
1. Preliminaries

1.1. Symmetric powers . Let C be a Q-linear Karoubian additive symmetric monoidal category.
Let n be a nonegative integer, and let Sn be the group of permutations of the set of integers from
1 to n. For any object M of C, the group Sn acts on the left on M⊗n. We de�ne Symn(M) as the
image of the idempotent pn = 1

n!

∑
σ∈Sn

σ of M⊗n. We have

dim(Symn(M)) = Tr(pn) =
1

n!

∑
σ∈Sn

Tr(σ|M⊗n) =
1

n!

∏
0≤j<n

(dim(M) + j).

1.2. Exterior powers . Let C and n be as in 1.1. For any object M of C, we de�ne Λn(M) as
the image of the idempotent an = 1

n!

∑
σ∈Sn

ε(σ)σ of M⊗n, where ε : Sn → {±1} is the signature
homomorphism. We have

dim(Λn(M)) = Tr(an) =
1

n!

∑
σ∈Sn

ε(σ)Tr(σ|M⊗n) =
1

n!

∏
0≤j<n

(dim(M)− j).

2. Embedding result

2.1. Deligne's condition . An additive symmetric monoidal category C, in which any object is
dualizable, is said to satisfy Deligne's condition if the following assertions hold:

(1) for any object M of C with dim(M) = 0 then M = 0;
(2) for any objectM of C and any positive integer j, the endomorphism dim(M)+j is invertible;
(3) for any object M of C, there exists an integer n such that

∏
0≤j<n(dim(M)− j) = 0.

2.2. Rigid exact symmetric monoidal categories . A rigid exact symmetric monoidal cat-
egory is an additive symmetric monoidal category C, in which any object is dualizable, together
with a class Seq of sequences M1 →M2 →M3 of homomorphisms of C such that:

(1) the couple (C,Seq) is an exact category;
(2) for any object M of C, the functor M ⊗− sends Seq to itself;
(3) the duality functor from C to itself sends Seq to itself.

In particular, the dual of an admissible monomorphism is an admissible epimorphism, and
conversely.

Example 2.3. For any ring R, the category VectR of �nite projective R-modules is naturally a
rigid exact symmetric monoidal category. Moreover, it satis�es Deligne's condition 2.1 if and only
if R is a Q-algebra.

Theorem 2.4. Let C be a rigid exact symmetric monoidal category which is Q-linear, Karoubian
and essentially small. Then the following are equivalent:

(i) Deligne's condition 2.1 holds for C;
(ii) there exists a Q-algebra R and a faithful exact monoidal functor from C to VectR.

3. Splitting lemmas

Let C be as in Theorem 2.4.
1
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3.1. Faithfulness. A commutative algebra A in Ind(C) is said to be faithful (or faithfully �at)
if the unit morphism 1→ A is an admissible monomorphism.

Example 3.2. If C = VectR for some ring R then Ind(C) is the symmetric monoidal category
of �at R-modules by Lazard's theorem [058G]. Thus a commutative algebra in Ind(C) is simply a
�at homomorphism R → A of rings. It is faithful as an object of Ind(C) if and only if R → A is
injective with �at cokernel, or equivalently if A is a faithfully �at R-algebra.

Proposition 3.3. Let M be an object of C and let M
λ−→ 1 be an admissible epimorphism. Let us

consider the commutative algebra

A = colimn Symn(M∨),

in Ind(C), with transition maps given by the multiplication by 1
λ∨−−→ M∨. Then we have the

following assertions:

(1) the epimorphism A⊗M idA⊗v−−−−→ A of A-modules admits an A-linear section;
(2) the unit homomorphism 1→ A is an admissible monomorphism, i.e. A is faithful.

Proof. (1) The canonical morphism M∨ → A yields an A-linear morphism A → A ⊗M , and
its composition with λ is the identity of A by construction.

(2) The composition of the morphism Symn(M) → 1 induced by v with the projection

M⊗n
pn−→ Symn(M) is the admissible epimorphism λ⊗n. Thus Symn(M)→ 1 is an admis-

sible epimorphism, and its dual 1 → Symn(M∨) is consequently an admissible monomor-
phism in C. Hence the colimit 1→ A is an admissible monomorphism in Ind(C).

�

Corollary 3.4. Let M → N be an admissible epimorphism in C. Then there exists a faithful
commutative algebra A in Ind(C) such that the admissible epimorphism A⊗M → A⊗N splits.

Proof. For any commutative algebra A in Ind(C), the epimorphism A⊗M → A⊗N splits if and
only if the corresponding morphism A⊗M ⊗N∨ → A splits. The morphism M ⊗N∨ → 1 is the
pullback along the coevaluation 1→ N ⊗N∨ of the admissible epimorphism M ⊗N∨ → N ⊗N∨,
hence is itself admissible. The conclusion then follows from Lemma 3.3 applied to M ⊗N∨ → 1.

�

Proposition 3.5. Let M be an object of C and let us consider the commutative algebra

A = colimn Symn(M∨ ⊕M),

in Ind(C), with transition maps Symn(M∨ ⊕M)→ Symn+2(M∨ ⊕M) given by the multiplication

by the coevaluation 1
coev−−−→M∨ ⊗M . Then we have the following assertions:

(1) the A-module A⊗M admits a direct summand which is a free A-module of rank 1;
(2) if dim(M) + j is invertible for any nonnegative integer j, then the unit homomorphism

1→ A is a split monomorphism. In particular, A is faithful.

Proof. (1) The canonical morphisms M∨
u0−→ A and M

v0−→ A induce A-module homomor-

phisms A
u−→ A ⊗ M and A ⊗ M

v−→ A. The composition v ◦ u coincides with the A-
linearization of the composition

1
coev−−−→M∨ ⊗M u0⊗v0−−−−→ A,

which is simply the unit 1→ A by construction of A. Thus v ◦ u is the identity of A, and
consequently u is a split monomorphism of A-modules.
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(2) The algebra A admits the subalgebra

B = colimn Symn(M∨)⊗ Symn(M),

as a direct summand, where the transitions are again given by multiplying by the coeval-

uation 1
coev−−−→M∨ ⊗M . Let en be the composition

Symn(M∨)⊗ Symn(M)→ (M∨)⊗n ⊗M⊗n ev⊗n

−−−→ 1.

Let d1 be the dimension of M and let dn = 1
n!d1(d1 + 1) · · · (d1 + n− 1) be the dimension

of Symn(M). By assumption, each dn is an invertible endomorphism of the unit 1. The
composition

Symn(M∨)⊗ Symn(M)
coev−−−→ Symn+1(M∨)⊗ Symn+1(M)

d−1
n+1en+1

−−−−−−→ 1,

coincides with d−1n en, hence the morphisms (d−1n en)n provide a morphism B → 1, which
splits the unit of B.

�

Corollary 3.6. Let M be an object of C and let d be a nonnegative integer such that dim(M) + j
is invertible for any integer j > −d. Then there exists a faithful commutative algebra A in Ind(C)
such that the A-module A⊗M admits a direct summand which is a free A-module of rank d.

Proof. For d = 0, we simply take A = 1, the unit object of C. We prove the general case by
induction. Let us assume that d is positive and that the assertion is proved for d− 1. By Lemma
3.5, we have a faithful commutative algebra B in C such that the B-module B ⊗M is isomorphic
to B⊕N for some B-module N . Since N is a direct summand of the dualizable B-module B⊗N ,
it is a dualizable B-module as well. The rigid exact symmetric monoidal category of dualizable B-
modules satisi�es the assumptions of Corollary 3.6, and its object N is dualizable with dimension
dim(N) = dim(M)− 1 such that dim(N) + j is invertible for any integer j > −d+ 1. By induction
there exists a faithful commutative B-algebra A in Ind(C) such that the A-module A⊗BN admits
a free direct summand of rank d− 1. Then A satis�es the conclusion of Corollary 3.6 for M . �

4. Proof of Theorem 2.4

Clearly (ii) implies (i) in Theorem 2.4. Conversely, let C be as in Theorem 2.4, and let us
assume that Deligne's condition holds for C. Let M be an object of C. By assumption, there
exists an integer n and orthogonal idempotents (ed)

n
d=0 of End(1) such that dim(M)ed = ded and∑

d ed = 1. By Proposition 3.6, there exists a faithful commutative algebra A in Ind(C) such that

for any integer d, the edA-module edA⊗ edM is of the form (edA)⊕d ⊕Nd. The edA-module

Λd+1
edA

(edA⊗ edM)) = edA⊗ Λd+1(edM),

contains ΛdedA(edA
⊕d)⊗N ' N as a direct summand, and vanishes since Λd+1(edM) has vanishing

dimension. Thus N vanishes, and edA⊗ edM is isomorphic to (edA)⊕d.
Since C is essentially small, and since the category of faithful algebras in Ind(C) is cocomplete,

we can assume (and we do) that the same algebra A has these properties for all objects M of C.
Likewise by Proposition 3.3 there exists a faithful commutative A-algebra B in Ind(C) such that
A→ B is an admissible monomorphism and such that any short exact sequence in C splits over B.

Let R be the ring HomInd(C)(1, B) and let us consider the additive functor F which sends an
object M of C to the R-module HomInd(C)(1, B ⊗M). Since any short exact sequence of C splits
over B, the functor F is exact. Moreover, for any object M of C, with (ed)d as above, we have

F (M) = F (⊕nd=0edM) = ⊕nd=0F (edM) ' ⊕nd=0F (ed)R
⊕d,
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hence F (M) is a �nite projective R-module. A similar computation shows that the natural trans-
formation F (M1)⊗R F (M2)→ F (M1⊗M2) is an isomorphism. Since we also have F (1) = R, the
functor F is monoidal.

It remains to prove that F is faithful. Let M1,M2 be objects of C. The fact that 1 → B is
an admissible monomorphism, together with the left exactness of the functor HomInd(C)(1,M

∨
1 ⊗

M2 ⊗−) on Ind(C), yields that
HomC(M1,M2) = HomC(1,M

∨
1 ⊗M2) ⊆ HomInd(C)(1,M

∨
1 ⊗M2 ⊗B),

and the last term, namely F (M∨1 ⊗M2), is canonically isomorphic to HomVectR(F (M1), F (M2))
since F is monoidal.
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