
NOTES ON TANNAKIAN CATEGORIES

JOSÉ SIMENTAL

Abstract. These are notes for an expository talk at the course “Differential Equations and Quantum Groups”
given by Prof. Valerio Toledano Laredo at Northeastern University, Spring 2016. We give a quick introduction
to the Tannakian formalism for algebraic groups.

The purpose of these notes if to give a quick introduction to the Tannakian formalism for algebraic groups,
as developed by Deligne in [D]. This is a very powerful technique. For example, it is a cornerstone in the
proof of geometric Satake by Mirković-Vilonen that gives an equivalence of tensor categories between the
category of perverse sheaves on the affine Grassmannian of a reductive algebraic group G and the category

of representations of the Langlands dual Ĝ, see [MV].

Our plan is as follows. First, in Section 1 we give a rather quick introduction to representations of al-
gebraic groups, following [J]. The first main result of the theory says that we can completely recover an
algebraic group by its category of representations, see Theorem 1.12. After that, in Section 2 we formalize
some properties of the category of representations of an algebraic group G into the notion of a Tannakian
category. The second main result says that every Tannakian category is equivalent to the category of repre-
sentations of an appropriate algebraic group. Our first definition of a Tannakian category, however, involves
the existence of a functor that may not be easy to construct. In Section 3 we give a result, due to Deligne,
that gives a more intrinsic characterization of Tannakian categories in linear-algebraic terms. At the begin-
ning of each section, its content is described in more detail.

A few words about notation. Throughout, we fix a field K that we do not assume to be algebraically
closed (we do, however, assume it has zero characteristic.) Unless otherwise explicitly stated, by an algebra
we always mean a commutative K-algebra. All the categories we consider below are K-linear.

1. Algebraic groups and their representations

We give a quick overview of some basic facts of the representation theory of algebraic groups. We
remark that we take the functorial approach to algebraic geometry. By an affine scheme we mean a functor
X : K -alg → Sets that is represented by a finitely generated algebra A, that is, X(A′) = HomK -alg(A,A′)
for every A′ ∈ K -alg. If this is the case, then we denote K[X] := A, and Spec(A) := X. We will make
extensive use of the following well-known result.

Lemma 1.1 (Yoneda Lemma). Let A be a algebra. Then, for any functor X : K -alg → Sets, there is a

bijection Mor(Spec(A), X)
∼=−→ X(A). This bijection is given by Φ 7→ ΦA(1A).

Let us name a few consequences of the Yoneda Lemma. First, for two algebras A and A′ we get:

Mor(Spec(A),Spec(A)′)
∼=−→ Spec(A′)(A) = HomK -alg(A′, A)

Second, let us denote A1 := Spec(K[x]). In particular, A1(A) = A for any algebra A. Thus, we get:

(1) Mor(Spec(A),A1)
∼=−→ A

We remark that for any functor X : K -alg → Sets, the space Mor(X,A1) naturally acquires an algebra
structure. For Φ,Ψ ∈ Mor(X,A1), define (Φ + Ψ)A(x) := ΦA(x) + ΨA(x), (ΦΨ)A(x) = ΦA(x)ΨA(x), where
A ∈ K -alg, x ∈ X(A). With this structure, the isomorphism (1) becomes an algebra isomorphism. In other
words, given an affine scheme X, we can always recover K[X] via K[X] ∼= Mor(X,A1).

This section is organized as follows. First, we recall the definition of an algebraic group and give sev-
eral examples. We remark that the definition of an algebraic group we take here is not the most general
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one - strictly speaking, we are only working with affine algebraic groups- but this will be enough for us.
Then, we explore connections between algebraic groups and Hopf algebras - as it turns out, the category
of algebraic groups is anti-equivalent to the category of commutative Hopf algebras. In Subsection 1.3 we
define representations of an algebraic group G, study a few operations on them and explore the connections
between representations of G and comodules over the corresponding Hopf algebra. Finally, in Subsection
1.4 we explain how to recover an algebraic group G from its category of representations.

1.1. Algebraic groups: Definition and examples.

Definition 1.2. A K-group functor is a functor G : K -alg → Groups. A K-group functor G is said to be
an algebraic group if the composition of G with the forgetful functor that forgets the group structure is an
affine scheme, that is, if G ∼= Spec(A) for a finitely generated algebra A. We say that the K-group functor
G is a pro-algebraic group if G ∼= Spec(A) for a not necessarily finitely generated algebra A.

The usual constructions with groups extend to K-group functors. For example, let G,H be K-group
functors. We denote Hom(G,H) := {Φ ∈ Mor(G,H) : ΦA is a group homomorphism for any algebra
A}. For Φ ∈ Hom(G,H), ker(Φ)(A) := ker(ΦA) is a K-group functor, and it is a subfunctor of G. If,
moreover, G,H are (pro-)algebraic groups, then ker(Φ) is a (pro-)algebraic group, as follows. Consider
H(K) = HomK -alg(K[H],K). This has a unit element 1 ∈ H(K), that corresponds to an algebra homomor-
phism 1? : K[H]→ K. Consider ker(1?), this is an ideal of K[H]. Then, K[ker(Φ)] = K[G]/(Φ?(ker(1?))).

Let us give some examples of algebraic groups.

(1) Ga. For an algebra A, define Ga(A) := (A,+). This is clearly a K-group functor. It is an algebraic
group, with K[Ga] = K[x].

(2) Gm. Now define Gm(A) := (A×,×), the group of units of A. This is an algebraic group, with
K[Gm] = K[x±1].

(3) Va. Let V be a finite dimensional vector space. For an algebra A, define Va(A) := (V ⊗K A,+).
The algebraic group structure on Va is provided by K[Va] = Sym(V ), the symmetric algebra of V .
We remark that taking V to be infinite dimensional provides an example of an strictly pro-algebraic
group.

(4) End(V ). Again, let V be a finite dimensional vector space. Define End(V )(A) := (EndA(V ⊗KA),+).
This is an algebraic group and, in fact, End(V ) = (V ⊗K V

∗)a.
(5) GLV . Now define GLV (A) to be the set of all invertible endomorphisms of the A-module V ⊗K A,

with the composition as the product. This is an algebraic group with K[GL(V )] = Sym(V )[det−1].
(6) SL(V ). We remark that we have a morphism of algebraic groups GLV → Gm that is given by the

determinant. Its kernel is denoted by SLV . Of course, SLV (A) consists of all endomorphisms of the
A-module V ⊗K A with determinant 1.

(7) µn. Let n ∈ Z>0. For an algebra A define µn(A) := {a ∈ A : an = 1}. This is an algebraic group,
with K[µn] = K[x]/(xn − 1). Note that µn may also be defined as the kernel of the endomorphism
•n : Gm → Gm.

1.2. Algebraic groups and Hopf algebras. Let G be a (pro-)algebraic group. We remark that we have
morphisms:

m : G×G→ G ι : G→ G 1G : SpecK→ G
mA : G(A)×G(A)→ G(A) ιA : G(A)→ G(A) (1G)A : Spec(K)(A) = {u} → G(A)

(x, y) 7→ xy x 7→ x−1 u 7→ 1G(A)

That induce the corresponding comorphisms:

∆ : K[G]→ K[G]⊗K K[G] S : K[G]→ K[G] ε : K[G]→ K
which we call comultiplication, antipode and counit, respectively. For example, if ∆(f) =

∑
i f

1
i ⊗K f2

i

for some f ∈ K[G] = Mor(G,A1), then for every algebra A, g1, g2 ∈ G(A) = Hom(K[G], A) we have
g1g2(f) =

∑
i g1(f1

i )g2(f2
i ). Similarly, g−1(f) = g(S(f)) and ε(f) = 1(f). These formulas, together with the

group actions for G imply.



NOTES ON TANNAKIAN CATEGORIES 3

Lemma 1.3. Let G be a (pro-)algebraic group. Then, K[G] is a commutative Hopf algebra.

Example 1.4. (1) Take the algebraic group Ga. The Hopf algebra structure on K[x] is given by ε(x) =
0,∆(x) = x⊗K 1 + 1⊗K x and S(x) = −x.

(2) For the algebraic group Gm, the Hopf algebra structure on K[x±1] is given by ε(x) = 1,∆(x) = x⊗Kx,
and S(x) = x−1.

(3) Let V = Kn, and denote GLn := GLV . Let Tij ∈ K[GLn] be given by Tij(x) = xij for x ∈ GLn(A) =
Aut(Kn ⊗K A) = Aut(An) = {y ∈ Matn(A) : y is invertible}.Then, ∆(Tij) =

∑
m Tim ⊗K Tmj. The

antipode is more complicated, it can be derived using Cramer’s rule. Finally, ε(Tij) = δij.

Now assume A is a commutative Hopf algebra. We claim that Spec(A) is an algebraic group. Indeed, for an
algebra A′ define a multiplication on Spec(A)(A′) = HomK -alg(A,A′) by µA′(f × g)(a) = (f ⊗K g)∆(a). The
axioms of a Hopf algebra say that this is actually a group, with the identity element being the composition

A
ε−→ K ↪→ A′, and the inverse of f ∈ Spec(A)(A′) being f ◦ S. The following is now easy to show.

Lemma 1.5. The categories of pro-algebraic groups and of commutative Hopf algebras are anti-equivalent.

To finish this subsection, let us note that G is commutative if and only if K[G] is co-commutative, that
is, (12) ◦∆ = ∆, where (12) : K[G]⊗K K[G]→ K[G]⊗K K[G] permutes the tensor factors.

1.3. Representations of algebraic groups. Let G be a pro-algebraic group.

Definition 1.6. A representation of G consists of the data (V, ρ) of a vector space V together with an
algebraic group homomorphism ρ : G → GLV . Note that this implies that, for every algebra A, G(A) acts
on V ⊗K A by A-linear maps.

Let us give an easy but important example of a representation of G. Let V = K. For any algebra A, let
ρA : G(A) → GLK(A) = A× be the trivial morphism, that is, the morphism that sends G(A) to 1A. This
defines a representation, called the trivial representation of G that we will denote simply by triv.

To avoid confusion, we will denote representations of the algebraic group G using cursive letters. That
is, we denote a representation (V, ρ) simply by V. If V, W are representations of G, a G-homomorphism
Φ : V → W consists of a map Φ ∈ Hom(Va,Wa) such that, for every algebra A and g ∈ G(A) the following
diagram commutes:

V ⊗K A
ρVA(g)

//

ΦA
��

V ⊗K A

ΦA
��

W ⊗K A
ρWA (g)

// W ⊗K A

We will denote the set of G-homomorphisms from V to W simply by HomG(V,W). Let us see that many
usual constructions with vector spaces extend to constructions with G-representations.

Tensor products. Let M = (M,ρM ),N = (N, ρN ) be representations of G. Then, G acts on M ⊗K N as

follows. First, note that for any algebra A there is a natural isomorphism Ma(A)⊗ANa(A)
∼=→ (M⊗KN)a(A).

The action of G(A) on Ma(A) ⊗A Na(A) is now defined diagonally: ρM⊗KN
A (g) = ρMA (g) ⊗A ρN (g). It is

easy to see that this indeed gives a representation of G, that we denote by M ⊗G N . Note that the
natural K-isomorphism M ⊗K N → N ⊗K M permuting the tensor factors gives an isomorphism βM,N ∈
HomG(M⊗G N ,N ⊗GM). Note that βN ,MβM,N = idM⊗GN .

Let us remark that this construction is functorial. For morphisms Φ ∈ HomG(M,M′),Ψ ∈ HomG(N ,N ′)
the morphism Φ⊗GΨ ∈ HomG(M⊗GN ,M′⊗GN ′) is defined in a natural way. Let us also note that there
are natural G-isomorphisms triv⊗GM,M⊗G triv →M, where, recall, triv is the trivial representation of
G. Thus, we see that the category of representations of G is a symmetric monoidal category.

Duals. Now let M be a finite dimensional representation of G. Let us denote M∨ := HomK(M,K),

the dual of M . Note that for every algebra A there is an isomorphism HomA(Ma(A), A)
∼=−→ M∨a (A). We

may thus define an action of G on M∨ as follows. For g ∈ G(A), ϕ ∈ M∨a (A) and x ∈ Ma(A) we have
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(gϕ)(x) := ϕ(g−1(x)). It is easy to see that this defines a representation of G on M∨, that we denote byM∨.

Internal homs. LetM,N be finite dimensional representations of G. Then, HomK(M,N) admits a natural

action of G, using the previous two constructions and the natural isomorphism M∨⊗KN
∼=−→ HomK(M,N).

We will denote this representation by HomK(M,N ).

Let us rephrase the notion of a G-representation in terms of the Hopf algebra K[G].

Definition 1.7. Let K[G] be the Hopf algebra of G. A comodule over K[G] is a vector space V together
with a linear map α : V → V ⊗K K[G] such that the following diagrams commute.

(2) V
idV //

α

��

V V
α //

α

��

V ⊗K K[G]

α⊗KidK[G]

��
V ⊗K K[G]

idV ⊗Kε // V ⊗K K

∼=

OO

V ⊗K K[G]
idV ⊗K∆// V ⊗K K[G]⊗K K[G]

As an obvious example, ∆ defines a comodule structure on K[G]. Let us see how K[G]-comodules natu-
rally arise from representations of G. Let M be a representation of G. In particular, we have an action of
G(K[G]) = EndK -alg(K[G]) on Ma(K[G]) = M ⊗K K[G]. Consider the element idK[G] ∈ G(K[G]). Then, we
may define αM : M → M ⊗K K[G] by αM (m) := ρK[G](idK[G])(m ⊗K 1K[G]). The fact that the diagrams in
(2) commute simply express the fact that 1.m = m and that g1(g2m) = (g1g2)m for g1, g2 ∈ G(K[G]) and
m ∈M ⊗K K[G], respectively.

Now let A be any other algebra. We claim that the action of G(A) on Ma(A) is completely determined
by the map αM . Indeed, let g ∈ G(A) = HomK -alg(K[G], A). We have then a commutative diagram:

G(K[G])×Ma(K[G])

G(g)×(idM ⊗g)
��

// Ma(K[G])

idM ⊗g
��

G(A)×Ma(A) // Ma(A)

By definition, we have g = g ◦ idK[G] = G(g) idK[G]. Thus, g.(m ⊗ 1) = (idM ⊗g) ◦ αM (m). In other words,
if αM (m) =

∑
imi ⊗K fi, then

(3) g.(m⊗K 1) =
∑
i

mi ⊗K g(fi).

By A-linearity, this completely determines the action of g on Ma(A). On the other hand, if we have a K[G]-
comodule M then we can make Formula (3) a definition to get a G-representation on M . The following
lemma is then easy to show.

Lemma 1.8. Let G be a pro-algebraic group. Then, the category of representations of G is equivalent to
that of K[G]-comodules.

Let us see a few consequences of the previous lemma. Note that if A is an algebra, M is an A-module
and m ∈M , it doesn’t need to be the case that m is considered in a finite dimensional (over K) A-module.
For coalgebras, the situation is better.

Lemma 1.9. Let M be a K[G]-comodule and let m ∈ M . Then, m is contained in a K-finite dimensional
sub-comodule of M .

Proof. Take a (not-necessarily finite) basis {ci}i∈I of K[G]. Write ρ(m) ∈M⊗KK[G] as ρ(m) =
∑

i∈I mi⊗K
ci, with only a finite number of the mi’s nonzero. We claim that the span of m and {mi : i ∈ I,mi 6= 0} is
a sub-comodule of M . This follows easily from the commutativity of the diagram in the right of (2). �

Corollary 1.10. Any finite subset of K[G] is contained in a Hopf subalgebra that is finitely generated as an
algebra.
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Proof. Let T ⊆ K[G] be a finite subset. By the previous lemma, T is contained in a finite dimensional
subspace M of K[G] with ∆(M) ⊆ M ⊗K K[G]. Let m1, . . . ,mn be a basis for M . Write ∆(mi) =∑n

j=1mj ⊗K aij . It is easy to see that the subalgebra generated by mi, S(mi), aij , S(aij), i, j = 1, . . . , n is a

Hopf subalgebra of K[G]. �

This immediately gives.

Corollary 1.11. Every pro-algebraic group is the inverse limit of algebraic groups.

1.4. Tannakian reconstruction. Let G be a pro-algebraic group and consider the category G -rep of finite
dimensional representations of G. As we have seen, this is a symmetric, monoidal category. Note that it
comes with a forgetful functor F : G -rep → K -vect, M 7→ M . We remark that for every K-algebra A, F
induces a functor FA : G -rep→ A -mod, M→ M ⊗K A. By definition of the tensor product • ⊗G •, FA is
a monoidal functor for every algebra A, where A -mod is a monoidal category via • ⊗A •. We have then an
induced K-group functor of automorphisms of F :

Aut⊗(F )(A) := Aut⊗(FA)
= {(λM)M∈G -rep : λM ∈ EndA(M ⊗K A), (αK ⊗ idA) ◦ λM = λN ◦ (αK ⊗ idA)

for every α ∈ HomG(M,N )}

Note that for every algebra A and every g ∈ G(A), we get an element g̃ ∈ Aut⊗(F )(A) as follows: for
every M ∈ G -rep we have that g̃M is simply the action of g on Ma(A) = M ⊗K A. It is easy to see that
this is functorial, so that we have an homomorphism of functors G→ Aut⊗(F ).

Theorem 1.12. The homomorphism G→ Aut⊗(F ) is an isomorphism.

Before proceeding to the proof of Theorem 1.12, let us say a few words about the proof. The strategy is
to first take the restriction of F to a subcategory of G -rep “generated by a single element”. If X is such a
generator, we can use results about the group GLX . In particular, we have the following result.

Lemma 1.13. Let M be a vector space and G := GLM . Let I ⊆ K[G] be a Hopf ideal, so that K[G]/I
defines an algebraic group G′ and we have an embedding G′ ⊆ G. Then, there exists a finite dimensional
vector space V and a line D ⊆ V such that G′ is the stabilizer of D on V , that is, for every K-algebra A,
G′(A) is the stabilizer of D ⊗K A on Va(A).

Proof. Consider the regular representation K[G] of G. Since K[G] is noetherian, there exists a finite dimen-
sional subrepresentation of K[G], say V ′, containing a generating set for I, see Lemma 1.9. In particular,
G′ is the stabilizer of I ∩ V ′ on V ′. Let d := dim(I ∩ V ′), D := (I ∩ V )∧d, V := V ∧d. We claim that G′ is
the stabilizer of D on V . To see this, let A be an algebra and g ∈ G(A) be such that g(D⊗K A) = D⊗K A.
Choose a basis v1, . . . , vn of V such that:

• vA1 , . . . , vAm is a basis of [(I ∩ V )⊗KA] ∩ g((I ∩ V )⊗K A). Here, we denote vAi := vi ⊗K 1A.
• vA1 , . . . , vAm, vAm+1, . . . , v

A
d is a basis of I ∩ V .

• v1A, . . . , v
A
m, v

A
d+1, . . . , v

A
2d−m is a basis of g(I ∩ V ).

In particular, we have that g∧d(vA1 ∧ · · · ∧ vAd ) = c(vA1 ∧ · · · ∧ vAm ∧ vAd+1 · · · ∧ vA2d−m). Since g stabilizes

D⊗K A, it follows that span{vA1 , . . . , vAd } = span{vA1 , . . . , vAm, vAd+1, . . . , v
A
2d−m}. Thus, g(I ∩ V ) = I ∩ V and

g ∈ G′. We are done. �

The proof of Theorem 1.12 will now go as follows. For every representation X ∈ G rep, we will consider
the subcategory CX that is generated by X (see below for a formal definition). We have a map G→ GLX ,
equivalently a Hopf algebra morphism K[GLX ]→ K[G]. Let us denote by GX the subgroup of GLX defined
by the kernel of this map. By definition, this is a subgroup of the form considered in Lemma 1.13. We
will see that Aut⊗(F |CX ) may be embedded in GLX . Then, we will use Lemma 1.13 to see that, in fact,
GX = Aut⊗(F |CX ). After that, we wil get our result by passing to the inverse limit, cf. Corollary 1.11.

Proof of Theorem 1.12. Let X ∈ G -rep, and let CX be the full subcategory of G -rep that is tensor
subgenerated by X and X∨, that is, its objects are subquotients of objects of the form:
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⊕
X⊗Gr1 ⊗G (X∨)⊗Gr2

And consider the restriction F |CX . Note that we may also interpret Aut(F |CX ) as a K-group functor.
Since CX is tensor subgenerated by X ,X∨ we have an embedding Aut(F |CX )→ GLX . On the other hand,
denote by GX the image of G in GLX . We remark that the group GX has the form considered in Lemma
1.13: the ideal defining GX is given by the kernel of the map K[GLX ]→ K[G]. We claim that the image of
Aut(F |CX ) in GLX coincides with GX . Thanks to Lemma 1.13, it is enough to check that Aut(F |CX ) leaves
invariant every vector that is invariant under GX . So let V ∈ CX and let v ∈ V be invariant under GX . In
particular, the map ρ : triv → V , 1 7→ v is G-equivariant. Since F a tensor functor, this implies that for
every automorphism λ of F and every algebra A we have:

λV (A)(v ⊗K 1A) = ρλtriv(A)(1⊗K 1A) = v ⊗K 1A,

So we conclude that GX = Aut(F |CX ). Now, if X2 is a subrepresentation of X1 then we have the following
commutative diagram:

GX1
//

��

Aut(F |CX1 )

��
GX2

// Aut(F |CX2 )

where the vertical maps are given by restriction. Since the regular representation of G is faithful, we have
that G = lim←−GX . On the other hand, it is clear that Aut(F ) = lim←−Aut(F |CX ). Thus, G ∼= Aut(F ). �

2. Tannakian categories

In this section, we axiomatize some of the properties of the category G -rep of representations of a pro-
algebraic group G. As we have seen, this category is an abelian category that comes equipped with a tensor
product functor ⊗G : G -rep×G -rep → G -rep. Moreover, we have a canonical isomorphism M⊗G N →
N ⊗GM that is just given by swapping the tensor factors. In other words, G -rep is a symmetric monoidal
category. We use Subsection 2.1 to fix notations regarding symmetric monoidal categories. In Subsection
2.2 we introduce a class of symmetric monoidal categories in which every object has a dual object and
internal homs exist, these are called rigid symmetric categories and G -rep is an example of them. Another
important property of the category G -rep is that it admits a forgetful functor to the category of vector
spaces and, moreover, we can reconstruct the group G from the category G -rep and the forgetful functor.
We will axiomatize the properties of F into the notion of a fiber functor, see Subsection 2.3. The main
result of this section says that every abelian, rigid symmetric monoidal category admitting a fiber functor is
equivalent to the category of representations of an algebraic group G. We will prove this in Subsection 2.4

2.1. Symmetric monoidal categories.

2.1.1. Monoidal categories. Recall that a monoidal category C̃ := (C ,⊗, α,1, l, r) is the data of:

• A category C , that we will always assume to be K-linear.
• A functor ⊗ : C × C → C , called the tensor product of C .
• An isomorphism of functors α : ⊗ ◦ (idC ×⊗)⇒ ⊗ ◦ (⊗× idC ), called the associativity constraint.
• An object 1 ∈ ob(C ) and isomorphisms l : idC ⇒ 1⊗ idC , r : idC ⇒ idC ⊗1 that are called the left

and right unit, respectively.

These data are supposed to satisfy the pentagon axiom, namely, for any objects X,Y, Z,W ∈ ob(C ), the
following diagram is commutative:
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W ⊗ (X ⊗ (Y ⊗ Z))
1W⊗αX,Y,Z

tt

αW,X,Y⊗Z

**
W ⊗ ((X ⊗ Y )⊗ Z)

αW,X⊗Y,Z
��

(W ⊗X)⊗ (Y ⊗ Z)

αW⊗X,Y,Z
��

(W ⊗ (X ⊗ Y ))⊗ Z
αX,Y,Z⊗idZ // ((W ⊗X)⊗ Y )⊗ Z

According to the MacLane-Stasheff coherence theorem, the pentagon axiom ensures that, whenever we
have objects X1, . . . , Xn ∈ ob(C ), any two bracketings of the expression X1⊗X2⊗ · · · ⊗Xn are canonically
isomorphic.

Let us see some examples of monoidal categories.

(1) As we have seen in this class, if H is a quasi-bialgebra, then H -mod is a monoidal category.
(2) For any K-linear category C , consider the category EndK(C ) of K-linear endofunctors of the category

C , the morphisms in EndK(C ) are given by natural transformations. Setting ⊗ = ◦, the composition
of functors; α the trivial associativity isomorphism αF,G,H : (F ◦G) ◦H → F ◦ (G ◦H); 1 = idC and
l, r the trivial isomorphisms we get that EndK(C ) is a monoidal category.

(3) For any K-algebra A, let A -bimod be the category of A-bimodules. Settiing ⊗ := ⊗A; α the trivial
isomorphim; 1 = A, the regular A-bimodule and l, r the natural isomorphisms lB : B → B⊗AA, rB :
B → A ⊗A B we have that A -bimod is a monoidal category. Note that we have a fully faithful
embedding A -bimod→ EndK(A -mod).

(4) Of course, the category of K-vector spaces is a monoidal category, with ⊗ = ⊗K.
(5) For any (pro-)algebraic group G, the category G -rep of finite dimensional representations of G over

is a monoidal category, with ⊗ = ⊗G.

Let us also recall the notion of a monoidal functor.

Definition 2.1. Let C̃ = (C ,⊗C , α
C ,1C , l

C , rC ), D̃ = (D ,⊗D , α
D ,1D , l

D , rD) be monoidal categories. A

monoidal functor from C̃ to D̃ is a triple (F, J, J0) where:

(i) F : C → D is a (covariant) functor.
(ii) J : ⊗D ◦ (F × F )⇒ F ◦ ⊗C is a functor isomorphism.
(iii) J0 : F1C → 1D is an isomorphism.

Such that the following diagramas commute for every X,Y, Z ∈ ob(C ):

F (X)⊗D (F (Y )⊗D F (Z))
idF (X)⊗DJY,Z //

αD
F (X),F (Y ),F (Z)

��

F (X)⊗D F (Y ⊗C Z)
JX,Y⊗CZ // F (X ⊗C (Y ⊗C Z))

F (αC
X,Y,Z)

��
(F (X)⊗D F (Y ))⊗D F (Z)

JX,Y ⊗D idF (Z) // F (X ⊗C Y )⊗D F (Z)
JX⊗CY,Z // F ((X ⊗C Y )⊗C Z)

F (1C )⊗D F (X)
J1C ,X //

J0⊗idF (X)

��

F (1C ⊗C X)

F (lCX )
��

F (X)⊗D F (1C )
JX,1C //

idF (X)⊗DJ0
��

F (X ⊗C 1C )

F (rC
X )

��
1D ⊗D F (X)

lD
F (X) // F (X) F (X)⊗D 1D

rD
F (X) // F (X)

For example, if we consider an algebraic group G and C = G -rep with the monoidal structure defined
above, then the forgetful functor F : C → K -vect can be given the structure of a monoidal functor, by
setting JX,Y = idX⊗Y : X ⊗K Y → X ⊗K Y and J0 = idK : K→ K. Similarly, if H is a quasi-bialgebra, then
the forgetful functor H -mod→ K -vect is monoidal.
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2.1.2. Symmetric monoidal categories. Note that the examples (4) and (5) in the previous subsection satisfy
a special symmetry: for X,Y ∈ C , we have a distinguished isomorphism X ⊗ Y → Y ⊗X. In other words,
we have a functor isomorphism β : ⊗ → ⊗ ◦ (12), where (12) denotes the functor C × C → C × C that
permutes the factors. Moreover, this functor satisfies β(12) ◦ β = id⊗. Let us make this property into a
definition.

Definition 2.2. Let C̃ = (C ,⊗, α,1, l, r) be a monoidal category. A symmetry of C̃ is an isomorphism
of functors β : ⊗ ⇒ ⊗ ◦ (12) such that β(12) ◦ β : ⊗ ⇒ ⊗ coincides with the identity on ⊗ and for every
X,Y, Z ∈ ob(C ) the following diagram commutes:

(Z ⊗ Y )⊗X
βZ,Y ⊗idX //

α−1
Z,Y,X

��

(Y ⊗ Z)⊗X
βY⊗Z,X // X ⊗ (Y ⊗ Z)

αX,Y,Z

��
Z ⊗ (Y ⊗X)

idZ ⊗βY,X //// Z ⊗ (X ⊗ Y )
βZ,X⊗Y // X ⊗ (Y ⊗ Z)

A symmetric monoidal category consists of the data C̃ = (C ,⊗, α,1, l, r;β) of a monoidal category C̃ and

a fixed symmetry β on C̃ .

Let us remark that, given any monoidal category C̃ = (C ,⊗, α,1, l, r) one can form the opposite monoidal

category C̃ σ by C̃ σ := (C ,⊗◦ (12), α−1 ◦ (13),1, r, l). Then, the commutativity of the diagram in Definition

2.2 amounts to saying that (idC , β, id1) defines a monoidal functor from C̃ to C̃ σ.
We also remark that a symmetric monoidal category is nothing more than a braided monoidal category

where the braiding satisfies the extra assumption that it squares to the identity. In particular, given an
object X ∈ C , for every n ≥ 1 and a choice of parenthesization in X⊗n we have an action of the Artin braid
group Bn on X⊗n. Under the symmetry assumption, it is easy to see that this action factors through the
symmetric group Sn.

Now let C̃ = (C ,⊗C , α
C ,1C , l

C , rC ;βC ) and D̃ = (D ,⊗D ,1D , l
D , rD ;βD) be symmetric monoidal cate-

gories. A symmetric monoidal functor from C̃ to D̃ is a monoidal functor (F, J, J0) compatible with the
corresponding symmetries, that is, for every X,Y ∈ ob(C) the following diagram commutes:

F (X)⊗D F (Y )
JX,Y //

βD
F (X),F (Y )

��

F (X ⊗C Y )

F (βC
X,Y )

��
F (Y )⊗D F (X)

JY,X //// F (Y ⊗C X)

For example, the forgetful functor F : G -rep → K -vect is a symmetric monoidal functor. This functor
satisfies a few more properties that we are going to make into a definition, see Subsection 2.3.

2.2. Rigidity. In the category G -rep we have internal homs and duals. We would like to make these
concepts. First of all, note that by the usual adjunction formula we have, for M1,M2,M3 ∈ G -rep a
canonical isomorphism:

HomG(M1 ⊗GM2,M3) ∼= HomG(M1,HomK(M2,M3))

In other words, the functor HomG(•⊗GM,N ) : G -repopp → Sets is represented by the object HomK(M,N ).
This is a notion that makes sense in every tensor category, so we make it into a definition.

Definition 2.3. Let C̃ be a monoidal category, and let X,Y ∈ ob(C ). If the functor

HomC (• ⊗X,Y ) : C opp → Sets

is representable, then we denote the representing object by Hom(X,Y ) and call it the internal hom of X and
Y .

As we have seen, for the category G -rep internal homs always exist, and Hom(M,N ) = HomK(M,N ).
Note that we have a natural isomorphism HomC (Hom(X,Y ) ⊗ X,Y ) → HomC (Hom(X,Y ),Hom(X,Y )).
The evaluation map evX,Y : Hom(X,Y )⊗X → Y is the map corresponding to idHom(X,Y ). Thus, for every
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morphism f : T ⊗ X → Y , there exists a unique morphism g : T → Hom(X,Y ) such that the following
diagram commutes:

T ⊗X

g⊗idX
��

f

))
Hom(X,Y )⊗X

evX,Y // Y

Now assume that Hom(X,Y ) exists for any objects X,Y ∈ ob(C ). Let X,Y, Z ∈ ob(C ). Then, for every
T ∈ ob(C ) we have a sequence of natural bijections:

HomC (T,Hom(Z,Hom(X,Y ))) ∼= HomC (T ⊗ Z,Hom(X,Y ))
∼= HomC ((T ⊗ Z)⊗X,Y )
∼= HomC (T ⊗ (Z ⊗X), Y )
∼= HomC (T,Hom(Z ⊗X,Y ))

So that we have a natural isomorphism Hom(Z ⊗X,Y ) ∼= Hom(Z,Hom(X,Y )). Now we define the dual
of an object X.

Definition 2.4. Let C̃ be a monoidal category and X ∈ ob(C ). The dual of X, denoted by X∨, is defined
to be Hom(X,1), in case the latter object exists.

If the dual object X∨ exists, we denote the evaluation map simply by evX : X∨ ⊗X → 1. There is also
the notion of a coevaluation map, coevX : 1→ Hom(X,X). Indeed, HomC (1,Hom(X,X)) = HomC (X,X),
and the coevaluation map is nothing more than the map corresponding to idX .

Assume for a moment now that C̃ is symmetric (or, more generally, braided) with symmetry given by
β. We have a map evX ◦βX,X∨ : X ⊗ X∨ → 1. Since HomC (X ⊗ X∨,1) = HomC (X, (X∨)∨), the map
evX ◦βX,X∨ corresponds to a unique map ιX ∈ HomC (X, (X∨)∨). We say that X is reflexive if ιX is an
isomorphism. For example, if G is an algebraic group then every object in G -rep is reflexive.

We remark that there is also a notion of dual maps. Assume both X,Y have duals, and let f ∈
HomC (X,Y ). Then, by the definition of the evaluation map evX there exists a unique map f∨ : Y ∨ → X∨

that makes the following diagram commutative:

Y ∨ ⊗X
f∨⊗idX //

idY ∨ ⊗f
��

X∨ ⊗X
evX
��

Y ∨ ⊗ Y evY // 1

We remark that, if X,Y are reflexive, then by definition we get (f∨)∨ = f .

Under the assumption that C̃ is symmetric, for every family of pairs {(Xi, Yi)}ni=1 we have a natural map:(
n⊗
i=1

Hom(Xi, Yi)

)
⊗

(
n⊗
i=1

Xi

)
∼=−→

n⊗
i=1

(Hom(Xi, Yi)⊗Xi)

⊗n
i=1 evXi,Yi−→

n⊗
i=1

Yi

that corresponds to a map

(4)

n⊗
i=1

Hom(Xi, Yi) −→
n⊗
i=1

Hom

(
n⊗
i=1

Xi,

n⊗
i=1

Yi

)

Definition 2.5. Let C̃ be a symmetric monoidal category. Then, C̃ is said to be rigid if the following
conditions are satisfied.

(1) The internal hom Hom(X,Y ) exists for any two objects X,Y ∈ ob(C ).
(2) Every object X ∈ ob(C ) is reflexive.
(3) For any family of pairs {(Xi, Yi)}ni=1 of objects of C , the map (4) is an isomorphism.
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For example, the category of finite-dimensional representations of an algebraic group G is rigid. On the
other hand, if A is a K-algebra then the category A -mod is not necessarily rigid. Indeed, here we have that
Hom(X,Y ) = HomA(X,Y ), so there could be nonzero objects X with X∨ = HomA(X,A) = 0. The next
proposition follows easily from the definition of a rigid category.

Proposition 2.6. Let C̃ be a rigid, symmetric monoidal category. Then, we have isomorphisms

• X∨ ⊗ Y → Hom(X,Y ), and
•
⊗n

i=1X
∨
i → (

⊗n
i=1Xi)

∨.

for every objects X1, . . . , Xn, X, Y ∈ ob(C ).

We remark that, in particular, we may interpret the coevaluation map as coevX : 1→ X∨ ⊗X.

Proposition 2.7. Let C̃ , D̃ be rigid, symmetric monoidal categories, and let F,G : C̃ → D̃ be monoidal
functors. Then, every morphism Φ : F ⇒ G is an isomorphism of functors.

Proof. An inverse for Φ can be constructed using the following commutative diagram:

F (X∨)
ΦX∨ //

∼=
��

G(X∨)

∼=
��

F (X)∨
(Φ−1
X )∨

// G(X)∨

�

Proposition 2.8. Let C̃ be a rigid, symmetric, monoidal category, and let X ∈ ob(C ). Then, for every
objects Y, Z ∈ ob(C ) we have natural isomorphisms:

(5)
HomC (Y ⊗X,Z)

∼=→ HomC (Y, Z ⊗X∨)

HomC (X ⊗ Y, Z)
∼=→ HomC (Y,X∨ ⊗ Z)

Proof. Let us give a formula for the first isomorphism. For f ∈ HomC (Y ⊗X,Z), its image is given by the
following diagram:

Y
idY ⊗ coevX∨ // Y ⊗X ⊗X∨

f⊗idX∨ // Z ⊗X∨

Its inverse is as follows. For g ∈ HomC (Y,Z ⊗X∨), its image is given by the following diagram:

Y ⊗X
g⊗idX // Z ⊗X∨ ⊗X idZ ⊗ evX // Z

Finally, thanks to symmetry the second isomorphism follows from the first one. �

Note that Equations (5) tell us that the functor •⊗X is left adjoint to •⊗X∨. Since X is reflexive, these
functors are biadjoint. Similarly, X⊗• and X∨⊗• are biadjoint functors. This has the following immediate
corollary.

Proposition 2.9. Let C̃ be an abelian, rigid, symmetric monoidal category. Then, ⊗ commutes with inverse
and direct limits in each variable. In particular, it is exact on both variables.

2.3. Fiber functors. We have axiomatized many properties of the category G -rep. The key property in
Theorem 1.12, however, is the existence of a “nice” functor F : G -rep → K -vect. Let us be more explicit
about what we mean by “nice”.

Definition 2.10. Let C̃ = (C ,⊗, α,1, l, r;β) be a symmetric, abelian monoidal category. A fiber functor is

an exact and faithful monoidal functor (F, J, J0) : C̃ → K -vect. A Tannakian category is an abelian, rigid,
symmetric monoidal category admitting a fiber functor.

Of course, the category G -rep is an example of a Tannakian category. Surprisingly enough, the main
theorem of this section tells us that this is, basically, the only example of a Tannakian category.
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2.4. Tannakian categories vs. Algebraic groups. Let us remark that if C is a monoidal K-linear
category and F : C → K -vect is a tensor functor, then for every algebra A we have an induced tensor
functor FA : C → A -mod, FA(X) := F (X) ⊗K A. In particular, similarly to Subsection 1.4 we obtain a
K-group functor Aut⊗(F ) : K -alg→ Groups. The main objective of this subsection is to prove the following
remarkable theorem.

Theorem 2.11. Let C̃ be a rigid, abelian, symmetric monoidal K-linear category and let F : C̃ → K -vect
be a fiber functor. Then:

(a) The functor Aut⊗(F ) is an algebraic group, say G.

(b) The functor C̃ → G -rep induced by F is an equivalence of categories.

Let us sketch the main ideas of the proof of Theorem 2.11. The first idea is to use an argument similar to

that of the proof of Theorem 1.12, that is, restrict to a subcategory of C̃ “tensor subgenerated by a single
object” and prove a version of Theorem 2.11 for this category. In fact, we will prove a weaker version of

this: we will prove that the category C̃X is equivalent to the category of comodules over a coalgebra, we
will do this in Subsection 2.4.2 after giving some linear algebraic preliminaries in Subsection 2.4.1. Using an

inverse limit argument, this will imply that the entire category C̃ is equivalent to the category of comodules
over a coalgebra, and we need to check that this is actually a commutative Hopf algebra, this is done in
Subsection 2.4.3.

2.4.1. Preliminaries. Before proceeding to the proof of Theorem 2.11, we give some linear algebraic prelim-
inaries. For the rest of this section We keep the notation of Theorem 2.11.

Proposition 2.12. There exists a functor

•� • : K -vect×C → C

satisfying the following properties.

(1) HomC (T, V �X) ∼= V ⊗K HomC (T,X) and HomC (V �X,T ) ∼= V ⊗K HomC (X,T ) (functorially in
T ).

(2) For any K-linear functor F ′ : C → K -vect, F ′(V �X) ∼= V ⊗K F
′(X).

For X,T ∈ ob(C ) and V ∈ K -vect.

Proof. We give a a construction of the functor �. First of all, we pick a skeleton of the category K -vect:
this is given by vector spaces of the form Kn for n ∈ Z≥0. Let us call this skeleton K -vects. For each
finite dimensional vector space V , choose an isomorphism δV : KdimV → V . Since K -vects is an skeleton
of K -vect, there exists a unique functor Γ : K -vect → K -vects such that Γ is an equivalence of categories,
with quasi-inverse given by the inclusion ι : K -vects → K -vect and δ provides a natural isomorphism
δ : γ ◦ ι→ idK -vect.

The construction of the functor � is now easy. First of all, define Kn �X := X⊕n. For a V ∈ K -vect,
define V �X = γ(V ) �X. It is straightforward to see that � satisfies properties (1) and (2) above. �

For a vector space V and X ∈ C , we define

Hom(V,X) := V ∨ �X,

we remark that, although we are using the same notation for the internal hom here, in this construction
the first argument is always a vector space V , while in the internal tensor product the first argument is an
object of C , so there is no risk of confusion. Now, if W ⊆ V is a subspace and Y ⊆ X is a subobject, we
would like to define a subspace of Hom(V,X) consisting of “all maps mapping W into Y ”. Of course, this
does not make sense as stated because Hom(V,X) is not technically a space of maps. If it were a space of
maps, however, a way to rephrase “all maps mapping W into Y ” is as “all maps such that the composition
W → X → X/Y is 0”. Thus, we define the transporter :

(Y : W ) := ker(Hom(V,X)→ Hom(W,X/Y ))

note that we have that F (Hom(V,X)) ∼= HomK(V, F (X)) and, since F is exact, F (Y : W ) = (F (Y ) : W ) =
{f ∈ HomK(V, F (X)) : f(W ) ⊆ F (Y )}.
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Now, in the situation of Theorem 2.11, we would like that the restriction of F to C̃X identifies C̃X with
a category of comodules over a certain coalgebra, say C. If we assume that C is finite dimensional, then
the category of comodules over C is equivalent to the category of modules over C∨. So we would like to

see that C̃X is equivalent to the category of modules over a certain algebra R. A first good candidate
is HomK(F (X), F (X)). This algebra, however, is too big and will fail to preserve the subojects: if Y is
a subobject of X, F (Y ) is not necessarily a HomK(F (X), F (X))-submodule of F (X). The next result
constructs a good candidate for our algebra R.

Lemma 2.13. Under the assumptions of Theorem 2.11, for any object X ∈ ob(C ) the following two subojects
of Hom(F (X), X) are equal.

(1) The largest subobject P ⊆ Hom(F (X), X) whose image in Hom(F (X)⊕n, X⊕n) (under the diagonal
embedding) is contained in (Y : F (Y )) for any Y ⊆ X⊕n and any n ≥ 0.

(2) The smallest subobject P ′ ⊆ Hom(F (X), X) such that F (P ′) ⊆ F (Hom(F (X), X)) = HomK(F (X), F (X))
contains idF (X).

Proof. First, we remark that the existence of the functor F implies that every object of C is artinian and
noetherian. In particular, both P and P ′ are well-defined subobjects of Hom(F (X), X). Now, by definition:

P =
⋂
n≥0

⋂
Y⊆X⊕n

(Hom(F (X), X) ∩ (Y : F (Y )))⇒ F (P ) =
⋂
n≥0

⋂
Y⊆X⊕n

(EndK(F (X)) ∩ (F (Y ) : F (Y )))

So F (P ) is the largest subring of EndK(F (X)) stabilizing all F (Y ), Y ⊆ X⊕n. So idX ∈ F (P ) and P ′ ⊆ P .

Now, consider the space Hom(F (X), X). If Y ⊆ Hom(F (X), X) is a subobject then, by the definition of
P , left multiplication by F (P ) ⊆ EndK(F (X)) stabilizes F (Y ) ⊆ EndK(F (X)). Since 1F (X) ∈ F (P ′), we see
that F (P ) ⊆ F (P ′), so P ⊆ P ′. �

2.4.2. Constructing a coalgebra. Consider X ∈ ob(C ). Let PX ⊆ Hom(F (X), X) be the object defined by
Lemma 2.13. If 〈X〉 ⊆ C denotes the subcategory of objects subgenerated by X (= subobjects of quotients
of X⊕n) then, by definition, the functor F |〈X〉 : 〈X〉 → K -vect factors through F (PX) -mod. We remark
that 〈X〉 is in general not closed under tensor products. Let us denote F (PX) := AX .

Proposition 2.14. For any Y ∈ ob(〈X〉), there is a natural action of AX on F (Y ). Moreover, F |〈X〉 :
〈X〉 → AX -mod is an equivalence of categories sending F |〈X〉 to the forgetful functor, and AX = End(F |〈X〉).

Proof. The first assertion is clear. Note that we have an action of AX ⊆ End(F (X)∨) on Hom(F (X), X) =
F (X)∨ �X and it is clear that this action stabilizes PX . Now, if M is a right A-module then we get two
maps ((M ⊗AX)�PX)→M �PX , one by considering the action of AX on M and the other by considering
the action on PX . We define M ⊗AX PX to be the equalizer of these maps. Note that, by definition, it is an
object of 〈X〉.Then we have:

F (M ⊗AX PX) = M ⊗AX F (PX) = M

so F is essentially surjective. Now, if f : M → N is an AX -module map, then we may define a map
M ⊗AX PX → N ⊗AX PX that sees that F is full. Finally, F is faithful by hypothesis. So F is a category
equivalence. The last assertion of the proposition is easy. �

Now let CX := A∨X , so that 〈X〉 is equivalent to the category of C-comodules. Thus, we get:

Proposition 2.15. Let H := lim−→End(F |〈X〉)∨. Then, F factors through the category of H-comodules and,
moreover, it is an equivalence between C and the category of H-comodules carrying F into the forgetful
functor.

Note that we really have not used that C̃ is a symmetric category. We will use this to define a commutative
Hopf algebra structure on H.
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2.4.3. H is a Hopf algebra. Now let B be any K-coalgebra, and consider the forgetful functor ω : B-comod→
K -vect, where B-comod is the category of finite dimensional B-comodules. Note that B = lim−→X

End(ω|〈X〉)∨.

This, and the fact that for a finite dimensional algebra A, A ∼= End(ωA), implies that any functor B-comod
→B′-comod that carries the forgetful functor to itself arises from a unique coalgebra homomorphismB → B′.

Now assume that we have a coalgebra homomorphism f : B ⊗K B → B. Clearly, this defines a functor
φf : B-comod ×B-comod, (X,Y ) 7→ X ⊗K Y with comodule structure defined by f . Even more is true.

Lemma 2.16. The map f 7→ φf defines a one-to-one correspondence between the set of coalgebra homomor-
phisms B ⊗K B → B and the set of functor B -comod×B -comod→ B -comod such that (X,Y ) 7→ X ⊗K Y
as vector spaces. The product induced by f is associative (resp. commutative) if and only if the natural
associativity (resp. commutativity) constraint on K -vect induces a similar constrant on B -comod. The
product induced by f has a unit if and only if B -comod has a unit object with underlying vector space K.

Returning to the setting of the proof of Theorem 2.11, the previous Lemma immediately shows that H
is a commutative algebra with identity. Note that G = Spec(H) is a monoid scheme, that is, it is a functor
from K -alg to the category of monoids. Similarly to Subsection 1.4. we can show that G ∼= End⊗(F ). Since

both C̃ and K -vect are rigid, Proposition 2.7 shows that End⊗(F ) = Aut⊗(F ). So G is actually a group
scheme and H is a Hopf algebra. We are done with the proof of Theorem 2.11.

2.5. Examples. Let us give a few examples of Tannakian categories and their respective algebraic groups.

2.5.1. Graded vector spaces. Let C be the category of graded vector spaces: its objects are families (V n)n∈Z
of K-vector spaces with finite dimensional direct sum V :=

⊕
n∈Z V

n. The unit 1 is the graded vector

space with V n = Kδn,0 . We have a forgetful functor F : (Vn)→ V . The internal hom is Hom((V n),Wm) =
(
⊕

i∈Z Hom(V i,W i+n))n, and the tensor product is (V n)⊗(Wm) = (
⊕

i V
i⊗KW

n−i)n. This is equivalent to
the category of representations of the algebraic group Gm. Namely, (V n) corresponds to the representation
V of Gm for which Gm acts on V n via the character λ 7→ λn.

2.5.2. Hodge structures. Now let K = R. A real Hodge structure is a finite-dimensional K-vector space V
with a decomposition of real vector spaces

V ⊗R C =
⊕
p,q

V p,q

such that V p,q and V q,p are complex conjugates subspaces of V ⊗R C. The category C now is the category
of real Hodge structures, with F : (V, V p,q)→ V being the fiber functor. This category is equivalent to the
category of representations of the real algebraic group S that is the restriction of scalars of Gm from C to
R, namely, R[S] = C[x±1] considered as an R-algebra. The real Hodge structure (V, (V p,q)) corresponds to

the representation of S on V such that λ ∈ S(R) = C× acts on V p,q by λ−pλ
−q

.

3. Deligne’s Theorem

We have seen that if C̃ is an abelian, rigid, symmetric monoidal category admitting a fiber functor

F : C̃ → K -vect, then C̃ is equivalent to the category of representations of an algebraic group G. However,
a fiber functor is not always easy to construct, so we would like to have more intrinsic conditions on the

category C̃ that ensure the existence of such a functor. This is what we do in this section. These conditions
are based on linear algebraic constructions that are valid in any abelian, rigid, symmetric monoidal category.
We will study linear algebra in this more general setting in Subsection 3.1. In particular, for any object
X ∈ ob(C ) we have a notion of the dimension of X. As we will see, dimensions are preserved by monoidal
functors. So a necessary condition for the existence of a fiber functor is that the dimension of any nonzero
object is a positive integer. Surprisingly enough, this condition turns out to be also sufficient. We will sketch
a proof of this in Subsection 3.2.

3.1. Linear algebra on monoidal categories. From now and until the end of these notes, we fix an

abelian, rigid, symmetric, monoidal category C̃ = (C ,⊗, α,1, l, r;β). For simplicity, we will also assume
that C is Karoubian, that is, idempotents split in C , that K is of characteristic zero and, moreover, that
EndC (1) = K.
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3.1.1. Traces and dimension. Recall that if X ∈ ob(C ) then we denote its dual object by X∨ := Hom(X,1).
Since C is rigid, we have an isomorphism ϕX : Hom(X,X) → X∨ ⊗ X. On the other hand, we have the
evaluation map evX : X∨ ⊗X → 1. We call trX := evX ◦ϕX : Hom(X,X)→ 1 the trace morphism of X.

We define the dimension of X to be dimX := trX ◦ coevX : 1 → 1. By our assumptions, dimX is an
element of the field K. We remark that the dimension is additive, dim(X) = dim(Y ) + dim(X/Y ), and
multiplicative, dim(X⊗Y ) = dim(X) dim(Y ), this follows easily from left and right exactness of ⊗. We also

remark that, by uniqueness of dual objects and canonicity of the maps evX , ϕX and coevX , if F : C̃ → D̃ is
a tensor functor between abelian, rigid, symmetric monoidal categories, then dim(X) = dim(F (X)) for any

X ∈ ob(C ). In particular, if there exists a monoidal functor F : C̃ → K -vect, then the dimension of any
nonzero object of C is a positive integer.

3.1.2. Symmetric and exterior powers. Recall that a choice of symmetry β determines an action of the
symmetric group Sn on X⊗n for any object X ∈ ob(C ). We have the symmetrization map:

s :=
1

n!

∑
σ∈Sn

σ : X⊗n → X⊗n

and the antisymmetrization map:

a :=
1

n!

∑
σ∈Sn

sign(σ)σ : X⊗n → X⊗n

Note that both s and a are idempotents in EndC (X⊗n). Since we are assuming our category is Karoubian,
they determine direct summands of X⊗n. We define the symmetric power, Sn(X), to be the direct summand
determined by s; and the exterior power, Λn(X), to be the direct summand determined by a. The usual
dimension formulas hold:

dimSn(X) =

∏n−1
i=0 (dim(X) + i)

n!
, dim Λn(X) =

∏n−1
i=0 (dim(X)− i)

n!
in particular, if dim(X) = d, a positive integer, then dim(Λn(X)) = 0 for n > d.

3.1.3. Algebras and modules. Recall that an algebra object of the category C̃ is a functor from the prop Alg

to C̃ . In other words, it consists of an object A and maps µ : A ⊗ A → A, η : 1 → A satisfying the usual
properties. If A is an algebra object, then a left A-module is an object M ∈ ob(C ) together with a map
m : A⊗M →M such that the following diagrams commute:

M
lM //

idM
��

1⊗M

η⊗idM
��

M A⊗Mmoo

A⊗ (A⊗M)
idA⊗m //

αA,A,M

��

A⊗M

m

��
(A⊗A)⊗M

µ⊗idM // A⊗M m // M

For example, if M ∈ ob(C ) is any object, then A⊗M acquires a natural A-module structure.

We will denote by C̃ -alg the category of algebra objects of the category C̃ , the notion of a morphism

in C̃ -alg is clear. A C̃ -algebra A is commutative if µ ◦ βA,A = µ. We denote by C̃ -algβ the category of
commutative C -algebras.

We have a forgetful functor F : C̃ -alg→ C̃ that forgets the algebra structure. This functor admits a left

adjoint, T : C̃ → C̃ -alg, forX ∈ ob(C ), T (X) =
⊕

n≥0X
⊗n, and the multiplicationX⊗n⊗X⊗m → X⊗(n+m)

is given by the associativity constraint. The forgetful functor F : C̃ -algβ → C̃ also admits a right adjoint

S : C̃ → C̃ -algβ, S(X) =
⊕

n≥0 S
n(X). The following technical lemmas are going to be important in the

proof of our main theorem.

Lemma 3.1. Let X ∈ ob(C ). Assume that dim(X) 6∈ Z≤0 ⊆ K (recall we assume that K is of characteristic

zero.) Then, there exists a commutative C̃ -algebra B (more precisely, B belongs to the ind-completion of C̃ )
such that the B-module B ⊗X is isomorphic to B ⊕N as B-modules. Moreover, B ⊗ Y 6= 0 for any object

Y of C̃ .
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Proof. We want to show that there exists an algebra B such that {(u, v) ∈ HomB(B,B ⊗X)×HomB(B ⊗
X,B) : v ◦ u = idB} 6= ∅. We proceed in several steps.

Step 1. Consider the functor G : C̃ -algβ → Sets, A 7→ HomA(A,A ⊗ X) × HomA(A ⊗ X,A). By the

A-module structure on A⊗X, G is isomorphic to G′ : C̃ -algβ → Sets, A 7→ HomC (X,A)×HomC (X∨, A) =

HomC (X⊕X∨, A). By adjointness, this functor is isomorphic toG′′ : C̃ -algβ → Sets, A 7→ Hom
C̃ -algβ

(S(X⊕
X∨), A).

Step 2. We have a natural morphism of functors c : G→ H, where H(A) = HomA(A,A) = HomC (1, A) =
Hom

C̃ -algβ
(S(1), A) which is given by composition. So we get a morphism of functors c : G′′ → H, which

thanks to the Yoneda Lemma is associated to an algebra morphism c? : S(1)→ S(X)⊗ S(X∨).

Step 3. Consider now the subfunctor Gid of G that assigns to an algebra A assigns the set {(u, v) ∈
HomA(A,A⊗X)×HomA(A⊗X,A) : v ◦u = idA}. We have that c|Gid

is a constant morphism. The functor
A 7→ {idA} is representable by the algebra 1. So Gid is representable by the fibered product B defined by
the following diagram

S(1)
δ //

c?

��

1

��
S(X)⊗ S(X∨) // B

Where δ : S(1) → 1 is the map identifying each homogeneous component of S(1) with 1. By definition,
Hom

C̃ -algβ
(B,B) = {(u, v) ∈ HomB(B,B ⊗X)×HomB(B ⊗X,B) : v ◦ u = idB}. So B ⊗X contains B as

a direct summand. Let us say a bit more about the structure of the algebra B. First, by the construction of
the fibered product, B is a quotient of 1⊗ S(X)⊗ S(X∨) = S(X)⊗ S(X∨). We remark that the following
diagram commutes:

1

coevX
��

// S(1)

c?

��
X ⊗X∨ // S(X)⊗ S(X∨)

where the top horizontal arrow is the map that identifies 1 with S1(1) and the bottom horizontal arrow
identifies X⊗X∨ with S1(X⊗X∨) so that, by construction of the fibered product, B is the biggest quotient
of S(X)⊗ S(X∨) = S(X)⊗ S(X∨) that coequalizes coevX and c?|1. Thus,

B ∼=
⊕
m∈Z

lim−→
n≥0

Sn(X)⊗ Sn+m(X∨)

where the transition map Sn(X)⊗Sn+m(X∨)→ Sn+1(X)⊗Sn+1+m(X∨) is given by coevX : 1→ X ⊗X∨.

Step 4. We will show that B contains 1 as a direct summand, this will finish the proof. The pairing
between X⊗n and (X∨)⊗n defines a pairing between Sn(X) and Sn(X∨), evn : Sn(X∨)⊗ Sn(X)→ 1. Now
set τ0 = id1, τn = evn /dn, where dn = dim(Sn(X)), here we are using that dim(X) 6∈ Z<0 and so dn 6= 0. It
is easy to see that, these morphisms define a map

lim−→
n≥0

Sn(X)⊗ Sn(X∨)→ 1

that splits the unit map. �

Remark 3.2. We will use the following form of Lemma 3.1. If dim(X) ∈ Z>0 ⊆ K, then there exists a

commutative C̃ -algebra B such that the B-module B ⊗ X is isomorphic to B⊕ dim(X) ⊕ N as B-modules.

Moreover, B ⊗ Y 6= 0 for any object Y of C̃ . The proof goes exactly along the same lines as that of Lemma
3.1, only a small modification in Step 1 is required.
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Lemma 3.3. Let v : X → Y be an epimorphism. Then, there exists an algebra B ∈ C̃ -algβ (again, more

precisely, in the ind-completion of C̃ ) such that the B-module morphism idB ⊗v : B ⊗X → B ⊗ Y splits in
the category of B-modules. Moreover, B ⊗ Z 6= 0 for any object Z of C .

Proof. We proceed in two parts.
Step 1. Y = 1. Assume Y = 1, and let v∨ : 1 → X∨ be the dual map. Let B be the fibered product

defined by 1
δ← S(1)

S(v∨)→ S(X∨). By definition, the map coevX : 1 → X ⊗ X∨ defines a B-module map
which is right inverse to idB ⊗v. Now we need to show that B ⊗ Z 6= 0 for any object Z of C . Consider
a monomorphism V → W . Since ⊗ is exact, we have that V ⊗n → W⊗n is a monomorphism. So we can
filter Sn(W ) with quotients being Si(V ) ⊗ Sn−i(W/V ), 0 ≤ i ≤ n. Applying this to the monomorphism
v∨ : 1 → X∨, we find that Sn(M) is filtered with quotients being Si(X∨/1). This implies the statement
about B.

Step 2. Y is arbitrary. Now take an arbitrary v : X → Y . The functor Hom(•, Y ) = •∨ ⊗ Y is exact,
so the map induced by v, v′ : Hom(X,Y ) → Hom(Y, Y ) is injective. Now let X ′ be the fibered product of
v′ and the map coevY : 1 → Hom(Y, Y ). Note that the projection π : X ′ → 1 is an epimorphism. Now let
B be the algebra constructed in Step 1. It is easy to see that, by construction, idB ⊗v splits if and only if
idB ⊗π′ splits. So we are done by Step 1. �

3.2. Deligne’s theorem. We finish these notes with the following theorem, that was first proved by Deligne

in [D]. We follow the proof of [R]. Recall the conventions on C̃ we have made at the beginning of this section.

Theorem 3.4. The following are equivalent.

(a) C̃ is Tannakian, that is, there exist an algebra R and an exact, faithful, tensor functor F : C̃ →
R -mod.

(b) For each X ∈ C̃ , dim(X) ∈ Z≥0.

(c) For each nonzero X ∈ C̃ , dim(X) ∈ Z>0.

(d) For each X ∈ C̃ , there exists n ∈ Z>0 such that Λn(X) = 0.

Proof. (a) ⇒ (b) is clear.

(c) ⇒ (b) is clear. For (b) ⇒ (c), assume that there exists a nonzero object X ∈ C̃ with dim(X) = 0.
Since X 6= 0, the map coevX : 1 → X ⊗ X∨ is nonzero. If Y denotes the cokernel of this map, we get
dim(Y ) = −dim 1 = −1, a contradiction. Hence, (b) and (c) are equivalent. It is clear that (c) and (d) are

equivalent, too. So we have to show that (b), (c), (d) ⇒ (a). First, we remark that we can embed C̃ into its

ind-completion. In particular, we will assume that C̃ has colimits. We remark that we can recover C̃ from

its ind-completion C̃ ∧: an object X ∈ C̃ ∧ is in C̃ if and only if it is reflective.

Now let X be a nonzero object of C̃ , let d := dim(X) ∈ Z>0. By the proof of Lemma 3.1, there

exists a commutative C̃ -algebra R such that R ⊗ X ∼= R⊕d ⊕ N . In particular, N is a direct summand
in Λd+1

R (R ⊗ X) = R ⊗ Λd+1(X) = 0, so N = 0. Here ΛR denotes the wedge product in the category of
R-modules, which is a monoidal category by defining X ⊗R Y to be the coequalizer of the pair of maps:

X ⊗ (R⊗ Y )
idX ⊗mY //

αX,R,Y

��

X ⊗ Y

(X ⊗R)⊗ Y
βX,R⊗idY // (R⊗X)⊗ Y

mX⊗idY

OO

Taking direct limits over objects of C̃ , there exists an algebra B1 in C̃ such that B1⊗X contains BdimX

as a direct summand for any object X ∈ C̃ . But now by Lemma 3.3, there exists an algebra B ∈ C̃
such that, for any exact sequence on B1 -mod, the sequence splits after tensoring with B. So the functor
X 7→ HomC (1, B ⊗X) is a fiber functor over the algebra Hom

C̃
(1, B).

�
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