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Abstract

In this paper we generalize the Tannakian theory which gives a correspondence between groupoids
and Tannakian categories over a fiéldo the case wherg is a valuation ring. We give a general
theorem how to reconstruct groupoids in arbitrary categories from their category of representations
and we show that this theorem can be applied to groupoids over Dedekind rings. We also give a
partial answer how to see whether a category is the representation category of a groupoid over a
valuation ring.

0 2004 Elsevier Inc. All rights reserved.

Introduction

In 1939, Tannaka established a duality between compact groups and their representa-
tions [15]. He proved that a compact group is already determined by its unitary dual. In
1972, Saavedra, using ideas of Grothendieck, developed a “Tannakian theory” by estab-
lishing a functorial correspondence between gerbes over arbitrary fields which are tied by
an affine group scheme and their representation category [11]. In particular, he obtained
a duality between affine group schemes over a field and so called neutral Tannakian cate-
gories. A gap in Saavedra’s proof was closed by Deligne in 1990 [3]. This way we get a
correspondence between properties of affine group schemes (or certain gerbes) and proper-
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ties of their representation categories. Part of this dictionary has been developed by Deligne
and Milne [4].
One can divide the duality established by Saavedra and Deligne in two parts:

(1) The reconstruction problem: given a “group-like” objegt(e.g., a group scheme,
a gerbe, a quantum group), is it possible to recaverom the category of its rep-
resentations, using the forgetful functor?

(2) The description problem: give a purely categorical description which ensures that a
given category is equivalent to a category of representations of some “group-like”
object.

The description problem has been solved in a satisfying manner only for gerbes tied
by affine group schemes over fields of characteristic zero [3, 7]. The reconstruction prob-
lem is much better understood. It has beenagyalized to quantum groupoids and braided
groups (e.g., by Majid [9] and Bruguiéres [2]) over fields. Majid has also given a general
categorical approach [7] but unfortunately his hypotheses are very restrictive.

Further, all those “group-like” objects were required to be over fields. But in mathe-
matics there are also lots of such objects over more general rings (e.g., oveiatlie
completion ofZ or overC[g]).

The goal of this work is therefore three-fold. First, to give a general categorical method
to reconstruct “group-like” objects from their category of representations even in the non-
neutral case. This is obtained by 2.14 antB82.The second goal is to use this general and
purely formal theorem to recover affine groupoids (and in particular affine group schemes)
over Dedekind rings (or more generally Prifer rings) from their category of representations
(5.13 and 5.17). The last objective is to give a partial answer about the description problem
for groupoids over discrete valuation rings (or more generally over valuation rings of height
at most one) (6.18 and 6.20).

The reason why we work in the maybe somewhat unfamiliar setting of Prifer rings and
valuation rings of height one (instead of their noetherian counterparts, Dedekind rings and
discrete valuation rings) is the following. First of all they occur in mathematical applica-
tions (e.g., the integral closure of a discrete valuation ring in an algebraic closure of its field
of fractions). Further, ifR is a valuation ring of height one, a fibre functor of Rdinear
representation category exists in general only over some non-noetherian valuation ring of
height one, even iR itself is noetherian.

I will now give an overview of the structure of this work. In the first section some
categorical notions are recalled. Section 2 considers the main tool for the solution of the
reconstruction problem, the comonoid of coendomorphisms of a functor. This notion goes
back to MacLane [10]. The definition and the statement of the basic properties here are
obvious generalizations of [3, 84]. The abstnaxtonstruction theorem (2.14) is therefore
a formal generalization of [3, 4.13]. It describes how to recover a comonoid from its repre-
sentation category using the forgetful functor. In case we started with a Hopf monoid (e.g.,
the Hopf algebra associated to some group scheme) we also recover the Hopf structure
(2.18). Here we refer to [7] for the necessary diagram chasing.

The next two sections collect some tools to attack the reconstruction of groupoids over
Prufer rings. In the third section we give some basic definitions and propertiedinéar



T. Wedhorn / Journal of Algebra 282 (2004) 575-609 577

monoidal categories and the notion skalar extension. In the fourth section we describe the
connection of groupoids and gerbes over arbitrary schemes. Most of these properties are
easy generalizations of [3] where the case of groupoids and gerbes over a field is consid-
ered.

The fifth section starts with the description of coalgebroids and their comodules. We
check that all conditions of the abstract reconstruction theorem (2.14) are satisfied over
a Prufer ring. For this we have to show some properties of comodules over Prifer rings.
Most of these properties are well known for Dedekind rings (e.g., [13]), and most of the
time the proofs are easy modifications. After these technical lemmas we obtain the recon-
struction theorem for coalgebroids (5.13) and for affine groupoids (and hence for affine
group schemes) (5.17).

In the last section we define the notion of a Tannakian lattice over a valuation ring of
height at most one (6.9). Roughly speaking itis a rigid pseudo-abelian symmetric monoidal
category which admits a fibre functerover some faithfully flatR-scheme such that the
skalar extension of the category to the field of fractionRofs a Tannakian category in
the sense of [3]. We show that the category of representations of a groupoid is in fact
a Tannakian lattice (6.17). For this we use the theory of gerbes provided by Section 5
and the fact that every Tannakian lattice has a fibre functor over a sufficiently “Rice”
scheme (6.14). The main theorem of this setit#6.18 which assures that the fibre functor
always provides a fully faithful embedding of a Tannakian lattice into the category of
representation of a groupoi@d and thatG is universal with this property. We conclude
with a corollary for the neutral case (6.20).

1. Monoidal categories

1.1. By amonoidal categoryve mean a tuplé M, ®, 1, «, A, p) where M is a cat-
egory,®: M x M — M is a bifunctorax y z: (X ®Y)® Z = X ® (Y ® Z) is an
associativity constraint, 1 is a unit objeéty : X ® 1 = X is a left unit constraint, and
wherepyx : X ® 1 = X is right unit constraint. These are to satisfy

(a) (Pentagon axiom)(idxy ® ay,z,w) o ax,yezw o (axy,z ® idw) = axy,zew ©
AXQY,Z,W -
(b) (Unitaxiom):(idx ® Ay) oax 1y = px ®idy.

By abuse of notation we will often simply writd4 for the monoidal category.
A monoidal category is calledymmetric if there is given a commutativity constraint
whose square is the identity. We also have the weaker notiobafidedmonoidal cate-
gory. We refer to [8] for the precise definition.

Let M1 and M be two monoidal categories. Ainctor M; — M5 of monoidal
categories(or a monoidal functoy is a functor7 : M1 — M5 together with a functor-
ial isomorphismT (X) ® T(Y) = T(X ® Y) which is compatible with the associativity
constraint equipped with an isomorphighil,) — 14, compatible with the unit con-
straints. If M1 and M are braided (or symmetric) we call a monoidal functdeasor
functorif it is compatible with the braiding.
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From now on we denote b1 a monoidal category. Moreover, we assume that all
monoidal categories argrict, i.e., all constraints are the identity. By the coherence the-
orem (e.g., [10, Chapter XI]) every monoidal category is equivalent to a strict monoidal
category. IfM is a symmetric monoidal category we also can and will assume by loc. cit.
that the commutativity congimt is the identity. Similar for braided monoidal categories.

1.2. Let X be an object ofM. A (left) dual object of X is a triple (X", ev, §) where
XV is an object ofM and where evX ® XV — 1 and§:1— XY ® X are morphisms
such that

idx ®3 v ewidy
XXX X —5 X,

5®idxv XV ® X ® XV idxv®ev XV

XV
are the identity.
Note thats is uniquely determined. Further, a dua, ev, §) is unique up to unique
isomorphism.
We call an objecK rigid if there exists a dual ok. We call M rigid if every object in
M is rigid.

1.3. Let X andY be objects inM. If X andY admit dual objectsx¥ andY "V, then
YV ® XY is adual ofX ® Y where eyxgy is given by ey o (idy ® ewy ® idyv). In this
cas&Sygy Is given by(idy ® §y ® idyv) o 8.

In particular, the full subcategory of rigid objects @ff inherits the structure of a
monoidal category.

1.4. Example. Let A be a commutative ring. Then the categoryAimodules endowed
with the usual tensor structure is a symmetric monoidal categoryi AmoduleM is rigid

if and only if M is finitely generated projective. In this case we ha#€ = Hom(M, A)
and (using the identificatio ¥ ® M = EndM)) evy, (respectivelysy) are given by the
usual evaluation (respectively by the map> End M), a > aidy;).

1.5. Let T: M1 — My be a functor of monoidal categories and ktbe an ob-
ject which admits a dualX",ev,8). Then T(X) admits a dual which is given by
(T(XY), T(ev), T(8)). In particular,T induces a functor from the full subcategory of rigid
objects inM into the full subcategory of rigid objects @#,.

1.6. A comonoidn M is atriple(X, c, e) consisting of an objecX of M, a comulti-
plicationc: X — X ® X, and a morphisma: X — 1 such that

(COM1) c is coassociative, i.e., the compositions

¢ id®c
X— XX —=XQX®X
c®id

are equal.
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(COM2) e is a counit, i.e., the compositions

¢ id®e
X—XQ@X—=<X
e®id

are the identity.

Note that the counit is unique if it exists. We have the dual notion ofa@moidin a
monoidal category.

Let M be a braided monoidal categorybdmonoidin M is an objectX which carries
the structure of a monoidX, m, u) and of a comonoidX, c, ¢) such thatc ande are
morphisms of monoids.

Finally a Hopf monoidin M is bimonoid (X, m, u, ¢, e) together with an antipode
t: X — X satisfying the usual conditions for a Hopf algebra (see, e.qg., [14]).

1.7. Let M be a braided monoidal category and (& c, ¢) and (X, ¢/, ¢') be two
comonoids inM. Then the compositions

XX 2% (XeX)8 (X' @X)=(XeX)8 (XaX),

XX 2 i191=1

define the structure of a comonoid ah® X'. This is trivial if M is symmetric. For the
general case we refer to [8, 2.1].

1.8. Definition. A category with rightM-actionis a categoryC together with a functor
®:C x M — C and functorial compatible isomorphismsg (M @ N) = (X @ M) ® N
andX ® 1 = X for M, N objects ofM andX object ofC. Again we can and will assume
by the coherence theorem that these functorial isomorphisms are the identity.

Let C andC’ be two categories witbM-action. A functorw:C — C’ together with a
functorial isomorphisng : (X @ M) - w(X) ® M for M € M andX € C is called an
M-functor.

More generally, let:: M — M’ be a functor of monoidal categories and de{re-
spectivelyC’) be a category with right-action (respectively right’-action). A functor
w:C — C’ together with a functorial isomorphisin w (X @ M) — w(X) @ h(M) is called
anh-functor.

Let (w, &) and(w/, &) be twoM-functors. A morphism of functors: w — «' is called
amorphism ofM-functorsor shorter anM-morphismif ¢ commutes withé andg’. The
set of M-morphismsy — «’ is denoted by Homy (w, o).

This way we get the 2-category of categories with-action.

1.9. Definition. Let M be a monoidal category and Iétbe a category with a right1-
action. Let(L, ¢, ¢) be a comonoid ifM. A pair (X, r) consisting of an objecX in C and
a morphisnr: X — X ® L is calledL-comoduldf it satisfies the following conditions:
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(CM1) r is compatible with the copduct, i.e., the compositions

r idy ®c
X—XQL—=XQL®L
r®idL

are equal.
(CM2) r is compatible with the counit, i.e(idy ® ¢) or = idy.

A homomorphism of.-comoduleg X, r) — (X’,r’) is @ morphismy:X — X’ in C

such that the following diagram commutes:

X ——X%

' \L \L r/
p®idg,

X®L—X'Q®L.

We denote the category éf-comodules irC by C*.

1.10. A monoidal category acts on itself. More generally,debe a comonoid in\1.
Then the monoidal structure g1 induces a leftM-action on the category1€ of right
C-comodules.

If f:C — C'is a homomorphism of comonoids i, the induced functom¢ —
M€ is anM-functor.

1.11. We keep the notations of 1.9. L&tbe any object of. Then

XQL Y%, xorLeL

defines the structure of dircomodule on the object ® L of C. This way
X—XQL, f— feidgy

defines a functo€ — CL. This functor is right adjoint to the forgetful functé* — C.
Indeed, for every object of C and everyL-comodulg(Y, ry) the maps

Home(Y, X) — Home (Y, X® L), f+— (f®idy)ory,
Homee (Y, X ® L) > Home (Y, X), g (idx®e)og,

are functorial and inverse to each other.

Now assume thaX itself is anL-comodule and denote byits coaction. Them: X —
X ® L is a homomorphism of comodules. Further we hewe® 1) o r =idy, i.e.,r is a
section ofe ® 1.
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2. The comonoid of coendomor phisms of functors

2.1. In this section we fix the following notations: Ié¢ be a monoidal category and
C be a category with a rightf-action. We writeM for the category of copresheaves on
M, i.e., the category of covariant functors froi in the category of sets. Denote By
an essentially small category andby. D — C (i =1, 2, ...) a family of functors.

2.2. For every objecM in M write w; ® M for the functor

D—>C, X w(X)QM.

Then

M — Hom(w2, w1 ® M)

is a copresheaf oM. We denote it by CoHols, wz) = CoHom, (w1, wz). In this case
we have a functorial isomorphism

Hom(w2, w1 ® M) = Hom; (CoHom(ws, w2), M).
In the case that the copresheafis coreprisd#a, we denote the corepresenting object also
by CoHom(wy, w2) = CoHom, (w1, w2) and call it theobject of cohomomorphisms from
w1 t0 wp. Then we have the universal morphism of functors
w2 — w1 ® CoHoMw1, w?). (2.2.1)

Finally, we set

CoEnd, ((w;) := CoEndw;) := CoHoMw;, w;).

2.3. From now on, we assume that all CoH@m, ;) are corepresentable for< ;.
Iterating (2.2.1), we get a morphism of functors

w3 — w2 ® CoHoOMw>, w3) — w1 ® CoHomMw1, w2) ® CoHoMwy, w3)
and therefore a morphism
CoHomw1, w3) — CoHomMw1, w2) ® CoHomMwy, ws). (2.3.1)

This “coproduct” is coassociative, i.e., we have a commutative diagram

CoHomw1, wg) CoHomw1, w2) ® CoHomMwy, w4)

| !

CoHomw1, w3) ® CoHoM w3, wg) — CoHomMw1, w2) ® CoHoM(wy, w3) ® CoHoM(ws, w4).
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Finally, id,, € Hom(w;, w;) = Hom(w;, w; ®1) correspondsto a counit: CoEndw;) — 1,
i.e., the compositions

CoHomw1, w2) — CoHomM(w1, w2) ® CoEndwy) M CoHomw1, w2),

CoHomw1, w2) — CoEndwi1) ® CoHomMwy, w) ﬂ) CoHomw1, wy)

are the identity. Therefore, we see:

Proposition. Let w: D — C be a functor, such thaCoEndw) is corepresentable. Then
CoEndw) is a comonoid inM.

2.4. Letw:D — C be afunctor, such that CoEq) is corepresentable. Lét be any
comonoid inM. Then the bijection HofCoEndw), C) = Hom(w, v ® C) induces an
identification

Home  (CoEndw), C) = Homey (v, » ® C),

where the left-hand side denotes the set of comonoid homomorphism GeERdIC and
where the right-hand side denotes the set of morphisms such that for everyXljett
the induced arrow (X) — o (X) ® C defines aC-comodule structure ow (X).

2.5. Let(’ be a subcategory @f. For every objecC’ in C’ we have the functor
(C'®-)M—>C, M—~C QM.

This induces a functor frod’ into the categorffom M, C) of functorsM — C. We say
that the action ofM on(C is coclosed foC’ if, for any C’ € C, (C’ ® —) has a left adjoint
functor. If this is the case, we denote By :C — M this left adjoint. ThenC’ — F¢»
defines a functo€’ — Hom(C, M)°PP,

2.6. LetD be the final category. Then to giveis the same as to give an objectn C.
Assume that the functokt — C which sendsM to X ® M admits a left adjointFy (in
other words, the action of1 on C is coclosed for the subcategory which consistsKof
and idy). Then Fx(X) represents CoEna). Indeed, for every objed¥ in M we have
functorial bijections

Hom(Fx (X), M) = Hom(X, X ® M) = Hom(w, w ® M) = Hom(CoEndw), M).

In particular, Fx (X) carries a comonoid structure. Further, by 2.4 we see that for every
comonoidL in M morphisms of comonoidBy (X) — L correspond td.-coactions orX .

2.7. Proposition. LetC’ be a subcategory @f such thatw factorizes througld’ and assume
that the action ofM onC is coclosed fo’’. Further suppose that there exist.ivt small
inductive limits. ThelCoHomw1, wy) is corepresentable.
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Proof. Denote byF the right adjoint of(C’ ® —) for C’ € Ob(C’). For every morphism
f:X — Y in D define the category; as the subcategory @1 consisting of three objects
Foyry(@2(X)), Foy (x)(w2(X)), andFy,, vy (w2(Y)) and the only morphisms ify (besides
the identity morphisms) are

Fon () (i0) : Fopy ) (02(X)) = Foy ) (@2(X)),

Fid(02(f)) 1 Far vy (@2(X)) = Foyr)(02(Y)).

Denote by! the disjoint union of the categoridg where f runs through all morphisms
of D. We have a canonical functér— M, and it follows from 2.6 that its inductive limit
represents CoHo(mw1, wp). O

2.8. Corollary. LetC = M be a braided monoidal category, and let, w2: D — M be

functors. Assume that; and w factorize through the full subcategory of rigid objects in
M and that small inductive limits exist ifv. ThenCoHom(ws, wy) is corepresentable.

Proof. For every rigid objectC in M the functor(CY ® —) is left adjoint to(C ® —)
because we havé = CvY as(C is symmetric. Therefore, the action @1 on itself is
coclosed for the subcategory of rigid objectsti, and we can apply 2.7.0

2.9. Let C’ be another category with a right action by a monoidal categefy Let
h: M — M’ be a tensor functor and lgt:C — C’ be ank-functor. Then the universal
morphismw; — w1 ® CoHomw1, wp) induces by applying” a morphism

fowa— fo (a)l ® CoHomw1, a)z)) =(fow1)® h(COHOfT'(a)l, a)z))
and therefore a canonical morphism of objectaifd,
CoHom(f o w1, f o w2) — h(CoHomws, wy)). (2.9.1)
For w1 = wy it follows by 2.4 that this is a morphism of comonoidsir’.

2.10. We keep the notations of 2.9. Assume tharespectivelyf) admits a right
adjointh’: M’ — M (respectivelyf’:C’ — C) and that we are given an isomorphism of
functorsC x M’ — C,

n:®o(idxh)=fo®o f xid (%)

such that the following diagram of functorial morphisms is commutative:

(idxh)on

(idx (W oh)o® (ffof)yxid)o®

| |

® ®,
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where the upper horizontal is derived frq®) by composing both sides ¢f) with id x &
and where the vertical arrows are given by the adjunctions it o 4 and id— f' o f.
Note that we assume neither thatis a tensor functor nor that’ is ani’-functor.
Proposition. With these notations and assumptigd®.1)is an isomorphism.

Proof. Indeed, for every objea’ in M’ we have functorial isomorphisms

Hom(h(CoHom(ws, w2)), M) = Hom(CoHom(ws, wp), k' (M'))

(
= Hor(oz. 1@ (1)
= Hom(wz, f' o (®M') o f o w1)
=Hom(f o w2, (fow1) ® M)

= Hom(CoHon( f o w1, f o w2), M).

SettingM’ = h(CoHom(ws, w2)), one sees that this functorial isomorphism gives an in-
verse of (2.9.1). O

2.11. Lety : D’ — D be afunctor. The canonical morphism
w2 —> w1 ® CoHoMw1, w?)

defines for every objectD’ of D' a morphism (w2 o ¥)(D') — (w1 o ¥)(D) ®
CoHomw1, wp) and this gives

CoHom(v) : CoHoMw1 o ¥, w2 o ¥) — CoHomM(ws, w?).

For w1 = wy this is a morphism of comonoids i by 2.4.

2.12. LetC = M be a tensor category, and let D — M be a functor. Assume that
C := CoEndw) is corepresentable. For every objettin D the imagew(X) carries a
right C-comodule structure, i.eq factorizes through the categam € of right C-modules
in M

w: D25 MC 5 M.

Let L be any other comonoid iM such that factorizes throug” : D — ME. This
means thaty (X) is equipped with ari.-comodule structure, functorial iK. Then by 2.4
there exists a unique homomorphigsh- L of comonoids inM such thatw’ factorizes
through the induced functov1¢ — MZ.

In particular, if ML is equivalent to a small category, we canBet ML, and we see
that the identityM~ — M factorizes inM ! — M — ML where the second functor
is given by the homomorphis@ — L of comonoids.
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2.13. LetC be a category with a right1-action and letb : M — C be a functor which
is equipped with a functorial isomorphisén(X ® Y) = @ (X) ® Y which is compatible
with the associativity and the units constraints. [t c, ¢) be a comonoid inM and let
C™ be the category of -comodules irC. The composition

o) 2% oL =o)L

defines an.-comodule structure o (L).

Now let D be a full subcategory af and denote byD” the category of.-comodules
in C whose underlying object lies i?. We have the canonical functar. DX — D — C
of forgetting the coaction of.. We make the following assumptions:

(a) The categor’ is equivalent to a small category. The action/ef on C is coclosed
for D (2.5) and inM exist small inductive limits.

(b) SetC = CoEndw). By () it is corepresentable by a comonoid’i2.7). Assume that
in C exist small filtered inductive limits and that the forgetful functéfs— C and
C¢ — C reflect these (we already know that they preserve inductive limits because
they admit a right adjoint (1.11)).

(c) ThefunctorsX — X ® L andX — X ® C fromC into C commute with small filtered
inductive limits.

(d) EveryL-comodule inC* is a small filtered inductive limit (irC%) of L-comodules
in DL, andL itself is the filtered inductive limit of comonoids; in M such that the
@ (L;) are inD.

(e) The functorp is faithful and preserves and reflects filtered inductive limits.

2.14. Theorem (cf. [3, 4.13]) We keep the assumptions2fi3 By2.4we get a homomor-
phism of comonoids: C — L. This is an isomorphism.

Proof. We first note that (b) implies that i’ and C¢ exist small filtered inductive
limits. Let X be an object inCt, filtered inductive limit of L-comodulesX; in DL.
By the universal property of the functorw factorizes throughw® : DX — C€. Setting
€ (X) :=lim »® (X;), we get a functor

o€ :ct = cC.

Note thatw® commutes with the forgetful functors by (c).
By (d) we haveL = lim L; for comonoidsL; in M. By (e) we also have thab (L) is
the inductive limit of the® (L;). Applying ¢ we get aC-comodule structure (L) —
@ (L)® C ond(L). Becaused reflects inductive limits and because of (c), this morphism
is induced by a morphisei: L — L ® C in M. Definea as the composition

a:L S Lec <2, c.
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We claim thata is an inverse ofi. Using (c), one sees théitlg ) ® u) o @(c’) = ®(c)
(because this holds fab(L;). Therefore, we have® (u) o @ (a) = P(e ® idy) o @(c) =
idg(r). As @ is faithful this impliesu o a =id, .

Now let (M, p) be an object ofPL and let(M, p') = 0 (M, p)). We can consider
p:M — M ® L as homomorphism of.-comodules (1.11). Applying°, p is also a
homomorphism of”-comodules, i.e., the diagram

P
M———MQ®L

o l l idy®c’
p®idc

MRC —MQQLQC

is commutative. Composingd,; ® ¢’) o p and(p Q@ idc) o p’ from the left with idy ® e ®

idc we see thap’ = (idy; ® a) o p. The morphismFy, (M) — C corresponding t@’ (2.6)
admits therefore factorizationFy, (M) — L < C. By construction of” (2.7) this implies
thata is an epimorphism. As every epimorphism with a left inverse is an isomorphism, the
theorem follows. O

2.15. Now assume that is itself a monoidal category, thatl is a symmetric monoidal
category and that the monoidal structur&€a$é compatible with the action o¥1, i.e., there
are given isomorphisms

axym XQY)QM =5 XQ® (Y M),
oxyM: (XQY)M S (XQM)QY

functorial inX, Y € Ob(C) and M € Ob(M) such that they are compatible with the asso-
ciativity and unit constraints i@ and M and the commutativity constraint i and such
thatforX, Y in C andN, M in M we haveox,y, men = oxem.v.N © (0x,y.m ® idy) and
the following diagram is commutative:

OX,Y®N.M

ax,y,N®idy
XM@Y N " xereN)eM MM (xevieNeM

T XXQM,Y,N commeconstr T

ox,y,mM®idy

IR

(XQM)QY)®N

(X®Y)OM)®N X®Y)®M® N.

Then we have a canonical morphism of functors

w2 @ wr —> (a)l ® CoHomw1, a)z)) ® (a)l ® CoHomw1, a)z))
= w1 ® w1 ® CoHoMw1, w2) ® CoHoM(w1, w»),

which induces a morphism

w:CoHomMwi ® w1, w2 ® w2) — CoHoMw1, w2) ® CoHoMw1, w2). (2.15.1)
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2.16. By applying 2.7 tav andw ® w, it follows that CoEndw) and CoEndw ® w) are
corepresentable i factors through a monoidal subcateg6fyf C such that the action of
M on( is coclosed fo” and if in M exist small inductive limits.

2.17. We keep the notations of 2.15 and we assume that Ceirahd CoEngw ® w)
are corepresentable and that (2.15.1) is an isomorphisri betalso a monoidal category
and letw: D — C be atensor functor. We get a multiplication as the composition

-1
CoHomw1, w2) ® CoHomMw1, wy) LN CoHomMw1 ® w1, w2 @ w?)

= CoHomMwio®, w20 ®)

— CoHomuwi, wy), (2.17.1)

where the last morphism is given by 2.9.

2.18. Now assume that = M with the canonical right action and that CoHam, w»)
and CoHontw1 ® w1, w2 @ wy) are corepresentable (2.8). Then (2.15.1) is an isomorphism
[7, 2.3]. Further as in loc. cit. 2.4—-2.9 we have:

Proposition. The produc2.17makesCoHom w1, w2) into a monoid inM. If M andD
are braided(respectively symmetjienonoidal categoriesCoHom w1, w?) is a dual qua-
sitriangular (loc. cit. 2.8) (respectively commutatiyenonoid. Ifw1 = wy = w, we further
have

(1) The comultiplication and counit af = CoEndw) are homomorphisms of monoids,
i.e.,C is a bimonoid andv factorizes in

C forget
D <5 MC 25

M.

(2) If L is any other bimonoid inM such thatw factorizes through a tensor functor
D — ML and the forgetful functotM® — M, then there exists a unique homo-
morphism of bimonoid§ — L such thatw factorizes through the induced functor
ME - ML,

(3) If Disrigid C has an antipode.

2.19. We remark that the very restrictive assumptions.ohmade in loc. cit. 2.2
(namely thatM is rigid and has arbitrary inductive limits) are needed only to ensure the
representability of CoHolw) and CoHonfw ® w) which follows here from 2.8.

2.20.Corollary. Let M be a braided monoidal category and lebe a Hopf monoid in\1.
Denote byD the monoidal subcategory of rigid objects vt and byw: DL — M the
canonical functor. Assume that13(b)—(dhold. ThenCoEndw) = L as Hopf monoids.

Proof. Itis easy to see thdd’ is again rigid becausk admits an antipode. Therefore, the
corollary follows from 2.8, 2.14, and 2.18.0
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3. Additive monoidal categories

3.1. Let R be a commutative ring. A monoidal categok( is called R-linear if the
underlying category iR-linear and if® is an R-bilinear functor. AnR-linear monoidal
category is callegseudoabeliafrespectivelyabelian), if the underlyingR-linear category
is pseudoabelian (respectively abelian).

3.2. If M is anR-linear monoidal category and ¢f: A — R is a homomorphism of
commutative ringsM is also anA-linear monoidal category. We call this thederlying
A-linear monoidal categorand write alsap, M if we considerM as anA-linear tensor
category viap.

Conversely, letM be an additive monoidal category. Th&= End(1) is a ring. For
every objectX of M the action ofR an X induced byX = 1® X is equal to the action
of R on X induced byX = X ® 1. In particular,R is commutative and the categaty
gets the structure of aR-linear monoidal category. Let us denote by, this R-linear
monoidal category. The ring has the following universal property. Ldtbe a commuta-
tive ring and letM, 4 be anA-linear monoidal category such that the underlying additive
monoidal category ig\1. Then there exists a unique ring homomorphisnd — R such
thatg,. (M, g) = M,4. Indeed,R = EndM/A (1) is anA-algebra and this defines

3.3. LetC be anR-linear category and leM be anR-linear monoidal category acting
onC from the left. We call this actio®-bilinear if the functorM x C — C is R-bilinear.

3.4. Letg:R — R’ be a homomorphism of commutative rings, andddbe anR-
linear category. Then the categaty: obtained fronC by scalar extension is defined as
follows. The objects are the same as the objects ahd for two objectsX andY in Cgs
define

Home,, (X, Y) :=Home(X,Y) ®r R'.
This way we get arR’-linear category which is denoted By.
3.5. We have an obviouR-linear functor
i :C— Cp,

which is bijective on objects.
If C' is an R’-linear category and”:C — C’ is an R-linear functor,F factorizes in
F' oip whereF’:Cgr — C'is anR’-linear functor which is uniquely determined.

3.6. Letg:R — R’ be flat, and letf: X — Y be a morphism irC. Then if f is a
monomorphism (respectively an epimorphismyiits image inCg’ is @ monomorphism
(respectively epimorphism) iig.. The converse holds R’ is faithfully flat overR.
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3.7. Let D be a seconak-linear category and leb:C — D be anR-linear functor.
Thenw induces a functowg :Cgrr — Dgr. If w is fully faithful, so iswg:. Further, if R’
is flat overR and if w is faithful, thenwp is also faithful. The converse holds K is
faithfully flat overR.

3.8. Now assume thai\1 is a monoidalR-linear category. TheR-bilinear functor
®: M x M — M extends to arR’-bilinear functor® : Mg x Mg — Mpg:. This way
Mg is a monoidalR’-linear category. It is symmetric (resgtively braided, respectively
rigid) if M is symmetric (respectively bided, respectively rigid).

3.9. Let 7 be anR-linear monoidal category. Then there existsrdlinear pseudo-
abelian monoidal hullZ’. Its underlying category is the pseudo-abelian hull of the un-
derlying additive category, i.e., the objectsDf are pairs(X, p) wherep € End(X) is
a projector and we set HaitX, p), (Y, q)) = gHom(X, Y)p. We set(X, p) ® (¥, q) :=
(X®Y, p®qg). The unitin7’ is defined asl, id;). As associativity, left unit, and right unit
constraint are functorial we get induced constraint¥onThis defines the structure of a
monoidal category ofi’. The same argument applied to a commutativity constraint shows
that7” is symmetric if and only if7 is symmetric. The canonica@-functor7 — 7" in-
duces En@ly) = End(17), in particular 3.2,7" is againR-linear, and® is R-bilinear.
Further,7 is rigid if and only if 77 is rigid. Indeed, ifX admits a dualXV, the dual of
(X, p) is given by(X", p¥) wherep" denotes the transpose pf

4. Groupoidsand gerbes

4.1. LetS = (Sch/S) be the site of schemes over some scheheguipped with the
fpgctopology.

A stack in groupoidsj over S is called agerbeif the following two conditions are
satisfied:

(a) G is locally nonempty, i.e., there exists a coverii§g — S) in S such that the fibre
categoriegjy, are nonempty.

(b) G islocally connected, i.e., for every objeEtin S and for all objects, y € Gy there
exists a coveringV; — T) such that Hortx |y, y|v;) is nonempty.

A gerbeg overS is calledneutralif it is globally nonempty, i.e., ilGs is nonempty. If
G is a sheaf of groups in the topos 8f the fibered categoryor s (G) whose fibre over
an objectT of S is the category of righG-torsors onT is a neutral gerbe.

Conversely, letj be a neutral gerbe, and letbe an object irGs. SetG = Aut(x). By
definition this is a group in the topos 6f Then

gr — Tors(T,G), yrlsomixr,y)

is an equivalence df with Tor s(G).
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4.2. An S-groupoid acting on arnS-schemeX is a scheme5 over S equipped with
S-morphisms, s : G — X and a composition law: Gy xx ;G — G which is a scheme
morphism overX x X such that for eveng-schemer” the data

X(T), G(T), t,s:G(T)— X(T), 0:G(T)xG(T)— G(T)

define a category (wherg(T) is the set of objects;;(7') the set of morphisms, (re-
spectivelys) the target (respectively source), andhe composition law) in which every
morphism is invertible.

The identity in the morphisms sets defines a morphis¥ of X-schemeg: X — G
(X diagonally embedded iX x X).

Let (G',1, s, o') be a second-groupoid acting orX. A homomorphisnG — G’ of
groupoidsis an X xgs X-morphismG — G’ which is compatible witho ando’ in the
obvious sense. We denote By pdg(X) the category of-groupoids acting oiX .

4.3. LetG be anS-groupoid acting on af-schemeX. For every morphism of schemes
u:Y — X the inverse image*(G) = Gy is defined by the Cartesian diagram

uxu
Y xsY —— X x5 X.

This way we get a fibered catego®y pdg over(Sch/S).

4.4. Let X be anS-scheme and lep: G — X be anX-group scheme. If we set=
s = p, then the morphisnit, s) : G — X xg X factorizes through the diagonal: X —
X xg X. The group multiplication: G xx G — G is therefore a morphism of schemes
overX xg X, and the dataG, ¢, s, o) define a groupoid.

Conversely, ifG is a groupoid acting on asrschemeX such that =z¢,i.e.,(¢,5): G —
X x g X factorizes through the diagonal, then the d@ias =z, o) define a group scheme
overX. Therefore, we can identify the fibered categ@ry of group schemes over various
S-schemes with a full fibred subcategory of the fibered category of groupoids.

In particular, every groupoid acting ¢his a group scheme ovér.

4.5. For a groupoid5 acting onX, the fibre product of

G

l(w)

X 25 X xgX

is a group scheme ovex which we will denote byG#. This construction defines a
(Sch/S)-functor of fibered categorie& pds — G s which is right adjoint to the in-
clusionG s — G pdg (it suffices to show that for ever§-schemeX the induced functor
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G pdg(X) — G 5(X) is left adjoint to the inclusiors g(X) — G pdg(X) and this is
obvious).

4.6. Note that ifG is a group scheme over a@iischemeX, the pull back:*(G) via a
morphismu : Y — X (4.3) is in general no group scheme overBut we have:*(G) =
G Xx Y.

4.7. Let (G,t,s,o) be anS-groupoid acting on arf-schemeX. Let S’ — S be a
morphism of schemes. Defit® =G x5 S', X' =X x5 8, =tg,s' =sg,ando’ = oy
where we identif(G xx G) x5 8" = (G x5 8) xxxgs5 (G x5 8). Then(G', 1, s",0) is
an S’-groupoid acting orX’. It is called thebase change afG, 7, s, o) by 8’ — S.

4.8. The groupoid5 actstransitivelyon X (with respect to thépqctopology) if there
exists apgccovering(T — X xs X) such that Hom . x (T, G) # @.

If u:Y — X is anS-scheme morphism and @f7 = u*(G) is the inverse image af,
G acts transitively orT'.

4.9.Lemma. LetG 2> X be a group scheme over sostschemeX, which we consider as
an S-groupoid acting onX. ThenG acts transitively if and only i\ — S is a monomor-
phism.

Proof. The morphismX — S is a monomorphism if and only if the diagonal: X —
X x s X is an isomorphism. Therefore the condition is obviously sufficient.d:§t —
X x s X be a faithfully flat quasi-compact morphism such that there existXars X)-
morphismw: T — G. We get a commutative diagram

=1

X xsX <2
In particular,c factorizes through. ThereforeA is a closed surjective immersion. We
have to show that the defining ide&lof A is zero. LetV C X xg X be some open subset
andx be a section of overV. Thenits image undef’: I'(V, Oxxx) — (¢ X(V), Or)
is zero. But this map is injective becausis faithfully flat. Thereforex is zero. O

v
- -

4.10. Let S = SpecR) be affine and leG be anS-groupoid acting on an affins-
schemeX = SpeqB). Assume thaiG is affine overX xg X, sayG = SpecL). Then
L is a B ®g B-module via(z, s), i.e., a(B, B)-bimodule such that the two inducett
module structures coincide. We write tlBemodule structure induced by(respectively
by s) as left (respectively rightp-module structure. Further, th@, B)-bimodule has the
following additional structures:
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() L is acommutativeB ® g B-algebra and admits therefore a product
m:L®pgyp L — L.
(b) The composition laws x x G — G corresponds to & ® g B-algebra homomorphism
c.L—-L®pL,
the identitye : X — G corresponds to & ® g B-algebra homomorphism
e.L - B,
and the inversion morphisi@ — G defines an antipode
S:L— L.

This way L obtains the structure of a Hopf monoid (1.6) in the categoryRfB)-
bimodules. Conversely, every Hopf monoid in the categoryRfB)-bimodules defines
an affine groupoids acting onX.

4.11. Let G be anS-groupoid acting on as-schemeX. For everyS-schemel’ we
have a categorgg = (X(T),G(T), o) in which all morphisms are isomorphisms. This
categories form a fibered categ@l§ = gg’m over the category a$-schemes. The inverse
image functors are given as follows: Let T’ — T be a morphism ofS-schemes. The
inverse image of an objeat of Q? (that is of an element € X(T)) is the composition
x ou. The inverse image of a morphisyhof Q? (that is of an elemenf € G(T)) is the
compositionf o u.

If x,y € X(T) are two objects OU? the functor onSch/T which associates to
u:T'— T the set Horggl (u*x, u*y) is representable by the fibre product of

G

l(b,S)
(x,y)ou

T —=SxS§

In particular, it is a sheaf for th§qgctopology, andgg)(:G is a pre-stack for thépgc
topology. Denote by = Gx.; the associated stack.

4.12. Proposition. Let X be anS-scheme such that — S is a fpgc-covering and leG
be a groupoid which acts oK. Then the stacky.¢ is a gerbe if and only if the action of
G on X is transitive.

If in this caseG is a group scheme ové¥, thenX — S is an isomorphism.
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Proof. As X — S is a covering the staclx.¢ is locally nonempty, and by definition the
action of G on X is transitive if and only ifGy.s is locally connected. The last assertion
follows from 4.9 and the following lemma.

Lemma. Let f: X — S be a faithfully flat quasicompact monomorphism of schemes. Then
f is an isomorphism.

Proof. By faithfully flat descent, the morphisphis an isomorphism if and only if x idx
(base change of by f) is an isomorphism. But this is the second projectiors X — X
which is an isomorphism, becaugds a monomorphism. O

4.13. The construction above is functorial in the following sense.lef1 — G2 be
a morphism of groupoids acting on &schemeX. Then for every§-schemer’, u defines
a functorGy.q,(T) — Gx.g,(T) by inducing the identity on objects and by sending a
morphismu € G1(T)touoa € Go(T). Itis easy to check that this gives indee(sah/S)-
functorgg’(:Gl — gg’(:Gz and therefore also a fibered functor of the associated stacks.

4.14. Proposition. Let u:G1 — Go be a(Sch/S)-functor between gerbes aisch/S).
Let X be anS-scheme. For some objestin G; x let Auty (w) be the sheaf oveX which
associates ty : T — X the set of automorphisms pfw in G; r.

Assume thaX — S is a fpgc-covering such that there exists an objedh G1 x and
assume that : Auty (w) — Auty (u(w)) is an isomorphism. Then is an equivalence.

Proof. This follows from [6, Chapter IV, 2.2.6(iii)]. O

4.15. Coroallary. Let G1 and G2 be twoS-groupoids acting transitively on a fpgc-covering
X — S and letu: G1 — G2 be a morphism of groupoids. Thers an isomorphism if and
only ifu® : G — G% is an isomorphism.

Proof. The group schemGiA represents the functor Autidy) and we conclude by
4.14. O

4.16. LetG be a gerbe oveiSch/S). If for every S-schemeX and forws, wz € G(X)
thefpgcsheaf Isom (w1, wy) if representable by a scheme which is affine a¥ewre say
thatg is affinely tied

As a gerbe is by definition locallyomnected, it is affinely tied if ISOf(w1, w2) — X is
representable and affine for ofpgic-coveringX — S and for one choices, wy € G(X).

4.17. Denote byCov (S) the full subcategory ofSch/S) which are &pqgccoverings
of §. Define a fibered categof f Ger b over Cov(S): a fibre over a covering — S
consists of pairgG, ) whereg is an affinely tied gerbe oveiSch/S) and wherew €
G(X). The inverse image functors are given by pulling backA morphism(G, ) —
(G', ') in Af f Ger b(X) is a morphism of gerbes ové€bch/S) sendingw to ’.
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On the other hand, denote By f Gr pd the fibered category ové&ov (S) whose fibre
over a coveringk — S consists of groupoid& acting transitively onX and which are
affine overX xg X.

Then we get an equivalence of fibred categofiEs Ger b ~ Af f G pd via

G =lsomy, .y (PBw, priw) U9 X x5 X,

G =Gxq, w=idx € Gx.¢(X).

If G is a groupoid acting on a covef which is anX-group scheme, theXk — S is
an isomorphism and its image Af f Ger b is isomorphic to a pair consisting of a neutral
gerbe and an elemente G(S).

4.18. Let G be anS-groupoid acting on ag-schemeX. A representation of5 is a
guasi-coheren®x-module M together with an actiop of G, i.e., for everyS-scheme
T and for everyg € G(T) there is a morphism(g) : s(g)*(M) — t(g)* (M) between the
inverse images oM unders(g) andr(g):T — X. These morphisms are supposed to be
compatible with base chang® — T, to satisfyp(gh) = p(g)p(h) (for s(g) =t (h)), and
such that forg = id, = ¢(x) with x € X(T) the homomorphisnp(g) is the identity of
x*(M). As G is a groupoid the homomorphismsg) are automorphisms.

Let Rep(X:G) be the category of finite locally fre®x-modules equipped with an
action of G. Together with the obvious symmetric monoidal structure itis a rigid symmetric
monoidal category. If5 acts transitively orX = S, G is a group scheme and we get the
categoryRep(G) of representations on finite locally fré&s-modules.

4.19. Let F be some fibered category ovésch/S). A representation ofF is a
(Sch/S)-functor of F into the stack of quasi-coherent sheaves &gt/ S which is com-
patible with base change. We wriRep (F) for the category of representations’f

If 70 is a pre-stack oveBch/S with associated stack, the universal property of
impliesRep(F°%) = Rep(F).

4.20. Let G be anS-groupoid acting on af-schemeX and letR be a representation
of the fibered categorgg’(:G. For everyS-schemer’ and for every§-morphismx : 7 — X
in gg’(:G(T) we have an isomorphism

R(x) = x*R(idy),

and R is determined by the quasicoherefty-module Rp = R(idy) and by the
R(g):x*Rg — y*Rg for g:x — y in g?. TheseR(g) form a representation of the
groupoidG on Rg and we get an equivalence

Rep(Gx:6) = Rep(G%.¢) ~ Rep(X:G).
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4.21. LetG be anS-groupoid which acts transitively on éaschemeX, letu:Y — X
be anS-morphism and denote b§y = u*G the pullback ofG which acts transitively
on Y. Suppose thak — S andY — S are coverings. The morphisms of pre-stacks
u:GY.c. — G3.g induces an isomorphism of the automorphism sheaf pfifdg?.

with the sheaf of automorphisms ofin gng. The induced morphisms of gerbs
u:Gy.gy = Ox.G
is therefore an equivalence (4.14). In particular, we get

Rep(X : G) = Rep(Y : Gy).

5. Reconstruction of groupoidsover Prifer rings

5.1. In this section we denote b a (commutative) ring and b® a unital R-algebra
(not necessarily commutative).® is a second ring and’ a unitalR’-algebra a morphism
(R, B) — (R, B') is by definition a paily, ¢) wherey : R — R’ is a homomorphism of
rings andy : B — B’ is a homomorphism oR-algebras.

Denote byM the category of B, B)-bimodules such that the two underlyikgmodule
structures coincide. Tensorizing ovér endows M with the structure of ank-linear
monoidal category. The 1 is given by thi&, B)-bimodule B. Less symmetrically, we
canM also consider as the category of rigB°°P ® g B)-modules.

Denote byC the category of righB-modules. For every righB-moduleX and every
(B, B)-bimoduleL, X ®p L is again a rightB-module and this defines a right action of
MonC.

Following Deligne [3, 1.15], we call a comonoid in the monoidal categbtyan R-
coalgebroid acting orB. If L is anR-coalgebroid acting oB we call anL-comodule inC
(1.9) simply anL-comodule oveB.

5.2. Let L be anR-coalgebroid acting o®. Assume that. is flat as a leftB-module.
A comodule homomorphism is a monomorphism (respectively an epimorphism) if and
only if it is injective (respectively sugctive). It follows that the category df-comodules
is abelian and the functor “forgetting the coaction” is exact.

5.3. Let(L,c,e) be anR-coalgebroid acting o®. We want to define the base change
of (L, ¢, e) with respect to a morphisitR, B) — (R’, B"). We do this in three steps.

(1) Let B’ be anR-algebra, and lep : B — B’ be a homomorphism ak-algebras. Then
L'=B ®p L®p B'isa(B’, B')-bimodule. Define aamultiplicationc” as the com-
position

B ®sL®sB 22 B oy LR LRs B

—— (B ®3L®p B)®p B'®p L®p B,
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where the second arrow senigls® I1 ® [, ® b, 10 b; ® 11 ® 1 ® 1 ® 2 ® b, Further
define a couni¢’ as the composition

B'®p L@ B **%% B @y B — B,

where the second arrow is given by the multiplicatiomBinlt is straightforward to see
that(L’, ¢/, ¢’) is anR-coalgebroid acting oB’. We denote it by* (L, ¢, ) or simply
@*(L).

(2) Now let R — R’ be a homomorphism of commutative rings and Bé& B ®x R’.
Then L ®g R’ is a (B, B’)-bimodule such that the underlyin®-module struc-
tures coincide. Furthet,® idz' defines a comultiplication oh ®x R’ if we identify
(L®r R) ®perr (LOr R) With (LR L)®r R'. Then(L®r R', c®idg/, e Qidg)
is an R’-coalgebroid acting o’ which we denote byL, ¢, e) g or simply Lg:.

(3) Now consider the general situation. LRt> R’ be a homomorphism of commutative
rings, letB’ be anR’-algebra, and lep : B — B’ be a homomorphism ak-algebras.
Theng induces ar’-algebra homomorphisg: B®g R" — B andy*(Lg/) isanR’-
coalgebroid acting o’ which we will also denote simply by*(L). The underlying
(B’, B")-bimodule is given by

(B'®3L®p B')Qrgyr R —> B Qpayr (L Qr R') Qpagr B

5.4. Denote byD the full subcategory of of B-modules which are finitely generated
projective. Then the action 081 onC is coclosed forD (2.5). Indeed, ifM is a finitely
generated projective riglR-module, the functor

Fy:C—> M, N M'®gN
is left adjoint to(M® ) and F; depends functorially (and contravariantly) dh

5.5. Now let L be anR-coalgebroid acting orB which is flat overB for both B-
module structures. We now want to apply 2.14 to the forgetful funetap’ — C (for a
special class of ring8). For this we have to check that the assumptions in 2.13 hold. First,
forgetting the left action defines a functér: M — C. This functor is faithful. Further,
it preserves and reflects filtered inductive ilisnbecause this holds for any functor which
forgets an algebraic structure (e.g., [12, 18.5.3]). Therefore 2.13(e) holds.

Further,D is equivalent to a small category and therefore this hold®fors well, and
in M existinductive limits. Therefore by 5.4 the assumption 2.13(a) holds. Further 2.13(b)
and (c) are clear. It remains to check (d).

5.6. Let L be anR-coalgebroid acting o®. Assume thaL is flat as a leftB-module.
If (M,r) is an L-comodule we call a subs&f ¢ M an L-subcomoduléf N is a B-
submodule and if (N) C N ® L (note that because of the flathesd.ofve can consider
N ®p L asasubsetaff ®p L).

The intersection of.-subcomodules is again drsubcomodule. In particular, for every
subsetS of M there exists a smallegt-subcomodule containing which will be called
the L-comodule generated ks
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5.7. Proposition (cf. [13]). Let L be anR-coalgebroid acting orB such thatL is flat as
a left B-module. Let(M, r) be anL-comodule and leE be a B-submodule of. which
is finitely generated. Then there exists AysubcomoduléV containing E which is also
finitely generated as &-module.

Proof. It suffices to show the following:

Lemma. Letm be an element o#f and letN be theL-subcomodule generated Ky:}.
ThenN is finitely generated as a riglR-module.

Proof. Write

d
rmy=) ni®a

i=1

with n; € N anda; € L and letN’ be theB-module generated by the. We claim that
N’ = N. We have to show tha¥ c N’. We setE = r~1(N’ ® L) C M. Using (COM2)
we see thaE C N’ and by definitionn € E. Therefore it suffices to show thdt is an
L-subcomodule oM, i.e.,r(E) CE®L.AsLisflatwe haveE ® L = (r ®id;) 1 (N’ ®

L ® L). By (COM1), we have

(r®idp)(r(E)) = (idy @ ¢)(r(E)) C(i[dy ® )(N'®L)CN' ®LQL
and therefore® is anL-subcomodule. O
5.8. Corollary. Let L be an R-coalgebroid acting onB such thatL is flat as a leftB-
module. Then everkg-comodule is the filtered union éfsubcomodules which are finitely

generated a3-modules.

5.9. Let B be a commutative integral domain. Recall tiBais calledPrufer ringif the
following equivalent conditions hold:

(a) Every localization oB at a prime ideal is a valuation ring.
(b) Every finitely generated submodule of a fBxmodule is projective.

Further, a module over is flat iff it is torsionfree. In particular, every submodule of a
flat module is again flat. A noetherian Prifer ring is a Dedekind ring.

5.10. Corollary. Let B be a Prifer ring and letL be anR-coalgebroid acting orB such
that L is flat as a leftB-module. Then everk-comodule which is flat as A-module is the
filtered union ofL-subcomodules which are finitely generated projectiv8anodules.

5.11. Let(L,c,e) be anR-coalgebroid acting o®. We call a(B, B)-subbimoduleV
of L astrict R-subcoalgebroidf the following conditions are satisfied:
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(a) Denote by : M <— L the inclusion. Then®i: M ®p M — L ®p L is injective.
(b) We havee(M) C (i ® i) (M ®p M).

A strict R-subcoalgebroid carries an induc&dcoalgebroid structure. Together with
this structure it is a subobject in the categoryetoalgebroids. The converse is in general
not true.

Note that (a) holds whenevéf andL are flat with respect to botB-module structures.

5.12. Proposition. Let L be anR-coalgebroid acting orB such thatL is flat with respect

to both B-module structures. Assume thats a Prifer ring. Thenl is a filtered union of
strict R-subcoalgebroidés.11)which are finitely generated projective with respect to both
B-module structures.

Proof (cf. [3, 4.9]). Via the comultiplicatiorr: L — L ®p L we considerL itself as an
L-comodule. By 5.1Q is filtered union ofL-comodulesV; which are projective finitely
generated oveB. By 2.6 theL-comodule structure ol; corresponds to an homomor-
phism of coalgebroidg; : V.Y ® V; — L. BecauseB is a Prifer ring and. is flat over
B, the imageM; C L; of f; is a strictR-subcoalgebroid of. which is finitely generated
projective overB. The counit of L induces a linear form; on V; and forx € V; we have
fi(Ai ® x) = x. ThereforeM; containsV; andL is the filtered union of thés;. O

5.13. Let B be anR-algebra which is a Prufer ring and |ét be an R-coalgebroid
acting onB such thatl is a flat B-module with respect to botB-module structures. Let
o be the forgetful functor from the category éfcomodules oveB which are finitely
generated projective @-modules into the category @&-modules.

Theorem. The canonical homomorphism Bfcoalgebroids
u:CoEndw) — L
is an isomorphism.

Proof. The assumptions of 2.13 hold by 5.5, 5.10, and 5.12. Therefore, we can apply
2.14. O

5.14. We now go back to the general notations of 5.1. AssumeRhatcommutative.
Then the tensor product ové endows the categor§ of B-modules with a symmetric
monoidal structure and the action 8f is compatible with this monoidal structure in the
sense of 2.15. LeD be a symmetric monoidal category and ¢gtand 2> be two tensor
functorsD — C. Denote by Horfj (¢1, ¢2) (respectively Isoifi(¢1, ¢2)) the presheaf on
(Sch/ SpecB)) which associates ta: T — SpecB) the set of morphisms (respectively
isomorphisms) o&®-functorsu*p; — u*p>.

Now assume thab is rigid. Then the functorg; andg; take values in the category of
finitely generated projectiv8-modules (1.4). Therefore the functors Hptw1, »2) and
Bﬂ%(wl, wy) are isomorphic [3, 2.7] and representable by affine schemeshover
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On the other hand, applying 2.8 and 2.18, we see that Colipitg,) is corepre-
sentable by a commutativ@-algebra and the definitions imply (cf. [3, 6.6])

SpedCoHony (g1, ¢2)) = Homis (¢1, ¢2) = Isonf; (¢1, p2).

5.15. We keep the notations of 5.14. Lkt 12: B — B ®g B bethemapp — b ® 1
respectivelyb — 1® b. Then:;(¢;) is atensor functor fror® into the category of B ® g
B)-modules and we have

Spe¢CoEnd,(w)) = Spec(CoHonModB®RB (1 (@), 3(@)) = Hom§®RB (1 (@), 5()).
The comonoid structure of CoERgl(w) endows Spe€oEnd, ,(w)) with the structure of

a monoid scheme. It follows from the definitio(d. [3, 6.7]) that this corresponds to the
composition of morphisms on the right-hand side.

5.16. Now let G be an affineR-groupoid acting orB (whereB is commutative) and
denote bys, r: G — SpecB) the morphisms source and target. Z&be the category of
representations afr on finitely generated projectivB-modules. This is a rigid symmet-
ric monoidal category and we have the canonical forgetful funetd® — C (with the
notations of 5.1).

EndowingG = Spec¢L) with the structure of an affinB-groupoid acting orB is equiv-
alent to endowing. with the structure of arR-Hopfgebroidacting onB, i.e., with the
structure of a Hopf monoid (1.6) in the categoYy. Further, to give a representationGf
on aB-moduleM is the same as to givid the structure of a.-comodule oveB.

5.17. We keep the notations of 5.16 and set

AUt (w) = Isomp o (11 (@), 13(@))
with the notations of 5.15. Theﬂ\%tw) is an affineR-groupoid acting orB. The target
morphismz (respectively source morphism) is given by composing the projection on
Spe€B) xspecr) SPeB) with pr, (respectively pg) from Spe¢B) x specr) SPeEB) to
Spe¢B).

Theorem. Assume thaiB is a Prifer ring and that ands are flat morphisms. Then we
have a canonical isomorphism @#fgroupoids acting orB

G = Aut? ().
Proof. This follows by combining 5.13, 2.18, 5.14, and 5.153
5.18. Denote byM/ (respectively’ M, respectively’ M/ ) the full subcategory aM

which consists of thos€éB, B)-bimodules which are flat as riglt-modules (respectively
as leftB-modules, respectively as left and a rig¢¥modules).
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Lemma. Let B be a Prufer ring.

(1) Then there exist small inductive limits in these categories.
(2) If B is a flat R-algebra the action of M/ onC is coclosed for the subcategaRy of
finitely generated projectivB-modules.

Proof. (1) As there exists small direct sums we only have to show that there exist coker-
nels. Let us first do this faM /. Letg : M — N be a homomorphismint/. Let C be the
cokernel in the category of alB, B)-bimodules and denote W its right torsion, i.e.C’
consists of those < C such thatch = 0 for some ® € B. ThenC! is a(B, B)-submodule
andC/C" is a cokernel ofp in M/ as being flat is equivalent to being torsionfree over
a Prufer ring. Symmetrically, it follows that i is a morphism i/ M thenC/!C is a
cokernel inf M where! C denotes the left torsion submodule®fFinally the cokernel in
M/ is given byC/(C' +1C).

To prove (2) we have to show by 5.4 that” ®x N is flat as a left and as a rigltt-
module for all finitely generated projectiv@-modulesM and N. If M and N are free
B-modules this follows from the flatness Bfover R. In generalM andN are direct sum-
mands of free modules and this gives (2) as direct summands of flat modules areiflat.

5.19. We keep the assumptions of 5.17 and assume#fiafflat overR. Then we can
apply 5.13 and 2.18 t&M/ instead ofM by 5.18 and we get an isomorphism@fwith

SpedCoENnd s (w)).

5.20. Corollary. Let R be a Prifer ring and letG be an affine flatand hence faithfully
flat) R-group scheme. Denote 1Ty the category of representations 6fon finitely gen-
erated projectiveR-modules and bw the forgetful functor fronD into the category of
R-modules. Then we have a canonical isomorphismR-gfoup schemes

G = Aut® ().

5.21. In fact, we can associate to every affiRegroupoidG acting onB an affine
group scheme oveB. The general procedure is as follows.

Let (L, c, e) be anR-coalgebroid acting o. We can consider théB, B)-bimodule
L as arighttB°PP®@x B)-module. AsB is commutative, the multiplicatio® ®z B — B
is a homomorphism oR-algebras and we denote By the B-moduleL ®pg, 5 B. We
endowZ4 with a comultiplicationc? defined as the composition

®id ®id
L ®pgrs B L, L®p L ®BerB B L) ®Bers B) ®p (L @pggs B),

wherex is defined byx ® x' — x ® 1® x’ for x, x’ € L. Further, we define a counit* as
the composition

e®id ~
L ®sggs B 2L B @pgys B> B.

Then(L?4, ¢4, ¢2) is a cogebra oveB.
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If L has the structure of aR-Hopfgebroid, i.e.G = SpecL) is an affineR-groupoid
acting onB, then multiplication, unit, and antipode &f define onL# the structure of a
Hopf-algebra oveRr, i.e., G4 = Spec¢L4) is an affine group scheme ovRr This defini-
tion agrees with 4.5.

6. Tannakian lattices over valuationsrings of height one

6.1. We fix the following notations. LeR be a valuation ring with field of fractions.
Denote byry its value group. Every ring homomorphigm R — B of valuation ringsR
andB induces a homomorphism of totally ordered grolips I'r — I'.

Recall that ifI" is a totally ordered abelian group, a subgrdUpf I' is calledisolated
if the relations O< y < x andx € I'" imply y € I'’. The number of isolated subgroups of
I'r which are distinct fromT' is called theheight of R and denoted by kiR). It is equal
to the Krull dimension ofR.

6.2. Lemma. Let B be a valuation ring with field of fractiorF' and let¢: R — B be
a homomorphism of rings. Denote iy Spe¢B) — SpecR) the induced morphism of
schemes.

(1) The following conditions are equivalent
(i) f issurjective.
(i) ¢~({0}) = {0} andp~(mp) = mp.
(iii) ¢ isinjective and via the induced embeddikig— F we haveB N K = R.
(iv) f is faithfully flat and open.
(v) ¢ andTIy, are injective.

(2) If the equivalent conditions dfL) hold, we havét(R) < ht(B). In particular, R is of
finite height ifB is of finite height.

(3) Let I'p be the value group oB and I'r C ' the value group oRk. Assume that the
conditions of(1) hold and thatB is of finite height. Then the following assertions are
equivalent

(i) The morphisnSpec¢B) — Spe¢R) is bijective (and therefore an homeomor-
phism by(1)).
(i) We haveht(R) = ht(B).
(iif) For every isolated subgroup of I'y and for everyx € A there exists ay €
AN g such thaty > x.
(4) Assume that the conditions () hold. Then the following assertions are equivalent
(i) Foreveryx € I'p there exists & € I'g such thaty > x.
(i) The homomorphistB @k K — F is an isomorphism.

Proof. Let us prove (1). The implications (i (i) < (ii) < (iii) are obvious. Every
torsionfree module over a valuation ring is flat [1, Chapitre VI, 83, no. 6, Lemme 1],
thereforeB is flat over R and we see that (i) and (iii) imply that is faithfully flat. As

the prime ideals oR and B are linearly ordered this implies that S8¢ — SpegR) is
open. Ifg is injective,BN K = R also impliesB* N R = R* and therefore (iii) implies (v).
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Finally, if I, is injective, I, sends positive elements ik to positive elementii’p and
therefore (v) implies (ii).

Condition (2) then follows from (1) becausg B) = dim(B) > dim(R) = ht(R).

Let us prove (3). The equivalence of (i) and (ii) is clear by (1). Denotellpy(re-
spectivelyX'r) the set of isolated subgroups B (respectivelyl'r). These sets are totally
ordered by inclusion. The mapr—> AN Ty is a surjective mag's — Xg. Arightinverse
is given by sending\’ € Xy to the set/ (A’) of elementsy € I'p such that there exists an
y' € A’ such that-y’ < y < y’. Now assume that there exists an isolated subgrhuyb
I'p and anx € A such thaty < x forall y e AN I'k. Let I'" € X5 be the isolated sub-
group which is the largest among those isolated subgrougswhich do not contairx.
Thenwe havd (AN Tg) C I''. AsT"" # A this contradicts (i) and we have proved that (i)
implies (iii).

Conversely letA, A’ € X5 be isolated subgroups such thatn I'y = A’ N I'k. Let
0 < x € A'. By (iii) there exists ay € A’ N I'g such thaty > x. Then we havey € A
and this impliesx € A becauseA is an isolated subgroup. Therefore we steC A.
By reversing the roles oft and A’ it follows that A’ = A and we have shown that (iii)
implies (ii).

Finally, (4) is obvious. O

6.3. Lemma and Definition. Let F be an extension oK. Then there exists a valuation
ring B of F such thatB N K = R andht(B) = ht(R) (and henceR C B satisfies all the
properties of6.2(3)and (4), if R is of finite heighk

We call such a ring3 aheight preserving extension &f

Proof. Letv be the valuation oK given byR. If F is an algebraic extension every exten-
sion ofv to F has the same height [1, Chapitre 6, 88, no. 1, Corollaire 1 de Proposition 1].
Therefore, we can assume thrats purely transcendental ov&r with transcendence basis
(Xi)ier - It follows from loc. cit. 810, no. 1, Proposition 2 that for every finite subset I

there exists a unique extensianof v to F; = K ((X;)ics) such thatw(X;) = 0 and such

that the images of th&; in the residue class fielld, of w form a transcendental basis of

k,, over the residue field aof. Further, the induced inclusion of the value group dfto

the value group ofv is a bijection. WritingF as the directed inductive limit of th&; for

J c I finite we get an extension af to F with the same value group, in particular the
heights are equal. O

6.4. Let F be an extension ok and B a valuation ring ofF' such thatBN K = R and
such that the heights @t and B are equal and finite. In particular we haBexr K = F
by 6.2. If L is an R-coalgebroid acting o® then L (5.3) is aK -coalgebroid acting on
B®r K = F.If MisanL-comodule oveB thenM ® g F = M ®r K is anL g-comodule
over K. This defines a functor from the categair oj )~ of L-comodules which are
finitely generated projective ové into the categoryVec )L« of L x-comodules which
are finite dimensional vector spaces o%erThis induces a tensor functor

@ :(Proj p)k — (Veck)tx,
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where(Pr oj B)% denotes the categofPr oj z) with skalars extended t& (3.4).

Proposition. Assume that is flat as a leftB-module. Then the functar is an equivalence
of monoidal categories.

Proof. We first show thatp is essentially surjective. Giving ang -comoduleV over F is
equivalent giving arL.-comoduleV which is aF-vector space. Le¥ be finite dimensional
and choose #-submoduleVf of V such thatM ® p F = V. ThenM is finitely generated
over B and by 5.7 it is contained in ah-subcomoduleV which is finitely generated
over B. FurtherN is projective as a finitely generated submodule of theBlahoduleV
andwe haveV ®g F =V,i.e.,®(N)=V.

Now we prove thatp is fully faithful. Let M andN be two objects inPr oj z)t. We
have to show that

o Homp (M, N) ®r K - Hom;, (M ®p F, N Qp F)

is an isomorphism. We have a commutative diagram

Hom, (M, N)®g K ——~ > Hom,(M ®5 F, N @3 F)

| |

Homg (M, N) ®r K ~  Homp(M ®p F,N ®p F)
=Homg(M,N)®p F =Homg(M ®r K, N ®r K),

where the lower horizontal arrow is bijective becange@ndN are finitely generated pro-
jective. In particularg is injective. On the other hand, if : M ® 3 F —> N ®p F is a
B-linear map there exists/ac B such thatrf (M) C N becauseéV is finitely generated.
By 6.2(3) there exists ane R such that(r)v(b) wherev denotes the valuation d (and
its restriction toR). Thereforerf (M) C N. If f is a homomorphism of.-comodules then
this holds forr f as well. This proves the surjectivity af O

6.5. If X is any R-scheme then the categoRLF(X) of finite locally free Ox-
modules is a rigid symmetric monoid&-linear category and the canonical functor
¥ FLF(X)x — FLF(X ®r K) is a fully faithful tensor functor. Indeed, to show this
we can assume that = SpecA) is affine. Denote by the image ofR \ {0} in A. This is
a multiplicative subset and we hase® Homy (M, N) = Hom-1,(S~1M, S7IN) if M is
an A-module of finite presentation.

6.6. Let L be anR-coalgebroid acting orB and letM and N two L-comodules
which are finitely generated projective ov@r We can consider HopiM, N) ® K and
Homg (M, N) as B-submodules of Hom(M ®p F,N ®p F) = Homg(M, N) Qg K.
Then we have

(Homy (M, N) ®p F) NHomg(M, N) = Hom (M, N).
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6.7. Let7 be arigid additive symmetric monoidal category such that there is given an
isomorphismR = Endy (1) whereRr is a valuation ring. This endow with the structure
of an R-linear category. Denote h¥ the field of fractions ofR.

Let X be someR-scheme and an R-linear tensor functor from™ with values in the
category of quasicoherefily-modules. Thenw takes its values in the category of finite
locally freeOx-modules (1.4). Further, after skalar extensioKteve have a tensor functor
wg from Tx with values in the category of finite locally freé8xg , x -modules which is
faithful if and only if w is faithful (6.5).

We consider the following conditions far:

(TL1) There exists an essentially finite-dimensioRaschemeX — Spec¢R) (i.e., every
local ring of X is finite-dimensional) which is faithfully flat ove® and anR-linear
tensor functoe from 7 into the category of quasicoherefix-modules.

(TL2) 7k with the induced monoidal structure is a rigid abelian symmetric monoidal cat-
egory andwk is exact.

Note that (TL2) implies thafk is a Tannakian category ovét.

6.8. Lemma. Let7 be satisfyingTL1) and (TL2) and letw be a functor as if{TL1) and
(TL2).

(1) The functorw has its values in the category of finite locally frés-modules. It is
faithful and preserves monomorphisms.

(2) For all objectsM and N in 7 the R-moduleHomy (M, N) is flat.

(3) The induced map

Homz (M, N) ® g Ox — Homo, (o(M), w(N)) (6.8.1)
is injective.
Proof. (1) As 7 is rigid, (M) is also rigid forM in 7 and therefore finite locally free.

By [4, 1.19] the functork is faithful, hencew is faithful (3.7). Now letf : M — N be a
monomorphism ir/". Then we have a commutative diagram

(f)
wo(M) — > w(N)

|

o(M)Rr K —— o(N) Qg K.

As f is a monomorphism, its image fk is also a monomorphism (3.6) and hence the
lower horizontal arrow is injective becauag is exact. Further the vertical arrows are
injective asw (M) andw(N) are torsionfree oveR. This implies thato(f) is injective.
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(2) As w is faithful, Homz (M, N) is an R-submodule of = I'(X, Homo, (w(M),
w(N))) which is flat overR becauseX is flat overR. Therefore Hom (M, N) is also
flat (5.9).

(3) The proof of (3) is the same as in [3, 2.13(ii)] using (1), (2), and that every finitely
generated submodule of a flRtmodule is free. O

6.9. Definition. Let R be a valuation ring with KR) < 1. A rigid additive symmetric
monoidal categorg” with a given isomorphisnk — Endy (1) is calledquasi-Tannakian
lattice overR if there exists a functo® as in (TL1) such that7, w) satisfies (TL2) and
the following property:

(TL3) For every height preserving extensiBrof R and everyR-morphismf : Spe¢B) —
X the injection (6.8.1) makes Hop{M, N) ®g B into a directB-summand of
Homg (f*w (M), f*w(N)).

A functor as in (TL1), (TL2) and (TL3) is callefibre functor of7 over X. A quasi-
Tannakian latticel” is calledTannakian latticef 7 is pseudo-abelian.

6.10. For every faithfully flat R-schemeY and every morphism ofR-schemes
f:Y — X the inverse imag¢*w: M — f*(w(M)) is also a fibre functor.

6.11. Note that (TL3) is equivalentto

(TL3') Forevery height preserving extensiBrof R and everyR-morphismf : Spe¢B) —
X the cokernel of the injection Hom(M, N)®gr B < Homg(f*w (M), f*w(N))
is flat.

Indeed, asf*w(M) and f*w(N) are finitely generated projective (and hence free)
B-modules,H := Homg (f*w (M), f*w(N)) is finitely generated free as well. Therefore
any B-submoduleH’ of H is a direct summand, if and only if the quotieliyy H' is flat
(which is equivalent to being free &6/ H' is finitely generated).

6.12. The pseudo-abelian hdll of a quasi-Tannakian latticE’ overR is a Tannakian
lattice. Indeed7 is rigid, symmetrically monoidal and we hawe— Endy(17) by 3.9.
Let ' be a fibre functor off” over some faithfully flatR-schemeX. As the category of
guasicoheren®x-modules is abelian this fibre functor factorizes over a funetdrom
7 into the category of quasicoherefliy-modules. As7}, is abelian, we hav@; = Tx.
Hence(7, w) satisfies (TL1) and (TL2), and (TL3) is obvious by the definition of the
morphisms in the pseudo-abelian hull.

6.13. If R is a field and7 satisfies (TL1) and (TL2), it also satisfies (TL3) as every
height preserving extensiaB of R is a field extension. Moreover, we ha¥e= 7k, in
particular7 is abelian. Therefore in this case the notions of quasi-Tannakian lattice, of
Tannakian lattice, and of Tannakian category in the sense of [3] coincide.



606 T. Wedhorn / Journal of Algebra 282 (2004) 575-609

6.14. Proposition. Let X be an essentially finite-dimensional scheire2, every local ring
of X is finite-dimensiondlwhich is faithfully flat over a valuation rin@ of height at most
one. Then there exists a morphi§pec¢B) — X whereB is a height preserving extension
of R (6.3). If R is noetherian andX is locally of finite type oveR, we can assume thadt

is also noetherian.

Proof. If R is of height zero, i.e.R is a field, this is trivial. Therefore, assume tliais of
height one. AsX is faithfully flat overR we can findx, n € X such thatc (respectivelyy)

is mapped to the closed (respectively the generic) point of @)eand such that is a
specialization ofy and there exists no other specializationpoivhich is a generization
of x. Let A be the quotient o0y , by the prime ideal which is defined by Then we
have a canonical morphism Sgdg — X andA is a local integral domain of dimension 1.
Further, the morphism Spet) — SpecR) is bijective. Therefore the propositions follows
from the following lemma.

Lemma. Let A be a local integral domain of dimensidnwith field of fractionsF. Then
there exists a valuation rin@g of F which containsA such thatSpe¢B) — SpecA) is
bijective. IfA is noetherian we can assume thais a discrete valuation ring.

Proof. Every local subring off’ is contained in a valuation ring of F [1, Chapitre 6,
81, no. 2, Corollaire de Théoréme 2] and by localizthgwe see thatd is contained in a
valuation ringB of height one. We have to show thagNA = m4 wheremp (respectively
my4) denotes the maximal ideal & (respectivelyA). If this were not the case we would
havempNA = {0} and this would imply tha#t — B/mp is injective which is absurd a4
and B have the same field of fractions. The last assertion follows fror,[56.5.8]. O

6.15. Corollary. Let 7 be a quasi-Tannakian lattice over a valuation ring with
ht(R) < 1. Then there exists a fibre functor ®f over a faithfully flatR-algebra B which
is height preserving extension.

6.16. Corollary. Let 7 be a quasi-Tannakian lattice over a valuation ring with
ht(R) < 1. Then for all objectsM and N in 7 the R-moduleHomz (M, N) is finitely
generated and free.

Proof. By 6.8 we know thatd = Homz (M, N) is flat overR. Therefore it suffices to
show that it is finitely generated. By 6.15 there exists a fibre funstover a height pre-
serving extensioB of R. By (TL3) we have thatd ®x B is a direct summand of the
finitely generatedB-module Hong (w (M), w(N)). HenceH ®g B itself is finitely gen-
erated overB and this implies tha# is finitely generated as aR-module because is
faithfully flat overR (6.2(1)). O

6.17. Denote byR a valuation ring with htR) < 1 and byK its field of fractions. Let
X be an essentially finite-dimensional scheme which ifpae-cover of S = Spe¢R) and
let G be anR-groupoid acting orX such that(s, ) : G — X x s X is affine and faithfully
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flat. Set7 = Rep(X:G) (4.18) and letw be the forgetful functor fronT into the category
of quasicoheren®x-modules.
The category{ is R-linear, pseudo-abelian, and carries an obvious symmetric monoidal
structure with unit 1 being the trivial representation®@g. Further,7 is rigid (the dual of
a representatioft is given by the contragredient representattéom (F, Ox)).

6.18. Theorem. 7 is a Tannakian lattice oveR andw is a fibre functor.

Proof. As G is quasicompact and faithfully flat ovef x g X, it acts transitively orX. It
follows that the associated sta@k. is a gerbe (4.12). By 6.14 there exists&morphism
Spe&B) — X whereB is a height preserving extension Bf By 4.21 we can assume that
X = SpecgB). As B is flat overR it follows that the morphisms, ¢ : G — SpecB) are
flat. FurtherG is affine, sayG = SpecL).

The unital representationis given By— BQp L,b+—> b1, =15 ®1; -b. Therefore
we have Eng(17) ={be€ B |b-1;, =1, -1} =: R'. This is anR-subalgebra of3. As
R is a valuation ring and is faithfully flat overR, R’ is also faithfully flat overR. The
groupoidG acts also ors’ = Spec¢R’) and it is a group scheme ovst (4.4). We claim
that R’ is a valuation ring. For this denote k¥’ the field of fractions ofR’” and by F
the field of fractions ofB. As every elemeny € F is of the formb/r for someb € B
andr e R (6.2), we seethak’ ={y e F |y -1, =11, - ¥}, henceR’ = K’ N B which
implies thatR’ is a valuation ring a® is a valuation ring. It follows thaB is faithfully flat
over R’ and thereforé&; acts transitively or$’. By 4.12 we haveR = R’ which proves that
Endr(17) = R.

Itremains to prove that (TL2) and (TL3) are satisfied. By @@ s the category of finite
dimensional representations éhvector spaces of; ¢ andwg is the forgetful functor,
hence (TL2) is satisfied. To check (TL3) it suffices to consider the gaseidspecs)
by 6.10. LetM and N be two projective finitely generated (hence free) modules over
B which areL-comodules. Th&8-moduleH = Homg (M, N) is finitely generated, hence
the submodulé!’ = Hom; (M, N) is a direct summand iff{/ H' is torsion free. By 6.2(3)
some B-module hasB-torsion if and only if it hasR-torsion. Butif f: M — N is a B-
linear map such thatf is a homomorphism of.-comodules for some e R \ {0}, then f
is a homomorphism of -comodules. O

6.19. Theorem. Let7 be a quasi-Tannakian lattice over a valuation rikgvith ht(R) < 1
and field of fraction'. Then there exists an affifegroupoidG acting on anR-algebra
B such thatT is equivalent to a full sub-tensor categdfy of Rep(G) of representations
of G which are finitely generated projective ovBrand such thatZ;, = Rep(Gg) where
Gk denotes the general fibre 6f.

More precisely, ifw is a fibre functor ofZ” over a height preserving extensi@énof R
thenw induces a fully faithful functor of into the category of representations of tRe
groupoidCoENd 1 (w) (5.18)which is after skalar extension % essentially surjective.

Further, G is universal with this property in the senseaflL8(2)

Proof. By 6.15 there exists a fibre functar of 7 over a height preserving extension
B of R. Now use the notations of 5.1 and 5.18. Then $ge&nd , s (w)) =: G is an
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R-groupoid acting onB such that source and targetr: G — Spe¢B) are flat andw
factorizes througliRep (G) inducing a functor

0% :T — Rep(G).

The functorwg is a fibre functor of the Tannakian categdfy over B @ K = F where
F is the field of fractions ofB. By [3, 1.12 and 6.7]wk induces an equivalence Gk
with Rep(G k) whereG is the generic fibre of;. This is aK -groupoid acting orF'. By
6.4 the canonical functdRep(G)x — Rep(Gg) is an equivalence. Therefosg; is after
skalar extension t& essentially surjective. It remains to show thg is fully faithful.
Let M andN be two objects in Hom (M, N). Then we have a commutative diagram

Homy (M, N) ——— HOMRepg) (@ (M), @(N)) ——— Homg (w(M), ®(N))

|

Homz (M, N) @k K — HOMRepG ) (wk (M), wk (N)) - Homg(w (M), w(N)) ®r K,

where all arrows are injective. As the riglgatangle is cartesian (6.6) it suffices to show
that the composite rectangle is cartesian. For this consider the commutative diagram

Homy(M,N) — Homg (M, N) Qg B Homg (w (M), w(N))

| | |

Homz (M, N) Qg K —— Homz (M, N) ®k F —— Homg(w (M), w(N)) ®p F.

Again all arrows are injective (6.8). As HoniM, N) is a finitely generated fre®-
module (6.16), the relatio® N K = R implies that the left rectangle is cartesian. Fur-
ther the right rectangle is cartesian because HaW, N) ® B is a direct summand
of Homg(w(M), w(N)) by (TL3) and we are done. The last assertion follows from
2.18(2). O

6.20. We keep the hypothesis of 6.19. Rep(G) is pseudo-abelian, the fully faithful
functor7 — Rep(G) factorizes over the pseudo-abelian hulldfwhich is a Tannakian
lattice (6.12).

6.21. Corollary. Let7 be a quasi-Tannakian lattice over a valuation riRgvith ht(R) < 1
such that there exists a fibre functerof 7 over R. Then there exists a flat affine group
scheme oveR and a fully faithful tensor functdf : 7 — Rep(G) such that

(1) If F denotes the forgetful functor froRep(G) into the category of finitely generated
free R-modules, thew = F o 7.

(2) Assume that’ is a second flat affine group scheme okeand thatZ’ : 7 — Rep(G’)
is a tensor functor such that = 7' o 7’ whereF’ is the forgetful functor oRep(G’).
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Then there exists a unique homomorphism of group schémés — G such thatZ’
is the composition df and the functoRep(G) — Rep(G’) induced byd.

(3) If K denotes the field of fractions &fthe induced functor after skalar extensionko
Fk, induces an equivalence of categoriBs~ Rep(G k).
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