A1. On k-linear categories

August 4, 2020

1 On monoidal categories

1.1 R-linear monoidal categories

Definition 1.1. Let R be a ring. An R-linear monoidal category is a monoidal category $(\mathcal{C}, \otimes, \phi)$ (Stacks project authors, 2020, Tag 0FFJ) such that \mathcal{C} is R-linear (Stacks project authors, 2020, Tag 09MI) and the functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is R-bilinear, i. e., for any objects X, Y, Z, W of \mathcal{C} the map

$$\operatorname{Hom}_{\mathcal{C}}(X,Y) \times \operatorname{Hom}_{\mathcal{C}}(Z,W) \to \operatorname{Hom}_{\mathcal{C}}(X \otimes Z,Y \otimes W)$$

is R-bilinear.

Definition 1.2. An *R-linear symmetric monoidal category* is a quadruple $(\mathcal{C}, \otimes, \phi, \psi)$, where $(\mathcal{C}, \otimes, \phi)$ is an *R*-linear monoidal category and ψ is a commutativity constraint compatible with ϕ . I. e., $(\mathcal{C}, \otimes, \phi, \psi)$ is a symmetric monoidal category that is *R*-linear.

1.2 Internal Hom

Definition 1.3. Let X and Y be objects of a monoidal category \mathcal{C} . If the functor

$$\operatorname{Hom}_{\mathcal{C}}(-\otimes X,Y)\colon \mathcal{C}^{\operatorname{op}}\to \operatorname{Sets},\ Z\mapsto \operatorname{Hom}_{\mathcal{C}}(Z\otimes X,Y)$$

is representable, we denote the representing object by $\underline{\mathrm{Hom}}(X,Y) \in \mathrm{ob}(\mathcal{C})$ and call it the inner hom from X to Y. This means that there is an isomorphism, functorial in Z:

$$\operatorname{Hom}_{\mathcal{C}}(Z \otimes X, Y) \to \operatorname{Hom}_{\mathcal{C}}(Z, \operatorname{Hom}(X, Y)).$$

The unique preimage of $id_{Hom(X,Y)}$ under the functorial isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(\operatorname{\underline{Hom}}(X,Y)\otimes X,Y)\to \operatorname{Hom}_{\mathcal{C}}(\operatorname{\underline{Hom}}(X,Y),\operatorname{\underline{Hom}}(X,Y))$$

is denoted by

$$\operatorname{ev}_{XY} \colon \operatorname{Hom}(X,Y) \otimes X \to Y.$$

Remark 1.4.

$$\operatorname{Hom}(\mathbf{1}, \operatorname{Hom}(X, Y)) \cong \operatorname{Hom}(\mathbf{1} \otimes X, Y) = \operatorname{Hom}(X, Y).$$

Definition 1.5. If for an object X of \mathcal{C} and the unit object $\mathbf{1}$ the functor $\operatorname{Hom}_{\mathcal{C}}(X \otimes -, \mathbf{1})$ is representable, we denote the inner hom $\operatorname{\underline{Hom}}(X, \mathbf{1})$ by X^{\vee} and call it the *dual object* to X. We call X dualizable. We denote $\operatorname{ev}_X := \operatorname{ev}_{X,\mathbf{1}} \colon X^{\vee} \otimes X \to \mathbf{1}$ and call it the evaluation morphism. For any object Z of \mathcal{C} we have a functorial isomorphism

$$\operatorname{Hom}(Z, X^{\vee}) \to \operatorname{Hom}(Z \otimes X, \mathbf{1}).$$

If objects X and Y of \mathcal{C} are dualizable and $f: X \to Y$ is a morphism in \mathcal{C} we can define $^tf: Y^{\vee} \to X^{\vee}$ as the image of $\operatorname{ev}_Y \circ (\operatorname{id}_{Y^{\vee}} \otimes f)$ under the functorial isomorphism

$$\operatorname{Hom}_{\mathcal{C}}(Y^{\vee} \otimes X, \mathbf{1}) \to \operatorname{Hom}_{\mathcal{C}}(Y^{\vee}, X^{\vee}).$$

When f is an isomorphism, so is tf and we let $f^{\vee} := ({}^tf)^{-1} \colon X^{\vee} \to Y^{\vee}$. Then

$$\operatorname{ev}_Y \circ (f^{\vee} \otimes f) = \operatorname{ev}_X \colon X^{\vee} \otimes X \to \mathbf{1}.$$

Definition 1.6. In a symmetric monoidal category C, let $i_X \colon X \to X^{\vee\vee}$ be the unique preimage of the composition of the commutativity law $\psi \colon X \otimes X^{\vee} \to X^{\vee} \otimes X$ with $\operatorname{ev}_X \colon X^{\vee} \otimes X \to \mathbf{1}$ under the functorial isomorphism

$$\operatorname{Hom}(X, X^{\vee\vee}) \to \operatorname{Hom}(X \otimes X^{\vee}, \mathbf{1}) \ni \operatorname{ev}_X \circ \psi.$$

If i_X is an isomorphism, then X is called *reflexive*.

Definition 1.7. A symmetric monoidal category \mathcal{C} is called *rigid* if

- 1. the inner hom $\underline{\text{Hom}}(X,Y)$ exists for all objects X and Y,
- 2. the morphisms

$$\underline{\operatorname{Hom}}(X_1,Y_1)\otimes\underline{\operatorname{Hom}}(X_2,Y_2)\to\underline{\operatorname{Hom}}(X_1\otimes X_2,Y_1\otimes Y_2)$$

corresponding to the morphism

$$\left(\underline{\mathrm{Hom}}(X_1,Y_1)\otimes\underline{\mathrm{Hom}}(X_2,Y_2)\right)\otimes\left(X_1\otimes X_2)\right)\xrightarrow{\mathrm{ev}_{X_1,Y_1}\otimes\mathrm{ev}_{X_2,Y_2}}Y_1\otimes Y_2$$

are isomorphisms for all objects X_1, X_2, Y_1, Y_2 of \mathcal{C} ,

3. all objects of \mathcal{C} are reflexive.

Remark 1.8. A symmetric monoidal category \mathcal{C} is *rigid* if and only if all objects in \mathcal{C} admit a dual: If all objects admit a dual, then the inner hom for objects X and Y of \mathcal{C} is the objects $X^{\vee} \otimes Y$ with $\operatorname{ev}_{X,Y} \colon (X^{\vee} \otimes Y) \otimes X \xrightarrow{\psi} X^{\vee} \otimes X \otimes Y \xrightarrow{\operatorname{ev}_X \otimes \operatorname{id}_Y} \mathbf{1} \otimes Y \to Y$.

Definition 1.9. Let X and Y be objects of a symmetric monoidal category \mathcal{C} such that the inner hom $\underline{\text{Hom}}(X,Y)$ exists and X is dualizable. The morphism

$$(X^{\vee} \otimes Y) \otimes X \cong (\underline{\operatorname{Hom}}(X, \mathbf{1}) \otimes \underline{\operatorname{Hom}}(\mathbf{1}, Y)) \otimes (X \otimes \mathbf{1}) \to \mathbf{1} \otimes Y \cong Y$$

corresponds to a morphism $\phi_{X,Y}$:

$$X^\vee \otimes Y = \underline{\mathrm{Hom}}(X,\mathbf{1}) \otimes \underline{\mathrm{Hom}}(1,Y) \to \underline{\mathrm{Hom}}(X \otimes \mathbf{1},\mathbf{1} \otimes Y) = \underline{\mathrm{Hom}}(X,Y).$$

An object X of C is called *finite* if the morphism $\phi_{X,X} \colon X^{\vee} \otimes X \to \underline{\text{Hom}}(X,X)$ is an isomorphism.

Definition 1.10. For a finite dualizable object X of \mathcal{C} we call the composition

$$\underline{\mathrm{Hom}}(X,X) \xrightarrow{\phi_{X,X}^{-1}} X^{\vee} \otimes X \xrightarrow{\mathrm{ev}_X} \mathbf{1}.$$

the trace morphism of X and denote it by tr_X . The dimension of X is the composition of the trace tr_X with $j_X \colon \mathbf{1} \to \operatorname{\underline{Hom}}(X,X)$ (induced by $X \otimes 1 \to X$):

$$\operatorname{End}(\mathbf{1},\mathbf{1}) \ni \dim_X \colon \mathbf{1} \xrightarrow{j_X} \operatorname{\underline{Hom}}(X,X) \xrightarrow{\operatorname{tr}_X} \mathbf{1}$$

1

1.3 Abelian symmetric monoidal categories

Definition 1.11. An abelian symmetric monoidal category is a symmetric monoidal category (\mathcal{C}, \otimes) such that \mathcal{C} is an abelian category and the functor \otimes is additive in each variable.

Proposition 1.12. Let (C, \otimes) be a rigid symmetric monodial category such that C is abelian. Then the functor \otimes is bi-additive commutes with colimits and limits in each variable.

Proof. The functor $- \otimes X : \mathcal{C} \otimes \mathcal{C}$ is left adjoint to $\underline{\operatorname{Hom}}(X, -)$, hence it commutes with colimits and is additive. By considering the opposite caegory $\mathcal{C}^{\operatorname{op}}$ we see that $- \otimes X$ is also right adjoint to $\underline{\operatorname{Hom}}(X, -)$, so it also preserves limits.

1.4 Ind-Completion

Definition 1.13. For a category \mathcal{C} let $PSh(\mathcal{C})$ denote the category of presheaves of sets on \mathcal{C} (Stacks project authors, 2020, Tag 00V1). An *ind-object* in \mathcal{C} is an object of $PSh(\mathcal{C})$ which is isomorphic to a filtered colimit (Stacks project authors, 2020, Tag 04AX) $colim_I h_{\mathcal{C}}(M)$ for $M: I \to \mathcal{C}$ a filtered diagram in \mathcal{C} and $h_{\mathcal{C}}: \mathcal{C} \to PSh(\mathcal{C})$ the Yoneda embedding.

Definition 1.14. The ind-complection of \mathcal{C} is the full subcategory $\operatorname{Ind}(\mathcal{C}) \subseteq \operatorname{PSh}(\mathcal{C})$ on ind-objects in \mathcal{C} . Denote by $i_{\mathcal{C}} \colon \mathcal{C} \to \operatorname{Ind}(\mathcal{C})$ the natural functor induced by $h_{\mathcal{C}} \colon \mathcal{C} \to \operatorname{PSh}(\mathcal{C})$.

Proposition 1.15. The category $\operatorname{Ind}(\mathcal{C})$ admits all small filtered colimits and the inclusion $\operatorname{Ind}(\mathcal{C}) \hookrightarrow \operatorname{PSh}(\mathcal{C})$ commutes with small filtered colimits.

Proposition 1.16. The ind-completion of an R-linear symmetric monoidal category C acquires a canonical symmetric monoidal structure extending that of C.

Proof. Use Proposition 1.12.

Definition 1.17. faithfully flat object of an R-linear monoidal abelian category

¹Or should we define the trace as $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1},-)$ applied to tr_X ? Note that $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1},\underline{\operatorname{Hom}}(X,Y)) = \operatorname{Hom}_{\mathcal{C}}(X,Y)$. Then it is a morphism $\operatorname{Tr}_X \colon \operatorname{End}(X) \to \operatorname{End}(\mathbf{1})$ and $\dim(X) = \operatorname{Tr}_X(\operatorname{id}_X)$. Compare (Deligne and Milne, 1982, p. 10).

References

- P. Deligne and J. S. Milne. *Tannakian Categories*, pages 101–228. Springer Berlin Heidelberg, Berlin, Heidelberg, 1982. ISBN 978-3-540-38955-2. doi: 10.1007/978-3-540-38955-2_4. URL https://doi.org/10.1007/978-3-540-38955-2_4.
- T. Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2020.