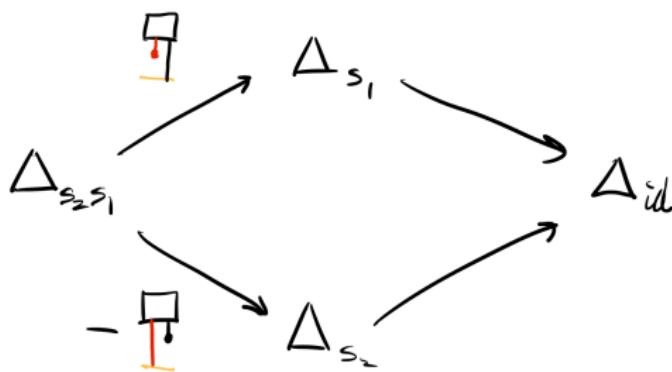


$$d^\tau(a \otimes u) = (-1)^{|a|+1} a \tau(u_{c-1}) \otimes u_{c_0}$$

Example: \mathfrak{sl}_3

$$d^\tau \left(\underline{\square} \otimes \left(\underline{\square}^i - \underline{\square}^i \right) \right) = - \underline{\square} \otimes \underline{\square}^i + \underline{\square} \otimes \underline{\square}^i$$

compare to



In higher rank

In higher rank, what we have is

$$\text{Id} \cong \mathcal{S} \overset{\mathsf{L}}{\otimes}_{\mathcal{S}^+ \otimes_{\mathbb{K}} \mathcal{S}^-} \mathcal{K}_{\mathcal{S}^+}^{-1} \circ \mathcal{K}_{\mathcal{S}^+} = \mathcal{S} \overset{\mathsf{L}}{\otimes}_{\mathcal{S}^+ \otimes_{\mathbb{K}} \mathcal{S}^-} \mathcal{S}^+ \otimes_{\mathbb{K}}^{\tau} \mathcal{S}^{+,i} \otimes_{\mathbb{K}}^{\tau} \square.$$

In higher rank

In higher rank, what we have is

$$\text{Id} \cong \mathcal{S} \overset{\mathsf{L}}{\otimes}_{\mathcal{S}^+ \otimes_{\mathbb{K}} \mathcal{S}^-} \mathcal{K}_{\mathcal{S}^+}^{-1} \circ \mathcal{K}_{\mathcal{S}^+} = \mathcal{S} \overset{\mathsf{L}}{\otimes}_{\mathcal{S}^+ \otimes_{\mathbb{K}} \mathcal{S}^-} \mathcal{S}^+ \otimes_{\mathbb{K}}^{\tau} \mathcal{S}^{+,i} \otimes_{\mathbb{K}}^{\tau} \square.$$

In particular, applying this to L_{id} recovers the BGG resolution.

Part II: Jacobi-Trudi

A Tale of Two Cities

symmetric functions \longleftrightarrow symmetric group representations

The classical story – symmetric functions

We can consider two families of symmetric functions:

The classical story – symmetric functions

We can consider two families of symmetric functions:

- Let Schur functions be s_λ

The classical story – symmetric functions

We can consider two families of symmetric functions:

- Let Schur functions be s_λ
- and let complete homogeneous functions be $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_k}$, where h_i is the sum of all monomials of degree i .

The classical story – symmetric functions

We can consider two families of symmetric functions:

- Let Schur functions be s_λ
- and let complete homogeneous functions be $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_k}$, where h_i is the sum of all monomials of degree i .

Jacobi-Trudi

The Jacobi-Trudi determinant identity:

$$s_\lambda = \det(h_{\lambda_i - i + j})_{i,j} = \det \begin{pmatrix} h_{\lambda_1} & h_{\lambda_1+1} & \cdots & h_{\lambda_1+\ell-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & \vdots \\ \ddots & & & \\ h_{\lambda_\ell-\ell+1} & \cdots & h_{\lambda_\ell-1} & h_{\lambda_\ell} \end{pmatrix},$$

The classical story – symmetric functions

We can consider two families of symmetric functions:

- Let Schur functions be s_λ
- and let complete homogeneous functions be $h_\alpha = h_{\alpha_1} \cdots h_{\alpha_k}$, where h_i is the sum of all monomials of degree i .

Jacobi-Trudi

The Jacobi-Trudi determinant identity:

$$s_\lambda = \det(h_{\lambda_i - i + j})_{i,j} = \det \begin{pmatrix} h_{\lambda_1} & h_{\lambda_1+1} & \cdots & h_{\lambda_1+\ell-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & \vdots \\ \ddots & & & \\ h_{\lambda_\ell-\ell+1} & \cdots & h_{\lambda_\ell-1} & h_{\lambda_\ell} \end{pmatrix},$$

This is an alternating sum.

The classical story – symmetric groups

- Two families of modules over S_n :

The classical story – symmetric groups

- Two families of modules over S_n :
- (Over \mathbb{C} ,) “Specht modules” Σ_λ exhaust irreducibles of S_n .

The classical story – symmetric groups

- Two families of modules over S_n :
- (Over \mathbb{C} ,) “Specht modules” Σ_λ exhaust irreducibles of S_n .
- Given a composition α and $S_\alpha = S_{\alpha_1} \times \cdots \times S_{\alpha_k}$, the “permutation module” E_α is

$$E_\alpha := \text{Ind}_{S_\alpha}^{S_n} \text{triv}.$$

The classical story – symmetric groups

- Two families of modules over S_n :
- (Over \mathbb{C} ,) “Specht modules” Σ_λ exhaust irreducibles of S_n .
- Given a composition α and $S_\alpha = S_{\alpha_1} \times \cdots \times S_{\alpha_k}$, the “permutation module” E_α is

$$E_\alpha := \text{Ind}_{S_\alpha}^{S_n} \text{triv}.$$

This has dimension $\dim E_\alpha = \binom{n}{\alpha_1, \dots, \alpha_k}$.

The classical story – symmetric groups

- Two families of modules over S_n :
- (Over \mathbb{C} ,) “Specht modules” Σ_λ exhaust irreducibles of S_n .
- Given a composition α and $S_\alpha = S_{\alpha_1} \times \cdots \times S_{\alpha_k}$, the “permutation module” E_α is

$$E_\alpha := \text{Ind}_{S_\alpha}^{S_n} \text{triv}.$$

This has dimension $\dim E_\alpha = \binom{n}{\alpha_1, \dots, \alpha_k}$.

- This decomposes as

$$E_\lambda = \Sigma_\lambda \oplus \bigoplus_{\mu \triangleright \lambda} \Sigma_\mu^{\oplus m_\mu}.$$

The classical story – symmetric groups

- Two families of modules over S_n :
- (Over \mathbb{C} ,) “Specht modules” Σ_λ exhaust irreducibles of S_n .
- Given a composition α and $S_\alpha = S_{\alpha_1} \times \cdots \times S_{\alpha_k}$, the “permutation module” E_α is

$$E_\alpha := \text{Ind}_{S_\alpha}^{S_n} \text{triv}.$$

This has dimension $\dim E_\alpha = \binom{n}{\alpha_1, \dots, \alpha_k}$.

- This decomposes as

$$E_\lambda = \Sigma_\lambda \oplus \bigoplus_{\mu \triangleright \lambda} \Sigma_\mu^{\oplus m_\mu}.$$

Category \mathcal{O}

Compare to the JH filtration of Vermas $\Delta_{w \circ 0}$ in which $L_{w \circ 0}$ appears as the top layer quotient, and

$$[\Delta_w] = [L_w] + \sum_{u > w} m_u [L_u].$$

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.
- Letting $z_\lambda = \prod_{i \in \mathbb{Z}_+} i^{m_i} m_i!$ where $m_i = \#\{j : \lambda_j = i\}$, $p_\lambda = p_{\lambda_1} \cdots p_{\lambda_k}$,

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.
- Letting $z_\lambda = \prod_{i \in \mathbb{Z}_+} i^{m_i} m_i!$ where $m_i = \#\{j : \lambda_j = i\}$, $p_\lambda = p_{\lambda_1} \cdots p_{\lambda_k}$,

$$\chi(M) = \sum_{\lambda \vdash n} \text{tra}(\lambda|_M) \frac{p_\lambda}{z_\lambda} = \frac{1}{n!} \sum_{w \in S_n} \text{tra}(w|_M) p_{\lambda(w)}.$$

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.
- Letting $z_\lambda = \prod_{i \in \mathbb{Z}_+} i^{m_i} m_i!$ where $m_i = \#\{j : \lambda_j = i\}$, $p_\lambda = p_{\lambda_1} \cdots p_{\lambda_k}$,

$$\chi(M) = \sum_{\lambda \vdash n} \text{tra}(\lambda|_M) \frac{p_\lambda}{z_\lambda} = \frac{1}{n!} \sum_{w \in S_n} \text{tra}(w|_M) p_{\lambda(w)}.$$

- This sends

$$\chi: \bigoplus_n K_0(\text{Rep } S_n) \xrightarrow{\sim} \Lambda$$

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.
- Letting $z_\lambda = \prod_{i \in \mathbb{Z}_+} i^{m_i} m_i!$ where $m_i = \#\{j : \lambda_j = i\}$, $p_\lambda = p_{\lambda_1} \cdots p_{\lambda_k}$,

$$\chi(M) = \sum_{\lambda \vdash n} \text{tra}(\lambda|_M) \frac{p_\lambda}{z_\lambda} = \frac{1}{n!} \sum_{w \in S_n} \text{tra}(w|_M) p_{\lambda(w)}.$$

- This sends

$$\begin{aligned} \chi: \bigoplus_n K_0(\text{Rep } S_n) &\xrightarrow{\sim} \Lambda \\ \Sigma_\lambda &\longmapsto s_\lambda \end{aligned}$$

The classical story – functions versus groups

- Over \mathbb{C} , $\text{Rep } S_n$ is equivalent to symmetric functions via the Frobenius character.
- Letting $z_\lambda = \prod_{i \in \mathbb{Z}_+} i^{m_i} m_i!$ where $m_i = \#\{j : \lambda_j = i\}$, $p_\lambda = p_{\lambda_1} \cdots p_{\lambda_k}$,

$$\chi(M) = \sum_{\lambda \vdash n} \text{tra}(\lambda|_M) \frac{p_\lambda}{z_\lambda} = \frac{1}{n!} \sum_{w \in S_n} \text{tra}(w|_M) p_{\lambda(w)}.$$

- This sends

$$\chi: \bigoplus_n K_0(\text{Rep } S_n) \xrightarrow{\sim} \Lambda$$

$$\Sigma_\lambda \longmapsto s_\lambda$$

$$E_\lambda \longmapsto h_\lambda$$

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)?

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)? More precisely:

Question

Find a quasi-hereditary A with a map $\mathbb{C}S_n \longrightarrow A$ such that

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)? More precisely:

Question

Find a quasi-hereditary A with a map $\mathbb{C}S_n \longrightarrow A$ such that

standard module $\overset{\text{Res}}{\longmapsto}$ permutation module

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)? More precisely:

Question

Find a quasi-hereditary A with a map $\mathbb{C}S_n \longrightarrow A$ such that

standard module $\xrightarrow{\text{Res}}$ permutation module

simple module $\xrightarrow{\text{Res}}$ Specht module

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)? More precisely:

Question

Find a quasi-hereditary A with a map $\mathbb{C}S_n \longrightarrow A$ such that

standard module $\xrightarrow{\text{Res}}$ permutation module

simple module $\xrightarrow{\text{Res}}$ Specht module

Moreover find a BGG resolution over A of simples by standards such that restriction gives a resolution of Spechts by permutations

Question

Is there some highest-weight explanation/elucidation for this (the red boxes)? More precisely:

Question

Find a quasi-hereditary A with a map $\mathbb{C}S_n \longrightarrow A$ such that

standard module $\xrightarrow{\text{Res}}$ permutation module

simple module $\xrightarrow{\text{Res}}$ Specht module

Moreover find a BGG resolution over A of simples by standards such that restriction gives a resolution of Spechts by permutations, categorifying

$$s_\lambda = \det(h_{\lambda_i + j - i})_{i,j}.$$

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega$

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$
- $\mathring{\mathcal{R}}_\lambda$ is quasi-hereditary with weight poset an ideal in $S_{\ell(\lambda)}$.

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$
- $\mathring{\mathcal{R}}_\lambda$ is quasi-hereditary with weight poset an ideal in $S_{\ell(\lambda)}$.
- The “dominant” simple L_1 will have a BGG resolution by Vermas Δ_w .

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$
- $\mathring{\mathcal{R}}_\lambda$ is quasi-hereditary with weight poset an ideal in $S_{\ell(\lambda)}$.
- The “dominant” simple L_1 will have a BGG resolution by Vermas Δ_w .
- Under $\mathbb{C}S_n \longrightarrow \widehat{\mathcal{H}}_n \longrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathcal{R}_\alpha^\omega \longrightarrow \mathring{\mathcal{R}}_\lambda$ (Brundan-Kleshchev [BK09]), this becomes a resolution of the Specht module Σ_λ by permutation modules.

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$
- $\mathring{\mathcal{R}}_\lambda$ is quasi-hereditary with weight poset an ideal in $S_{\ell(\lambda)}$.
- The “dominant” simple L_1 will have a BGG resolution by Vermas Δ_w .
- Under $\mathbb{C}S_n \longrightarrow \widehat{\mathcal{H}}_n \longrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathcal{R}_\alpha^\omega \longrightarrow \mathring{\mathcal{R}}_\lambda$ (Brundan-Kleshchev [BK09]), this becomes a resolution of the Specht module Σ_λ by permutation modules.
- Homological computations are made diagrammatically via Soergel.

Spoilers

- This is done by considering a quotient of (cyclotomic) KLR.
- $\lambda \rightsquigarrow \alpha, \omega \rightsquigarrow \mathcal{R}_\alpha^\omega$
- Define a quotient $\mathring{\mathcal{R}}_\lambda$ by $\mathcal{R}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$
- $\mathring{\mathcal{R}}_\lambda$ is quasi-hereditary with weight poset an ideal in $S_{\ell(\lambda)}$.
- The “dominant” simple L_1 will have a BGG resolution by Vermas Δ_w .
- Under $\mathbb{C}S_n \longrightarrow \widehat{\mathcal{H}}_n \longrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathcal{R}_\alpha^\omega \longrightarrow \mathring{\mathcal{R}}_\lambda$ (Brundan-Kleshchev [BK09]), this becomes a resolution of the Specht module Σ_λ by permutation modules.
- Homological computations are made diagrammatically via Soergel. (“ $\mathring{\mathcal{R}}_\lambda$ is Morita-equivalent to a nil-Koszul algebra.”)

Previously

- This topic has been explored before in e.g. works of Zelevinsky, Arakawa-Suzuki, Orellana-Ram.

Previously

- This topic has been explored before in e.g. works of Zelevinsky, Arakawa-Suzuki, Orellana-Ram.
- Their works port the BGG resolution from category \mathcal{O} to some variant of S_n by using an exact (“Arakawa-Suzuki”) functor.

Previously

- This topic has been explored before in e.g. works of Zelevinsky, Arakawa-Suzuki, Orellana-Ram.
- Their works port the BGG resolution from category \mathcal{O} to some variant of S_n by using an exact (“Arakawa-Suzuki”) functor.
- Those works inspired this project.

Previously

- This topic has been explored before in e.g. works of Zelevinsky, Arakawa-Suzuki, Orellana-Ram.
- Their works port the BGG resolution from category \mathcal{O} to some variant of S_n by using an exact (“Arakawa-Suzuki”) functor.
- Those works inspired this project.
- We would like to elucidate the highest-weight structure ‘natively’.

The KLR algebra – generators

$$\mathcal{R} = \bigoplus_{\alpha} \mathcal{R}_{\alpha}.$$

The KLR algebra – generators

$\mathcal{R} = \bigoplus_{\alpha} \mathcal{R}_{\alpha}$. The monoidal generators are

The KLR algebra – relations

$$\begin{array}{c} \diagup \quad \diagdown \\ \bullet \end{array} - \begin{array}{c} \diagup \quad \diagdown \\ \bullet \end{array} = \begin{array}{c} \diagup \quad \diagdown \\ \bullet \end{array} - \begin{array}{c} \diagup \quad \diagdown \\ \bullet \end{array} = \begin{array}{c} | \\ i \end{array} \quad \begin{array}{c} | \\ i \end{array},$$

$$\begin{array}{c} \text{double crossing} \\ i \quad i \end{array} = 0,$$

$$\begin{array}{c} \text{double crossing} \\ i \quad i \pm 1 \end{array} = \pm \begin{array}{c} | \\ i \end{array} \quad \begin{array}{c} | \\ i \pm 1 \end{array} \quad \begin{array}{c} | \\ i \end{array} \quad \begin{array}{c} | \\ i \pm 1 \end{array},$$

$$\begin{array}{c} \text{double crossing} \\ i \quad i \pm 1 \quad i \end{array} = \begin{array}{c} \diagup \quad \diagdown \\ \diagup \quad \diagdown \\ \diagup \quad \diagdown \end{array} \quad \pm \quad \begin{array}{c} | \\ i \end{array} \quad \begin{array}{c} | \\ i \pm 1 \end{array} \quad \begin{array}{c} | \\ i \end{array} \quad \begin{array}{c} | \\ i \pm 1 \end{array};$$

The KLR algebra – relations

$$\begin{array}{c} \diagup \quad \diagdown \\[-10pt] i \qquad j \end{array} = \begin{array}{c} | \qquad | \\[-10pt] i \qquad j \end{array} \quad \text{for } |i - j| > 1,$$

$$\begin{array}{c} \diagup \quad \bullet \diagdown \\[-10pt] i \qquad j \end{array} = \begin{array}{c} \bullet \diagup \quad \diagdown \\[-10pt] i \qquad j \end{array} \quad \text{for } i \neq j,$$

$$\begin{array}{c} \bullet \diagup \quad \diagdown \\[-10pt] i \qquad j \end{array} = \begin{array}{c} \diagup \quad \bullet \diagdown \\[-10pt] i \qquad j \end{array} \quad \text{for } i \neq j,$$

$$\begin{array}{c} \diagup \quad \diagdown \\[-10pt] i \qquad j \qquad k \end{array} = \begin{array}{c} \diagup \quad \diagdown \\[-10pt] i \qquad j \qquad k \end{array} \quad \text{for } (j, k) \neq (i \pm 1, i).$$

The KLR algebra – cyclotomic relation

Given $\omega \in \Lambda_+$,

The KLR algebra – cyclotomic relation

Given $\omega \in \Lambda_+$,

$$\mathcal{R}_\alpha^\omega := \mathcal{R}_\alpha / \langle y_1^{\alpha_{c_1}^*(\omega)} e_c = 0 \rangle.$$

The KLR algebra – cyclotomic relation

Given $\omega \in \Lambda_+$,

$$\mathcal{R}_\alpha^\omega := \mathcal{R}_\alpha / \langle y_1^{\alpha_{c_1}^*(\omega)} e_c = 0 \rangle.$$

Diagrammatically:

$$\alpha_i^*(\omega) \bullet \left| \dots \right| = 0.$$

\mathcal{R}_λ

Let ϖ_i be fundamental weights, $\text{cont } \lambda$ be the (multi)set of contents of λ where the top-left box has content δ .

\mathcal{R}_λ

Let ϖ_i be fundamental weights, $\text{cont } \lambda$ be the (multi)set of contents of λ where the top-left box has content δ .

We will let $\mathcal{R}_\lambda = \mathcal{R}_\alpha^\omega$

\mathcal{R}_λ

Let ϖ_i be fundamental weights, $\text{cont } \lambda$ be the (multi)set of contents of λ where the top-left box has content δ .

We will let $\mathcal{R}_\lambda = \mathcal{R}_\alpha^\omega$, where

$$\alpha = \sum_{i \in \text{cont } \lambda} \alpha_i$$

\mathcal{R}_λ

Let ϖ_i be fundamental weights, $\text{cont } \lambda$ be the (multi)set of contents of λ where the top-left box has content δ .

We will let $\mathcal{R}_\lambda = \mathcal{R}_\alpha^\omega$, where

$$\alpha = \sum_{i \in \text{cont } \lambda} \alpha_i$$

and

$$\omega = \varpi_\delta + \varpi_{\delta-1} + \cdots + \varpi_{\delta-\ell(\lambda)+1}.$$

\mathcal{R}_λ

Let ϖ_i be fundamental weights, $\text{cont } \lambda$ be the (multi)set of contents of λ where the top-left box has content δ .

We will let $\mathcal{R}_\lambda = \mathcal{R}_\alpha^\omega$, where

$$\alpha = \sum_{i \in \text{cont } \lambda} \alpha_i$$

and

$$\omega = \varpi_\delta + \varpi_{\delta-1} + \cdots + \varpi_{\delta-\ell(\lambda)+1}.$$

This is requiring

$$\bullet \left| \cdots \right|_{(\delta - k + 1)} = 0, \quad \left| \cdots \right|_c = 0$$

for $1 \leq k \leq \ell(\lambda)$ and $c \notin \{\delta - k + 1\}_{1 \leq k \leq \ell(\lambda)}$.

Dominance order

For partitions: $\lambda \trianglerighteq \mu$ if

$$\sum_{i=1}^k \lambda_i \geq \sum_{i=1}^k \mu_i \quad \forall k.$$

Dominance order

For partitions: $\lambda \trianglerighteq \mu$ if

$$\sum_{i=1}^k \lambda_i \geq \sum_{i=1}^k \mu_i \quad \forall k.$$

For multi-partitions: $\lambda \trianglerighteq \mu$ if

$$\sum_{j=1}^{m-1} |\lambda^{(j)}| + \sum_{i=1}^k \lambda_i^{(m)} \geq \sum_{j=1}^{m-1} |\mu^{(j)}| + \sum_{i=1}^k \mu_i^{(m)} \quad \forall m, k.$$

Cellular structure

$\mathcal{R}_\alpha^\omega$ is cellular under the dominance order due to Hu-Mathas [HM10].

Cellular structure

$\mathcal{R}_\alpha^\omega$ is cellular under the dominance order due to Hu-Mathas [HM10].
Details are too involved.

Cellular structure

$\mathcal{R}_\alpha^\omega$ is cellular under the dominance order due to Hu-Mathas [HM10].
Details are too involved.

As an example: let $n = \delta = 2$, $\lambda = \square$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

Cellular structure

$\mathcal{R}_\alpha^\omega$ is cellular under the dominance order due to Hu-Mathas [HM10].
Details are too involved.

As an example: let $n = \delta = 2$, $\lambda = \begin{smallmatrix} \square & \square \\ & \square \end{smallmatrix}$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

$$\begin{pmatrix} \square \\ 0 \end{pmatrix} \quad \begin{pmatrix} \square \\ \square \end{pmatrix} \quad \begin{pmatrix} 0 \\ \square \square \end{pmatrix}$$

Cellular structure

As an example: let $n = \delta = 2$, $\lambda = \square$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

$$\begin{array}{c} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \\ \hline \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \boxed{\begin{array}{c|c} \textcolor{red}{|} & \bullet \\ \hline \end{array}} \end{array}$$

Cellular structure

As an example: let $n = \delta = 2$, $\lambda = \square$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \overline{| \quad | \quad \bullet|}$$

$$\begin{array}{c} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \\ \hline \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \end{array} \quad \begin{array}{c} | \quad | \quad \times \\ \times \quad \times \end{array} = \quad | \quad \bullet$$

Cellular structure

As an example: let $n = \delta = 2$, $\lambda = \square$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

$$\begin{array}{c} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \\ \hline \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \end{array} \quad \begin{array}{c} | \\ | \end{array} \quad \bullet$$

$$\begin{array}{c} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \\ \hline \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \end{array} \quad \begin{array}{c} | \quad | \quad \times \\ \times \quad \times \end{array} = \begin{array}{c} | \quad \bullet \end{array}$$

$$\begin{array}{c} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} \\ \hline \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{array} \quad \begin{array}{c} | \quad | \quad | \end{array}$$

Cellular structure

As an example: let $n = \delta = 2$, $\lambda = \square$, so $\alpha = \alpha_1 + \alpha_2$, $\omega = \varpi_2 + \varpi_1$;
let 1 be black and 2 be red.

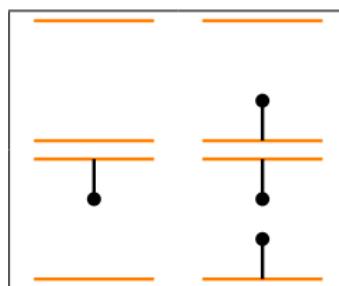
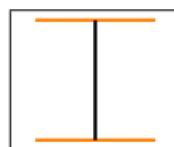
$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \overline{| \quad | \quad \bullet|}$$

$$\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \quad \overline{| \quad | \quad \times \quad | \quad | \quad \times} = | \quad \bullet$$

$$\begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 2 \end{pmatrix} \quad \overline{| \quad | \quad |}$$

Multiplication only goes upwards.

Compare this to the earlier:



In fact,

$$| \bullet = \textcolor{red}{\cancel{\bullet}} = 0.$$

In fact,

$$| \bullet \bullet = \bullet \cancel{\bullet} = 0.$$

A cellular algebra is quasi-hereditary iff every cell has an idempotent.

In fact,

$$| \bullet = \textcolor{red}{\cancel{\bullet}} = 0.$$

A cellular algebra is quasi-hereditary iff every cell has an idempotent. We want a quasi-hereditary A , so we want to kill this nilpotent cell.

Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.

Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.
- A result of Bowman [Bow17] says the cellular structure of \mathcal{R}_λ respects this.

Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.
- A result of Bowman [Bow17] says the cellular structure of \mathcal{R}_λ respects this.
- This justifies the construction

$$\mathring{\mathcal{R}}_\lambda := \mathring{\mathcal{R}} := \mathcal{R}_\lambda / \langle \nu \rangle_{\nu \text{ multi-row}}.$$

Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.
- A result of Bowman [Bow17] says the cellular structure of \mathcal{R}_λ respects this.
- This justifies the construction

$$\mathring{\mathcal{R}}_\lambda := \mathring{\mathcal{R}} := \mathcal{R}_\lambda / \langle \nu \rangle_{\nu \text{ multi-row}}.$$

- This algebra is very easy to write down explicitly, simply keep the cells labeled by one-row multi-partitions.

Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.
- A result of Bowman [Bow17] says the cellular structure of \mathcal{R}_λ respects this.
- This justifies the construction

$$\mathring{\mathcal{R}}_\lambda := \mathring{\mathcal{R}} := \mathcal{R}_\lambda / \langle \nu \rangle_{\nu \text{ multi-row}}.$$

- This algebra is very easy to write down explicitly, simply keep the cells labeled by one-row multi-partitions.
- This algebra is quasi-hereditary with poset $W_\lambda = \{w : w \leq w_\lambda\}$.

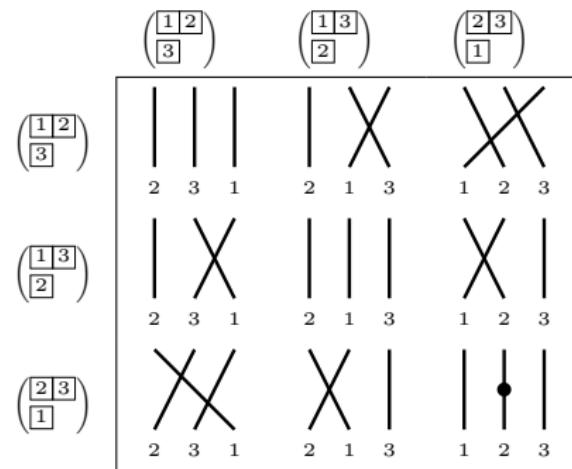
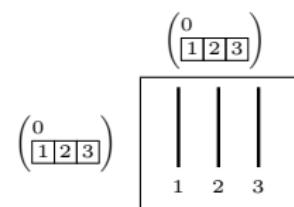
Quotienting the cyclotomic KLR

- There is an alternative ordering, the coarsened order of Uglov, on multi-partitions.
- A result of Bowman [Bow17] says the cellular structure of \mathcal{R}_λ respects this.
- This justifies the construction

$$\mathring{\mathcal{R}}_\lambda := \mathring{\mathcal{R}} := \mathcal{R}_\lambda / \langle \nu \rangle_{\nu \text{ multi-row}}.$$

- This algebra is very easy to write down explicitly, simply keep the cells labeled by one-row multi-partitions.
- This algebra is quasi-hereditary with poset $W_\lambda = \{w : w \leq w_\lambda\}$.
- It is also equivalent to a Soergel calculus depending on W_λ .

Example: $\overset{\circ}{\mathcal{R}}_\lambda$ for $\lambda = \square, n = 3, \delta = 2$



The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul.

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

$$0 \longrightarrow \Delta_{w_\lambda} \longrightarrow \cdots \longrightarrow \bigoplus_{\ell(w)=k} \Delta_w \longrightarrow \cdots \longrightarrow \Delta_1 \longrightarrow L_1 \longrightarrow 0.$$

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

$$0 \longrightarrow \Delta_{w_\lambda} \longrightarrow \cdots \longrightarrow \bigoplus_{\ell(w)=k} \Delta_w \longrightarrow \cdots \longrightarrow \Delta_1 \longrightarrow L_1 \longrightarrow 0.$$

When restricted to the action of S_n via the map $\mathbb{C}S_n \hookrightarrow \widehat{\mathcal{H}}_n \twoheadrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathring{\mathcal{R}}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$, this resolution becomes

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

$$0 \longrightarrow \Delta_{w_\lambda} \longrightarrow \cdots \longrightarrow \bigoplus_{\ell(w)=k} \Delta_w \longrightarrow \cdots \longrightarrow \Delta_1 \longrightarrow L_1 \longrightarrow 0.$$

When restricted to the action of S_n via the map $\mathbb{C}S_n \hookrightarrow \widehat{\mathcal{H}}_n \twoheadrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathring{\mathcal{R}}_\alpha^\omega \twoheadrightarrow \mathring{\mathcal{R}}_\lambda$, this resolution becomes

$$\cdots \longrightarrow \bigoplus_{\ell(w)=k} E_{w \circ \lambda} \longrightarrow \cdots \longrightarrow E_\lambda \longrightarrow \Sigma_\lambda \longrightarrow 0.$$

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

$$0 \longrightarrow \Delta_{w_\lambda} \longrightarrow \cdots \longrightarrow \bigoplus_{\ell(w)=k} \Delta_w \longrightarrow \cdots \longrightarrow \Delta_1 \longrightarrow L_1 \longrightarrow 0.$$

When restricted to the action of S_n via the map $\mathbb{C}S_n \hookrightarrow \widehat{\mathcal{H}}_n \twoheadrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathcal{R}_\alpha^\omega \twoheadrightarrow \mathcal{R}_\lambda$, this resolution becomes

$$\cdots \longrightarrow \bigoplus_{\ell(w)=k} E_{w \circ \lambda} \longrightarrow \cdots \longrightarrow E_\lambda \longrightarrow \Sigma_\lambda \longrightarrow 0.$$

Decategorifying this resolution via alternating sum of Frobenius character/cycle index series recovers Jacobi-Trudi:

$$s_\lambda = \det(h_{\lambda_i - i + j})_{i,j}.$$

The BGG resolution

Theorem (Z.)

$\mathring{\mathcal{R}}_\lambda$ is nil-Koszul. There is a (finite) BGG resolution in $\text{Mod } \mathring{\mathcal{R}}_\lambda$, namely a resolution of the simple module L_1 by Vermas,

$$0 \longrightarrow \Delta_{w_\lambda} \longrightarrow \cdots \longrightarrow \bigoplus_{\ell(w)=k} \Delta_w \longrightarrow \cdots \longrightarrow \Delta_1 \longrightarrow L_1 \longrightarrow 0.$$

When restricted to the action of S_n via the map $\mathbb{C}S_n \hookrightarrow \widehat{\mathcal{H}}_n \twoheadrightarrow \widehat{\mathcal{H}}_\alpha^\omega \xrightarrow{\sim} \mathcal{R}_\alpha^\omega \twoheadrightarrow \mathcal{R}_\lambda$, this resolution becomes

$$\cdots \longrightarrow \bigoplus_{\ell(w)=k} E_{w \circ \lambda} \longrightarrow \cdots \longrightarrow E_\lambda \longrightarrow \Sigma_\lambda \longrightarrow 0.$$

Decategorifying this resolution via alternating sum of Frobenius character/cycle index series recovers Jacobi-Trudi:

$$s_\lambda = \det(h_{\lambda_i - i + j})_{i,j}.$$

There is a positive characteristic version too.

Thank you!

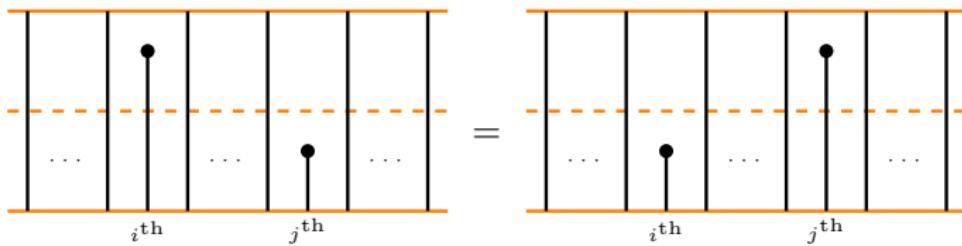
Thank you for coming to my talk!

Questions

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.



Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

\mathcal{S}_λ^- is Koszul under the Soergel grading.

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

\mathcal{S}_λ^- is Koszul under the Soergel grading.

Moreover

$$\mathcal{S}_\lambda \overset{\mathsf{L}}{\otimes}_{\mathcal{S}_\lambda^-} \mathbb{K}e^w = \Delta_w,$$

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

\mathcal{S}_λ^- is Koszul under the Soergel grading.

Moreover

$$\mathcal{S}_\lambda \xrightarrow{\mathsf{L}} \otimes_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w,$$

so that

$$\mathsf{RHom}_{\mathcal{S}_\lambda}(\Delta_w, \square) = \mathsf{RHom}_{\mathcal{S}_\lambda^-}(\mathbb{k}e^w, \square).$$

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

\mathcal{S}_λ^- is Koszul under the Soergel grading.

Moreover

$$\mathcal{S}_\lambda \xrightarrow{\mathsf{L}} \mathcal{S}_\lambda^- \otimes_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w,$$

so that

$$\mathsf{RHom}_{\mathcal{S}_\lambda}(\Delta_w, \square) = \mathsf{RHom}_{\mathcal{S}_\lambda^-}(\mathbb{k}e^w, \square).$$

In particular

$$\mathsf{Ext}_{\mathcal{S}_\lambda}^\bullet(\Delta_w, L_1) = \mathsf{Ext}_{\mathcal{S}_\lambda^-}^\bullet(\mathbb{k}e^w, \mathbb{k}e^1) = e^w \mathcal{S}_\lambda^{-,!} e^1 = \mathbb{k}[-\ell(w)].$$

Cyclotomic Soergel is nil-Koszul

Theorem (Z.)

There is a “lower-half subalgebra” \mathcal{S}_λ^- of \mathcal{S}_λ generated by lollipops which is essentially a polynomial ring.

\mathcal{S}_λ^- is Koszul under the Soergel grading.

Moreover

$$\mathcal{S}_\lambda \xrightarrow{\mathsf{L}} \mathcal{S}_\lambda^- \otimes_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w,$$

so that

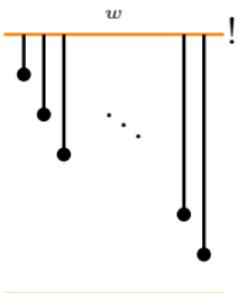
$$\mathsf{RHom}_{\mathcal{S}_\lambda}(\Delta_w, \square) = \mathsf{RHom}_{\mathcal{S}_\lambda^-}(\mathbb{k}e^w, \square).$$

In particular

$$\mathsf{Ext}_{\mathcal{S}_\lambda}^\bullet(\Delta_w, L_1) = \mathsf{Ext}_{\mathcal{S}_\lambda^-}^\bullet(\mathbb{k}e^w, \mathbb{k}e^1) = e^w \mathcal{S}_\lambda^{-,!} e^1 = \mathbb{k}[-\ell(w)].$$

This is the homological information needed to prove the BGG resolution.

The space $e^w \mathcal{S}_\lambda^{-,!} e^1 = \mathbb{k}[-\ell(w)]$ is spanned by



Comment on nil-Koszulity

- Last year we showed that nil-Brauer (due to Brundan-Wang-Webster) was nil-Koszul.

Comment on nil-Koszulity

- Last year we showed that nil-Brauer (due to Brundan-Wang-Webster) was nil-Koszul.
- Two algebras (due to Khovanov-Sazdanović), categorifying the Hermite and Chebyshev polynomials, are also nil-Koszul.

Comment on nil-Koszulity

- Last year we showed that nil-Brauer (due to Brundan-Wang-Webster) was nil-Koszul.
- Two algebras (due to Khovanov-Sazdanović), categorifying the Hermite and Chebyshev polynomials, are also nil-Koszul.
- Now one more algebra (cyclotomic Soergel) is on the list.

Comment on nil-Koszulity

- Last year we showed that nil-Brauer (due to Brundan-Wang-Webster) was nil-Koszul.
- Two algebras (due to Khovanov-Sazdanović), categorifying the Hermite and Chebyshev polynomials, are also nil-Koszul.
- Now one more algebra (cyclotomic Soergel) is on the list.
- It seems lots of algebras appearing in categorification are nil-Koszul.

Comment on nil-Koszulity

- Last year we showed that nil-Brauer (due to Brundan-Wang-Webster) was nil-Koszul.
- Two algebras (due to Khovanov-Sazdanović), categorifying the Hermite and Chebyshev polynomials, are also nil-Koszul.
- Now one more algebra (cyclotomic Soergel) is on the list.
- It seems lots of algebras appearing in categorification are nil-Koszul.
- Why?

Projective resolutions of Vermas

Incidentally the statement that $\mathcal{S}_\lambda \overset{\mathbb{L}}{\otimes}_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w$ gives us a projective resolution of Vermas

Projective resolutions of Vermas

Incidentally the statement that $\mathcal{S}_\lambda \overset{\mathbb{L}}{\otimes}_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w$ gives us a projective resolution of Vermas, using that \mathcal{S}^- is essentially a polynomial ring.

Projective resolutions of Vermas

Incidentally the statement that $\mathcal{S}_\lambda \overset{\mathsf{L}}{\otimes}_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w$ gives us a projective resolution of Vermas, using that \mathcal{S}^- is essentially a polynomial ring.

- There is an explicit Koszul resolution

$$\mathcal{S}^- \otimes_{\mathbb{K}} \mathcal{S}^{-,!,\vee,\bullet} \simeq \mathbb{k}e^w.$$

Projective resolutions of Vermas

Incidentally the statement that $\mathcal{S}_\lambda \overset{\mathsf{L}}{\otimes}_{\mathcal{S}_\lambda^-} \mathbb{k}e^w = \Delta_w$ gives us a projective resolution of Vermas, using that \mathcal{S}^- is essentially a polynomial ring.

- There is an explicit Koszul resolution

$$\mathcal{S}^- \otimes_{\mathbb{K}} \mathcal{S}^{-,!,\vee,\bullet} \simeq \mathbb{k}e^w.$$

- This is a free \mathcal{S}^- -resolution, so use it to compute the derived tensor.

Projective resolutions of Vermas

Corollary

We have a resolution

$$\mathcal{S} \otimes_{\mathbb{K}} \mathcal{S}^{-,!,\vee,\bullet} e^w \simeq \Delta_w;$$

Projective resolutions of Vermas

Corollary

We have a resolution

$$\mathcal{S} \otimes_{\mathbb{K}} \mathcal{S}^{-,!,\vee,\bullet} e^w \simeq \Delta_w;$$

the maps are

$$\begin{aligned} d: \mathcal{S} \otimes_{\mathbb{K}} \mathcal{S}_k^{-,!,\vee} e^w &\longrightarrow \mathcal{S} \otimes_{\mathbb{K}} \mathcal{S}_{k-1}^{-,!,\vee} e^w \\ x \otimes P(-_1 e^w, \dots, -_n e^w) &\longmapsto \sum_{\substack{\text{ways to write } P = -_i \cdot P'}} x \cdot -_i \otimes P', \end{aligned}$$

where $P \in \mathcal{S}_k^{-,!,\vee}$ is a degree k anti-commutative polynomial in the lollipops.

Proof strategy

- ① First key idea: “weight theory”

Proof strategy

- ① First key idea: “weight theory” —> stratification of the module category

Proof strategy

- ① First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor

Proof strategy

- ① First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.

Proof strategy

- ① First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.
 - This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum [AMGR22], and Dhillon [Dhi19].

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.
 - This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum [AMGR22], and Dhillon [Dhi19].
- ➋ Second key idea: This homological information can be computed using Koszul methods.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.
 - This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum [AMGR22], and Dhillon [Dhi19].
- ➋ Second key idea: This homological information can be computed using Koszul methods.

Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.
 - This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum [AMGR22], and Dhillon [Dhi19].
- ➋ Second key idea: This homological information can be computed using Koszul methods.

Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

- Then we can use a naive resolution to compute these Ext groups.

Proof strategy

- ➊ First key idea: “weight theory” —> stratification of the module category —> “filtration” of the identity functor —> spectral sequence converging to any object.
 - In particular, we can apply this to simple objects.
 - Terms of this spectral sequence involve homological information, in the form of certain Ext groups.
 - Concentration of these Ext groups (cf. “Kostant modules”) imply a “BGG resolution”.
 - This idea is due to Gaitsgory, Ayala-Mazel-Gee-Rozenblyum [AMGR22], and Dhillon [Dhi19].
- ➋ Second key idea: This homological information can be computed using Koszul methods.

Slogan

Koszulity of half of A is intimately connected to BGG resolutions.

- Then we can use a naive resolution to compute these Ext groups.
- The spectral sequence is a resolution for modules which are Koszul over half of A .

Algebraic recollement

- The stratification will have recollements on each level. Details unimportant.

Algebraic recollement

- The stratification will have recollements on each level. Details unimportant.
- By the $D^- \text{Mod } A/AeA \longrightarrow D^- \text{Mod } A \longrightarrow D^- \text{Mod } eAe$ setup of [CPS88], set $A = A^{\geq \theta}$ and $e = e^\theta$ to get:

The diagram illustrates an algebraic recollement with three categories of modules over stratified algebras:

- Left Category:** $D^- \text{Mod } A^{>\theta}$. It has a left adjoint $\iota_\theta^* = A^{>\theta} \otimes_{A \geq \theta} \square$ and a right adjoint $\iota_\theta^! = \bigoplus_i \text{RHom}_{A \geq \theta}(A^{>\theta} 1^i, \square)$.
- Middle Category:** $D^- \text{Mod } A^{\geq \theta}$. It has a left adjoint \perp and a right adjoint \perp .
- Right Category:** $D^- \text{Mod } A^\theta$. It has a left adjoint $j_!^\theta = A^{\geq \theta} e^\theta \otimes_{A^\theta} \square$ and a right adjoint $j_*^\theta = \bigoplus_i \text{Hom}_{A^\theta}(e^\theta A^{\geq \theta} 1^i, \square)$.

Recollement morphisms are indicated by horizontal arrows between the middle and right categories:

- A horizontal arrow from $D^- \text{Mod } A^{>\theta}$ to $D^- \text{Mod } A^{\geq \theta}$ labeled \perp and ι_θ .
- A horizontal arrow from $D^- \text{Mod } A^{\geq \theta}$ to $D^- \text{Mod } A^\theta$ labeled \perp and $j^\theta = e^\theta \square$.

Stratification and spectral sequences

- Let Θ be sufficiently nice.

Stratification and spectral sequences

- Let Θ be sufficiently nice.
- There is a spectral sequence (functorial in the input \square)

$$E_1^{p,q} = \bigoplus_{\ell(\theta)=-p} \Delta(\theta) \otimes_{A^\theta} \text{Ext}_A^{-(p+q)}(\Delta(\theta), \square^\dagger)^* \implies E_\infty^{p,q} = \text{gr}^{-p} H^{p+q}(\square),$$

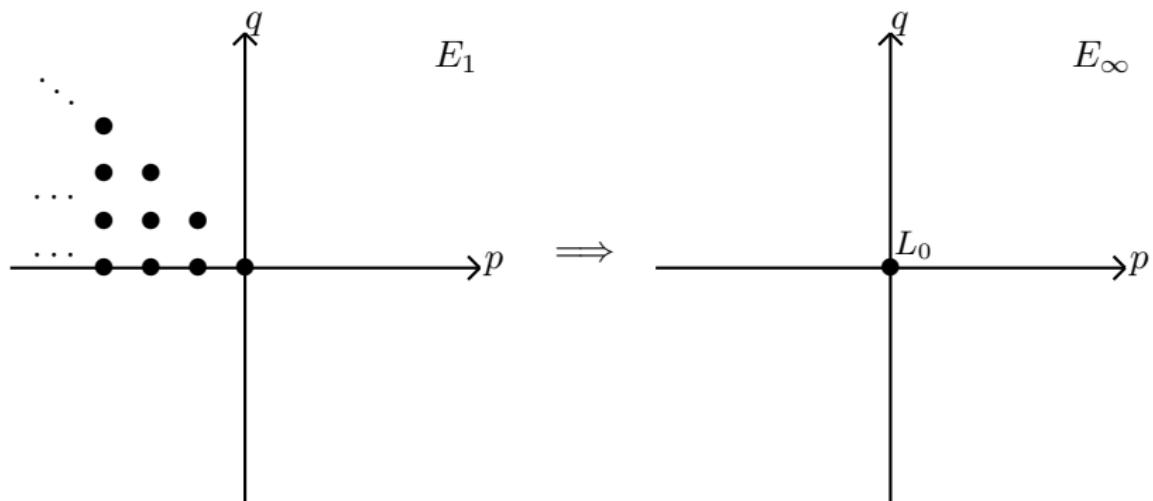
$$\text{where } \Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_\lambda^{\overline{l_\lambda(\theta)}} = A^{\geq \theta} e^\theta.$$

Stratification and spectral sequences

- Let Θ be sufficiently nice.
- There is a spectral sequence (functorial in the input \square)

$$E_1^{p,q} = \bigoplus_{\ell(\theta)=-p} \Delta(\theta) \otimes_{A^\theta} \text{Ext}_A^{-(p+q)}(\Delta(\theta), \square^\dagger)^* \implies E_\infty^{p,q} = \text{gr}^{-p} H^{p+q}(\square),$$

where $\Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_{\lambda}^{\overline{l_\lambda(\theta)}} = A^{\geq \theta} e^\theta$. $\deg d_r = (r, 1-r)$:

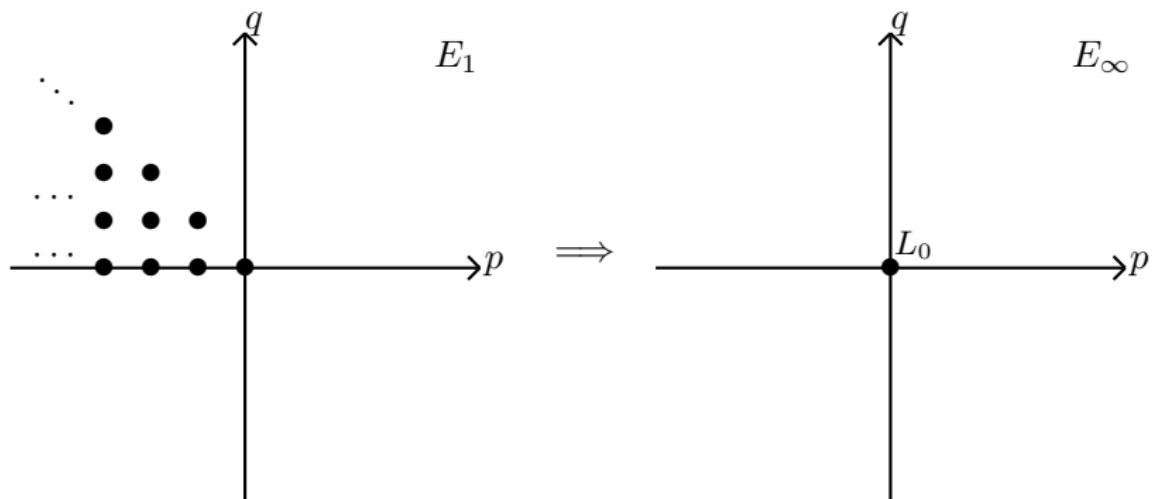


Stratification and spectral sequences

- Let Θ be sufficiently nice.
- There is a spectral sequence (functorial in the input \square)

$$E_1^{p,q} = \bigoplus_{\ell(\theta)=-p} \Delta(\theta) \otimes_{A^\theta} \text{Ext}_A^{-(p+q)}(\Delta(\theta), \square^\dagger)^* \implies E_\infty^{p,q} = \text{gr}^{-p} H^{p+q}(\square),$$

where $\Delta(\theta) := \bigoplus_{\lambda \in \theta} \Delta_{\lambda}^{\overline{l_\lambda(\theta)}} = A^{\geq \theta} e^\theta$. $\deg d_r = (r, 1-r)$:



Remark: Cf. Koszul duality.

- To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.

- To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.
- Idea: Koszul objects have good Ext concentration properties.

- To obtain a resolution, we need the Ext groups to be concentrated in certain degrees.
- Idea: Koszul objects have good Ext concentration properties.

Definition

A quadratic graded algebra A ($A_0 = \mathbb{k}$) is “Koszul” if $\text{Ext}_A(\mathbb{k}, \mathbb{k})$ is nonzero only when the homological degree agrees with the Koszul degree.

Example: category \mathcal{O} for \mathfrak{sl}_2

- It is classical that L_0 has concentrated Ext groups:

Example: category \mathcal{O} for \mathfrak{sl}_2

- It is classical that L_0 has concentrated Ext groups:

$$\mathrm{Ext}^0(\Delta_0, L_0) = \mathbb{C}, \quad \mathrm{Ext}^0(\Delta_{-2}, L_0) = 0$$

$$\mathrm{Ext}^1(\Delta_0, L_0) = 0, \quad \mathrm{Ext}^1(\Delta_{-2}, L_0) = \mathbb{C}.$$

Example: category \mathcal{O} for \mathfrak{sl}_2

- It is classical that L_0 has concentrated Ext groups:

$$\mathrm{Ext}^0(\Delta_0, L_0) = \mathbb{C}, \quad \mathrm{Ext}^0(\Delta_{-2}, L_0) = 0$$

$$\mathrm{Ext}^1(\Delta_0, L_0) = 0, \quad \mathrm{Ext}^1(\Delta_{-2}, L_0) = \mathbb{C}.$$

- Then the spectral sequence above exactly recovers the BGG resolution.

Example: category \mathcal{O} for \mathfrak{sl}_2

- It is classical that L_0 has concentrated Ext groups:

$$\mathrm{Ext}^0(\Delta_0, L_0) = \mathbb{C}, \quad \mathrm{Ext}^0(\Delta_{-2}, L_0) = 0$$

$$\mathrm{Ext}^1(\Delta_0, L_0) = 0, \quad \mathrm{Ext}^1(\Delta_{-2}, L_0) = \mathbb{C}.$$

- Then the spectral sequence above exactly recovers the BGG resolution.
- Remark: It can also recover the standard filtration of projectives.

Some predicted questions

- Is there a monoidal product on $\mathring{\mathcal{R}} = \bigoplus_{\lambda} \mathring{\mathcal{R}}_{\lambda}$ categorifying the Littlewood-Richardson structure?
- What does this say about positive characteristic?
- Is $\mathring{\mathcal{R}}_{\lambda}$ itself nil-Koszul?
- What about the skew Jacobi-Trudi identity for skew Schur functions?

Non-split decomposition

- Lauda's $\mathcal{U}_q(\mathfrak{sl}_2)$ is triangular-based.

Non-split decomposition

- Lauda's $\mathcal{U}_q(\mathfrak{sl}_2)$ is triangular-based.
- However, it does not have a subalgebra like $\mathcal{U}_q(\mathfrak{sl}_2)^-$.

Non-split decomposition

- Lauda's $\mathcal{U}_q(\mathfrak{sl}_2)$ is triangular-based.
- However, it does not have a subalgebra like $\mathcal{U}_q(\mathfrak{sl}_2)^-$.
- Instead, one needs to work with a bigger object $\mathcal{U}_q(\mathfrak{sl}_2)^\flat$, which actually is a subalgebra.

Non-split decomposition

- Lauda's $\mathcal{U}_q(\mathfrak{sl}_2)$ is triangular-based.
- However, it does not have a subalgebra like $\mathcal{U}_q(\mathfrak{sl}_2)^-$.
- Instead, one needs to work with a bigger object $\mathcal{U}_q(\mathfrak{sl}_2)^\flat$, which actually is a subalgebra.
- Categorification: projectives categorify Lusztig's canonical basis.

Non-split decomposition

- Lauda's $\mathcal{U}_q(\mathfrak{sl}_2)$ is triangular-based.
- However, it does not have a subalgebra like $\mathcal{U}_q(\mathfrak{sl}_2)^-$.
- Instead, one needs to work with a bigger object $\mathcal{U}_q(\mathfrak{sl}_2)^\flat$, which actually is a subalgebra.
- Categorification: projectives categorify Lusztig's canonical basis.

Question

What do the standard modules correspond to?

Stratifications within stratifications

- The affine oriented Brauer category is triangular-based.

Stratifications within stratifications

- The affine oriented Brauer category is triangular-based.
- However, this structure alone does not utilize the obvious ordering on the simples of each Cartan.

Stratifications within stratifications

- The affine oriented Brauer category is triangular-based.
- However, this structure alone does not utilize the obvious ordering on the simples of each Cartan.
- By using the stratification of $\widehat{\mathcal{H}}_n$ above, we should obtain finer stratifications.

References

- David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum.
Stratified noncommutative geometry, 2022.
[arXiv:1910.14602](https://arxiv.org/abs/1910.14602).
- Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel.
Koszul duality patterns in representation theory.
Journal of the American Mathematical Society, 9(2):473–527, 1996.
- Jonathan Brundan and Alexander Kleshchev.
Blocks of cyclotomic hecke algebras and khovanov-laude algebras.
Inventiones mathematicae, 178(3):451–484, 2009.
- Christopher Bowman.
The many graded cellular bases of hecke algebras.
arXiv preprint arXiv:1702.06579, 2017.
- Jonathan Brundan.
Graded triangular bases, 2023.
[arXiv:2305.05122](https://arxiv.org/abs/2305.05122).
- E. Cline, B. Parshall, and L. Scott.
Finite dimensional algebras and highest weight categories.
Journal für die reine und angewandte Mathematik, 391:85–99, 1988.
- Gurbir Dhillon.
Bernstein-Gelfand-Gelfand resolutions and the constructible t -structure, 2019.
[arXiv:1910.07066](https://arxiv.org/abs/1910.07066).
- Ben Elias and Geordie Williamson.
Soergel calculus.
Representation Theory of the American Mathematical Society, 20(12):295–374, 2016.
- Jun Hu and Andrew Mathas.

Koszul duality

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and $A^!$.

Koszul duality

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and $A^!$.

$$\mathcal{K}_{A^+} : \mathsf{D}^\nwarrow \mathsf{Mod} A^+ \longrightarrow \mathsf{D}^\searrow \mathsf{Mod} A^{+,!},$$

Koszul duality

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and $A^!$.

$$\mathcal{K}_{A^+} : \mathsf{D}^\leftarrow \mathsf{Mod} A^+ \longrightarrow \mathsf{D}^\leftarrow \mathsf{Mod} A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \text{sh}(\mathbb{K} \overset{L}{\otimes}_{A^+} \text{refl } \square) = \text{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \text{refl } \square^\dagger)^*.$$

Koszul duality

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and $A^!$.

$$\mathcal{K}_{A^+} : \mathsf{D}^\leftarrow \mathsf{Mod} A^+ \longrightarrow \mathsf{D}^\leftarrow \mathsf{Mod} A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \text{sh}(\mathbb{K} \overset{L}{\otimes}_{A^+} \text{refl } \square) = \text{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \text{refl } \square^\dagger)^*.$$

Here $\text{sh } M = M[n]$ if M is concentrated in Koszul degree n , and $\text{refl}(M)_j = M_{-j}$.

Koszul duality

We are using the *inverse* Koszul duality of [BGS96], and we flip the axes and swap the roles of A and $A^!$.

$$\mathcal{K}_{A^+} : \mathsf{D}^\leftarrow \mathsf{Mod} A^+ \longrightarrow \mathsf{D}^\leftarrow \mathsf{Mod} A^{+,!},$$

where

$$\mathcal{K}_{A^+} = \text{sh}(\mathbb{K} \overset{L}{\otimes}_{A^+} \text{refl } \square) = \text{sh} \mathsf{RHom}_{A^-}(\mathbb{K}, \text{refl } \square^\dagger)^*.$$

Here $\text{sh } M = M[n]$ if M is concentrated in Koszul degree n , and $\text{refl}(M)_j = M_{-j}$.

Then the spectral sequence looks like

$$\Delta \otimes_{A^+} \mathcal{K}_{A^+}(\square).$$

The differential in Koszul duality

Let us briefly explain the sign rules for the twisted tensor product. Given $A \odot M$, and letting $C = A^\dagger$ be the Koszul dual coalgebra, we have that $C \otimes^\tau M$ is a dg C -comodule where the coaction is on the first entry and the differential is:

$$d^\tau(c \otimes v) = d(C) \otimes v + (-1)^{|c|} c \otimes d(v) + (-1)^{|c_{(1)}|} c_{(1)} \otimes \tau(c_{(2)})v.$$

Similarly, given a comodule $C \stackrel{\text{co}}{\odot} N$, we obtain $A \otimes^\tau N$ a dg A -module, where the action is on the first entry and the differential is

$$d^\tau(a \otimes u) = d(a) \otimes u + (-1)^{|a|} a \otimes d(u) + (-1)^{|a|+1} a\tau(u_{(-1)}) \otimes u_{(0)}.$$

Let us briefly explain what the coderived category is. The cheap thing to do is to say that it is the localization of the category of (cocomplete, meaning that N is the union of the kernels of $N \rightarrow \overline{C}^{\otimes n} \otimes N$) dg C -comodules at the class of morphisms which become quasi-isomorphisms under the functor $A \otimes^\tau \square$. The longer thing to say is that the coderived category is the quotient category of the homotopy category of dg comodules by the minimal triangulated subcategory closed under infinite direct sums which contains the totalization comodules of all exact triples of C -comodules.

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

We will consider

$$\mathcal{S}_\lambda := \mathbb{C} \otimes_R \text{End} \left(\bigoplus_{\underline{w} \in S_\lambda} \text{BS}_{\underline{w}} \right).$$

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

We will consider

$$\mathcal{S}_\lambda := \mathbb{C} \otimes_R \text{End} \left(\bigoplus_{\underline{w} \in S_\lambda} \text{BS}_{\underline{w}} \right).$$

In other words we take cyclotomic Soergel calculus with endpoints $\underline{w} \in S_\lambda$.

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

We will consider

$$\mathcal{S}_\lambda := \mathbb{C} \otimes_R \text{End} \left(\bigoplus_{\underline{w} \in S_\lambda} \text{BS}_{\underline{w}} \right).$$

In other words we take cyclotomic Soergel calculus with endpoints $\underline{w} \in S_\lambda$.

This is a cellular algebra via the light leaves basis of Elias-Williamson [EW16].

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

We will consider

$$\mathcal{S}_\lambda := \mathbb{C} \otimes_R \text{End} \left(\bigoplus_{\underline{w} \in S_\lambda} \text{BS}_{\underline{w}} \right).$$

In other words we take cyclotomic Soergel calculus with endpoints $\underline{w} \in S_\lambda$.

This is a cellular algebra via the light leaves basis of Elias-Williamson [EW16].

It is Morita-equivalent to $\mathring{\mathcal{R}}_\lambda$:

$$\text{Mod } \mathring{\mathcal{R}}_\lambda \cong \text{Mod } \mathcal{S}_\lambda,$$

Our choice for Soergel

Let

$$S_\lambda = \{\underline{w} : \ell(\underline{w}) \leq \ell(w_\lambda), \underline{w} \text{ is a subword of some reduced word for } w_\lambda\}.$$

We will consider

$$\mathcal{S}_\lambda := \mathbb{C} \otimes_R \text{End} \left(\bigoplus_{\underline{w} \in S_\lambda} \text{BS}_{\underline{w}} \right).$$

In other words we take cyclotomic Soergel calculus with endpoints $\underline{w} \in S_\lambda$.

This is a cellular algebra via the light leaves basis of Elias-Williamson [EW16].

It is Morita-equivalent to $\mathring{\mathcal{R}}_\lambda$:

$$\text{Mod } \mathring{\mathcal{R}}_\lambda \cong \text{Mod } \mathcal{S}_\lambda,$$

so that

$$\text{Ext}_{\mathcal{S}_\lambda}^\bullet(\Delta_w, L_1) = \text{Ext}_{\mathring{\mathcal{R}}_\lambda}^\bullet(\Delta_w, L_1).$$