REMARKS :

1) In Proposition 0.1(2) below, is Q-linearity necessary? More generally, is there a relation between the properties "being colimit of dualizable" and "being flat" in general?

2) We should include examples of Q-linear symmetric monoidal categories with non integral dimensions (Deligne categories?). Same for nonzero objects with zero dimension.

Let \mathcal{C} be a symmetric monoidal abelian category which has all small colimits, i.e. which is cocomplete. For any object M of \mathcal{C} , the graded commutative ring

$$\operatorname{Sym}^{\bullet}(M) = \bigoplus_{n \in \mathbb{N}} \operatorname{Sym}^n(M),$$

is defined as largest commutative quotient of the tensor algebra $T(M) = \bigoplus_{n \in \mathbb{N}} M^{\otimes n}$.

Proposition 0.1. Let C be a cocomplete symmetric monoidal abelian category. Let M be a dualizable object of C and let us consider the commutative algebra

$$A = \operatorname{colim}_n \operatorname{Sym}^n(M^{\vee} \oplus M)$$

in \mathcal{C} , with transition maps $\operatorname{Sym}^n(M^{\vee} \oplus M) \to \operatorname{Sym}^{n+2}(M^{\vee} \oplus M)$ given by the multiplication by the coevaluation $1 \xrightarrow{\operatorname{coev}} M^{\vee} \otimes M$. Then we have the following assertions:

- (1) the A-module $A \otimes M$ admits a direct summand which is a free A-module of rank 1;
- (2) if C is \mathbb{Q} -linear then A is a flat algebra;
- (3) if C is \mathbb{Q} -linear and if $\dim(M) + j$ is invertible for any nonnegative integer j, then the unit homomorphism $1 \to A$ is a split monomorphism, and the algebra A is consequently faithfully flat.
- *Proof.* (1) The canonical morphisms $M^{\vee} \xrightarrow{u_0} A$ and $M \xrightarrow{v_0} A$ induce A-module homomorphisms $A \xrightarrow{u} A \otimes M$ and $A \otimes M \xrightarrow{v} A$. The composition $v \circ u$ coincides with the A-linearization of the composition

$$1 \xrightarrow{\text{coev}} M^{\vee} \otimes M \xrightarrow{u_0 \otimes v_0} A,$$

which is simply the unit $1 \to A$ by construction of A. Thus $v \circ u$ is the identity of A, and consequently u is a split monomorphism of A-modules.

- (2) Let N = M[∨] ⊕ M. For each nonnegative integer n, the group S_n of permutations of the first n positive integers acts on the left on the tensor power N^{⊗n} by permuting the factors. The endomorphism p_n = ¹/_{n!} ∑_{σ∈S_n} σ of N^{⊗n} is a projection, whose image maps isomorphically onto Symⁿ(N). Thus Symⁿ(N) is isomorphic to a direct summand of the dualizable object N^{⊗n}, hence is dualizable and in particular flat. The algebra A is then a colimit a flat objects, hence is flat as well.
- (3) The algebra A admits the subalgebra

$$B = \operatorname{colim}_n \operatorname{Sym}^n(M^{\vee}) \otimes \operatorname{Sym}^n(M),$$

as a direct summand, where the transitions are again given by multiplying by the coevaluation 1 $\xrightarrow{\text{coev}} M^{\vee} \otimes M$. Let $\iota_n : (M^{\otimes n})^{S_n} \to \text{Sym}^n(M)$ and $\iota_n^{\vee} : (M^{\vee \otimes n})^{S_n} \to \text{Sym}^n(M^{\vee})$ be the restrictions of the natural surjections. Let e_n be the composition

$$\operatorname{Sym}^{n}(M^{\vee}) \otimes \operatorname{Sym}^{n}(M) \xrightarrow{(\iota_{n}^{\vee})^{-1} \otimes \iota_{n}^{-1}} (M^{\vee})^{\otimes n} \otimes M^{\otimes n} \xrightarrow{\operatorname{ev}^{\otimes n}} 1$$

Let d_1 be the dimension of M and let $d_n = \frac{1}{n!}d_1(d_1+1)\cdots(d_1+n-1)$ be the dimension of $\operatorname{Sym}^n(M)$. By assumption, each d_n is an invertible endomorphism of the unit 1. The

composition

 $\operatorname{Sym}^{n}(M^{\vee}) \otimes \operatorname{Sym}^{n}(M) \xrightarrow{\operatorname{coev}} \operatorname{Sym}^{n+1}(M^{\vee}) \otimes \operatorname{Sym}^{n+1}(M) \xrightarrow{d_{n+1}^{-1}e_{n+1}} 1,$

coincides with $d_n^{-1}e_n$ [COMPUTATION TO BE EXPANDED], hence the morphisms $(d_n^{-1}e_n)_n$ provide a splitting $B \to 1$ of the unit of B.

Corollary 0.2. Let C be a cocomplete \mathbb{Q} -linear symmetric monoidal abelian category. Let M be a dualizable object of C and let d be a nonnegative integer such that $\dim(M) + j$ is invertible for any integer j > -d. Then there exists a faithfully flat commutative algebra A in C such that the A-module $A \otimes M$ admits a direct summand which is a free A-module of rank d.

Proof. For d = 0, we simply take A = 1, the unit object of C. We prove the general case by induction. Let us assume that d is positive and that the assertion is proved for d - 1. By Lemma 0.1, we have a faithfully flat algebra B in C such that the B-module $B \otimes M$ is isomorphic to $B \oplus N$ for some B-module N. Since N is a direct summand of the dualizable B-module $B \otimes N$, it is a dualizable B-module as well. The category of B-modules is a cocomplete \mathbb{Q} -linear symmetric monoidal abelian category, and its object N is dualizable with dimension dim(M) - 1, and dim(M) - 1 + j is invertible for any integer j > -d + 1. By induction there exists a faithfully flat B-algebra A such that the A-module $A \otimes_B N$ admits a free direct summand of rank d - 1. Then A is a faithfully flat algebra in C and the A-module $A \otimes M$ admits a free direct summand of rank d.

Corollary 0.3. Let C be a cocomplete \mathbb{Q} -linear symmetric monoidal abelian category. Let \mathcal{D} be an essentially small full subcategory of C whose objects are all dualizable in C with dimensions in $\mathbb{Z}_{\geq 0}$. Then there exists a faithfully flat commutative algebra A in C such that for any object M of \mathcal{D} , the A-module $A \otimes M$ admits a direct summand which is a free A-module of rank dim(M).

Proof. Let D be a set of objects of \mathcal{D} such that any object of \mathcal{D} is isomorphic to an element of D. For each element M of D, by Corollary 0.2 we may take a faithfully flat algebra A_M in \mathcal{C} such that $A_M \otimes M$ admits a direct summand which is a free A_M -module of rank d. The conclusion follows by taking A to be the coproduct of $(A_M)_{M \in D}$ in the category of commutative algebras of \mathcal{C} . \Box