1. Preliminaries

1.1. Symmetric powers. Let \mathcal{C} be a \mathbb{Q} -linear Karoubian additive symmetric monoidal category. Let n be a nonegative integer, and let S_n be the group of permutations of the set of integers from 1 to n. For any object M of \mathcal{C} , the group S_n acts on the left on $M^{\otimes n}$. We define $\operatorname{Sym}^n(M)$ as the image of the idempotent $p_n = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma$ of $M^{\otimes n}$. We have

$$\dim(\operatorname{Sym}^{n}(M)) = \operatorname{Tr}(p_{n}) = \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{Tr}(\sigma | M^{\otimes n}) = \frac{1}{n!} \prod_{0 \le j < n} (\dim(M) + j).$$

1.2. Exterior powers. Let \mathcal{C} and n be as in 1.1. For any object M of \mathcal{C} , we define $\Lambda^n(M)$ as the image of the idempotent $a_n = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma$ of $M^{\otimes n}$, where $\varepsilon : S_n \to \{\pm 1\}$ is the signature homomorphism. We have

$$\dim(\Lambda^n(M)) = \operatorname{Tr}(a_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \operatorname{Tr}(\sigma | M^{\otimes n}) = \frac{1}{n!} \prod_{0 \le j < n} (\dim(M) - j).$$

2. Embedding result

2.1. **Deligne's condition**. An additive symmetric monoidal category C, in which any object is dualizable, is said to satisfy **Deligne's condition** if the following assertions hold:

- (1) for any object M of C with $\dim(M) = 0$ then M = 0;
- (2) for any object M of C and any positive integer j, the endomorphism $\dim(M)+j$ is invertible;
- (3) for any object M of C, there exists an integer n such that $\prod_{0 \le j \le n} (\dim(M) j) = 0$.

2.2. Rigid exact symmetric monoidal categories. A rigid exact symmetric monoidal category is an additive symmetric monoidal category C, in which any object is dualizable, together with a class Seq of sequences $M_1 \to M_2 \to M_3$ of homomorphisms of C such that:

- (1) the couple $(\mathcal{C}, \text{Seq})$ is an exact category;
- (2) for any object M of C, the functor $M \otimes -$ sends Seq to itself;
- (3) the duality functor from C to itself sends Seq to itself.

In particular, the dual of an admissible monomorphism is an admissible epimorphism, and conversely.

Example 2.3. For any ring R, the category Vect_R of finite projective R-modules is naturally a rigid exact symmetric monoidal category. Moreover, it satisfies Deligne's condition 2.1 if and only if R is a \mathbb{Q} -algebra.

Theorem 2.4. Let C be a rigid exact symmetric monoidal category which is \mathbb{Q} -linear, Karoubian and essentially small. Then the following are equivalent:

- (i) Deligne's condition 2.1 holds for C;
- (ii) there exists a \mathbb{Q} -algebra R and a faithful exact monoidal functor from C to Vect_R .

3. Splitting Lemmas

Let \mathcal{C} be as in Theorem 2.4.

3.1. Faithfulness. A commutative algebra A in $Ind(\mathcal{C})$ is said to be faithful (or faithfully flat) if the unit morphism $1 \to A$ is an admissible monomorphism.

Example 3.2. If $C = \operatorname{Vect}_R$ for some ring R then $\operatorname{Ind}(C)$ is the symmetric monoidal category of flat R-modules by Lazard's theorem [058G]. Thus a commutative algebra in $\operatorname{Ind}(C)$ is simply a flat homomorphism $R \to A$ of rings. It is faithful as an object of $\operatorname{Ind}(C)$ if and only if $R \to A$ is injective with flat cokernel, or equivalently if A is a faithfully flat R-algebra.

Proposition 3.3. Let M be an object of C and let $M \xrightarrow{\lambda} 1$ be an admissible epimorphism. Let us consider the commutative algebra

$$A = \operatorname{colim}_n \operatorname{Sym}^n(M^{\vee}),$$

in $\operatorname{Ind}(\mathcal{C})$, with transition maps given by the multiplication by $1 \xrightarrow{\lambda^{\vee}} M^{\vee}$. Then we have the following assertions:

- (1) the epimorphism $A \otimes M \xrightarrow{\operatorname{id}_A \otimes v} A$ of A-modules admits an A-linear section;
- (2) the unit homomorphism $1 \rightarrow A$ is an admissible monomorphism, i.e. A is faithful.
- *Proof.* (1) The canonical morphism $M^{\vee} \to A$ yields an A-linear morphism $A \to A \otimes M$, and its composition with λ is the identity of A by construction.
 - (2) The composition of the morphism $\operatorname{Sym}^n(M) \to 1$ induced by v with the projection $M^{\otimes n} \xrightarrow{p_n} \operatorname{Sym}^n(M)$ is the admissible epimorphism $\lambda^{\otimes n}$. Thus $\operatorname{Sym}^n(M) \to 1$ is an admissible epimorphism, and its dual $1 \to \operatorname{Sym}^n(M^{\vee})$ is consequently an admissible monomorphism in \mathcal{C} . Hence the colimit $1 \to A$ is an admissible monomorphism in $\operatorname{Ind}(\mathcal{C})$.

Corollary 3.4. Let $M \to N$ be an admissible epimorphism in C. Then there exists a faithful commutative algebra A in Ind(C) such that the admissible epimorphism $A \otimes M \to A \otimes N$ splits.

Proof. For any commutative algebra A in $\operatorname{Ind}(\mathcal{C})$, the epimorphism $A \otimes M \to A \otimes N$ splits if and only if the corresponding morphism $A \otimes M \otimes N^{\vee} \to A$ splits. The morphism $M \otimes N^{\vee} \to 1$ is the pullback along the coevaluation $1 \to N \otimes N^{\vee}$ of the admissible epimorphism $M \otimes N^{\vee} \to N \otimes N^{\vee}$, hence is itself admissible. The conclusion then follows from Lemma 3.3 applied to $M \otimes N^{\vee} \to 1$.

Proposition 3.5. Let M be an object of C and let us consider the commutative algebra

 $A = \operatorname{colim}_n \operatorname{Sym}^n(M^{\vee} \oplus M),$

in Ind(\mathcal{C}), with transition maps $\operatorname{Sym}^n(M^{\vee} \oplus M) \to \operatorname{Sym}^{n+2}(M^{\vee} \oplus M)$ given by the multiplication by the coevaluation $1 \xrightarrow{\operatorname{coev}} M^{\vee} \otimes M$. Then we have the following assertions:

- (1) the A-module $A \otimes M$ admits a direct summand which is a free A-module of rank 1;
- (2) if $\dim(M) + j$ is invertible for any nonnegative integer j, then the unit homomorphism $1 \to A$ is a split monomorphism. In particular, A is faithful.
- *Proof.* (1) The canonical morphisms $M^{\vee} \xrightarrow{u_0} A$ and $M \xrightarrow{v_0} A$ induce A-module homomorphisms $A \xrightarrow{u} A \otimes M$ and $A \otimes M \xrightarrow{v} A$. The composition $v \circ u$ coincides with the A-linearization of the composition

$$1 \xrightarrow{\text{coev}} M^{\vee} \otimes M \xrightarrow{u_0 \otimes v_0} A,$$

which is simply the unit $1 \to A$ by construction of A. Thus $v \circ u$ is the identity of A, and consequently u is a split monomorphism of A-modules.

(2) The algebra A admits the subalgebra

$$B = \operatorname{colim}_n \operatorname{Sym}^n(M^{\vee}) \otimes \operatorname{Sym}^n(M),$$

as a direct summand, where the transitions are again given by multiplying by the coevaluation 1 $\xrightarrow{\text{coev}} M^{\vee} \otimes M$. Let e_n be the composition

$$\operatorname{Sym}^{n}(M^{\vee}) \otimes \operatorname{Sym}^{n}(M) \to (M^{\vee})^{\otimes n} \otimes M^{\otimes n} \xrightarrow{\operatorname{ev}^{\otimes n}} 1.$$

Let d_1 be the dimension of M and let $d_n = \frac{1}{n!}d_1(d_1+1)\cdots(d_1+n-1)$ be the dimension of $\operatorname{Sym}^n(M)$. By assumption, each d_n is an invertible endomorphism of the unit 1. The composition

$$\operatorname{Sym}^{n}(M^{\vee}) \otimes \operatorname{Sym}^{n}(M) \xrightarrow{\operatorname{coev}} \operatorname{Sym}^{n+1}(M^{\vee}) \otimes \operatorname{Sym}^{n+1}(M) \xrightarrow{d_{n+1}e_{n+1}} 1,$$

coincides with $d_n^{-1}e_n$, hence the morphisms $(d_n^{-1}e_n)_n$ provide a morphism $B \to 1$, which splits the unit of B.

Corollary 3.6. Let M be an object of C and let d be a nonnegative integer such that $\dim(M) + j$ is invertible for any integer j > -d. Then there exists a faithful commutative algebra A in $\operatorname{Ind}(C)$ such that the A-module $A \otimes M$ admits a direct summand which is a free A-module of rank d.

Proof. For d = 0, we simply take A = 1, the unit object of C. We prove the general case by induction. Let us assume that d is positive and that the assertion is proved for d - 1. By Lemma 3.5, we have a faithful commutative algebra B in C such that the B-module $B \otimes M$ is isomorphic to $B \oplus N$ for some B-module N. Since N is a direct summand of the dualizable B-module $B \otimes N$, it is a dualizable B-module as well. The rigid exact symmetric monoidal category of dualizable B-modules satisifies the assumptions of Corollary 3.6, and its object N is dualizable with dimension $\dim(N) = \dim(M) - 1$ such that $\dim(N) + j$ is invertible for any integer j > -d + 1. By induction there exists a faithful commutative B-algebra A in $\operatorname{Ind}(C)$ such that the A-module $A \otimes_B N$ admits a free direct summand of rank d - 1. Then A satisfies the conclusion of Corollary 3.6 for M. \Box

4. PROOF OF THEOREM 2.4

Clearly (*ii*) implies (*i*) in Theorem 2.4. Conversely, let \mathcal{C} be as in Theorem 2.4, and let us assume that Deligne's condition holds for \mathcal{C} . Let M be an object of \mathcal{C} . By assumption, there exists an integer n and orthogonal idempotents $(e_d)_{d=0}^n$ of End(1) such that $\dim(M)e_d = de_d$ and $\sum_d e_d = 1$. By Proposition 3.6, there exists a faithful commutative algebra A in $\operatorname{Ind}(\mathcal{C})$ such that for any integer d, the $e_d A$ -module $e_d A \otimes e_d M$ is of the form $(e_d A)^{\oplus d} \oplus N_d$. The $e_d A$ -module

$$\Lambda^{d+1}_{e_d A}(e_d A \otimes e_d M)) = e_d A \otimes \Lambda^{d+1}(e_d M),$$

contains $\Lambda_{e_d A}^d(e_d A^{\oplus d}) \otimes N \simeq N$ as a direct summand, and vanishes since $\Lambda^{d+1}(e_d M)$ has vanishing dimension. Thus N vanishes, and $e_d A \otimes e_d M$ is isomorphic to $(e_d A)^{\oplus d}$.

Since \mathcal{C} is essentially small, and since the category of faithful algebras in $\operatorname{Ind}(\mathcal{C})$ is cocomplete, we can assume (and we do) that the same algebra A has these properties for all objects M of \mathcal{C} . Likewise by Proposition 3.3 there exists a faithful commutative A-algebra B in $\operatorname{Ind}(\mathcal{C})$ such that $A \to B$ is an admissible monomorphism and such that any short exact sequence in \mathcal{C} splits over B.

Let R be the ring $\operatorname{Hom}_{\operatorname{Ind}(\mathcal{C})}(1, B)$ and let us consider the additive functor F which sends an object M of C to the R-module $\operatorname{Hom}_{\operatorname{Ind}(C)}(1, B \otimes M)$. Since any short exact sequence of C splits over B, the functor F is exact. Moreover, for any object M of C, with $(e_d)_d$ as above, we have

$$F(M) = F\left(\bigoplus_{d=0}^{n} e_d M\right) = \bigoplus_{d=0}^{n} F(e_d M) \simeq \bigoplus_{d=0}^{n} F(e_d) R^{\oplus d},$$

hence F(M) is a finite projective *R*-module. A similar computation shows that the natural transformation $F(M_1) \otimes_R F(M_2) \to F(M_1 \otimes M_2)$ is an isomorphism. Since we also have F(1) = R, the functor *F* is monoidal.

It remains to prove that F is faithful. Let M_1, M_2 be objects of C. The fact that $1 \to B$ is an admissible monomorphism, together with the left exactness of the functor $\operatorname{Hom}_{\operatorname{Ind}(\mathcal{C})}(1, M_1^{\vee} \otimes M_2 \otimes -)$ on $\operatorname{Ind}(\mathcal{C})$, yields that

 $\operatorname{Hom}_{\mathcal{C}}(M_1, M_2) = \operatorname{Hom}_{\mathcal{C}}(1, M_1^{\vee} \otimes M_2) \subseteq \operatorname{Hom}_{\operatorname{Ind}(\mathcal{C})}(1, M_1^{\vee} \otimes M_2 \otimes B),$

and the last term, namely $F(M_1^{\vee} \otimes M_2)$, is canonically isomorphic to $\operatorname{Hom}_{\operatorname{Vect}_R}(F(M_1), F(M_2))$ since F is monoidal.