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1 On monoidal categories

1.1 R-linear monoidal categories

Definition 1.1. Let R be a ring. An R-linear monoidal category is a monoidal category
(C,⊗, φ) (Stacks project authors, 2020, Tag 0FFJ) such that C is R-linear (Stacks project
authors, 2020, Tag 09MI) and the functor ⊗ : C×C → C is R-bilinear, i. e., for any objects
X, Y, Z,W of C the map

HomC(X, Y )× HomC(Z,W )→ HomC(X ⊗ Z, Y ⊗W )

is R-bilinear.

Definition 1.2. A functor of R-linear monoidal categories F : C → C ′ is given by a
functor of monoidal categories (Stacks project authors, 2020, Tag 0FFL) that is also R-
linear (Stacks project authors, 2020, Tag 09MK). I. e., there is a natural transformation
⊗′ ◦ (F × F ) ' F ◦ ⊗ satisfying an associativity condition, F (1) is a unit in C ′, and
HomC(X, Y ) → HomC′(F (X), F (Y )) is an R-module homomorphism for all objects X
and Y of C.

Definition 1.3. An R-linear symmetric monoidal category is a quadruple (C,⊗, φ, ψ),
where (C,⊗, φ) is an R-linear monoidal category and ψ is a commutativity constraint
compatible with φ. I. e., (C,⊗, φ, ψ) is a symmetric monoidal category that is R-linear.

Definition 1.4. A functor of R-linear symmetric monoidal categories F : C → C ′ is a
functor of symmetric monoidal categories (Stacks project authors, 2020, Tag 0FFY) that
is R-linear.

Remark 1.5. Note that we do not need to require the associativity constraint φ and the
commutativity constraint ψ to be R-linear as this will automatically be the case: More
generally, suppose F,G : A → B are R-linear functors between R-linear categories A and
B. Then a natural transformation η : F → G from F to G is automatically R-linear in the
following sense: For any object A of A and any r ∈ R the following diagram commutes:

F (A) G(A)

F (A) G(A)

r·ηA

r·idF (A) idG(A)

ηA

The top horizontal arrow uses the R-module structure of HomB(F (A), G(A)) and the left
vertical arrow that of HomB(F (A), F (A)).
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1.2 Rigidity

Definition 1.6. Given an R-linear symmetric monoidal cateogry (C,⊗, φ, ψ) and an ob-
ject X of C, a dual of X is a left or right dual of X in C viewed as a monoidal category
(Stacks project authors, 2020, Tag 0FFP), i e., an object X ′ of C together with morphisms
η : 1 → X ⊗ X ′ (unit/coevaluation map) and ε : X ′ ⊗ X → 1 (counit/evaluation map)
such that

X X ⊗X ′ ⊗X

X

η⊗idX

idX
idX ⊗ε and

X ′ X ⊗X ′ ⊗X

Y

idX′ ⊗ε

idX′
ε⊗idX′

commute (for a left dual X ′) or with X and X ′ interchanged for a right dual. By (Stacks
project authors, 2020, Tag 0FN8) any left dual X ′ of X will also be a right dual, so in
the case of symmetric monoidal categories we simply refer to duals and omit right/left.
If a dual of X exists, we denote if by X∨ and call X dualizable.

Remark 1.7. Suppose the object X of C has a dual X∨, then by (Stacks project authors,
2020, Tag 0FFQ) the functor − ⊗ X has right and left adjoint − ⊗ X∨. In particular
there is a natural transformation

HomC(Z ⊗X, Y )→ HomC(Z, Y ⊗X∨)

compatible with⊗ and functorial in both Z and Y . This motivates the following definition.

Definition 1.8. Suppose the object X of the R-linear symmetric monoidal cateogry C has
a dual X∨ in the sense of 1.6, then the inner hom of X and Y ∈ ob(C) is Hom(X, Y ) :=
Y ⊗X∨. By the previous remark, this yields a functorial isomorphism

HomC(Z ⊗X, Y )→ HomC(Z,Hom(X, Y ))

for any Z ∈ ob(C).

Definition 1.9. A symmetric monoidal category C is called rigid if all objects X of C
are dualizable.

Definition 1.10. For a finite dualizable object X of (C,⊗, φ, ψ) we call the composition

End(X) = Hom(1, X ⊗X∨) Hom(1,ψ)−−−−−→ Hom(1, X∨ ⊗X)→ End(1)

the trace morphism of X and denote it by trX . The dimension of X is trX(idX) ∈ End(1).

1.3 Abelian symmetric monoidal categories

Definition 1.11. An abelian symmetric monoidal categoy is a symmetric monoidal cat-
egory (C,⊗) such that C is an abelian category and the functor ⊗ is additive in each
variable.

Proposition 1.12. Let (C,⊗) be a rigid symmetric monodial category such that C is
abelian. Then the functor ⊗ is bi-additive commutes with colimits and limits in each
variable.

Proof. By assumption any object X of C is dualizable. The functor − ⊗ X : C ⊗ C is
left and right adjoint to − ⊗ X∨, hence it commutes with colimits and limits, and it is
additive.
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1.4 Ind-Completion

Definition 1.13. For a category C let PSh(C) denote the category of presheaves of
sets on C (Stacks project authors, 2020, Tag 00V1). An ind-object in C is an object
of PSh(C) which is isomorphic to a filtered colimit (Stacks project authors, 2020, Tag
04AX) colimI hC(M) for M : I → C a filtered diagram in C and hC : C → PSh(C) the
Yoneda embedding.

Definition 1.14. The ind-completion of C is the full subcategory Ind(C) ⊆ PSh(C) on ind-
objects in C. Denote by iC : C → Ind(C) the natural functor induced by hC : C → PSh(C).

Proposition 1.15. The category Ind(C) admits all small filtered colimits and the inclusion
Ind(C) ↪→ PSh(C) commutes with small filtered colimits.

Proposition 1.16. The ind-completion of an R-linear symmetric monoidal category C
acquires a canonical symmetric monoidal structure extending that of C.

Proof. Use Proposition 1.12.
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