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The color scheme for these pseminar notes is a green value of 0.420. These truncated notes on Lie
superalgebras and their representations are for the first two talks of a seminar titled “Lie Superalgebras
and Categorifcation” and run by Cailan Li and Alvaro Martinez. See the seminar website at here and the
syllabus here. I have decided to take the first two talks to put on my website because they are basic and
general (and complete) enough to maybe be of use to people. Unfortunately the seminar quickly moved
beyond the basic representation theory and onto categorification, so we never covered things like linkage.
If ever one day I finish this story and complete these notes, I will (try to) be sure to update them on my
website.

Any mistakes are of course my own and not the speakers’. Things called “postmortem remarks” are
made by myself after the fact and can therefore be completely wrong.
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1. 01/25 – Lie Superalgebra Fundamentals (Cailan Li)

1.1. Basic definitions. We begin with some basic definitions.Definition 1.1.1. A “super vector space”, or “vector superspace”/“superspace”, is a Z2-graded space
V = V0 ⊕ V1. Given a homogeneous vector v ∈ Vi, let |v| = i ∈ Z2 denote the “parity” of the vector.

Given a superspace V , let Π be the parity-reversing functor, namely Π(V )i = Vi+1 for i ∈ Z2.

Cailan and the book use V0 and V1, but I will write only V0 and V1 for convenience. EDIT: Cailan agrees
with me.
Definition 1.1.2. A “Lie superalgebra” is a superspace g = g0 ⊕ g1 equipped with a Z2-graded bilinear
operation [□,□] : g× g −! g such that for all homogeneous x, y, z we have

• (skew-supersymmetry) [x, y] = −(−1)|x||y|[y, x];

• (superJacobi) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]].

In particular, e.g. the bracket of a even and an odd thing is odd. It is not hard to see that by using skew-
supersymmetry one can bring superJacobi into the more symmetric form

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]].

Example 1.1.3. If A is an associative superalgebra, then it can be made a Lie superalgebra by setting

[x, y] = xy − (−1)|x||y|yx.

Now that we have defined superspaces, what are morphisms between them?Definition 1.1.4. A map f : g −! h between Lie superalgebras is a homomorphism if f is even (i.e.
degree 0) and

f([x, y]) = [f(x), f(y)].

Example 1.1.5. If g is a Lie superalgebra, then End g an associative superalgebra is moreover a Lie
superalgebra by the previous example. The “adjoint representation” of g is then

ad: g −! End g

x 7−! [x,□].

One can check that this is a legit homomorphism because of the superJacobi identity.
Postmortem remark: I think the ‘End’ here refers to not strict morphisms of superspaces, since

(End g)1 should be a thing also. This latter thing means degree 1 maps surely.

Remark: because the bracket is Z2-graded, the restriction to the even part actually lands as ad|g0 : g0 −!
End g1, i.e. g1 is a g0-module via the adjoint action.

Here is the main character for this seminar, gl(m|n). Let V = V0 ⊕ V1
∼= Cm|n be a super vector space,

where V0 = Cm and V1 = Cn. Then
gl(m|n) := EndCm|n

equipped with the bracket from the previous example. Fixing a basis for Cm|n, we get a natural form to

write things in, namely

(
A B
C D

)
. The even part looks like

gl(m|n)0 ∋
(
A 0
0 D

)
,

and the odd part looks like

gl(m|n)1 ∋
(
0 B
C 0

)
.

Evidently, as Lie algebras,
gl(m|n)0 ∼= gl(m)⊕ gl(n),

and
gl(m|n)1 ∼= (Cm ⊗ Cn∗)⊕ (Cm∗ ⊗ Cn)
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as gl(m|n)0-modules. Note that as a set, gl(m|n) ∼= gl(m+ n), but it is equipped with a different bracket.

Given a matrix g ∈ gl(m|n), when written in the standard form

(
A B
C D

)
earlier, define(

Definition 1.1.6. The “supertrace” is

str(g) = tra(A)− tra(D).

Here are some facts.Fact 1.1.7. (1) str([g, h]) = 0 for all g, h ∈ gl(m|n);
(2) sl(m|n) = {g ∈ gl(m|n) : str(g) = 0} is a Lie subsuperalgebra of gl(m|n);
(3) [gl(m|n), gl(m|n)] = sl(m|n).

See the book for proofs.
Another familiar structure is that of bilinear forms on a vector space. There is a super version of this

also.
Definition 1.1.8. A bilinear form ⟨□;□⟩ on a superspace V = V0 ⊕ V1 is “supersymmetric” if

⟨v;w⟩ = (−1)|v||w|⟨w; v⟩.
It is said to be even if ⟨even, odd⟩ = 0.

We will mostly be concerned with basic Lie superalgebras in this seminar:(
Definition 1.1.9. g is a “basic Lie superalgebra”, if it admits a nondegenerate even supersymmetric
bilinear form.

In fact, according to Cailan, “80% of the time we will be concerned with gl(m|n) and the rest 20% we will
be concerned with sl(m|n)”. Such things are (almost) always basic.[
Lemma 1.1.10. gl(m|n) and sl(m|n) (except (m,n) = (1, 1) and (2, 1) for sl; gl is always basic) are basic
Lie superalgebras.

Proof. Let ⟨x, y⟩ = str(xy). This works. ■

1.2. Structural things. Now we discuss things like Cartan, roots, and other structural things.

1.2.1. Cartan.(
Definition 1.2.1. Let g be basic. Then a “Cartan subalgebra” is a Cartan subalgebra of g0, and the
“Weyl group” is the Weyl group of g0.

In our main case gl(m|n), the even part is gl(m)⊕ gl(n), i.e. the diagonal matrices. Let us denote

I(m|n) := {1, · · · ,m, 1, · · · , n},

endowed with a total order

1 < · · · < m < 0 < 1 < · · · < n.

Then the Cartan can be written

h(gl(m|n)) =
⊕

i∈I(m|n)

CEii.

Note that

⟨Eii;Ejj⟩ =


1 1 ≤ i = j ≤ m

−1 1 ≤ i = j ≤ n

0 i ̸= j

;

these minus signs come up because of the supertrace.
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1.2.2. Roots. Now that we have a notion of the Cartan, it makes sense to ask for a root decomposition.

Definition 1.2.2. Let h be the Cartan of g. For α ∈ h∗, let

gα = {g ∈ g : [h, g] = α(h)g ∀ h ∈ h}.
Then the “root system” for g is

Φ = {α ∈ h∗ : gα ̸= 0},
and we can define “even/odd roots” to be

Φ0 = {α ∈ Φ : gα ∩ g0 ̸= 0},
Φ1 = {α ∈ Φ : gα ∩ g1 ̸= 0}.

It is not obvious to me a priori that a root should be either even or odd, or indeed either. But thankfully
in the basic case we can say something stronger structurally.

Theorem 1.2.3. Let g be a basic Lie superalgebra. Then

(1)

g = h⊕
⊕
α∈Φ

gα;

(2) ⟨□;□⟩|h is nondegenerate and W -invariant;
(3) dim gα = 1 (this relies on nondegeneracy of the previous entry)
(4) Φ0,Φ1 are invariant under the action of W on h∗. (And therefore so is Φ.)

Note that the third fact tells us that in this basic case Φ0 and Φ1 are thankfully disjoint.
Let’s say something about roots for gl(m|n). In the case of gl(m|n), by definition the Cartan subalgebra

is contained in the even part. This implies that the superbracket is coincides with the usual Lie bracket
if the first entry is in the Cartan, i.e. the adjoint action of the Cartan on gl(m|n) is the same as that of
the Cartan on gl(m+ n). So the roots of gl(m|n) are the same as the roots of gl(m+ n), except with the
additional information of a partition of the roots into even and odd things. Let’s say what this partition
is. Let δi, εj ∈ h∗ for i ∈ [m] and j ∈ [n] be a dual basis to Eii and Ejj under ⟨□;□⟩. Let us also denote
εi = δi. Then the even roots are

Φ0 = {εi − εj : i ̸= j ∈ I(m|n) with either i, j > 0 or i, j < 0},

and the odd roots are

Φ1 = {δi − εj , εk − δl : i, l ∈ [m], j, k ∈ [n]}.
All of this is just a complicated way of saying that the parity of a root is the sum of the parities of the two
things it is a difference of.

Because h ∼= h∗ under h 7−! ⟨h;□⟩, the form ⟨□;□⟩ induces a form1 (□;□) which is also nondegenerate
on h∗. One can easily verify that

(δi; δj) = δij , (εi; εj) = −δij , (εk, δl) = 0.

In the case of superalgebras, roots can exhibit some weird behavior which don’t arise in the usual cases.
In particular they can have ‘zero length’, a phenomenon called isotropy.(
Definition 1.2.4. A root α ∈ Φ is “isotropic” if (α;α) = 0. Let Φ1 be the set of isotropic odd roots.

It bears saying that isotropic automatically implies odd because even roots are actual roots of the Lie al-
gebra g0, and the Killing form is positive-definite on the Q-span of Φ, so that in particular (α;α) > 0.
(Maybe this argument needs a little checking; what is the relationship between (□;□) and the Killing?)

Example 1.2.5. In the case gl(1|1), consider the (only) odd root δ1−ε1. Compute (δ1−ε1; δ1−ε1) =
(δ1; δ1) + (ε1; ε1) = 1− 1 = 0. So the odd root has zero length...

1Postmortem remark, mostly for myself: So I guess this would be the dagger rather than the star in the way I learned Lie
algebras. The key is that the star doesn’t really make general sense in the context of superalgebras since the denominator
(α;α) might be zero.
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Note that this example easily generalizes to show that all odd roots of gl(m|n) are isotropic. So the moral
here is that drawing the root picture for Lie superalgebras in general is rather dangerous because of these
‘invisible’ roots. So instead let us draw them as roots of gl(m+ n) instead.

1.2.3. Positive/simple roots. Now we discuss positive roots.
Definition 1.2.6. For g = gl(m|n) basic, let H be a hyperplane in the picture for gl(m+n) not containing
any roots and K be the Killing form for gl(m+ n). Then define

Φ+(H) = {α ∈ Φ : K(H,α) > 0}.
Let Σ(H) be the set of simple roots of Φ+(H), i.e. a ‘fundamental system’. (Simple here still means not
expressible as a positive linear combination of positive roots.)

Let me say that Cailan and likely the book use Π(H) rather than Σ(H). As you might have suspected from
the notational choice above, the choice of H actually matters here; different choices may not be conjugate
to each other under the Weyl group.

Example 1.2.7. Take gl(2|1). There are two odd roots, which are both isotropic, and one even root.
Here’s a picture:

The simple roots, as usual, are the ‘closest’ ones to the hyperplane H. Note that on the left there is
one even simple root and one odd simple root, whereas on the right both simple roots are odd. Hence
the Weyl group, being S2 × S1 and keeping Φi within itself, cannot bring one to the other.

Because of this poor behavior, people tend to stick to a prescribed standard for the simple roots. For
gl(m|n), this “standard system” is simply consecutive differences of ‘diagonal entries’. In terms of Dynkin
diagrams this looks like

You can look at nonstandard systems too. If n = m, you can have a fundamental system consisting of
entirely odd roots (not sure why you would want that); as a picture this is
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Now that we have a notion of positive roots, we can say what n+ is. Given a choice of hyperplane H,
define the nilpotent Lie algebras as follows.

Definition 1.2.8. Given a choice of H, define the “nilpotent” and “Borel” subalgebras as

n+(H) =
⊕

α∈Φ+(H)

gα,

n−(H) =
⊕

α∈Φ−(H)

gα,

b(H) = h⊕ n+(H).

Warning: in this definition, it is not the case that the Borel is the maximal solvable subalgebra.

1.2.4. Odd reflections. Now let us discuss ‘odd reflections’. Postmortem remark: As I understand it, this
is supposed to atone for the failure of the Weyl group in Example 1.2.7.

Lemma 1.2.9 (Serganova). Let g be basic, Σ be a fundamental system for Φ+, α an isotropic odd root.
Then

Φ+
α := {−α} ∪ Φ+ \ {α},

i.e. Φ+ except replace α with −α, is also a set of positive roots with fundamental system given by

Σα = {−α} ∪ {β ∈ Σ : (β;α) = 0, β ̸= α} ∪ {β + α : β ∈ Σ, (β;α) ̸= 0},
i.e. roughly leave β as is if (β;α) = 0 and add α to it otherwise.

We can call this procedure rα, in a satire of the sα reflection for usual Lie algebras. This rα is a map of
sets, sending

rα : α 7−! −α,

β 7−!

{
β (β;α) = 0

β + α (β;α) ̸= 0
.

Warning: unlike the sα, this does not extend to a linear map.

Example 1.2.10. Consider gl(1|2). If we think of this set-theoretically/pictorially as gl(3), as we
know, there are essentially three choices of hyperplanes in the root picture. Two of these were drawn
in Example 1.2.7. The Dynkin pictures for these three choices are

.
Note well that if we start at the left and pick α = δ1 − ε1, then β = ε1 − ε2 has (ε1 − ε2; δ1 − ε1) =
−(ε1; ε1)+(ε2; ε1) = 1 ̸= 0, so that rδ1−ε1 tells us to add α to β which brings us to the middle picture.
If we start at the middle and pick α = δ1− ε2, then (ε1− δ1; δ1− ε2) = −1 ̸= 0 again and rδ1−ε2 brings
us to the right.

In some sense the Weyl group action can be thought of as ‘even reflections’. Then there is a theorem,
also due to Serganova:[
Theorem 1.2.11. The odd reflections rα, as defined above, together with the Weyl action, is transitive
on the set of fundamental systems.

So once you add in these rα’s you actually hit every possible choice of H.
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2. 01/31 – Lie Superalgebra Representations (Fan Zhou)

I am giving the talk this week and will thus be unable to live-TeX. So I am dead-TeXing instead. For
references see also Serganova’s lecture notes and Brundan’s survey.

Here’s a brief remark that might come up later: the super-analog of ϱ, the sum of fundamental weights,
is given by

ϱ =
1

2

∑
α∈Φ+

0

α− 1

2

∑
β∈Φ+

1

β.

Note that this depends on a choice of polarization/b. Also recall the constructions of Φ+
α and Σα from the

odd reflections last time. In that construction, we might also define (the book calls this ‘bα’ instead)

bα := h⊕
⊕
β∈Φ+

α

gβ.

Let me also remind myself that the definition of the coroot to α here is such that ⟨hα; h⟩ = α(h). Think of
gl(m|n) and the supertrace.

2.1. Highest weight theory.

2.1.1. Ug and PBW. As in the usual case, there is a notion of a universal enveloping algebra, denoted also
Ug. It is defined identically by adding ‘super’ in front of everything, and is constructed through the usual
means (tensor algebra modded out by stuff).Definition 2.1.1. For g a Lie superalgebra, its “universal enveloping (super)algebra” is an associative
unital superalgebra equipped with a morphism of Lie superalgebras g −! Ug through which every other
morphism of Lie superalgebras to an associative superalgebra factors.

In particular, as usual, representations of g are precisely modules over Ug. As usual there is also the PBW2

theorem.
Theorem 2.1.2 (PBW). If x1, · · · , xm and y1, · · · , yn are bases for g0 and g1 respectively, then the set{

xa11 · · ·xamm yb11 · · · ybnn : ai ∈ N, bi ∈ {0, 1}
}

is a basis of Ug.

(Of course bi ∈ {0, 1} since the product of two odd things is even.) Then we can filter Ug by setting U≤kg
to be the span of the above basis elements for which

∑
ai +

∑
bj ≤ k, and the graded superalgebra with

respect to this grading is GrUg = Sg0 ⊗
∧
g1.

2.1.2. Solvable things. Solvable Lie superalgebras are defined identically to the usual case:(
Definition 2.1.3. A Lie superalgebra is “solvable” if g(n) = 0 eventually, where g(n) := [g(n−1), g(n−1)]

and g(0) := g.

Suppose g is finite-dimensional solvable such that

[g1, g1] ⊆ [g0, g0].

Given3 λ ∈
(
g0/[g0,g0]

)∗
, define Cλ = Cvλ by setting

g0vλ = λ(g0)vλ,

g1vλ = 0.

We should be thinking of b here of course, where b1 = n+1 (since n+0 is in [b0, b0], it also acts by zero).
As it turns out such modules exhaust all finite-dimensional simples. Remark: representations of g are
supposed to be supermodules over superalgebras, and so it should come with a Z2-grading also. This

2Peanut Butter Welly
3Of course λ ∈

(
g0/[g0,g0]

)∗
is equivalent to λ ∈ g∗0 such that λ([g0, g0]) = 0.
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above construction doesn’t seem to specify whether this one-dimensional space lives in even or odd degree,
but I’m pretty sure both are valid. So I presume that the following lemma means up to degree shift. The
first page of this paper (which I did not read) makes me suspect that people typically think of this in
degree zero.Lemma 2.1.4. If g is finite-dimensional solvable with [g1, g1] ⊆ [g0, g0], then every finite-dimensional

simple g-module is one-dimensional and exhausted by the Cλ construction above, for λ ∈
(
g0/[g0,g0]

)∗
.

Proof. Recall Lie’s theorem4. Let us first show that any finite-dimensional simple g-module V is
one-dimensional and in fact a quotient of Indgg0 Cvλ.

Indeed, note g0
(n) ⊆ g(n) and g solvable =⇒ g0 also solvable. Applying Lie’s to V |g0 , we get that

there exists λ ∈
(
g0/[g0,g0]

)∗
and vλ ∈ V such that g0vλ = λ(g0)vλ, so that there is an inclusion of

g0-modules
Cvλ ↪−! V.

Under Frobenius Homg(Ind
g
g0 Cvλ, V ) ∼= Homg0(Cvλ, V |g0) this becomes some surjection (V being

simple) of g-modules
Indgg0 Cvλ −↠ V.

It remains to show that Indgg0 Cvλ has a Jordan-Holder series whose quotients are all one-dimensional,
for as V is simple, this would force V to also be one-dimensional.

So now let us show Indgg0 Cvλ has a Jordan-Holder series whose quotients are all one-dimensional.
We do so explicitly. Indeed, note that Indgg0 Cvλ ∼= Ug ⊗Ug0 Cvλ where Ug acts by multiplication

on the left factor; this in turn is isomorphism to
∧
g1 ⊗C Cvλ as a g0-module, where g0 acts on g1

by adjoint and therefore on
∧
g1 ⊗ Cvλ via Leibniz5. Hence apply Lie to the adjoint action g0

⟳

g1,
which gives a filtration g1 = Y1 ⊃ · · · ⊃ Yn ⊃ 0 of g1; taking basis vectors y1, · · · , yn according to this
filtration6 such that xyi = λi(x)yi mod Vi+1, we know that

g0 · yi ⊆
n⊕

j=i

Cyi, [g0, g0] · yi ⊆
n⊕

j=i+1

Cyj ,

where the action is via adjoint. Then consider an order on the obvious basis of
∧
g1 given inductively

by B1 = {1, y1} and Bk = {Bk−1,Bk−1yk}. This looks like a binary tree7; note that having higher
numbers move you to the right, and up to reordering attaching a new number will also never move
to you the left. Of course this gives a basis also of Indgg0 Cvλ; from left to right let us label this basis
v1, · · · , v2n and thus obtain a filtration

Indgg0 Cvλ = W1 ⊃ · · · ⊃ W2n ⊃ 0,

where Wi =
⊕2n

j=iCvj . From staring at footnote 5 and knowing that g0 hitting yi will only move

the index (nonstrictly) up, it is evident that this is a filtration of g0-modules with one-dimensional
quotients. But it is moreover a filtration of g1-modules (and therefore g-modules); to see this8, note

yryi1 · · · yikvλ =

{
−yi1yryi2 · · · yikvλ + [yr, yi1 ]yi2 · · · yikvλ r ̸= i1,
1
2 [yr, yi1 ]yi2 · · · yikvλ r = i1

,

4Lie says that if V ∈ Modfd g for g solvable, then ∃ V = V0 ⊃ · · · ⊃ Vn = 0 such that gVi ⊆ Vi and dimVi/Vi+1 = 1. A
corollary of this, sometimes also called Lie’s theorem, is that for the same setup, ∃ 0 ̸= v ∈ V such that xv = λ(x)v ∀ x ∈ g

for some λ ∈
(
g/[g,g]

)∗
.

5This is since xyi1 · · · yikvλ = [x, yi1 ]yi2 · · · yikvλ + yi1 [x, yi2 ]yi3 · · · yikvλ + ·+ yi1 · · · [x, yik ]vλ + yi1 · · · yikxvλ, where xvλ =
λ(x)vλ.

6so that Yi is spanned by yi, · · · , yn
7Start from ∅ at level n; from level n the left branch does nothing and the right branch adds n from the left. As an example,

for n = 4 this gives ∅, 1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234. ‘Moving left/right’ will refer to this
order.

8this is sort of an inductive argument
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where note the cases can be combined. Of course if r < i1 then we don’t even need to do anything. If
r > i1 then we want to pass yr to the right; this can be done at the cost of adding a term with the
bracket, but [yr, yi1 ] ∈ [g1, g1] ⊆ [g0, g0] acts on y’s by strictly raising the subscript, which9 moves you
to the right. If r = i1, then we go down to k− 1 elements of g1 in front of vλ, which might move us to
the left; but [yr, yi1 ] ∈ [g1, g1] ⊆ [g0, g0] acting on yi2 · · · yikvλ will move it back to the far right since
[g0, g0] strictly increases the subscript. This is the construction.

Now that we know V is a quotient of Indgg0 Cvλ, it is automatic that g0 acts on it as we claimed,
and moreover g1 must act by zero since it changes parity and V is one-dimensional. ■

Remark: note that if we started out the proof with a nonsimple V , we would get that some submodule of
V (namely the image of the map from Indgg0 Cvλ) has 1-dimensional JH quotients and in particular must
have a 1-dimensional submodule.

2.1.3. Weights. Let g be basic; think gl(m|n). Pick a positive system Φ+, to which is then attached
the information of b = h ⊕ n+. Then the setting in the last subsubsection applies for the Borel b since
b1 = n+1 and so [b1, b1] = [n+1 , n

+
1 ] ⊆ n+0 = [h, n+0 ] ⊆ [b0, b0]. Hence Cλ is a representation of b for

λ ∈ h∗ = (b/[b, b])∗. Recall the notion of a highest weight module (HWM).[
Proposition 2.1.5. For g basic and b a choice of Borel, any finite-dimensional simple is a b-HWM.

Proof. For any L a finite-dimensional simple g-module we know L|b contains some Cλ = Cvλ by the
remark at the end of the last section, so that by PBW L is spanned by the action of n− on vλ, i.e.
L = SpanLUn− vλ. Letting10 Lµ := {v ∈ L : hv = µ(h)v} be the µ-weight space, this gives via brackets
a weight space decomposition for L into L =

⊕
µ∈h∗ L

µ, where as usual the weights appearing have

λ− µ ∈ NΦ+. As usual, since this vλ is killed by n+, it is called a “highest weight vector with respect
to b” or “b-highest weight vector”. L cannot have another highest weight vector (of necessarily smaller
weight) for it would then generate a submodule. ■

Modules generated by a single such highest weight vector are called “highest weight modules”, which as
in the usual case are automatically indecomposable11 and admit unique maximal submodules and unique
simple quotients12. Also as usual, in a simple module there is the (up to scaling) highest weight vector13.
We shorten ‘highest weight module with respect to b’ to ‘b-HWM’, or simply ‘HWM’. A ‘highest weight
module with respect to b of highest weight λ’ is shortened to ‘b-HWM(λ)’. As two simples of the same
highest weight are necessarily isomorphic14, the (finite-dimensional) simple of highest weight λ is denoted
Lλ.

In the usual case as well as the super case, by picking different polarizations one gets different ‘highest
weights’, but in the usual case all such highest weights are related to each other via the Weyl group. This
is no longer true for the super case, as we will see in an example later. But we can still say what the
extremal weights are. For α ∈ Φ+ isotropic odd, let hα be the coroot to α and pick eα ∈ gα and fα ∈ g−α

such that [eα, fα] = hα. The following is a straightforward calculation.
Lemma 2.1.6. For L (not necessarily finite-dimensional) a simple g-module, vλ ∈ L a b-HWV(λ), and α
an isotropic odd simple root,

• λ(hα) = 0 =⇒ L is a b-HWM(λ), and vλ is a bα-HWV;
• λ(hα) ̸= 0 =⇒ L is a bα-HWM(λ− α), and fαv

λ is a bα-HWV.

9modulo an induction argument for reordering things since we now have one less term; similarly in the next case
10reserving subscripts for highest weight labels
11any proper submodule cannot hit the λ-space without breaking properness, so the sum of all proper submodules in

particular fails to hit the λ-space
12the unique maximal being the sum of all proper submodules
13a HWV of smaller weight would generate a submodule
14either because HWMs have unique simple quotient or because clearly the HWVs must go to each other which determines

the map
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Proof. Note1516 the following three things:

eαfαv
λ = λ(hα)v

λ,

eβfαv
λ = 0 ∀ β ∈ Φ+ \ α,

f2
αv

λ = 0.

If λ(hα) = 0, then fαv
λ = 0 since else it would be a HWV of smaller weight. Then the ‘upper

nilpotent’ of bα, namely n+α which is n+ except with eα replaced with e−α = fα, kills v
λ, so that vλ is

a bα-HWV.
If λ(hα) ̸= 0, then eαfαv

λ = λ(hα)v
λ ̸= 0 =⇒ fαv

λ ̸= 0 is of weight λ − α, and fα(fαv
λ) =

eβ(fαv
λ) = 0 implies fαv is a bα-HWV. ■

Example 2.1.7. Take again gl(2|1).

Let us begin with the polarization on the left. Consider the isotropic odd simple root α2 = δ2 − ε1,

for which the coroot is the matrix hα2 =

0
1

1

, and consider the weight λ = δ1− ε1 = α3. Then

λ(hα2) = −1 ̸= 0, so that with respect to bα2 , i.e. the polarization on the right, the new extremal
weight is λ − α2 = δ1 − δ2, as one might have naively guessed. The problem is λ was odd, and this
new thing δ1 − δ2 is even, so the two can’t be related by the Weyl group.

I’d like to emphasize that if you had to blame someone for all the strange business going on, it would have
to be the even/odd distinction, which makes it so that f2

α = 0 for odd α. We’ll see later this is really the
key to a lot of the unusual behavior we see.

2.1.4. Representations. We have called the finite-dimensional simple of highest weight λ by the name Lλ,
but what type of λ’s fit the bill here? The answer turns out to be very similar to the usual case. We’ll
only do gl(m|n).

Let g = gl(m|n), h be the standard Cartan, and Φ+ be the standard choice of polarization giving rise
to g = n− ⊕ h⊕ n+. The even subalgebra admits a compatible triangular decomposition:

g0 = n−0 ⊕ h⊕ n+0 .

In addition to the even/odd grading for g, it also admits a Z-grading
g = g−1 ⊕ g0 ⊕ g+1,

15The first is obvious, the second is since eβfαv
λ ∈ Lλ+β−α and β − α is a positive linear combination of positive roots

which is either not a root at all or itself in Φ+, which brings the weight λ + β − α outside the range allowed by the highest
weight λ, and the third is since by an earlier theorem (Theorem 1.18.(10) in the book) 2α ̸∈ Φ so that f2

α = 1
2
[fα, fα] ∈ g2α = 0.

16Theorem 1.18.(10) says that

kα ∈ Φ for k ̸= ±1 ⇐⇒ α is nonisotropic odd,

in which case k = ±2.
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where g−1⊕g+1 = g1 and the two meanings of g0 agree. Here g+1 are e.g. things looking like17

0 0 ∗
0 0 ∗

0


and g−1 are things looking like

0 0
0 0
∗ ∗ 0

. Note that they are abelian.

For λ ∈ h∗, let Lλ(g0) denote the simple g0-module of highest weight λ. As g0 = glm⊕ gln, this is really
Lµ(glm)⊗Lν(gln) for some µ, ν. We can extend this to a module over g0⊕ g+1 by making g+1 act by zero.
Inducting this to all of g gives the so-called Kac module:Definition 2.1.8. The “Kac module” is defined by

Kλ := Indgg0⊕g+1
Lλ(g0)

Vec∼=
∧

g−1 ⊗ Lλ(g0).

As you might guess from the definition, this is reminiscent of Verma modules, except that because the
definition of the superbracket is different, this Kac module is finite-dimensional (for ‘integral’ λ). Like
Vermas, this will project to simples.[
Proposition 2.1.9. Up to scalars, there is a unique Kλ −↠ Lλ, and

dimLλ < ∞ ⇐⇒ dimLλ(g0) < ∞ ⇐⇒ dimKλ < ∞.

Proof. As Homg(Ind
g
g0⊕g+1

Lλ(g0), Lλ) ∼= Homg0⊕g+1(Lλ(g0), Lλ|g0⊕g+1), the obvious embedding Lλ(g0) ↪−!
Lλ|g0⊕g+1 gives rise to a map Kλ −↠ Lλ. For the second part, Lλ being finite-dimensional im-
plies its g0 ⊕ g+1-submodule Lλ(g0) is finite-dimensional; Lλ(g0) being finite-dimensional implies
Kλ =

∧
g−1 ⊗ Lλ(g0) is finite-dimensional; and Kλ being finite-dimensional implies its quotient Lλ is

finite-dimensional. ■

Hence Lλ ↭ Lλ(g0), which in turn are Lµ(glm)⊗ Lν(gln). This shows thatProposition 2.1.10. The finite-dimensional g-simples are Lλ for λ = (µ, ν) a pair of partitions ‘up to
scaling’ (meaning that we only require λi ≥ λi+1, not that λi ≥ 0, so that |λ| may be negative) such that
ℓ(µ) ≤ m, ℓ(ν) ≤ n. More precisely, the actual weight is λ = µ1δ1 + · · ·+ µmδm + ν1ε1 + · · ·+ νnεn.

Let’s see an example of this.

Example 2.1.11. Take gl(2|1) with the standard polarization, and consider the highest weight λ =(
,
)
, which we might write as in an abuse of notation. Let me present the weight diagram for

Kλ immediately.

17in other words g+1 is spanned by Eij with i, j ∈ I(m|n) such that i < 0 < j, and g−1 is similarly except with i > 0 > j
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Let me explain. We start with Lλ(g0) = L (gl2) ⊗ L (gl1) a 2-dimensional module over gl2⊕ gl1;

sitting inside the A2 root picture, this looks like

Then to get Kλ we induct this from g0 ⊕ g+1 to all of g, i.e. we let g−1 = C{f2, f3} act freely. But
due to being odd, both these lowering operators square to zero. So what we get is finite-dimensional,
and in particular it is

∧
g−1 which is 4-dimensional. This gives the picture we started with, which is

8-dimensional.
The claim is that this Kλ is already simple. We will see this by checking that the highest weights of

Lλ with respect to different polarizations actually are the same as the weights around the perimeter

of Kλ. Indeed, let us odd-reflect across α2. Note λ(hα2) = (

 1
1

) = 2 ̸= 0, so that the new

highest weight should be λ− α2 = ( , ). This is indicated in the diagram below.

12



If we then reflect across the odd simple root α3 now we would find the new highest weight is the
bottom right dude; I won’t TeX this out. But anyways this shows Kλ = Lλ. (If you want you
can check manually that no one-dimensional subspace in the center of the weight diagram forms a
subrepresentation.)

The above proposition, 2.1.10, makes it very easy to see what λ’s are possible with respect to the
standard choice for b. But what about some different choice?
Proposition 2.1.12. For any choice of b and Σ, Lλ(b) is finite-dimensional if and only if for any19 β ∈ Σ0

and any Σ′ obtained from Σ via odd reflections such that β ∈ Σ′ or β/2 ∈ Σ′, we have

2(λ;β)

(β;β)
∈ N.

It also turns out that if Lλ is finite-dimensional then Kλ is the unique maximal finite-dimensional quotient
of ∆λ the Verma, which we now discuss.

There is also the actual Verma module.Definition 2.1.13. With respect to a polarization, the Verma associated to a λ ∈ h∗ is

∆λ := IndgbCvλ,
where as usual n+ acts trivially on vλ.

Being a HWM, ∆λ admits a unique simple quotient which is then necessarily Lλ. However, in the super
case Vermas may look rather strange.

Example 2.1.14. Take again gl(2|1) and again λ = . Then the weights of the Verma ∆ are, up

to multiplicity (which I was too lazy to compute),

As usual the strange ‘finite behavior’ of the Verma here is ultimately due to the odd roots having f2
α = 0;

in fact, we can dial this strangeness to the max and have finite-dimensional Vermas.

Example 2.1.15. Take gl(1|1). If we start at any λ in the A1 picture, since f2 = 0, the Verma will
have only two dimensions, in weights λ and λ − α. So the Verma is finite-dimensional. This λ could
be possibly super far from the center. The unique simple quotient Lλ will be 2-dimensional ‘most of

the time’, the exception being at weights for which |λ| = |µ|+ |ν| = 0. (This is since [e, f ] =

(
1

1

)
,

so that |λ| = 0 allows both e and f to act by zero.)

As we can see from the examples above, finite-dimensional modules no longer exhibit weights symmetric
about the center – they can be shifted from the origin.

A comment about the grading of representations: in this subsubsection I’ve been a little sloppy about
this, but it’s pretty clear the discussion holds up to parity switch. We can for example take the convention
that the HWV be even.

We could let O be the category of finitely-generated h-semisimple g-modules which are locally n+-finite.
Note the dependence on b. We could instead think about the category Osuper of supermodules, but it
doesn’t really make a difference. Indeed, if you define par : C −! Z/2 by par(a + bi) = ⌊a⌋ and then
par : h∗ −! Z/2 by par(λ) := par(|λ+|) := par((λ; ε1+ · · ·+ εn)), then this latter function has the property
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that par(λ + εi) = par(λ) + 1 and par(λ + δi) = par(λ). Then any supermodule in super-category O
decomposes as

M = M+ ⊕M− =
⊕
λ

Mλ
par(λ) ⊕

⊕
λ

Mλ
par(λ)+1.

Recall20 the parity switching functor, Π. Let O+ ⊆ Osuper be the full subcategory of things such that
M = M+; then

Osuper = O+ ⊕ΠO+.

For this reason the grading on our representations sort of don’t really matter (provided there’s no parity
conflict).

2.2. Characters. As a generalization of the usual character, we may define the ‘supercharacter’. Recall
the superdimension is sdimV = dimV0 − dimV1.Definition 2.2.1. The “supercharacter” of a g-module M is

χM :=
∑
λ

sdimMλeλ.

Something called ‘atypicality’ will also show up later; for now let me define what it means to not be atyp-
ical. I would have personally called this following notion ‘ϱ-typical’, but whatever.(
Definition 2.2.2. A weight λ is “typical” if (λ+ ϱ;α) ̸= 0 for any isotropic odd α.

Turns out we can compute the supercharacters of finite-dimensional simples of typical weight. Note that
in the purely even case the following is just the usual Weyl character formula.

Theorem 2.2.3. Take some choice of b. For λ− ϱ typical with Lλ finite-dimensional,

χLλ
=

∏
α∈Φ+

1
(eα/2 − e−α/2)∏

α∈Φ+
0
(eα/2 − e−α/2)

∑
w∈W

(−1)wew(λ+ϱ).

Another way to write this is

χLλ
=
∑
w∈W

(−1)wχ∆w◦λ ,

where as usual w ◦ λ := w(λ+ ϱ)− ϱ.
In fact, Kλ has a unique simple submodule, and for typical λ− ϱ,

Kλ = Lλ.

Proof. Let’s just prove this for standard b. It’s easy21 to see that

χUn− =

∏
α∈Φ+

1
(1− e−α)∏

α∈Φ+
0
(1− e−α)

,

so that

χ∆λ
= eλ

∏
α∈Φ+

1
(1− e−α)∏

α∈Φ+
0
(1− e−α)

= eλ+ϱ

∏
α∈Φ+

1
(eα/2 − e−α/2)∏

α∈Φ+
0
(eα/2 − e−α/2)

.

As Kλ =
∧
g−1 ⊗ Lλ(g0), we have

χKλ
=
∏

α∈Φ+
1

(1−e−α)χLλ(g0) = eϱ1
∏

α∈Φ+
1

(eα/2−e−α/2)χLλ(g0) =
eϱ1
∏

α∈Φ+
1
(eα/2 − e−α/2)∏

α∈Φ+
0
(eα/2 − e−α/2)

∑
w∈W

(−1)wew(λ+ϱ0),

so that it suffices to show Kλ = Lλ.

20recall this changes the action by x · v = (−1)xxv
21numerator has minus e to the blah since odd roots switch parity and we are looking at superdimension, denominator has

minus since geometric series
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First note that any g-submodule of Kλ must contain the same g0-submodule, namely22 det g−1 ⊗
Lλ(g0). Two distinct simple submodules of Kλ should intersect trivially; hence Kλ has a unique simple
submodule, say Lµ.

Next observe that λ′ = λ −
∑

α∈Φ+
1
α is the highest weight of Lµ with respect to b−1 := b0 ⊕ g−1

the ‘anti-distinguished’ Borel; this is because λ′ is the b0-highest weight in det g−1 ⊗ Lλ(g0) and any
more applications of g−1 will kill this module. Hence

Lµ = Lλ−
∑

α∈Φ+
1

α(b−1).

Now consider Lλ = Lλ(b); if we try to find out what the highest weight of this would be for b−1, by
applying the odd reflections repeatedly and using that λ − ϱ is typical, i.e. λ(hα) ̸= 0, we find that
the b−1-highest weight is also λ−

∑
α∈Φ+

1
α. Hence Lµ = Lλ, i.e. the unique simple submodule of Kλ

is equal to the unique simple quotient, so that Kλ = Lλ. ■

Remark about the proof: this proof is taken from Serganova’s notes since I don’t know enough about
Zuckerman/Bernstein functors to parse the proof in the book. However Serganova’s stipulation is that λ
is typical; but I think this doesn’t allow the last step of the proof to go through, since in the standard
polarization for gl(2|1) the weight λ = δ2 has λ(hα3) = 0 and yet λ+ ϱ = δ1 so that (λ+ ϱ)(hα3) = 1 ̸= 0.
You might object that δ2 is not a valid weight for a finite-dimensional simple, but I think this can be
modified to work in general.

2.3. Central characters. Denote
Definition 2.3.1. Zg = Z(g)0 ⊕ Z(g)1 is the “center” of Ug, where

Z(g)i =
{
z ∈ U(g)i : zx = (−1)i·|x|xz ∀ x ∈ g pure

}
.

It turns out that secretly Zg = Z(g)0.

Let Sg denote the symmetric superalgebra in an abuse of notation. Both this and Ug admit a g-action via
adjoint and Leibniz23. Note GrUg ∼= Sg as vector spaces as usual. Note also that U(g)g = Zg. In fact,[
Proposition 2.3.2. The supersymmetrization map Sg −! Ug is an isomorphism of g-modules and induces
a linear isomorphism S(g)g

∼
−! Zg.

This is evidently proved in the same way as usual24.
For the sake of readability, in the following I will adhere to the book’s choice of notation. From PBW,

let

ϕ : Ug −! Uh

denote the map killing any term with factors from outside h in it25. Let its restriction to Zg also be denoted

ϕ : Zg −! Uh = Sh.

Writing a random z ∈ Zg as z = hz + n−Ug + Ugn+, we know that [h, z] = 0 = [h, n−]Ug + n−[h,Ug] +
[h,Ug]n+ + Ug[h, n+] ⊆ n−Ug+ Ugn+, where we note [h, n±] ⊆ n±. So in order for this thing to be zero,
surely there must be some cancellation going on, i.e. every term in z − hz must have at least one thing
from n± on each end, i.e.

z = hz + n−U(g)n+.

Note that ϕ(z) = hz then. By consider the bracket of an odd guy with this, you can convince yourself that
z must in fact be even.

22being the bottom level of the ‘waterfall’
23Important: I’m pretty sure that in the super case Leibniz says [x, yz] = [x, y]z + (−1)xyy[x, z].
24i sure aint checking it
25more precisely this is the projection associated to Ug = Uh⊕ (n−U(g) + U(g)n+)
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Recall what P (λ) means for P ∈ Sh. Define

ϑλ : Zg −! C
z 7−! ϕ(z)(λ).

Such a morphism is called a “central character”, as usual.[
Lemma 2.3.3. For g basic, any z ∈ Zg acts by ϑλ(z) on any HWM(λ).

Proof. Let the module in question be called M . As Mλ is 1-dimensional and z commutes with any
h, we have hzvλ = zhvλ = λ(h)zvλ, so that zvλ must be some multiple of vλ. Any other vector is
arrived at by applying n− to vλ, but z commutes with n−, so z acts by the same scalar on that too.
This scalar is given by zvλ = (hz +

∑
i fixiei)v

λ = λ(hz)v
λ = ϑλ(z)v

λ. ■
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