1. PRELIMINARIES

1.1. Symmetric powers . Let C be a Q-linear Karoubian additive symmetric monoidal category.
Let n be a nonegative integer, and let S,, be the group of permutations of the set of integers from
1 to n. For any object M of C, the group S,, acts on the left on M®". We define Sym" (M) as the
image of the idempotent p, = £ > . g, o of M®". We have

dim(Sym™(M)) = Tr(p,) = % > Tr(o|M®") = % [T (dim(M) + ).
" 0€S, T 0<j<n

1.2. Exterior powers . Let C and n be as in 1.1. For any object M of C, we define A" (M) as
the image of the idempotent a, = - > g (0)o of M®", where ¢ : S,, — {£1} is the signature
homomorphism. We have

dim(A™(M)) = Tr(a,) = ,Z o)Tr oIM®”)=% II (@m@n) ;).

s oESn T 0<j<n

2. EMBEDDING RESULT

2.1. Deligne’s condition . An additive symmetric monoidal category C, in which any object is
dualizable, is said to satisfy Deligne’s condition if the following assertions hold:
(1) for any object M of C with dim(M) = 0 then M = 0;
(2) for any object M of C and any positive integer j, the endomorphism dim(M)+j is invertible;
(3) for any object M of C, there exists an integer n such that [[,,_,, (dim(M) — j) = 0.

2.2. Rigid exact symmetric monoidal categories . A rigid exact symmetric monoidal cat-
egory is an additive symmetric monoidal category C, in which any object is dualizable, together
with a class Seq of sequences M| — My — M3 of homomorphisms of C such that:

(1) the couple (C,Seq) is an exact category;
(2) for any object M of C, the functor M ® — sends Seq to itself;
(3) the duality functor from C to itself sends Seq to itself.

In particular, the dual of an admissible monomorphism is an admissible epimorphism, and

conversely.

Example 2.3. For any ring R, the category Vectr of finite projective R-modules is naturally a
rigid exact symmetric monoidal category. Moreover, it satisfies Deligne’s condition 2.1 if and only
if R is a Q-algebra.

Theorem 2.4. Let C be a rigid exact symmetric monoidal category which is Q-linear, Karoubian
and essentially small. Then the following are equivalent:

(i) Deligne’s condition 2.1 holds for C;
(ii) there exists a Q-algebra R and a faithful exact monoidal functor from C to Vecty.

3. SPLITTING LEMMAS

Let C be as in Theorem 2.4.
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3.1. Faithfulness. A commutative algebra A in Ind(C) is said to be faithful (or faithfully flat)
if the unit morphism 1 — A is an admissible monomorphism.

Example 3.2. If C = Vectg for some ring R then Ind(C) is the symmetric monoidal category
of flat R-modules by Lazard’s theorem [058G]. Thus a commutative algebra in Ind(C) is simply a
flat homomorphism R — A of rings. It is faithful as an object of Ind(C) if and only if R — A is
injective with flat cokernel, or equivalently if A is a faithfully flat R-algebra.

Proposition 3.3. Let M be an object of C and let M 21 be an admissible epimorphism. Let us
consider the commutative algebra

A = colim,, Sym"(M"),
in Ind(C), with transition maps given by the multiplication by 1 2 MY. Then we have the
following assertions:

(1) the epimorphism A ® M 1dadv, 4 of A-modules admits an A-linear section;
(2) the unit homomorphism 1 — A is an admissible monomorphism, i.e. A is faithful.

Proof. (1) The canonical morphism M"Y — A yields an A-linear morphism A —+ A ® M, and
its composition with A is the identity of A by construction.

(2) The composition of the morphism Sym”(M) — 1 induced by v with the projection

M®™ 2y Sym™ (M) is the admissible epimorphism A®™. Thus Sym” (M) — 1 is an admis-

sible epimorphism, and its dual 1 — Sym"™ (M) is consequently an admissible monomor-

phism in C. Hence the colimit 1 — A is an admissible monomorphism in Ind(C).
O

Corollary 3.4. Let M — N be an admissible epimorphism in C. Then there ewxists a faithful
commutative algebra A in Ind(C) such that the admissible epimorphism A@ M — A® N splits.

Proof. For any commutative algebra A in Ind(C), the epimorphism A ® M — A ® N splits if and
only if the corresponding morphism A ® M @ NV — A splits. The morphism M @ NV — 1 is the
pullback along the coevaluation 1 — N ® NV of the admissible epimorphism M @ NV — N @ NV,
hence is itself admissible. The conclusion then follows from Lemma 3.3 applied to M @ NY — 1.
O

Proposition 3.5. Let M be an object of C and let us consider the commutative algebra
A = colim,, Sym™(M" & M),
in Ind(C), with transition maps Sym™(M" @ M) — Sym"™ (MY @ M) given by the multiplication

by the coevaluation 1 =5 MY @ M. Then we have the following assertions:

(1) the A-module A ® M admits a direct summand which is a free A-module of rank 1;
(2) if dim(M) + j is invertible for any nonnegative integer j, then the unit homomorphism
1 — A is a split monomorphism. In particular, A is faithful.

Proof. (1) The canonical morphisms MY “% A and M %% A induce A-module homomor-
phisms A = A® M and A® M -5 A. The composition v o u coincides with the A-
linearization of the composition

coev

12 MY @ M MeEy 4

which is simply the unit 1 — A by construction of A. Thus v o u is the identity of A, and
consequently u is a split monomorphism of A-modules.



(2) The algebra A admits the subalgebra
B = colim,, Sym"(M") ® Sym" (M),

as a direct summand, where the transitions are again given by multiplying by the coeval-
uation 1 == MY @ M. Let e, be the composition
ev®m
Sym™(MY) ® Sym"™ (M) — (MY)®" @ M®" Z— 1.
Let d; be the dimension of M and let d,, = %dl(dl +1)---(d1 +n —1) be the dimension
of Sym™(M). By assumption, each d,, is an invertible endomorphism of the unit 1. The
composition
coev d;l en
Sym™(M") @ Sym™ (M) 2= Sym™ (MV) @ Sym™ (M) MEE AR

coincides with d; 'e,, hence the morphisms (d;, e, ), provide a morphism B — 1, which
splits the unit of B.

O

Corollary 3.6. Let M be an object of C and let d be a nonnegative integer such that dim(M) + j
is invertible for any integer j > —d. Then there exists a faithful commutative algebra A in Ind(C)
such that the A-module A ® M admits a direct summand which is a free A-module of rank d.

Proof. For d = 0, we simply take A = 1, the unit object of C. We prove the general case by
induction. Let us assume that d is positive and that the assertion is proved for d — 1. By Lemma
3.5, we have a faithful commutative algebra B in C such that the B-module B ® M is isomorphic
to B® N for some B-module N. Since N is a direct summand of the dualizable B-module B® N,
it is a dualizable B-module as well. The rigid exact symmetric monoidal category of dualizable B-
modules satisifies the assumptions of Corollary 3.6, and its object NV is dualizable with dimension
dim(N) = dim(M) — 1 such that dim(V) + j is invertible for any integer j > —d + 1. By induction
there exists a faithful commutative B-algebra A in Ind(C) such that the A-module A®p N admits
a free direct summand of rank d — 1. Then A satisfies the conclusion of Corollary 3.6 for M. O

4. PROOF OF THEOREM 2.4

Clearly (i) implies (7) in Theorem 2.4. Conversely, let C be as in Theorem 2.4, and let us
assume that Deligne’s condition holds for C. Let M be an object of C. By assumption, there
exists an integer n and orthogonal idempotents (eq)%_,, of End(1) such that dim(M)eq = deq and
> a€d = 1. By Proposition 3.6, there exists a faithful commutative algebra A in Ind(C) such that
for any integer d, the egA-module egA ® egM is of the form (edA)@d @® N,4. The egA-module

AT eaA® egM)) = egA® A (egM),

contains A? (egA®?)@ N ~ N as a direct summand, and vanishes since A“*!(e4M) has vanishing
dimension. Thus N vanishes, and egA ® eqM is isomorphic to (eqA)®?.

Since C is essentially small, and since the category of faithful algebras in Ind(C) is cocomplete,
we can assume (and we do) that the same algebra A has these properties for all objects M of C.
Likewise by Proposition 3.3 there exists a faithful commutative A-algebra B in Ind(C) such that
A — B is an admissible monomorphism and such that any short exact sequence in C splits over B.

Let R be the ring Homy,q(c)(1, B) and let us consider the additive functor F' which sends an
object M of C to the R-module Homp,q(c)(1, B ® M). Since any short exact sequence of C splits
over B, the functor F is exact. Moreover, for any object M of C, with (eq4)q as above, we have

F(M) = F(®g_geaM) = @g_oF(eaM) ~ @E:OF(ed)Reada
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hence F'(M) is a finite projective R-module. A similar computation shows that the natural trans-
formation F(M;) ®r F'(Mz) — F(M; ® Ms) is an isomorphism. Since we also have F'(1) = R, the
functor F' is monoidal.

It remains to prove that F' is faithful. Let M;, M> be objects of C. The fact that 1 — B is
an admissible monomorphism, together with the left exactness of the functor Homp,qgc)(1, My ®
My ® —) on Ind(C), yields that

Home (M, Ms) = Home (1, My @ Ms) C Homlnd(c)(l,Mlv ® My ® B),

and the last term, namely F(M, ® M,), is canonically isomorphic to Homveet, (F(My), F(Mz))
since F' is monoidal.
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