A1. On monoidal categories

August 6, 2020

1 On monoidal categories

1.1 *R*-linear monoidal categories

Definition 1.1. Let R be a ring. An R-linear monoidal category is a monoidal category $(\mathcal{C}, \otimes, \phi)$ (Stacks project authors, 2020, Tag 0FFJ) such that \mathcal{C} is R-linear (Stacks project authors, 2020, Tag 09MI) and the functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is R-bilinear, i. e., for any objects X, Y, Z, W of \mathcal{C} the map

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Z,W) \to \operatorname{Hom}_{\mathcal{C}}(X \otimes Z, Y \otimes W)$$

is R-bilinear.

Definition 1.2. A functor of *R*-linear monoidal categories $F: \mathcal{C} \to \mathcal{C}'$ is given by a functor of monoidal categories (Stacks project authors, 2020, Tag 0FFL) that is also *R*-linear (Stacks project authors, 2020, Tag 09MK). I. e., there is a natural transformation $\otimes' \circ (F \times F) \simeq F \circ \otimes$ satisfying an associativity condition, $F(\mathbf{1})$ is a unit in \mathcal{C}' , and $\operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}'}(F(X),F(Y))$ is an *R*-module homomorphism for all objects X and Y of \mathcal{C} .

Definition 1.3. An *R*-linear symmetric monoidal category is a quadruple $(\mathcal{C}, \otimes, \phi, \psi)$, where $(\mathcal{C}, \otimes, \phi)$ is an *R*-linear monoidal category and ψ is a commutativity constraint compatible with ϕ . I. e., $(\mathcal{C}, \otimes, \phi, \psi)$ is a symmetric monoidal category that is *R*-linear.

Definition 1.4. A functor of *R*-linear symmetric monoidal categories $F: \mathcal{C} \to \mathcal{C}'$ is a functor of symmetric monoidal categories (Stacks project authors, 2020, Tag 0FFY) that is *R*-linear.

Remark 1.5. Note that we do not need to require the associativity constraint ϕ and the commutativity constraint ψ to be *R*-linear as this will automatically be the case: More generally, suppose $F, G: \mathcal{A} \to \mathcal{B}$ are *R*-linear functors between *R*-linear categories \mathcal{A} and \mathcal{B} . Then a natural transformation $\eta: F \to G$ from *F* to *G* is automatically *R*-linear in the following sense: For any object *A* of \mathcal{A} and any $r \in R$ the following diagram commutes:

The top horizontal arrow uses the *R*-module structure of $\operatorname{Hom}_{\mathcal{B}}(F(A), G(A))$ and the left vertical arrow that of $\operatorname{Hom}_{\mathcal{B}}(F(A), F(A))$.

1.2 Rigidity

Definition 1.6. Given an *R*-linear symmetric monoidal cateogry $(\mathcal{C}, \otimes, \phi, \psi)$ and an object *X* of \mathcal{C} , a *dual* of *X* is a left or right dual of *X* in \mathcal{C} viewed as a monoidal category (Stacks project authors, 2020, Tag 0FFP), i.e., an object *X'* of \mathcal{C} together with morphisms $\eta: \mathbf{1} \to X \otimes X'$ (*unit/coevaluation map*) and $\epsilon: X' \otimes X \to \mathbf{1}$ (*counit/evaluation map*) such that

commute (for a left dual X') or with X and X' interchanged for a right dual. By (Stacks project authors, 2020, Tag 0FN8) any left dual X' of X will also be a right dual, so in the case of symmetric monoidal categories we simply refer to *duals* and omit right/left. If a dual of X exists, we denote if by X^{\vee} and call X *dualizable*.

Remark 1.7. Suppose the object X of C has a dual X^{\vee} , then by (Stacks project authors, 2020, Tag 0FFQ) the functor $-\otimes X$ has right and left adjoint $-\otimes X^{\vee}$. In particular there is a natural transformation

$$\operatorname{Hom}_{\mathcal{C}}(Z \otimes X, Y) \to \operatorname{Hom}_{\mathcal{C}}(Z, Y \otimes X^{\vee})$$

compatible with \otimes and functorial in both Z and Y. This motivates the following definition.

Definition 1.8. Suppose the object X of the R-linear symmetric monoidal cateogry \mathcal{C} has a dual X^{\vee} in the sense of 1.6, then the *inner hom* of X and $Y \in ob(\mathcal{C})$ is $\underline{Hom}(X, Y) := Y \otimes X^{\vee}$. By the previous remark, this yields a functorial isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(Z \otimes X, Y) \to \operatorname{Hom}_{\mathcal{C}}(Z, \operatorname{Hom}(X, Y))$$

for any $Z \in ob(\mathcal{C})$.

Definition 1.9. A symmetric monoidal category C is called *rigid* if all objects X of C are *dualizable*.

Definition 1.10. For a finite dualizable object X of $(\mathcal{C}, \otimes, \phi, \psi)$ we call the composition

$$\operatorname{End}(X) = \operatorname{Hom}(\mathbf{1}, X \otimes X^{\vee}) \xrightarrow{\operatorname{Hom}(\mathbf{1}, \psi)} \operatorname{Hom}(\mathbf{1}, X^{\vee} \otimes X) \to \operatorname{End}(\mathbf{1})$$

the trace morphism of X and denote it by tr_X . The dimension of X is $\operatorname{tr}_X(\operatorname{id}_X) \in \operatorname{End}(1)$.

1.3 Abelian symmetric monoidal categories

Definition 1.11. An *abelian* symmetric monoidal categoy is a symmetric monoidal category (\mathcal{C}, \otimes) such that \mathcal{C} is an abelian category and the functor \otimes is additive in each variable.

Proposition 1.12. Let (\mathcal{C}, \otimes) be a rigid symmetric monodial category such that \mathcal{C} is abelian. Then the functor \otimes is bi-additive commutes with colimits and limits in each variable.

Proof. By assumption any object X of C is dualizable. The functor $- \otimes X : C \otimes C$ is left and right adjoint to $- \otimes X^{\vee}$, hence it commutes with colimits and limits, and it is additive.

1.4 Ind-Completion

Definition 1.13. For a category \mathcal{C} let $PSh(\mathcal{C})$ denote the category of presheaves of sets on \mathcal{C} (Stacks project authors, 2020, Tag 00V1). An *ind-object* in \mathcal{C} is an object of $PSh(\mathcal{C})$ which is isomorphic to a filtered colimit (Stacks project authors, 2020, Tag 04AX) colim_I $h_{\mathcal{C}}(M)$ for $M: I \to \mathcal{C}$ a filtered diagram in \mathcal{C} and $h_{\mathcal{C}}: \mathcal{C} \to PSh(\mathcal{C})$ the Yoneda embedding.

Definition 1.14. The *ind-completion of* \mathcal{C} is the full subcategory $\operatorname{Ind}(\mathcal{C}) \subseteq \operatorname{PSh}(\mathcal{C})$ on indobjects in \mathcal{C} . Denote by $i_{\mathcal{C}} \colon \mathcal{C} \to \operatorname{Ind}(\mathcal{C})$ the natural functor induced by $h_{\mathcal{C}} \colon \mathcal{C} \to \operatorname{PSh}(\mathcal{C})$.

Proposition 1.15. The category $Ind(\mathcal{C})$ admits all small filtered colimits and the inclusion $Ind(\mathcal{C}) \hookrightarrow PSh(\mathcal{C})$ commutes with small filtered colimits.

Proposition 1.16. The ind-completion of an R-linear symmetric monoidal category C acquires a canonical symmetric monoidal structure extending that of C.

Proof. Use Proposition 1.12.

References

- P. Deligne and J. S. Milne. *Tannakian Categories*, pages 101–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982. ISBN 978-3-540-38955-2. doi: 10.1007/ 978-3-540-38955-2_4. URL https://doi.org/10.1007/978-3-540-38955-2_4.
- T. Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2020.