1. (Multi)Linear Algebra in symmetric monoidal categories

1.1. Dimension.

1.2. Symmetric powers. Let \mathcal{C} be a \mathbb{Q} -linear Karoubian additive symmetric monoidal category. Let n be a nonegative integer, and let S_n be the group of permutations of the set of integers from 1 to n. For any object M of \mathcal{C} , the group S_n acts on the left on $M^{\otimes n}$. We define $\operatorname{Sym}^n(M)$ as the image of the idempotent $p_n = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma$ of $M^{\otimes n}$. We have

$$\dim(\operatorname{Sym}^{n}(M)) = \operatorname{Tr}(p_{n}) = \frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{Tr}(\sigma | M^{\otimes n}) = \frac{1}{n!} \prod_{0 \le j < n} (\dim(\mathbf{M}) + j)$$

1.3. Exterior powers. Let \mathcal{C} and n be as in 1.2. For any object M of \mathcal{C} , we define $\Lambda^n(M)$ as the image of the idempotent $a_n = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \sigma$ of $M^{\otimes n}$, where $\varepsilon : S_n \to \{\pm 1\}$ is the signature homomorphism. We have

$$\dim(\Lambda^n(M)) = \operatorname{Tr}(a_n) = \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma) \operatorname{Tr}(\sigma | M^{\otimes n}) = \frac{1}{n!} \prod_{0 \le j < n} (\dim(M) - j).$$

2. Embedding result

2.1. **Deligne's condition**. An additive symmetric monoidal category C is said to satisfy **Deligne's condition** if the following assertions hold:

- (1) for any object M of C with $\dim(M) = 0$ then M = 0;
- (2) for any object M of C and any positive integer j, the endomorphism $\dim(M)+j$ is invertible;
- (3) for any object M of C, there exists an integer n such that $\prod_{0 \le j \le n} (\dim(M) j) = 0$.

2.2. Exact symmetric monoidal categories. An exact symmetric monoidal category is an additive symmetric monoidal category C together with a class Seq of sequences $M_1 \to M_2 \to M_3$ of homomorphisms of C such that:

- (1) the couple $(\mathcal{C}, \text{Seq})$ is an exact category;
- (2) for any object M of C, the functor $M \otimes -$ sends Seq to itself.

Example 2.3. For any ring R, the category Vect_R of finite projective R-modules is naturally an exact symmetric monoidal category. Moreover, it satisfies Deligne's condition 2.1 if and only if R is a \mathbb{Q} -algebra.

Theorem 2.4. (??) Let C be an exact symmetric monoidal category, such that:

- (1) the category C is \mathbb{Q} -linear, Karoubian and essentially small;
- (2) any object of C is dualizable.

Then the following are equivalent:

- Deligne's condition 2.1 holds for C;
- there exists a \mathbb{Q} -algebra R and a faithful exact monoidal functor from \mathcal{C} to Vect_R .

3. A FEW THOUGHTS

Let \mathcal{C} be as in Theorem 2.4. Let us consider the groupoid-valued presheaf

 $\mathcal{G}: A \mapsto \{\mathcal{C} \xrightarrow{F} \text{Vect}_A \text{ exact monoidal (unit-preserving) functor}\},\$

on the category of rings.

Example 3.1. If $C = \operatorname{Vect}_R$ for some ring R, then G is representable by $\operatorname{Spec}(R)$. Presumably the same happens if we replace R with a quasicompact quasisperated scheme.

The question is, can we recover C from the groupoid G? Also, under the hypotheses of Theorem 2.4, what can be said on G? Is it an algebraic stack? Perhaps one should assume C to be finitely generated.