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In the first section, it is shown how to introduce on an abstract category operations of tensor
products and duals having properties similar to the familiar operations on the category Vecy
of finite-dimensional vector spaces over a field k. What complicates this is the necessity of

including enough constraints so that, whenever an obvious isomorphism, for example,

UQ(VRW)— (VeU)eW,

exists in Vecy, a unique isomorphism is constrained to exist also in the abstract setting.
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The next section studies the category Repy (G) of finite-dimensional representations of
an affine group scheme G over k and demonstrates necessary and sufficient conditions for
a category C with a tensor product to be isomorphic to Repy (G) for G; such a category C
is then called a neutral Tannakian category.

A fibre functor on a Tannakian category C with values in a field k¢’ D k is an exact k-
linear functor C — Vecy, that commutes with tensor products. For example, the forgetful
functor is a fibre functor on Repy (G). In the third section it is shown that the fibre functors
on Repy (G) are classified by the torsors of G. Also, the notion of a (nonneutral) Tannakian
category is introduced.

The fourth section studies the notion of a polarization (compatible families of sesquilin-
ear forms having certain positivity properties) on a Tannakian category, and the fifth studies
the notion of graded Tannakian category.

In the sixth section, motives are defined using absolute Hodge cycles, and the related
motivic Galois groups discussed. In an appendix, some terminology from non-abelian co-
homology is reviewed.

We note that the introduction to |Saavedra Rivano|[1972| is an excellent summary of
Tannakian categories, except that two changes are necessary: Théoréme 3 is, unfortunately,
only a conjectureﬂ in Théoréme 4 the requirement that G be abelian or connected can be
dropped.

Notations and Terminology

Functors between additive categories are assumed to be additive. All rings have a 1, and
in general they are commutative except in §2. A morphism of functors is also called a
functorial or natural morphism. A strictly full subcategory is a full subcategory containing
with any X, all objects isomorphic to X. Isomorphisms are denoted ~ and canonical (or
given) isomorphisms ~. The empty set is denoted by @.

Our notations agree with those of [Saavedra Rivano|[1972 except for some simplifica-
tions: what would be called a ®-widget AC unifere by Saavedra here becomes a tensor
widget, and Hom®:! becomes Hom®.

Some categories:

Modg Finitely generated R-modules.

Projp Finitely generated projective R-modules.

Rep,(G) Linear representations of G on finite-dimensional k-vector spaces.
Set Category of sets.

Vecy, Finite-dimensional k-vector spaces.

I Correctly stated, this theorem has been proved by Deligne — see the footnotes to the text.
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1. Tensor Categories

Let C be a category and let
®:CxC—>C, (X.Y)~XQ®Y
be a functor. An associativity constraint for (C, ®) is a functorial isomorphism
dxy,z XY R®Z) - (XQY)®Z

such that, for all objects X,Y, Z, T, the diagram

XY ®(Z®T))
20 e
XQ((Y®zZ)®T) XRY)®(Z®T)

(1.0.1)

\ L

(X®(Y®Z))®T% (X®Y)®Z2)RT

is commutative (this is the pentagon axiom, [Saavedra Rivano|/1972, I, 1.1.1.1; [Mac Lane
1998| p. 162). Here, as in subsequent diagrams, we have omitted the obvious subscripts
on the maps; for example, the ¢ at top-right is ¢ x y,ze1. A commutativity constraint for
(C, ®) is a functorial isomorphism

Yxy: XQY Y ®X
such that, for all objects X, Y,
WY’XOWX,YZX(X)Y—)X@Y

is the identity morphism on X ® ¥ (Saavedra Rivano||1972, I, 1.2.1). An associativity
constraint ¢ and a commutativity constraint { are compatible if, for all objects X, Y, Z, the
diagram

X®(Y®Z)H(X®Y)®Z

(1.0.2)

X®(ZY) Z®(X®Y)

\ /

(X®Z)®YH (Z@X)®Y
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is commutative (this is the hexagon axiom, Saavedra Rivano||1972| I, 2.1.1.1; Mac Lane
1998, p. 184). A pair (U,u) comprising an object U of C and an isomorphism u:U —
U ® U is anidentity object of (C,®) if X ~» U ® X:C — C is an equivalence of categories.

DEFINITION 1.1. A system (C,®,¢, V), in which ¢ and i are compatible associativity
and commutativity constraints, is a tensor category if there exists an identity object.

EXAMPLE 1.2. The category Modp, of finitely generated modules over a commutative ring
R becomes a tensor category with the usual tensor product and the obvious constraints.
(If one perversely takes ¢ to the negative of the obvious isomorphism, then the pentagon
(1.0.1) fails to commute by a sign.) A pair (U,uo) comprising a free R-module of rank 1
and a basis element u determines an identity object (U,u) of Modg — take u to be the
unique isomorphism U — U ® U mapping ug to ug ® ug. Every identity object is of this
form.

For other examples, see the end of this section.

PROPOSITION 1.3. Let (U, u) be an identity object of the tensor category (C, ®).

(a) There exists a unique functorial isomorphism
IxX—-UR®X

such that lyy is u and the diagrams

1 1
XQY —— UQ(X®Y) xor 2L wex)ev
H lqb ll@l lllf®1
1
xorv 2L UeXx)eY XQURY) —— (XQU)®Y

commute.
(b) If (U’,u') is a second identity object of (C,®), then there is a unique isomorphism
a:U — U’ making
U —— UgU

la la@a
U s UeU’
commute.
PROOF. (a) We confine ourselves to defining [y — see [Saavedra Rivano||(1972] I, 2.5.1,

2.4.1, for more details. As X ~~ U ® X is an equivalence of categories, it suffices to define
1®Ilx:U®X - U ® (U ® X); this we take to be

u®1 ¢!
UX —>URU)X — U® U QX).

(b) The map

I Yy Iyn™!
v uvev’% veu " v

has the required properties. O
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The functorial isomorphism

def

ry =yuxolxy: X - XU

has analogous properties to [y. We shall often use (1, e) to denote a (the) identity object of
(C.®).

REMARK 1.4. Our notion of a tensor category is the same as that of a “®-catégorie AC
unifere” in [Saavedra Rivano|[1972| and, because of 1.3(b), is essentially the same as the
notion of “®-catégorie ACU” defined ibid. I, 2.4.1 (cf. ibid. I, 2.4.3).

Extending ®

Let ¢ be an associativity constraint for (C,®). Any functor C" — C defined by repeated
application of ® is called an iterate of ®. If F,F’:C" — C are iterates of ®, then it
is possible to construct an isomorphism of functors 7: F — F’ out of ¢ and ¢~!. The
significance of the pentagon axiom is that it implies that 7 is unique: any two iterates of ® to
C" are isomorphic by a unique isomorphism constructed out of ¢ and ¢! (Mac Lane|1963;
Mac Lane| 1998, VII, 2). In other words, there is an essentially unique way of extending ®
to a functor ®l'-'=1 :C" — C when n > 1. Similarly, when (C, ®) is a tensor category, there
is an essentially unique way of extending ® to a functor ), I:CI — C where [ is any
unordered finite set: the tensor product of any finite family of objects of C is well-defined
up to a unique isomorphism (Mac Lane|1963)). We can make this statement more precise.

PROPOSITION 1.5. The tensor structure on a tensor category (C,®) can be extended as
follows. For each finite set I there is to be a functor

®i€I:CI — C,

and for each map a: I — J of finite sets, there is to be a functorial isomorphism

X(Ol)3®ie, Xi — ®je] (®ib—>j Xi)

satistying the following conditions:

(a) if I consists of a single element, then QQ); < is the identity functor X ~~ X ; if o is
a map between single-element sets, then (o) is the identity automorphism of the
identity functor;

(b) the isomorphisms defined by maps 1 ey £> K give rise to a commutative diagram

Qier Xi RALN Qjers (®ir—>j Xi)
|x6o) 1x®
rex @ik X1) 2N @ ke (®10k (®1 X:)).
where I, = (Ba)~ (k).

PROOF. Apply Mac Lane 1963; 1998 VII 2. o
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By (Q); ;. x) being an extension of the tensor structure on C, we mean that Q) ; X; =

X1 ® X, when I = {1,2} and that the isomorphisms
XRYQ®Z) - (XQY)RZ
XQY >YRX

induced by y are equal to ¢ and v respectively. It is automatic that (Qg X;, x (& — {1,2}) is
an identity object and that y({2} < {1,2})is [x: X - 1® X. If ()<, x') is a second such
extension, then there is a unique system of functorial isomorphisms &) <; X; — ®’c; Xi
compatible with y and x" and such that, when I = {i }, the isomorphism is idy;, .

When a tensor category (C, ®) is given, we shall always assume that an extension as in

(1.5) has been made. (We could, in fact, have defined a tensor category to be a system as in

(1.5).)

Invertible objects
Let (C, ®) be a tensor category. An object L of C is invertible if
X-LRX:C—C

is an equivalence of categories. Thus, if L is invertible, there exists an L’ such that L ® L’ =
1; the converse assertion is also true. An inverse of L is any pair (L™!,§) where

. i _ |
8.®ie{i}X,—>]l, Xy=L, X_=L"1

Note that this definition is symmetric: (L,8) is an inverse of L™, If (L1,8;) and (L»,8,)
are both inverses of L, then there is a unique isomorphism «: L; — L, such that the com-
posite

820(1@0[)3L®L1 - LQL,—>1

is §1. For example, an object L of Modg is invertible if and only if it is projective of rank 1
(Saavedra Rivano|1972, 1, 0.2.2.2).

Internal Hom
Let (C, ®) be a tensor category.
DEFINITION 1.6. If the functor
T ~~Hom(T ® X,Y):C°P — Set

is representable, then we denote by Hom(X, ') the representing object and by evy y :Hom(X,Y)®
X — Y the morphism corresponding to idygom(x,y)-

Thus, to a morphism g:7 ® X — Y there corresponds a unique morphism f:7 —
Hom(X,Y) such thatevy y o( f ®idx) = g:

T T®X
(1.6.1)

S ®id

!

!

|

|

|
v v

Hom(X,Y) Hom(X,Y)® X —— Y
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For example, in Modgr, Hom(X,Y) exists and equals Hompg(X,Y) regarded as an R-
module, because for any R-modules X,Y, T,

Hompz(7T,Hompg(X,Y)) >~ Homg(T ®r X,Y)
(Bourbaki Algebre, II 4.1). Moreover, evyy is
f®x f(x):Homg(X,Y)® X =Y,

whence its name.

Assume that Hom(X, Y) exists for every pair (X, Y) of objects in C. Then there is a
composition map
Hom(X,Y)®Hom(Y, Z) - Hom(X, Z), (1.6.2)

corresponding to
Hom(X,Y)®Hom(Y,Z)® X —> Hom(Y,Z)® Y —> Z,
and an isomorphism
Hom(Z,Hom(X,Y)) - Hom(Z ® X,Y) (1.6.3)
inducing, for any object T,
Hom(T, Hom(Z,Hom(X,Y))) = Hom(T ® Z,Hom(X,Y))
S Hom(T®Z®X.Y)
= Hom(T,Hom(Z ® X, Y)).
Note that
Hom(1,Hom(X,Y)) ~Hom(1 ® X,Y) =Hom(X,Y). (1.6.4)

The dual XV of an object X is defined to be Hom(X, 1). There is therefore amapevy: XV ®
X — 1 inducing a functorial isomorphism

Hom(7,X") — Hom(T ® X, 1). (1.6.5)

The morphism X + X can be made into a contravariant functor: to f: X — Y we attach
the unique morphism’ /: Y — XV rendering commutative

.
vex 2% xvex

lid@ 7 levx (1.6.6)
evy

YVey — 1.

For example, in Modg, XV = Homg(X, R) and ’ f is determined by the equation

(fOM)x)x = f(X)y, yeY’ xeX,

where we have written (, )x and (, )y forevy and evy.
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When f is an isomorphism, we let £V = (* f)71: XV — YV, so that
evyo(fV® f)=evx: X' ®X — 1. (1.6.7)
For example, in Modg,
(Y, f))y = (¥, x)x, xeXY,xeX.

Letiy:X — XV be the morphism corresponding in (1.6.5) toevy oy: X @ XV — 1.
If i x is an isomorphism, then X is said to be reflexive. If X has an inverse (X ~1,§: X1 ®

x3 1), then X is reflexive and the map X! — XV determined by § (see 1.6.1) is an
isomorphism.
For any finite families of objects (X;);es and (Y;);er, there is a morphism

&), ., Hom(X:.Y:) - Hom(). _, Xi.Q). _, ¥) (1.6.8)
corresponding in (1.6.1) to
~ ®
(®Hom(Xl-, Yl-)) ® (@X,-) > Q) Hom(X;.¥) ® X;) — Q) Y;.
iel iel iel iel
In particular, there are morphisms
Vv
X x) — (® Xi) (1.6.9)
iel iel

and
XY ®Y — Hom(X,Y) (1.6.10)

obtained respectively by taking ¥; = 1 alli,and X; = X, X =1=7Y, Y, =Y.

Rigid tensor categories

DEFINITION 1.7. A tensor category (C, ®) is said to be rigiaﬂ if

(a) Hom(X,Y) exists for all objects X and Y,
(b) the morphisms (1.6.8)

Hom(Xy,Y1) ® Hom(X>3.Y>) — Hom(X; ® X3.Y;1 ® Y2)

are isomorphisms for all X1, X5, Y1,Y>, and

2There is an alternative definition of rigidity (Deligne||1990, § 2). Let (C,®) be a tensor category, and let
(1,e) be an identity object for (C,®). If Hom(X, 1) exists, then (Hom(X, 1),evy,y) is a dual for X (in the
sense of 1.6.5). Thus, in a rigid tensor category, all objects admit duals. Conversely, assume that all objects in
C admit a dual. Then the pair (X¥ ® Y,evy, y) with evy, y the composite

id
XWerex=x'exeoy S i1gy ~v

is an internal Hom, Hom(X,Y), for X and Y. The map (1.6.8) is
XY®VI®XY @Y, > (X1 X))V @Y ®Y,.

Finally, in a symmetric monoidal category, the definition of a dual is symmetric between X and X V: X is the
dual of XV, and so is reflexive.
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(c) all objects of C are reflexive.

In fact, these conditions imply that the morphisms (1.6.8) are isomorphisms for all finite
families.
Let (C, ®) be a rigid tensor category. The functor

X [}~ {X", [1:C" —C

is an equivalence of categories because its composite with itself is isomorphic to the identity
functor. It is even an equivalence of tensor categories in the sense defined below — note
that C°PP has an obvious tensor structure for which ® X lo PP — (®X;)°PP. In particular,

f ! f:Hom(X,Y) - Hom(Y",X") (1.7.1)
is an isomorphism. There is also a canonical isomorphism
Hom(X,Y) — Hom(Y Y, X"), (1.7.2)

namely, the composite of the isomorphisms

Hom(X,Y) ¥ xV ey S xVeorY S yWexY Y HomrV, xV).

For any object X of C, there is an isomorphism

Hom(X,X) 5% xV @ x S 1.

On applying the functor Hom(1, —) to this, we obtain (see 1.6.4) a morphism
Try:End(X) — End(1) (1.7.3)

called the trace morphism. The rank, rank(X), of X is defined to be Try (idy ). There are
the formulas (Saavedra Rivano|1972| I, 5.1.4):

Trxex (f® f) = Trx(f)-Trx/(f')
() = f. 479
In particular,
rank(X ® X’) = rank(X)- -rank(X")
rank(1) = idy. (1.7.5)

Tensor functors

Let (C,®) and (C’, ®) be tensor categories.

DEFINITION 1.8. A tensor functor (C,®) — (C',®’) is a pair (F,c) comprising a func-
tor F:C — C’ and a functorial isomorphism cx y: F(X)® F(Y) — F(X ® Y) with the
properties:

(a) Forall X,Y,Z € ob(C), the diagram

FX®(FY®FZ) 2% FXQF(Y®Z) —— FX& ¥ ®2))

l¢/ lw)
(FX®FY)®FZ 2% FX®Y)®9FZ —5> F(X®Y)®Z)

is commutative.
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(b) Forall X,Y € ob(C), the diagram

FX®FY —— F(X®Y)
v [F)
FY®FX —— F(Y®X)
commutes.

(c) If (U,u) is an identity object of C, then (F(U), F(u)) is an identity object of C'.

In|Saavedra Rivano|1972, 1, 4.2.3, a tensor functor is called a “®-foncteur AC unifere”.
Let (F,c) be a tensor functor (C, ®) — (C’, ®’). The conditions (a), (b), (c) imply that,
for every finite family (X;);es of objects in C, ¢ gives rise to a well-defined isomorphism

c: QR F (X)) — F(R) X))

iel iel
Moreover, for every map «: [ — J, the diagram

c

®ie] F(Xi) F(®iel Xi)
X' (@) F(x())

Qs ®irs; FXD)) —— Qs (F(®irs; Xi) —— F(®jes (Rirsj Xi)

is commutative. In particular, (F,c) maps inverse objects to inverse objects. If Hom(X,Y)
exists, then the morphism

F(evy,y): F(Hom(X,Y)) ® F(X) — F(Y)

gives rise to morphisms Fy y: F(Hom(X,Y)) - Hom(FX, FY); in particular, if X" =
Hom(X, 1) exists, then F(evy) defines a morphism Fy: F(XY) — F(X)V.

PROPOSITION 1.9. Let (F,¢):(C,®) — (C',®") be a tensor functor of rigid tensor cate-
gories. Then Fxy:F(Hom(X,Y) — Hom(FX, FY)) is an isomorphism for all X,Y €
ob(C).

PROOF. It suffices to show that F' preserves duality, but this is obvious from the following

characterization of the dual of X: it is a pair (¥,Y ® X = 1) for which there exists
€:1 - X ®Y such that

x~10X Hxerex=xerex) 'y
and the same map with X and Y interchanged are identity maps. O

DEFINITION 1.10. A tensor functor (F,c):(C,®) — (C’,®’) is a tensor equivalence (or
an equivalence of tensor categories) if F:C — C' is an equivalence of categories.

This definition is justified by the following proposition.
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PROPOSITION 1.11. Let (F,c):(C,®) — (C',®’) be a tensor equivalence. Then there
exists a tensor functor (F’,¢’):C' — C and isomorphisms of functors F' o F — idg and
F o F' — idey commuting with tensor products (that is, they are isomorphisms of tensor
functors — see below).

PROOF. Saavedra Rivanol|[1972, 1, 4.4. o

A tensor functor F:C — C’ of rigid tensor categories induces a morphism F:End(1) —
End(1’). The following formulas hold:

Trrx) F(f) = F(Trx(f))
rank(F (X)) F(rank(X)).

Morphisms of tensor functors

DEFINITION 1.12. Let (F,c) and (G,d) be tensor functors C — C’; a morphism of ten-
sor functors (F,c) — (G,d) is a morphism of functors A: F — G such that, for all finite
families (X;);e7 of objects in C, the diagram

C
Rier F(Xi) —— F(Qjer Xi)
l@ialxi lx&.e,xi (1.12.1)
C
R 6(Xi) —— G(R;er Xi)
1S commutative.

In fact, it suffices to require that the diagram (1.12.1) be commutative when [ is {1,2}
or the empty set. For the empty set, (1.12.1) becomes

1 —— F(1)
H Pn (1.12.2)
1 — G(1)

in which the horizontal maps are the unique isomorphisms compatible with the structures
of 1/, F(1), and G(1) as identity objects of C’. In particular, when (1.12.2) commutes, Ay
is an isomorphism.

We write Hom® (F, G) for the se of morphisms of tensor functors (F,c) — (G,d).

PROPOSITION 1.13. Let (F,c) and (G,d) be tensor functors C — C’. If C and C’ are rigid,
then every morphism of tensor functors A: F — G is an isomorphism.

PROOF. The morphism p: G — F making the diagrams

Fixvy X5 gixv)

l: l:
FOX)Y —99 Gxyv

commutative for all X € ob(C) is an inverse for A. o

3Or, perhaps, the class. ..
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For any field k and k-algebra R, there is a canonical tensor functor ¢ g: Vecy — Modg,
namely, V ~~ V ®; R. If (F,c) and (G,d) are tensor functors C — Vecy, then we define
Hom® (F,G) to be the functor of k-algebras such that

Hom®(F,G)(R) = Hom® (¢pr o F.¢r o G). (1.13.1)

Tensor subcategories

DEFINITION 1.14. Let C’ be a strictly full subcategory of a tensor category C. We say that
C’ is a tensor subcategory of C if it is closed under the formation of finite tensor products
(equivalently, if it contains an identity object of C and if it contains X ® ¥ whenever it
contains X and Y). A tensor subcategory of a rigid tensor category is said to be a rigid
tensor subcategory if it contains XV whenever it contains X .

A tensor subcategory becomes a tensor category under the induced tensor structure, and
similarly for rigid tensor subcategories.

When (C,®) is abelian (see below), we say that a family (X;);e; of objects C is a
tensor generating family for C if every object of C is isomorphic to a subquotient of P (X;)
for some P(t;) € N[t;];e; where in P(X;) multiplication is interpreted as ® and addition
as @.

Abelian tensor categories;, End(1)

Our convention, that functors between additive categories are to be additive, forces the
following definition.

DEFINITION 1.15. An additive (resp. abelian) tensor category is a tensor category (C, ®)
such that C is an additive (resp. abelian) category and ® is a bi-additive functor.

If (C, ®) is an additive tensor category and (1, e) is an identity object, then R “ End(1)
is a ring which acts, via [y: X 1 ® X, on each object of X. The action of R on X
commutes with endomorphisms of X and so, in particular, R is commutative. If (1’,¢’) is
a second identity object, the unique isomorphism a: (1,e) — (1’,¢’) (see 1.3(b)) defines an
isomorphism R ~ End(1’). The category C is R-linealﬂ and ® is R-bilinear. When C is
rigid, the trace morphism is an R-linear map Tr: End(X) — R.

PROPOSITION 1.16. Let (C,®) be a rigid tensor category. If C is abelian, then ® is bi-
additive and commutes with direct and inverse limits in each variable; in particular, it is
exact in each variable.

PROOF. The functor X ~~ X ® Y has a right adjoint, namely, Z ~~ Hom(Y, Z), and there-
fore commutes with direct limits and is additive. By considering the opposite category C°PP,
one deduces that it also commutes with inverse limits. (In fact, Z ~» Hom(Y, Z) is also a
left adjoint for X ~~ X ® Y.) o

PROPOSITION 1.17. Let (C,®) be a rigid abelian tensor category. If U is a subobject of
1, then 1 = U @ U+ where U+ = Ker(1 — U"). Consequently, 1 is a simple object if
End(1) is a field.

4Each Hom-set is endowed with the structure of an R-module, and o is R-bilinear.
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PROOF. Let V = Coker(U — 1). On tensoring
0-U—->1—-V->0

with U < 1, we obtain an exact commutative diagram

U « 1 V

P
:i\ :i\ o :i\

UQU — U —>» VU,

from which it follows that V ® U = 0, and that U @ U = U as a subobjectof 1 ® 1 = 1.
For any object 7', the map T ® U — T obtained from U — 1 by tensoring with 7', is
injective. This proves the first equivalence in

TQU =0 < themapT ®U — T iszero <= themap T — U" ® T is zero;

the second equivalence follows from the canonical isomorphisms

1.6.5 1.6.5
Hom(7T @ U,T) ~ Hom(T®U ® T",1) ~ Hom(T,U" ®T).

Therefore, for any object X, the largest subobject 7" of X such that T ® U = 0 is the largest
subobject T such that T — UV ® X is zero; hence

T=Ker(X >UVQX)~U+®X.

On applying this remark with X = V and using that V ® U = 0, we find that U+ Q@ V ~
V' ; on applying it with X = U and using that U @ U = U, we find that U+ ® U = 0. From
the exact sequence
0->Ut®U -U+®1—-Ut®V -0

we deduce that U+ ~ V,and that 1 ~ UL U. o

REMARK 1.18. The proposition shows that there is a one-to-one correspondence between
subobjects of 1 and idempotents in End(1). Such an idempotent e determines a decom-
position of tensor categories C = C’ x C” in which an object is in C’ (resp. C”) if e (resp.
1 —e) acts as the identity morphism on it.

PROPOSITION 1.19. Let C and C’ be rigid abelian tensor categories and assume that, for
identity objects 1 and 1" of C and C’ respectively, End(1) is a field and 1’ # 0. Then every
exact tensor functor F:C — C’ is faithful.

PROOF. The criterion in C,
X #0 <= X® X" — 1 is surjective

is respected by F. O
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A criterion to be a rigid tensor category

PROPOSITION 1.20. E]Let C be a k-linear abelian category, where k is a field, and let
®:C x C — C be a k-bilinear functor. Suppose that there are given a faithful exact k -linear
functor F':C — Vecy, a functorial isomorphism¢x y,z: X @ (Y ® Z) - (X ®Y)® Z, and
a functorial isomorphism ¥ x y: X ® Y — Y ® X with the following properties

(@) Fo® =®o(F x F);

(b) F(¢x,y,z) is the usual associativity isomorphism in Vecy;

(c) F(¥x,y) is the usual commutativity isomorphism in Vecy;

(d) there exists an identity object U in C such that k — End(U) is an isomorphism and

F(U) has dimension 1;
(e) if F(L) has dimension 1, then there exists an object L' inC suchthat L@ L™ ' =U.

Then (C,®, ¢, V) is a rigid abelian tensor category.

PROOF. It is not difficult to prove this directly — essentially one only has to show that
(e) is sufficient to show that C is rigid — but we shall indicate a more elegant approach in
(2.18) below. o

Examples

EXAMPLE 1.21. The category Vecy, of finite-dimensional vector spaces over a field k is a
rigid abelian tensor category and End(1) = k. All the above definitions take on a familiar
meaning when applied to Vecy. For example, Tr: End(X) — k is the usual trace map.

EXAMPLE 1.22. The category Modpg of finitely generated modules over a commutative
ring R is an abelian tensor category and End(1) = R. In general it will not be rigid because
not all R-modules will be reflexive.

EXAMPLE 1.23. The category Projp of finitely generated projective modules over a com-
mutative ring R is a rigid additive tensor category and End(1) = R, but, in general, it is not
abelian. The rigidity follows easily from considering the objects of Projp as locally-free
modules of finite rank on Spec(R). Alternatively, apply Bourbaki, Algebre, 114.4, I12.7.

EXAMPLE 1.24. Let G be an affine group scheme over a field k, and let Rep (G) be the
category of finite-dimensional representations of G over k. Thus, an object of Repy (G)
consists of a finite-dimensional vector space V' over k and a homomorphism g — gy:G —
GLy of affine group schemes over k — we sometimes refer to the objects of Rep (G)
as G-modules. Then Rep; (G) is a rigid abelian tensor category and End(1) = k. These
categories, and more generally the categories of representations of affine groupoids (see
§3), are the main topic of study of this article.

SIn the original, it was not required that the U in (d) and (e) be an identity object. That this is necessary is
shown by the following example of Deligne:

Let C be the category of pairs (V,«) where V is a finite dimensional vector space over a field k
and o is an endomorphism of V such that 2 = «, and let F be the forgetful functor. Then (V,«)
is a tensor category with identity object (k,id), but it is not rigid because internal Homs and
duals don’t always exist (in fact, C is the category of (unital) representations of the multiplicative
monoid {1,0}). Let U = (k,0). Then, (d) holds, and, for any L of dimension 1, (L,a¢) U =~ U,
and so (e) holds with L~! = U.
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EXAMPLE 1.25. (Vector spaces graded by Z/ 2Z)E] Let C be the category whose objects
are pairs (V°, V1) of finite-dimensional vector spaces over k . We give C the tensor struc-
ture whose commutativity constraint is determined by the Koszul rule of signs, i.e., that
defined by the isomorphisms

v®w+—>(—1)ijw®v:Vi®Wj > W/ V.
Then C is a rigid abelian tensor category and End(1) = k, but it is not of the form Repy (G)
for any G because
rank(V0, V1) = dim(V?) —dim(V 1),
which need not be positive.

EXAMPLE 1.26. The rigid additive tensor category freely generated by an object T is a
pair (C,T') comprising a rigid additive tensor category C such that End(1) = Z[¢] and an
object T" having the property that

F ~ F(T):Hom®(C,C') — C

is an equivalence of categories for all rigid additive tensor categories C’ (¢ will turn out to
be the rank of 7). We show how to construct such a pair (C, 7') — clearly it is unique up to
a unique equivalence of tensor categories preserving 7 .

Let V be a free module of finite rank over a commutative ring k and let 7%? (V) be
the space V®¢ ® VV®b of tensors with covariant degree a and contravariant degree b . A
morphism f:T%2(V) — T4 (V) can be identified with a tensor “ £~ in T?+e-a+d (),
Whena +d =b+c, TPT¢4+4 (V) contains a special element, namely, the (a 4 d )th ten-
sor power of “id”e T'1*1 (1), and other elements can be obtained by allowing an element of
the symmetric group S, 44 to permute the contravariant components of this special element.
We have therefore a map

€:Sy1a — Hom(T%?,T¢9) (whena+d =b+c).

The induced map k[S; 4] — Hom(T%?, T¢?) is injective provided rank(V) > a +d . One
checks that the composite of two such maps €(0): T%? (V) — T4 (V) and e(1): T4 (V) —
T¢/ (V) is given by a universal formula

€(1)-€(0) = (rank V)N -€(p) (1.26.1)

with p and N depending only on a,b,c,d,e, f,0, and t.

We define C’ to be the category having as objects symbols T%" (a,b € N), and for
which Hom(7'%?, T¢4) is the free Z[t]-module with basis S, if a +d = b+ ¢ and is
zero otherwise. Composition of morphisms is defined to be Z[¢]-bilinear and to agree on
basis elements with the universal formula (1.26.1) with rank(}') replaced by the indeter-
minate ¢. The associativity law holds for this composition because it does whenever ¢ is
replaced by a large enough positive integer (it becomes the associativity law in a category
of modules). Tensor products are defined by

Ta,b ® Tc,d — Ta+c,b+d

and by an obvious rule for morphisms. We define 7" to be T'1-°.

The category C is deduced from C’ by formally adjoining direct sums of objects. Its
universality follows from the fact that the formula (1.26.1) holds in any rigid additive cate-
gory.

%In the current jargon, the objects of the category are superspaces.




2 NEUTRAL TANNAKIAN CATEGORIES 17

EXAMPLE 1.27. (GL;) Let n be an integer, and use ¢ + n:Z[t] — C to extend the scalars
in the above example from Z[t] to C. If V is an n-dimensional complex vector space and if
a-+d <n,then

Hom(T*?, T¢4) @1 C — Homgr,, (TP (V), T4 (V)

is an isomorphism. For any sum 7" of 7%?s and large enough integer n, End(T") ®z Cis
therefore a product of matrix algebras. This implies that End(7”) ®z,) Q[¢] is a semisimple
algebra.
After extending the scalars in C to Q(¢), i.e., replacing Hom(T’, T") with Hom(T", T") ®z;]

Q[¢] and passing to the pseudo-abelian (Karoubian) envelope (formally adjoining images

of idempotents), we obtain a semisimple rigid abelian tensor category GL;. The rank of T’

in GL; is ¢ ¢ N and so, although End(1) = Q(¢) is a field, GL; is not of the form Repy (G)

for any group scheme (or gerbe) G.

2. Neutral Tannakian categories

Throughout this section, k is a field. Unadorned tensor products are over k.

Affine group schemes

We review the basic theory of affine group schemes and their representations. For more
details, see Waterhouse| 1979, Chapters 1,3.
Let G = Spec A4 be an affine group scheme over k. The maps

mult: G x G — G, identity:{l} — G, inverse:G — G
induce maps of k-algebras
AA—> AR A, e¢A—k, S:A—>A
(the comultiplication, coidentity, and coinverse maps) such that
({d®A)ocA=(AQRid)cA:A > ARAZARARA
(coassociativity axiom),
id=(e®id)oA:A—>AQRA—>kRA~A

(coidentity axiom), and
A S,id
(A—>A®A(—>)A) = (45K 4)

(coinverse axiom). We define a bialgebra over k to be a k-algebra A together with maps A,
€, and S satisfying the three axioms. (This terminology is not standarcﬂ).

"More usually, it’s called a commutative Hopf algebra or a commutative bialgebra admitting an inversion
(or antipode).
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PROPOSITION 2.1. The functor A ~~ Spec A defines an equivalence of categories between
the category of k-bialgebras and the category of affine group schemes over k.

PROOF. Obvious. o

If A is finitely generated as a k-algebra we say that G is algebraic or that it is an
algebraic group

A coalgebra over k is a k-vector space C together with k-linear maps A:C — C ®; C
and €:C — k satisfying the coassociativity and coidentity axioms. A comodule over a
coalgebra C is a vector space V over k together with a k-linear map p: V — V ®; C such
that

v A vec S yver~v

is the identity map and
([d®A)op=(pRid)op:V = VRCKC.
For example, A defines an C-comodule structure on C.

PROPOSITION 2.2. For any affine k-group scheme G = Spec A and k-vector space V,
there is a canonical one-to-one correspondence between the A-comodule structures on V
and the linear representations of G on V.

PROOF. Letr:G — GLy be arepresentation. For the “universal” element idg € Mor(G, G)
G(A), r(idg) is an A-isomorphism V ® A — V ® A whose restrictionto V =V @ k C
V ® A determines it and is an A-comodule structure p on V. Conversely, a comodule struc-
ture p on V determines a representation of G on V such that, for any k-algebra R and
g € G(R) = Homg (A, R), the restriction of gy: V@R >V @® Rto V®k CV ® R is

(idy ®g)op:V >V®A—>V®R.
See Waterhouse|[1979), 3.2, for the details. o

The representation of G on A defined by the A-comodule structure A is called the
regular representation of G.

PROPOSITION 2.3. Let C be a k-coalgebra and let (V, p) a comodule over C. Every finite
subset of V' is contained in a sub-comodule of V' having finite dimension over k.

PROOF. Let {c;} be a basis for C over k (possibly infinite). For v in the finite subset, write
p(v) =Y v; ®c; (finite sum). The k-space generated by the v and the v; is a sub-comodule
over C (Waterhouse| 1979, 3.3). o

COROLLARY 2.4. Every linear representation of an atfine group scheme is a directed union
of finite-dimensional subrepresentations.

PROOF. The set of all sub-comodules of a comodule V' that are finite-dimensional over k
is partially ordered by inclusion, directed (any two are contained in a third), and has union

V (2.3). Now apply (2.2). o

8For us, an algebraic group will always mean an affine algebraic group scheme.
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COROLLARY 2.5. An affine group scheme G is algebraic if and only if it has a faithtul
finite-dimensional representation over k.

PROOF. The sufficiency is obvious. For the necessity, let V' be the regular representation
of G, and write it as a directed union V' = | J; V; of finite-dimensional subrepresentations.
Then (); Ker(G — GL(V;)) = {1} because V' is a faithful representation, and it follows that
Ker(G — GL(V;,)) = {1} for some iy because G is Noetherian as a topological space. o

PROPOSITION 2.6. Let A be a k-bialgebra. Every finite subset of A is contained in a sub-
bialgebra that is finitely generated as a k -algebra.

PROOF. According to (2.3), the finite subset is contained in a finite-dimensional k-subspace
V of A such that A(V) C V ®x A. Let {v;} be a basis for V, and let A(v;) =) v; ®a;;.
The subalgebra k[v;,a;;,Sv;,Sa;;] of A is a sub-bialgebra (Waterhouse|1979, 3.3). o

COROLLARY 2.7. Every affine k-group scheme G is a directed inverse limit G = 1(31 G; of
affine algebraic groups over k in which the transition maps G; < G, i < j, are surjective.

PROOF. Write A as a union A = | 4; of finite-dimensional sub-bialgebras with A; C A;
for i < j. The functor Spec transforms the direct limit A = lim 4; into an inverse limit
G= l(iLnGi. The transition map G; <— G is surjective because A is faithfully flat over its
subalgebra A; (Waterhouse|1979, 14.1). o

The converse to (2.7) is also true; in fact the inverse limit of any family of affine group
schemes is again an affine group scheme.

Recovering an affine group scheme from its representations

Let G be an affine group scheme over k, and let @ (or w9) be the forgetful functor
Repy (G) — Vecy. For R a k-algebra, Aut®(w)(R) consists of the families (Ax), X €
ob(Rep(G)), where Ax is an R-linear automorphism of X ® R such that Ax, gx, =
Ax, ® Ax,, Ay is the identity map (on R) , and

kyo(a@)l)=(O(®1)O)txiX®R—>Y®R

for all G-equivariant maps a: X — Y (see 1.12). Clearly, every g € G(R) defines an ele-
ment of Aut®(w)(R).

PROPOSITION 2.8. The natural map G — Aut®(w) is an isomorphism of functors of k-
algebras.

PROOF. Let X € Repy(G), and let Cx be the strictly full subcategory Repy (G) of objects
isomorphic to a subquotient of P(X, X ") for some P € N[z, s] (cf. the discussion following
1.14). The map A — Ay identifies Aut®(w|Cx)(R) with a subgroup of GL(X ® R). Let
G x be the image of G in GLy; it is a closed algebraic subgroup of GLy, and clearly

Gx(R) c Aut®(w|Cx)(R) C GL(X ® R).

If Veob(Cy) and ¢ € V is fixed by G, then

a»—>at:ki>V
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is G-equivariant, and so
Ay =(@®DAg(l)=t®1.

Thus Aut® (w|Cy) is the subgroup of GL fixing all tensors in representations of G x fixed
by Gy, which implies that Gy = Aut®(w|Cyx) (see Deligne|1982, 3.2).

If X" = X @Y for some representation Y of G, then Cx C Cx, and there is a commu-
tative diagram

Gy —— Aut®(w|Cx’)

| l

Gx —— Au®(@[Cy).
It is clear from (2.5) and (2.7) and G = 1(&11 G x, and so, on passing to the inverse limit over

these diagrams, we obtain an isomorphism G — Aut® (). =

A homomorphism f:G — G’ defines a tensor functor o’ : Rep; (G') — Repy (G) such
that wG o/ = 0%, namely, of (X, rx)=(X.rxo f). Our next result shows that all such
functors arise in this fashion.

COROLLARY 2.9. LetG and G’ be affine k -group schemes, and let F: Repy (G’) — Repy (G)
be a tensor functor such that oS o F = w@. Then there exists a unique homomorphism
f:G — G’ such that F = w/ .

PROOF. Such an F defines a homomorphism (functorial in the k-algebra R)
F*:Aut® (0 (R) — Aut®(@%)(R).  F*(M)x = 1r(x)-

Proposition 2.8 and the Yoneda lemma allow us to identify F* with a homomorphism
G — G'. Obviously F — F* and f — w/ are inverse maps. 0

REMARK 2.10. Proposition 2.8 shows that G is determined by the triple (Repg (G), ®,»%).
In fact, the coalgebra of G is already determined by (Repy (G), %) (see the proof of The-

orem [2.11] below).

The main theorem

THEOREM 2.11. Let (C,®) be a rigid abelian tensor category such that k = End(1), and
let w:C — Vecy, be an exact faithful k -linear tensor functor. Then,

(a) the functor Aut® (w) of k-algebras is represented by an affine group scheme G ;
(b) the functor C — Repy (G) defined by w is an equivalence of tensor categories.

The proof will occupy the rest of this subsection. We first construct the coalgebra A of
G without using the tensor structure on C. The tensor structure then enables us to define an
algebra structure on A, and the rigidity of C implies that Spec A is a group scheme (rather
than a monoid scheme). The following easy observation will allow us to work initially with

algebras rather than coalgebras: for a finite-dimensional (not necessarily commutative) k-
def

algebra A and its dual coalgebra AY = Homy_j;, (4, k), the bijections

Homy i, (V ®¢ A, V) >~ Homy_j;, (V,Hom(A4, V)) =~ Homy i, (V,V Q¢ A)
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determine a one-to-one correspondence between the A-module structures on a vector space
V and the AY-comodule structures on V.

We begin with some constructions that are valid in any k-linear abelian category C.

Let Vecy, be the full subcategory Vecy whose objects are the vector spaces k", and let
t be the inclusion functor. For each finite-dimensional vector space V over k, choose an
isomorphism By :k%™Y — V. Then there is exactly one functmﬂ y:Vecy — Vecy such
that y(V) = k4™V for all V and B is a natural isomorphism y o — idyec.

We define a functor

®:Vecy, xC—C

such that
Homg(T,V ® X) >~ V ®; Homg (T, X),

(functorially in 7). For V = k", we set V ® X = X" (direct sum of n-copies of X). For a
general V, we set V® X = y(V)® X. There is also an isomorphism

Home¢ (V ® X, T) >~ Homy i, (V,Home (X, 7)),

functorial in T'. For any k-linear functor F:C —C/, F(V® X) =V ® F(X).
We define Hom(V, X) tobe V¥ @ X. If W C V and Y C X, then the transporter of W
toY is
(Y:W) = Ker(Hom(V, X) - Hom(W, X/ Y)).

For any k-linear functor ', F(Hom(V, X)) =Hom(V, FX), and if F is exact, then F(Y: W) =
(FY:W).

LEMMA 2.12. LetC be a k-linear abelian category and let w:C — Vecy, be a k-linear exact
faithful functor. Then, for any object X € ob(C), the following two objects are equal:
(a) the largest subobject P of Hom(w(X), X)) whose image in Hom(w(X)", X") (em-
bedded diagonally) is contained in (Y :w(Y)) forall Y C X";
(b) the smallest subobject P’ of Hom(w(X), X) such that the subspace w(P’) of Hom(w(X),w(X))
contains id,(x).

PROOF. Clearly w(X) = 0 implies End(X) = 0, which implies X = 0. Thus, if X C Y
and w(X) = w(Y), then X =Y, and it follows that all objects of C are both Artinian and
Noetherian. The objects P and P’ therefore exist.

The functor @ maps Hom(V, X)) to Hom(V,wX) and (Y: W) to (wY: W) for all W C
V € ob(Vecy) and Y C X € ob(C). It therefore maps

P =) (Hom(wX.X)N (Y:0Y))

to
() (End(wX) N (@Y :0Y)).

This means wP is the largest subring of End(wX) stabilizing wY for all Y C X". Hence
idyx €EwP and P D P’.
Let V' be a finite-dimensional vector space over k. There is an obvious map

Hom(wX, X) - Hom(w(V ® X),V ® X)

9The category Vec(k)® is a skeleton of Vec(k), and in y we are choosing an adjoint to t — see the discussion
Mac Lane[1998] IV 4, p. 93. For a way of avoiding having to choose a y, see the original article p. 131.
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which, after the application of @, becomes
f—idy ® f:End(wX) — End(V ® w(X)).

By definition, wP C End(wX) stabilizes Y for all Y C V ® X. On applying this remark
to a subobject
0 CHom(wX.X) = (0X)" ® X,

we find that w P, when acting by left multiplication on End(wX), stabilizes w Q. Therefore,
if wQ contains idy x, then wP C wQ, and P C Q. On applying this statement with Q = P’,
we find that P C P’. O

Let Py C Hom(w(X), X) be the subobject defined in (a) (equivalently (b)) of the
lemma, and let Ay = w(Pyx) — it is the largest k-subalgebra of End(w(X)) stabilizing
w(Y) forall Y C X™. Let (X) be the strictly full subcategory of C whose objects are those
isomorphic to a subquotient of X" for some n € N. Then w|(X):(X) — Vecy factors
through Mod 4 ,, .

LEMMA 2.13. Let C,w be as in (2.12). There is a natural action of the ring Ax on w(Y),
Y € (X), and w defines an equivalence of categories {X) — Mod(Ax) carrying w|{X) to
the forgetful functor. Moreover Ay = End(w|(X)).

PROOF. The right action f +— f oa of Ax on Hom(wX, X) stabilizes Py because obvi-
ously,
(Y :0Y)(0Y :0Y) C (Y:0Y).

If M is an A x-module, we define
Px ®AXM =C0ker(P)(®A)(®M = P)(®M).

Then
O(Px @4y M)~ w(Px)@a4, M =Ax @4, M =~ M.

This shows that w is essentially surjective. A similar argument shows that (X) — Mod(Ax)
is full.

Clearly any element of Ax defines an endomorphism of w|({X ). On the other hand an el-
ement A of End(w|{X)) is determined by A x € End(w(X)); thus End(w (X)) D End(w|{X)) D
Ax. But Ay stabilizes w(Y) for all Y C X", and so End(w|{(X)) C Ax. This completes
the proof of the lemma. o

Let By = A}. The observation at the start of the proof, allows us to restate (2.13) as
follows: w defines an equivalence

((X),w|(X)) — (Comodp, , forget)

where Comodp, is the category of By-comodules of finite dimension over k.
On passing to the inverse limit over X (cf. the proof of 2.8), we obtain the following
result.

PROPOSITION 2.14. Let (C,w) be as in (2.12) and let B = limEnd(w|(X))Y. Then w
defines an equivalence of categories C — Comodp carrying w into the forgetful functor.
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EXAMPLE 2.15. Let A be a finite-dimensional k-algebra and let w be the forgetful functor
Mod4 — Vecy. For R a commutative k-algebra, let ¢ be the functor R ® —: Vec, —
Modg. There is a canonical map «: R ®; A — End(¢r o w), which we shall show to be an
isomorphism by defining an inverse 8. For A € End(¢g o w), set B(A) = A 4(1). Clearly
B oo =id, and so we only have to show oo § = id. For M € ob(Mod ), let My = w(M).
The A-module A ®; My is a direct sum of copies of A, and the additivity of A shows that
Ad@Mo = A4 ®idpy,. The map a @ m +— am: A @y My — M is A-linear, and hence

RRA®My —— RROM

g p

RRAQMy —— RM

is commutative. Therefore Apr(m) = A4(1)m = (¢ o B(A))pr(m) for m e R M. In
particular, A 5 End(w), and it follows that, if in (2.13) we take C = Mod 4, so that C = (A),
then the equivalence of categories obtained is the identity functor.

Let B be a coalgebra over k and let @ be the forgetful functor Comodp — Vec. The
discussion in Example 2.15 shows that B = h_r)nEnd(a)| (X))Y. We deduce, as in l) that
every functor Comod p — Comod p- carrying the forgetful functor into the forgetful functor
arises from a unique homomorphism B — B’.

Again, let B be a coalgebra over k. A homomorphism u: B ®; B — B defines a functor

¢":Comodpg x Comodpg — Comodp

sending (X,Y) to X ®; Y with the B-comodule structure

®
xor 2" xoBeYoB 2 X®Y ® B.

PROPOSITION 2.16. The map u — ¢ defines a one-to-one correspondence between the
set of homomorphisms B ®; B — B and the set of functors ¢:Comodp x Comodp —
Comodp such that ¢(X,Y) = X ® Y as k-vector spaces. The natural associativity and
commutativity constraints on Vecy induce similar contraints on (Comodpg, ¢*) if and only
if the multiplication defined by u on B is associative and commutative; there is an identity
object in (Comodpg, ") with underlying vector space k if and only if B has an identity
element.

PROOF. The pair (Comodp x Comodp,w ® w), with (0w Qw)(X ®Y) = w(X) @ w(Y)
(as a k-vector space), satisfies the conditions of li and li_I)nEnd(a) Ro[{(X,Y))Y =
B ® B. Thus the first statement of the proposition follows from (2.13). The remaining
Statements are easy. ]

Let (C,w) and B be as in (2.14) except now assume that C is a tensor category and @
is a tensor functor. The tensor structure on C induces a similar structure on Comodpg, and
hence, because of (2.16)), the structure of an associative commutative k-algebra with identity
element on B. Thus B lacks only a coinverse map S to be a bialgebra, and G = Spec B is
an affine monoid scheme. Using we find that, for any k-algebra R,

Eﬂi(w)(R) = End(¢R © a)) = 1<i_1;nH0mk—linear(BX» R) = Homk—linear(Bv R)-
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An element A € Homy, jjpear(Bx, R) corresponds to an element of End(w)(R) commuting
with the tensor structure if and only if A is a k-algebra homomorphism; thus

E_I’ld® (C())(R) = Homk-algebra(Bv R) =G(R).

We have shown that, if in the statement of (2.1T) the rigidity condition is omitted, then one
can conclude that End® (w) is representable by an affine monoid scheme G = Spec B and
w defines an equivalence of tensor categories

C — Comodp — Repg (G).

If we now assume that (C, ®) is rigid, then li shows that End® (w) = Aut® (), and the
theorem follows.

REMARK 2.17. Let (C,) be (Repy(G),»%). On following through the proof of (2.11])
in this case one recovers |i Aut® (w9) is represented by G.

REMARK 2.18. Let (C,®, ¢,y F) satisfy the conditions of (1.20). Then certainly (C, ®, ¢, V)
is a tensor category, and the proof of (2.11) shows that F' defines an equivalence of tensor
categories C — Repi (G) where G is the affine monoid scheme representing End,?(a)).
Thus, we may assume C = Rep; (G). Let U be as in (d). Because it is an identity object,
U is isomorphic to k with the trivial action of G (i.e., each element of G acts as the iden-
tity on k; cf. 1.3b). Let A € G(R). If L in Repy (G) has dimension 1, then A;: R® L —

R ® L is invertible, as follows from the existence of a G-isomorphism L ® L~! — U. It
follows that A x is invertible for all X in Rep, (G), because

def

d
det(Ax) = /\ Ax =Xpay. d=dimX,

is invertible. Thus, G is an affine group scheme.

DEFINITION 2.19. A neutral Tannakian category over k is a rigid abelian tensor category
(C,®) such that k = End(1) for which there exists an exact faithful k-linear tensor functor
w:C — Vec. Any such functor is said to be a fibre functor for C.

Thus (2.11) shows that every neutral Tannakian category is equivalent (in possibly many
different ways) to the category of finite-dimensional representations of an affine group
scheme.

Properties of G and of Rep(G)

In view of the previous theorems, it is natural to ask how properties of G are reflected in
Repy (G).

PROPOSITION 2.20. Let G be an affine group scheme over k.

(a) G is finite if and only if there exists an object X of Repy (G) such that every object
of Repy (G) is isomorphic to a subquotient of X" for some n > 0.
(b) G is algebraic if and only if Repy (G) has a tensor generator X PEI

10An object X of Repy (G) is a tensor generator if every object of Repy (G) is isomorphic to a subquotient
of P(X,XV) for some P € N[t,s].
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PROOF. (a) If G is finite, then the regular representation X of G is finite-dimensional and
has the required property. Conversely if, with the notations of (2.11), Repi (G) = (X)), then
G = Spec B where B is the linear dual of the finite k-algebra Ax.

(b) If G is algebraic, then it has a finite-dimensional faithful representation X (see 2.5),
and one shows as in |Deligne||1982} 3.1a, that X @ XV is a tensor generator for Repy (G).
Conversely, if X is a tensor generator for Repy (G), then it is a faithful representation of
G. O

PROPOSITION 2.21. Let f:G — G’ be a homomorphism of affine group schemes over k,
and let w” be the corresponding functor Repy (G') — Repy (G).
(a) f is faithfully flat if and only if w” is fully faithful and every subobject of w” (X),
for X’ € ob(Repy (G")), is isomorphic to the image of a subobject of X'.
(b) f is a closed immersion it and only if every object of Repy (G) is isomorphic to a
subquotient of an object of the form of v/ (X'), X’ € ob(Repy (G')).

PROOF. (a) If G L G’ is faithfully flat, and therefore an epimorphism, then Repy (G’)
can be identified with the subcategory of Rep; (G) of representations G — GL(V) fac-
toring through G’. It is therefore obvious that w” has the stated properties. Conversely,
if o/ is fully faithful, it defines an equivalence of Repy (G’) with a full subcategory of
Repy (G), and the second condition shows that, for X’ € ob(Repy (G’)), (X'} is equivalent
to (w/ (X')). Let G = Spec B and G’ = Spec B’; then (2.15)) shows that

B’ = limEnd(o'[(X"))" = li_r)nEnd(a)|(a)f(X')))V C limEnd(w|(X))" = B,

and B’ — B being injective implies that G — G’ is faithfully flat (Waterhouse| 1979} 14.1).
(b) Let C be the strictly full subcategory of Repy (G) whose objects are isomorphic to
subquotients of objects of the form of w”/ (X’). The functors

Repi (G') — C — Repi (G)
correspond (see 2.14, 2.15) to homomorphisms of k-coalgebras
B'— B"—> B
where G = Spec B and G’ = Spec B’. An argument as in the above above proof shows that

B” — B isinjective. Moreover, for X’ € ob(Rep (G”)), End(w|(w” (X))) — End(o’[(X'))
is injective, and so B’ — B” is surjective. If f is a closed immersion, then B’ — B is sur-

jective and it follows that B” = B, and C = Rep;(G). Conversely, if C = Repy(G),
B” = B and B’ — B is surjective. o

COROLLARY 2.22. Assume that k has characteristic zero. Then G is connected if and only
if, for every representation X of G on which G acts non-trivially, (X) is not stable under
o[

PROOF. The group G is connected if and only if there is no non-trivial epimorphism G —
G’ with G’ finite. According to (2.21a) this is equivalent to Repy (G) having no non-trivial
subcategory of the type described in (2.20a). O

TRecall that (X) is the strictly full subcategory of Repy (G) whose objects are those isomorphic to a sub-
quotient of X™ for some n € N.
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PROPOSITION 2.23. Let G be a connected affine group scheme over a field k of charac-
teristic zero. The category Repy (G) is semisimple if and only if G is pro-reductive (i.e., a
projective limit of reductive groups).

This will proved as a consequence of a series of lemmas. As every finite-dimensional
representation G — GLy of G factors through an algebraic quotient of G, we can assume
that G itself is an algebraic group. In the lemmas, G is assumed to be connected.

LEMMA 2.24. Let X be a representation of G ; a subspace Y C X is stable under G if and
only if it is stable under Lie(G).

PROOF. Standard. o

LEMMA 2.25. Let G be an affine group scheme over a field k of characteristic zero, and
let k be an algebraic closure of k. Then Repy (G) is semisimple if and only if Repz (G) is
semisimple.

PROOF. Let U(G) be the universal enveloping algebra of Lie(G), and let X be a finite-
dimensional representation of G. The last lemma shows that X is semisimple as a repre-
sentation of G if and only if it is semisimple as a representation of Lie(G), or of U(G). But
X is a semisimple U(G)-module if and only if k®X isa semisimple k ® U(G)-module
(Bourbaki Algebre, VIII, 13.4). Since k ® U(G) = U(Gp), this shows that Repy (G) is
semisimple then so is Repy (G). For the converse, let X be an object of Repj;(G;). There
is a finite extension k’ of k and a representation X’ of Gy, over k’ giving X by extension
of scalars. When we regard X' as a vector space over k, we obtain a k-representation X of
G. By assumption, X is semisimple and, as was observed above, this implies that kX
is semisimple. Since X is a quotient of k Qk X, X is semisimple. O

LEMMA 2.26. (Weyl). Let g be a semisimple Lie algebra over an algebraically closed field
k of characteristic zero. Every finite-dimensional representation of g is semisimple.

PROOF. For an algebraic proof, see, for example, Humphreys|1972, 6.3. Weyl’s original
proof was as follows: we can assume that k = C; let gg be a compact real form of g, and let
Gy be a connected simply-connected real Lie group with Lie algebra Lg; as G¢ is compact,
every finite-dimensional representation (V,r) of it carries a go-invariant positive-definite
form, namely, (x,y)o = fGo (x,y)dg where ( , ) is any positive-definite form on V', and
therefore is semisimple; thus every finite-dimensional (real or complex) representation of
Gy is semisimple, but, for any complex vector space V, the restriction map is an isomor-
phism
Hom(G,GLy) >~ Hom(Gg,GLy),

and so every complex representation of G is semisimple. O

For the remainder of the proof, we assume that k is algebraically closed.

LEMMA 2.27. Let N be a normal closed subgroup of the affine group scheme G. If (X, p)
is a semisimple representation of G, then (X, p|N) is a semisimple representation of N .

PROOF. We can assume that X is a simple G-module. Let ¥ be a nonzero simple N-
submodule of X . For any g € G(k), gY is an N-module and it is simple because g — g~ 1§
maps N -submodules of gY to N-submodules of Y. The sum ) gY, g € G(k), is G-stable
and nonzero, and therefore equals X. Thus X, being a sum of simple N -submodules, is
semisimple. O
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We now prove the proposition. If G is reductive, then G = Z - G’ where Z is the
centre of G and G’ is the derived subgroup of G. Let p: G — GLx be a finite-dimensional
representation of G. As Z is a torus, p|Z is diagonalizable: X = P, X; as a Z-module,
where each element z of Z acts on X; as a scalar y;(z). Each X; is G’'-stable and, as G’ is
semisimple, is a direct sum of simple G’-modules. It is now clear that X is semisimple as a
G-module.

Conversely, assume that Repy (G) is semisimple and choose a faithful representation X
of G. Let N be the unipotent radical of G. Lemma 2.27 shows that X is semisimple as
an N-module: X = P; X; where each X; is a simple N-module. As N is solvable, the
Lie-Kolchin theorem shows that each X; has dimension one, and as N is unipotent, it has
a fixed vector in each X;. Therefore N acts trivially on each X;, and on X, and, as X is
faithful, this shows that N = {1}.

REMARK 2.28. The proposition can be strengthened as follows: assume that k has charac-
teristic zero; then the identity component G° of G is pro-reductive if and only if Rep (G)
is semisimple.

To prove this, we have to show that the category Repy (G) is semisimple if and only if
Repy (G°) is semisimple. As G° is a closed normal subgroup of G, the necessity follows
from (2.27). For the sufficiency, let X be a representation of G. After replacing G with its
image in GL y, we may assume that G is algebraic. Let Y be a G-stable subspace of X. By
assumption, there is a G°-equivariant map p: X — Y such that p|Y = id. Define

_ i, 1
kX >k®Y, =— e
g:k® ®Y., ¢ ngjgypgx

where n = (G(k): G°(k)) and g runs over a set of coset representatives for G°(k) in G (k).
One checks easily that g has the following properties:

(a) it is independent of the choice of the coset representatives;
(b) forall o € Gal(k/k), 0(q) =q;
(c) forally ek ®Y,q(y) =gq;
(d) forallge G(k),gy-q=q-gx.
Thus ¢ is defined over k, restricts to the identity map on Y, and is G-equivariant.

REMARK 2.29. When, as in the above remark, Repy (G) is semisimple, the second con-
dition in (2.21a) is superfluous; thus f:G — G’ is faithfully flat if and only if o’ is fully
faithful.

Examples

2.30. (Graded vector spaces) Let C be the category whose objects are families (V"),ez

of vector spaces over k with finite-dimensional sum V' = € V". There is an obvious rigid
tensor structure on C for which End(1) = k and w: (V") > @ V" is a fibre functor. Thus,
according to (2.11), there is an equivalence of tensor categories C — Repy (G) for some
affine k-group scheme G. This equivalence is easy to describe: take G = G, and make
(V™) correspond to the representation of G, on V for which G, acts on V" through the
character A — A".
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2.31. A real Hodge structure is a finite-dimensional vector space V' over R together with
a decomposition
VRC=6,4V"1

such that VP9and V%P are conjugate complex subspaces of ¥ ® C. There is an obvious
rigid tensor structure on the category Hodr of real Hodge structures and

w:(V,(VP)) ~ V

is a fibre functor. The group corresponding to Hodg and w is the real algebraic group S
obtained from G, by restriction of scalars from C to R: S = Resc/gr G- The real Hodge
structure (V, (V' P9)) corresponds to the representation of S on V such that an element
A €S(R) = C* acts on VP4 as A™P1™9. We can write V = @ V" where V" ® C =
@p+q=n VP4 The functor (V,(V?9)) — (V") from Hodg to the category of graded
real vector spaces corresponds to a homomorphism G, — S which, on real points, is ¢
L RX — C*.

2.32. The preceding examples have a common generalization. Recall that an algebraic
k-group G is of multiplicative type if it becomes diagonalizable in some faithful represen-
tation over a separable algebraic closure k of k. Equivalently, the identity component of
G is a torus. The character group X(G) “ Hom(Gg,Gy) of such a G is a finitely gen-
erated abelian group on which I = Gal(k/ k) acts continuously. Write M = X(G), and
let k' C k be a Galois extension of k over which all elements of M are defined. For any
finite-dimensional representation V of G, V ®x k' = @,,,cps V™", Where

V" ={veVik'|gv=m(g)vallg € G(k)}.

A finite-dimensional vector space V over k together with a decomposition k'@ V = @™ V™
arises from a representation of G if and only if Vo = gym(E ym Q.o k') for all
m € M and o € I'. Thus an object of Rep; (G) can be identified with a finite-dimensional
vector space V over k together with an M -grading on V ® k' that is compatible with the

action of the Galois group.

2.33. (Tannakian duality) Let K be a topological group. The category Repg(K) of con-
tinuous representations of K on finite-dimensional real vector spaces is, in a natural way,
a neutral Tannakian category with the forgetful functor as fibre functor. There is therefore
a real affine algebraic group K called the real algebraic envelope of K, for which there
exists an equivalence Repp(K) — RepR(k ). There is also a map K — K (R), which is an
isomorphism when K is compact.

In general, a real algebraic group G is said to be compact if G(R) is compact and
the natural functor Repr(G(R)) — Repgr(G) is an equivalence. The second condition is
equivalent to each connected component of G(C) containing a real point (or to G(R) being
Zariski dense in G). We note for reference that Deligne|[1972) 2.5, shows that a subgroup
of a compact real group is compact.

2.34. (The true fundamental group.) Recall that a vector bundle E on a curve C is semi-
stable if for every sub-bundle £’ C E,

deg(E’) _ deg(E)

rank(E’) ~ rank(E)’
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Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. A
vector bundle £ on X will be said to be semi-stable if for every nonconstant morphism
f:C — X with C a projective smooth connected curve, f*E is semi-stable of degree
zero. Such a bundle E is finite if there exist polynomials g,/ € N[t], g # h, such that
g(E) ~ h(E). Let C be the category of semi-stable vector bundles on X that are isomorphic
to a subquotient of a finite vector bundle. If X has a k-rational point x then C is a neutral
Tannakian category over k with fibre functor w: E ~» E. The group associated with (C, w)
is a pro-finite group scheme over k, called the true fundamental group m1(X,x) of X,
which classifies all G-coverings of X with G a finite group scheme over k. In particular,
the largest pro-étale quotient of 1 (X, x) classifies the finite étale coverings of X together
with a k-point lying over x; it coincides with the usual étale fundamental group of X when
k = k. SeeNoril 1976l

2.35. Let K be a field of characteristic zero, complete with respect to a discrete valuation,
whose residue field is algebraically closed of characteristic p # 0. The Hodge-Tate modules
for K form a neutral Tannakian category over Q, (see[Serre|1979).

3. Fibre functors; the general notion of a Tannakian
Category

Throughout this section, k denotes a field.

Fibre Functors

Let G be an affine group scheme over k and let U = Spec R be an affine k-scheme. A G-
torsor over U (for the fpqc topology) is an affine scheme 7', faithfully flat over U, together
with a morphism T" Xy G — T such that

(t,g)—> (t,tg): TxyG—>TxyT
is an isomorphism. Such a scheme 7 is determined by its points functor, i = (R’ ~» T (R’)).

3.1. A non-vacuous set-valued functor i of R-algebras with functorial pairing 2(R’) x
G(R’) — h(R’) arises from a G-torsor if,
(a) for each R-algebra R’ such that 2(R’) is non-empty, G(R’) acts simply transitively
on h(R’), and
(b) h is representable by an affine scheme faithfully flat over U'.

Descent theory shows that (3.1b) can be replaced by the condition that & be a sheaf for
the fpqc topology on U (see [Waterhouse|[1979). There is an obvious notion of a morphism
of G-torsors.

Assume now that C is a k-linear abelian tensor category; a fibre functor on C with
values in a k-algebra R is a k-linear exact faithful tensor functor n:C —Modp that takes
values in the subcategory Projp of Modg. Assume now that C is a neutral Tannakian
caegory over k. There then exists a fibre functor @ with values in k and we proved in
the last section that if we let G = Aut®(w), then o defines an equivalence C — Repy (G).
For any fibre functor 1 with values in R, composition defines a pairing

Hom® (0, n) x Aut®(w) — Hom® (w, n)
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of functors of R-algebras. Proposition 1.13 shows that Hom® (w, ) = Isom®(w, ), and
therefore that Hom® (w, n) satisfies (3.1a).
THEOREM 3.2. Let C be a neutral Tannakian category over k.

(a) For any fibre functor n on C with values in R, Hom® (w,7) is representable by an
affine scheme faithfully flat over Spec R; it is therefore a G -torsor.

(b) The functor n ~ Hom® (w,n) determines an equivalence between the category of
fibre functors on C with values in R and the category of G -torsors over R.

PROOF. Let X € ob(C), and, with the notations of the proof of (2.11)), define
Ay CEnd(@X), Ax =(|@Y:0Y), Y CX"
Y

Px CEnd(wX.X), Px=()Y:0Y), YCX"
Y
Then w(Px) = Ax and Px € ob({X)). For any R-algebra R’, Hom(w|[(X),n|{X))(R’)
is the subspace of Hom(w(Px) ®k R'.n(Px) ®r R’) of maps respecting all Y C X"; it
therefore equals n(Px) ® R’. Thus

Hom(w|(X),7{X))(R") —> Homg.in(7(Py), R).

Let Q be the ind-object (Py)x, and let B =1limAy.. As we saw in the last section, the
tensor structure on C defines an algebra structure on B; it also defines a ring structure on Q
(i.e.,amap Q ® O — Q in Ind(C)) making w(Q) — B into an isomorphism of k-algebras.
We have

Hom(w,n)(R') = @Hﬂl(aﬂ(x)’ n(X))(R")
= LiLnHomR-lin(n(P}\(/)’R,)

= Hompg_in(n(Q). R)

where n(Q) e 11_1‘1)1 n(Py ). Under this correspondence,

Hom® (0, 7)(R") = Hompg_41¢(n(Q), R),

and so Hom® (w, 1) is represnted by 1(Q). By definition, n(Py) is a projective R-module,
and so n(Q) = li_r)nn(P)\(’) is flat over R. For each X, there is a surjection Px — 1, and the
exact sequence

0—>1—>Py—>Py/1>0

gives rise to an exact sequence
0—n(l)— n(P)\(/) — n(P}/]l) — 0.

As (1) = R and n(Py /1) is flat, this shows that n(Py) is a faithfully flat R-module.
Hence 7(Q) is faithfully flat over R, which completes the proof that Hom® (v, 7) is a G-
torsor.

To show that 1 ~» Hom® (w, ) is an equivalence, we construct a quasi-inverse. Let T
be a G-torsor over R. For a fixed X, define R’ ~ n7(X)(R’) to be the sheaf associated
with

R ~ (w(X)® R)xT(R)/G(R').

Then X ~» n7(X) is a fibre functor on C with values in R. O
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REMARK 3.3. (a) Define
Ay CHom(X,X), Ay=nY:Y), YcCX"

Then Ay is a ring in C such that w(Ay) = Ax (as k-algebras). Let B be the ind-object
(AY). Then

End®(w) = Specw(B) = G
End® (1) = Specn(B).

(b) The proof of (3.2) can be made more concrete (but less canonical) by using (2.11) to
replace (C,w) with (Repy (G),w©).

REMARK 3.4. The situation described in the theorem is analogous to the following. Let X
be a connected topological space, and let C be the category of locally constant sheaves of Q-
vector spaces on X . For any x € X, there is a fibre functor wy: C — Vecg, and wy defines an
equivalence of categories C — Repg(71(X,x)). Let Iy y be the set of homotopy classes
of paths from x to y; then [Ty, >~ Isom(wy,wy), and [Ty, is a 71 (X, x)-torsor.

QUESTION 3.5. Let C be arigid abelian tensor category whose objects are of finite length
and which is such that End(1) = k and ® is exact. (Thus C lacks only a fibre functor with
values in k to be a neutral Tannakian category). As in (3.3) one can define

Ay CHom(X.X), Ay =[)¥:Y), Y CX”

and hence obtain a bialgebra B = “lim”AY, in Ind(C) which can be thought of as defining
. —>
an affine group scheme G in Ind(C).
Is it true that for X C X/, Ay, — Ay is an epimorphism?

For any X in C, there is a morphism X Pox ® B, which can be regarded as a represen-
tation of G. Define X ©, the subobject fixed by G, to be the largest subobject of X such that
X% — X ® By factors through X% ® 1 — X ® By. Is it true that Hom(1, X) @4 1 — X €
is an isomorphism?

If for all X there exists an N such that /\N X =0, is C Tannakian in the sense of
Definition 3.7 below? (See note at the end of the article.)

The general notion of a Tannakian category

In this subsection, we need to use some terminology from non-abelian 2-cohomology, for
which we refer the reader to the Appendix. In particular, Affg or Aff; denotes the category
of affine schemes over S = Spec k and PROJ is the stack over Affg such that PROJyy = Projg
for R = I'(U,Oy). For any gerb G over Aff; (for the fpgc topology), we let Repy (G) de-
note the category of cartesian functors G —PROJ. Thus, an object ¢ of Repy (G) determines
(and is determined by) functors ¢ g: Gr — Projg, one for each k-algebra R, and functorial
isomorphisms

PR (£*0) < ¢r(Q)®R R

defined whenever g: R — R’ is a homomorphism of k-algebras and Q € ob(Gg). There is
an obvious rigid tensor structure on Repy (G), and End(1) = k.
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EXAMPLE 3.6. Let G be an affine group scheme over k, and let TORS(G) be the gerb
over Affg such that TORS(G)y is the category of G-torsors over U. Let G be G regarded

as a right G-torsor, and let @ be an object of Repy (TORS(G)). The isomorphism G —>
Aut(G;) defines a representation of G on the vector spaces @ (G ), and it is not difficult
to show that @ ~» @, (G ) extends to an equivalence of categories

Repy (TORS(G)) — Repi (G).

Let C be a rigid abelian tensor category with End(1) = k. For any k-algebra R, the
fibre functors on C with values in R form a fibred category FIB(C)g over Affi. Descent
theory for projective modules shows that FIB(C) is a stack, and (1.13) shows that its fibres
are groupoids. There is a canonical k-linear tensor functor C — Repy (FIB(C)) attaching
to X € ob(C) the family of functors @ — w(X):F1B(C)r — Projg.

DEFINITION 3.7. A Tannakian category over k is a rigid abelian tensor category C with
End(1) = k such that FIB(C) is an affine gerb and C — Rep; (F1B(C)) is an equivalence of
categories|”]

EXAMPLE 3.8. Let C be a neutral Tannakian category over k. Theorem 3.2 shows that the
choice of a fibre functor @ with values in k determines an equivalence of fibred categories
FIB(C) —TORS(G) where G represents Aut®(w). Thus FIB(C) is an affine gerb and the
commutative diagram of functors

C ——> Rep (FI1B(C))

Repi(G) <—— Repg(TORS(G))

shows that C is a Tannakian category. Thus a Tannakian category in the sense of (3.7) is
neutral Tannakian category in the sense of (2.19) if and only if it has a fibre functor with
values in k.

REMARK 3.9. The condition in (3.7) that F1B(C) is a gerbe means that C has a fibre functor
@ with values in some field k&’ D k and that two fibre functors are locally isomorphic for
the fpqc topology. The condition that the gerb FIB(C) be affine means that Aut® (w) is
representable by an affine group scheme over k.

REMARK 3.10. A Tannakian category C over k is said to be algebraic if FIB(C) is an
algebraic gerb. There then exists a finite field extension k" of k and a fibre functor w with
values in k’ (Appendix, Proposition), and the algebraicity of C means that G = Aut®(w) is
an algebraic group over k’. As in the neutral case (2.20), a Tannakian category is algebraic
if and only if it has a tensor generator. Consequently, any Tannakian category is a filtered
union of algebraic Tannakian categories.

121 et (C, ®) be a rigid abelian tensor category with End(1) equal to a field k. If there exists a fibre functor
with values in a field k" containing k, then FIB(C) is an affine gerbe (Deligne|[1990} 1.10, 1.13), and C —
Repy (FIB(C)) is an equivalence of categories (apply, ibid. 1.12). Therefore (C,®) is a Tannakian category
overk.
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Tannakian categories neutralized by a finite extension

Let C be a k-linear category, and let A be a commutative k-algebra. An A-module in
C is a pair (X,ayx) with X an object of C and vy a homomorphism A — End(X). For
example, an A-module in Vecy/, where k’ D k, is simply an A ®y k’-module that is of finite
dimension over k’. With an obvious notion of morphism, the A-modules in C form an A-
linear category C(4). If C is abelian, then so also is Cy4), and if C has a tensor structure
and its objects have finite length, then we define (X,ax) ® (¥, ay) to be the A-module in
C with object the largest quotient of X ® Y to which ax (a¢) ® id and id ®ay (a) agree for
alla € A.

Now let C be a Tannakian category over k, and let k” be a finite field extension of k. As
the tensor operation on C commutes with direct limits (1.16) , it extends to Ind(C), which
is therefore an abelian tensor category. The functor C — Ind(C) defines an equivalence
between C and the strictly full subcategory C¢ of Ind(C) of essentially constant ind-objects.
In C¢ it is possible to define external tensor products with objects of Vecy (cf. the proof of
2.11) and hence a functor

X ~i(X)=(k'® X,a' +— a' ®id):C* — Cy..
This functor is left adjoint to

(X,0) » j(X,a) = X:C{,) —> C°

g

and has the property that &’ ® Hom(X,Y) = Hom(i(X),i(Y)). Let w be a fibre functor
on C¢ (or C) with values in k’. For any (X,a) € ob(C‘(”k,)), (w(X),w()) is a k’-module in
Vecy/, i.e., itis a k’ ®; k’-module. If we define

o' (X,a) = k'®k/®k/a)(X) (3.10.1)
then

Ce E— (:fk/)

|

\ )
|

VeCk/.

/

commutes up to a canonical isomorphism.

PROPOSITION 3.11. LetC be a Tannakian category over k and let w be a fibre functor on C
with values in a finite field extension k' of k ; extend o’ to C (k) using the formula (3.10.1);
then ' defines an equivalence of tensor categories Cy — Repy/(G) where G = Aut® (w).
In particular, o’ is exact.
PROOF. One has simply to compose the following functors:

Ckry — Repi (G) k)
arising from the equivalence C = Rep,(G), G =FIiB(C)), in the definition (3.7);

Repy (G)r') —> Repy/ (G/ k')
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where G/ k" denotes the restriction of G to Affy/ (the functor sends (¢, o) € ob(Repy (G) k7))
to ¢' where, for any k’-algebra R and Q € Gg, ¢%(Q) = R®r'gr ¢r(Q);

Repy(G/ k") —> Repy: (TORS(G))
arising from TORS(G) — G/ k’;
Repy/ (TORS(G)) = Repy (G)
(see 3.6). o

REMARK 3.12. Let C = Repy(G) and let k” be a finite extension of k. Then C/) =
Repy/(G) and i:C — Cx) is X ~ k' ®j X. Let w be the fibre functor

X ~ k' ® X:Repg(G) — Vecy.

Then G = Aut® (w) and the equivalence C(ky —> Repy/(Gy-) defined by the proposition
is
X~k Qrek X: Repy (G) — Repy/(Gy/).

DESCENT OF TANNAKIAN CATEGORIES

Let k'/k be a finite Galois extension with Galois group I, and let C’ be a Tannakian
category over k’. A descent datum on C' relative to k'/ k is

3.13. (a) a family (B, )yer of equivalences of tensor categories f,:C’ — C/, B, being
semi-linear relative to y, together with

(b) a family () of isomorphisms of tensor functors (iy/ By — By’ o By such
that

Myt 15 (X)
Byryy(X)  ———  Byr(Byy(X))
luy//y/,y(X) lﬁy//wy/y(xn

My”y’(ﬂy(x))

Byry (By (X)) ———— By (By (By(X)))

commutes for all X € ob(C).

A Tannakian category C over k gives rise to a Tannakian category C’ = C over
k' together with a descent datum for which By (X,ax) = (X,ax oy~ !). Conversely, a
Tannakian category C’ over k’ together with a descent datum relative to '/ k gives rise to
a Tannakian category C over k whose objects are pairs (X, (ay)), where X € ob(C’) and
(ay:X — By(X))yer is such that (iy’ ) x 0a,r, = By (ay) oa,s, and whose morphisms
are morphisms in C’ commuting with the a,. These two operations are quasi-inverse, so
that to give a Tannakian category over k (up to a tensor equivalence, unique up to a unique
isomorphism) is the same as to give a Tannakian category over k’ together with a descent
datum relative to k’/k (Saavedra Rivano| 1972, III, 1.2). On combining this statement with
(3.11) we see that to give a Tannakian category over k together with a fibre functor with
values in k’ is the same as to give an affine group scheme G over k’ together with a descent
datum on the Tannakian category Repy/(G).
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QUESTIONS

3.14. Let G be an affine gerbe over k. There is a morphism of gerbes
G — FIB(Repi (G)) (3.14.1)

which, to an object Q of G over S = Spec R, attaches the fibre functor F' ~~» F(Q) with
values in R. Is (3.14.1) an equivalence of gerbes? If G is algebraic, or if the band of G is
defined by an affine group scheme over k, then it is (Saavedra Rivano| 1972, III 3.2.5) but
the general question is open. A positive answer would provide the following classification
of Tannakian categories: the maps C —FIB(C) and G + Repy (G) determine a one-to-one
correspondence between the set of tensor equivalence classes of Tannakian categories over
k and the set of equivalence classes of affine gerbes over k; the affine gerbs bandecE] by a
given band B are classified by H?(S, B), and H?(S, B) is a pseudo-torsor over H%(S,Z)
where Z is the centre of B.

3.15. Saavedra (1972, 11 3.2.1) defines a Tannakian category over k to be a k-linear rigid
abelian tensor category C for which there exists a fibre functor with values in a field k' D k.
He then claims to prove (ibid. 3.2.3.1) that C satisfies the conditions we have used to define

a Tannakian category. This is false. For example, Vecy, for k” a field containing k is a

Tannakian category over k according to his definition, but the fibre functors V ~~ oV <

V ®ks o k' for o € Aut(k’/ k) are not locally isomorphic for the fpqc topology on Speck’.
There is an error in the proof (ibid. p. 197, line 7) where it is asserted that “par définition”
the objects of G are locally isomorphic.

The question remains of whether Saavedra’s conditions plus the condition that End(1) =
k imply our conditions. As we noted (3.8), when there is a fibre functor with values in k,
they do, but the general question is openl]z] The essential point is the following: let C be a
rigid abelian tensor category with End(1) = k and let w be a fibre functor with values in a
finite field extension k&’ of k; is the functor w’,

X ~ k' ®k/®k/ a)(X) C(k/) — Veck/

exact? (See Saavedra Rivano|[1972, p. 195; the proof there that ’ is faithful is valid.) The
answer is yes if C = Repg (G), G an affine group scheme over k, but we know of no proof
simpler than to say that @’ is defined by a G-torsor on k', and C(;/) = Repy/(G). (See note
atend.)

4. Polarizations

Throughout this section C will be an algebraic Tannakian category over R and C will be its
extension to C: C’ = C(c). Complex conjugation on C is denoted by ¢ or by z - ZE]

13The original says bound, but banded seems to have become more common.

14See the footnote to

15 An additive map f:V — W of C-vector spaces is semilinear if f(zv) =z f(v) forz€ Candv € V. An
additive functor F:C1 — Cy of k-linear categories is semilinear if F(zy) = Zfx, where zx denotes the action
of z € Con X. A morphism of C-schemes «:T — S is semilinear if f +— fowa:I'(S,0g) — I'(T,O) is
semilinear as a map of C-vector spaces.
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Tannakian categories over R

4.1. According to (3.13) and the paragraph following it, to give C is the same as giving
the following data:

(a) an algebraic Tannakian category C_’ over C;
(b) a semilinear tensor functor X ~» X:C' — C’. E] and
(¢) a functorial tensor isomorphism px: X — X such that u ¥ =HX-

An object of C can be identified with an object X over C’ together with a descent datum (an
isomorphism a: X — X suchthat@oa = wx). Note that C’ is automatically neutral (3.10).

EXAMPLE 4.2. Let G be an affine group scheme over C and let 0:G — G be a semi-
linear isomorphism (meaning that f +— oo f:I'(G,0g) — I'(G,Og) is a semi-linear
isomorphism). Assume that there is given a ¢ € G(C) such that

o2 =ad(c), o(c)=c. 4.2.1)

From (G, 0, c) we can construct data as in (4.1):

(a) define C’ to be Repg(G);

(b) for any vector space V over C, there is an (essentially) unique vector space V and
semi-linear isomorphism v > v:V — V; if V is a G-representation, we define a
representation of G on V by the rule v = 0(g)7;

(c) define jy to be the map cv > v:V — V.

Let m € G(C). Then 0’ = g oad(m) and ¢’ = o(m)cm again satisfiy (4.2.1). The
element m defines an isomorphism of the functor V'~ V (rel. to (o, ¢)) with the functor
V=V (rel. to (o/,c’)) by

mv — v:V (rel. to (0,¢)) = V (rel. to (¢/,¢")).

This isomorphism carries puy (rel. to (o,¢)) to uy (rel. to (o/,¢’)), and hence defines an
equivalence C (rel. to (o, ¢)) with C (rel. to (¢”,¢”)).

PROPOSITION 4.3. Let C be an algebraic Tannakian category over R, and let C' = C¢).
Choose a fibre functor @ on C' with values in C, and let G = Aut® (w).
(a) There exists a pair (o, ¢) satisfying (4.2.1) and such that under the equivalence C' —
Repc(G) defined by w, the functor X ~ X corresponds to V ~ V and w(iy) = Ko (X)-
(b) The pair (o, ¢) in (a) is uniquely determined up to replacement by a pair (¢’,¢’) with
o' =ooad(m) and ¢’ = o (m)cm, some m € G(C).

PROOF. (a) Let @ be the fibre functor X ~» w(X) and let T = Hom®(w,®). According
to (3.2), T is a G-torsor, and the Nullstellensatz shows that it is trivial. The choice of a
trivialization provides us with a functorial isomorphism w(X) — @ (X) and therefore with
a semi-linear functorial isomorphism A y:w(X) — w(X). Define o by the condition that
o(g)g =Axogx O)L}l for all g € G(C), and let ¢ be such that cxy = w(px) ™! odlgoAx.

(b) The choice of a different trivialization of T replaces Ax with Ay omy for some
m € G(C), o with 0 oad(m), and ¢ with o (m)cm. 0

logozxy =2x,z€C
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Sesquilinear forms

Let C be Tannakian category over R, and let (C’,X +— X,uy) be the associated triple
(3.13).

Let (1,e),e:1®1 = 1, be an identity object for C’. Then (1,¢é) is again an identity
object, and the unique isomorphism of identity objects a: (1,e) — (1,¢€) is a descent datum.
It will be used to identify 1 with 1.

A sesquilinear form on an object X of C’ is a morphism

P XX — 1.

On applying —, we obtain a morphism X ® X — 1, which can be identified (using jx)
with a morphism

P XX — 1.
There are associated with ¢ two morphisms ¢™~, ~¢: X — XV determined b
PO = Ppx®y) @A

TP = P(yex)

The form ¢ is said to be nondegenerate if ¢~ (equivalently ~¢) is an isomorphism. The
parity of a nondegenerate sesquilinear form ¢ is the unique morphism £4: X — X such that

¢~ ="¢oes: P(x,y) =P(r.9x) (43.2)
Note that
Ppo(cpQEg) =¢: P(egpx,E9y) = (x,y) (4.3.3)
The transpose u® of u € End(X) relative to ¢ is determined by
pou®idg) =do(idy ®us):  pux.y) = p(x.uy). (4.3.4)
There are formulas
(uv)¢ =v%u?, (idX)¢ =idy, (u¢)¢ = 8¢u8;1, (8¢)¢ = 8;1 (4.3.5)

and u > u? is a semilinear bijection End(X) — End(X).
If ¢ is a nondegenerate sesquilinear form on X, then any other nondegenerate sesquilin-
ear form can be written

po =do(@®id). ¢a(x.y) =p(ax.y) =p(x.a?y) (4.3.6)
for a uniquely determined automorphism o of X. There are the formulas
ule = (qua™)?, g4, = (@) leha. 4.3.7)

Therefore, when ¢4 is in the centre of End(X), ¢ has the same parity as ¢ if and only if
¢ —
a? =a.

REMARK 4.4. There is also a notion of a bilinear form on an object X of a tensor category:
it is a morphism X ® X — 1. Most of the notions associated with bilinear forms on vector
spaces make sense in the context of Tannakian categories; see |Saavedra Rivano|/1972, V
2.1.

7Take ¢™ to be the morphism corresponding to ¢ under the canonical isomorphisms

Hom(X ® X, 1) ~ Hom(X,Hom(X, 1)) = Hom(X, X").
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Weil forms

A nondegenerate sesquilinear form ¢ on X is a Weil form if its parity &y is in the centre of
End(X) and if for all nonzero u in End(X), Try (1 ou?) > 0.

PROPOSITION 4.5. Let ¢ be a Weil form on X .

(a) The map u — u? is an involution of End(X) inducing complex conjugation on C =
C-idy, and (u,v) — Try (uv®) is a positive-definite Hermitian form on End(X).

(b) End(X) is a semisimple C-algebra.

(c) Any commutative sub-R-algebra A of End(X ) composed of symmetric elements (i.e.,
elements such that u® = u) is a product of copies of R.

PROOF. (a) is obvious.

(b) Let I be a nilpotent ideal in End(X). We have to show that / = 0. Suppose on the
contrary that there is a u # 0 in . Then v = uu® € I and is nonzero because Try (v) > 0.
As v = v?, we have that Try (vZ) > 0, Trx (v*) > 0,... contradicting the nilpotence of .

(c) The argument used in (b) shows that A is semisimple and is therefore a product of
fields. Moreover, for any u € A, Try (u?) = Trx (uu?®) > 0. If C occurs as a factor of 4,
then Try |C is a multiple of the identity map, which contradicts Try (u?) > 0. o

Two Weil forms, ¢ on X and { on Y, are said to be compatible if the sesquilinear form
¢ @Y on XY is again a Weil form.
Let ¢ and ¥ be Weil forms on X and Y respectively. Then ¢ and y define isomorphisms

Hom(X,Y) > Hom(X ® Y, 1) < Hom(Y, X).

Let u € Hom(X,Y), and let u’ be the corresponding element in Hom(Y, X). Then ¢ and v
are compatible if and only if, for all u # 0, Try (uou’) > 0. In particular, if Hom(X,Y) =0,
then ¢ and Y are automatically compatible.

PROPOSITION 4.6. Let ¢ be a Weil form on X, and let ¢4 = ¢ o (¢ ® idy ) for some o €
Aut(X).
(a) The form ¢ has the same parity as ¢ if and only if « is symmetric, i.e., a® = a.
(b) Assume o is symmetric. Then ¢ is a Weil form if and only if o is a square in
Rlo] C End(X).
(¢) If ¢y is a Weil form with the same parity as ¢, then ¢, is compatible with ¢.
(d) For any Weil form ¢ on X, the map o — ¢, defines a one-to-one correspondence
between the set of totally positive symmetric endomorphisms of X and the set of
Weil forms on X that have the same parity as ¢ and are compatible with ¢.

PROOF. (a) According to (4.3.7), the parity of ¢y is (?) " lega. As € is in the centre of
End(X), this equals € if and only if af =a.
(b) As o = ®, (4.3.7) and (4.3.5) show that u%¢ = a~!.u?-«. Thus, ¢ is a Weil form
if and only if
Try (u-a ' - u® o) >0,all u # 0, u € End(X).

If « = B2 with B € R[«], then
Try wa 'u®a) = Trx (up~HB o)
=Trx(B'u®a™ ' @p™"))  (Trx(vw) = Trx (wv))
=Trx (Bup™")?(B~'up)) > 0
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for u # 0. Conversely, if ¢y is a Weil form, then Try (u?a) > 0 for all u # 0 in R[a], which
implies that « is a square in R«].

(c) Let u be a nonzero endomorphism of X. Then v’ = u®, and so ¢ and ¢, are
compatible if and only if Try (1 -u®*) > 0 for all u # 0, but this is implied by ¢ s being a
Weil form.

(d) According to (4.3.6), every nondegenerate sesquilinear form on X is of the form ¢
for a unique automorphism « of X. Thus, the proposition is an immediate consequence of
the preceding statements. O

An element of a semisimple R-algebra B of finite degree is said to be totally positive if
the roots of its characteristic polynomial P, are all > 0. This condition is equivalent to o
being invertible in B and a square in R[«].

The relation of compatibility on the set of Weil forms on X is obviously reflexive and
symmetric, and the next corollary implies that it is also transitive on any set of Weil forms
on X having a fixed parity.

COROLLARY 4.7. Let ¢ and ¢’ be compatible Weil forms on X with the same parity, and
let Y be a Weil form on Y . If ¢ is compatible with v, then so also is ¢’.

PROOF. This follows easily from writing ¢’ = ¢q. O

EXAMPLE 4.8. Let X be a simple object in C’, so that End(X) = C, and let ¢ € End(X).
If X is isomorphic to XV, so that there exists a nondegenerate sesquilinear form on X, then
(4.3.6) shows that the sesquilinear forms on X are parametrized by C; moreover, (4.3.7)
shows that if there is a nonzero such form with parity ¢, then the set of sesquilinear forms
on X with parity ¢ is parametrized by R; finally, shows that if there is a Weil form with
parity &, then the set of such forms falls into two compatibility classes, each parametrized
by R>0.

REMARK 4.9. Let Xy be an object in C and let ¢9 be a nondegenerate bilinear form
¢0: Xo ® Xo — 1. The parity ¢4,0f ¢ is defined by the equation

$o(x,y) = Po(y,ep,X).

The form ¢y is said to be a Weil form on X if ¢, is in the centre of End(X¢) and if for
all nonzero u € End(Xy), Trx,(u o u%) > 0. Two Weil forms ¢ and o are said to be
compatible if ¢po @ Vg is also a Weil form.
Let X correspond to the pair (X,a) with X € ob(C’). Then ¢ defines a bilinear form
¢ on X, and
def - 1®a~!

v ¥ xex'® xeox 2

is a nondegenerate sesquilinear form on X. If ¢¢ is a Weil form, then v is a Weil form on
X which is compatible with its conjugate i, and every such ¢ arises from a ¢¢; moreover,

Eyp = E¢g-

Polarizations

Let Z be the centre of the band associated with C (see the appendix). Thus Z is a commu-
tative algebraic group over R such that

Z(C) ~ Centre(Aut®(w))

for every C-valued fibre functor on C’. Moreover, Z represents Aut® (idg).
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DEFINITION 4.10. Let ¢ € Z(R) and, for each X € ob(C’), let 7(X) be an equivalence
class (for the relation of compatibility) of Weil forms on X with parity e. Then = is a
(homogeneous) polarization on C if

(a) forall X, ¢ € n(X) whenever ¢ € 7(X), and
(b) forall X and Y, ¢p Py en(X®Y)and p Y € (X ® Y) whenever ¢ € 7(X) and
v en(Y).

We call ¢ the parity of 7 and say that ¢ is positive for w if ¢ € 71(X). Thus the conditions
require that ¢, ¢ @ ¥, and ¢ ® ¥ be positive for & whenever ¢ and y are.

PROPOSITION 4.11. Let w be a polarization on C.

(a) The categories C and C’ are semisimple.
() Ifp en(X)andY C X, then X =Y @Y and the restriction ¢y of ¢ to Y is in
7).

PROOF. (a) Let X be an object of C’and let u:Y <> X be a nonzero simple subobject of
X. Choose ¢ € n(Y) and ¥ € 7 (X). Consider

0 u
v—(o 0).XEBY—>XEBY

pvee (00
u 0 )

Then Try (u'u) = Try g x (v¥®? 0v) > 0, and so u’u is an automorphism w of Y. The map
p = w~ ! ou’ projects X onto Y, which shows that Y is a direct summand of X. We have
shown that X is semisimple.

The same argument, using the bilinear forms shows that C is semisimple.

(b) Let Y/ = Y NYL, where Y1 is the largest subobject of X such that ¢ is zero
on Y ® Y1, and let p: X — X be the projection of X onto Y’ (by which we mean that
p(X)C Y and p|Y’ =idy/). As ¢ iszeroon Y’ @Y,

and let u’: X — Y be such that

0=¢o(p®p)=po(id®p?p),

and so p? p = 0. Therefore, Try (p® p) =0, and so p, and Y’, are zero. Thus X =Y @ Y+
and ¢ = ¢y & d)f;. Let ¢1 € (Y) and ¢ € (Y +). Then ¢1 @ ¢ is compatible with ¢,
and this implies that ¢ is compatible with ¢y . O

REMARK 4.12. Suppose C is defined by a triple (G, 0, ¢), as in (4.1)), so that C" = Repc(G).
A sesquilinear form ¢: X ® X — 1 defines a sesquilinear form ¢’ on X in the usual, vector
space, sense by the formula

o (x,))=¢p(x®Yy), x,yeX. 4.12.1)

The conditions that ¢) be a G-morphism and have parity ¢ € Z(RR) become respectively

¢'(x,y) = ¢'(gx.07 (), €GO,

4.12.2
Fo) = ey, #4122
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When G acts trivially on X, then the last equation becomes

¢'(y.x) =¢'(x.y),

and so ¢’ is a Hermitian form in the usual sense on X. When X is one-dimensional, ¢’ is
positive-definite (for otherwise ¢ ® ¢ ¢ (X)). Now (4.11b) shows that the same is true for
any X on which G acts trivially, and shows that {¢' | ¢ € w(X)} is the complete set
of positive-definite Hermitian forms on X . In particular, Vecr has a unique polarization.

REMARK 4.13. A polarization & on C with parity ¢ defines, for each simple object X of
C’, an orientation of the real line of sesquilinear forms on X with parity ¢ (see [4.8), and 7
is obviously determined by this family of orientations. Choose a fibre functor w for C’, and
choose for each simple object X; a ¢; € w(X;). Then

w(X;) ={r¢i | r € Rso}.

If X is isotypic of type X;, so that w(X) = W @ w(X;) where Aut®(w) acts trivially on
W, then
{w(@) | ¢ € 1(X)} = {¥ ®w(¢i)" | ¥ Hermitian ¢ > 0}.

fX=pX @), where the X @) are the isotypic components of X, then

7(X) =P r(x®).

REMARK 4.14. Let ¢ € Z(R) and, for each X € ob(C), let 7(Xp) be a nonempty com-
patibility class of bilinear Weil forms on X with parity ¢ (see 4.9). One says that 7 is a
homogeneous polarization on C if pg Do € 1(X DY) and ¢po ® Yo € 7(X ® Y) when-
ever ¢g € m(X) and Yo € m(Y). As {X | (X,a) € ob(C)} generates C', the relation between
bilinear and sesquilinear forms noted in establishes a one-to-one correspondence be-
tween polarizations in this bilinear sense and in the sesquilinear sense of (4.10).

In the situation of , a bilinear form ¢o on X defines a sesquilinear form ¥’ on
X = C® Xp (in the usual vector space sense) by the formula:

V' (z1v1,2202) = 21220 (v1,v2), v1,v2 € Xo, 21,22 € C.

Description of the polarizations

Let C be defined by a triple (G, o, ¢) satisfying (4.2.1), and let K be a maximal compact
subgroup of G(C). As all maximal compact subgroups of G(C) are conjugate (Hochschild
1965, XV, 3.1), there exists an m € G(C) such that 6~} (K) = mKm~!. Therefore, after
replacing o with o oad(m), we can assume that 6 (K) = K. Subject to this constraint, (o, ¢)
is determined up to modification by an element m in the normalizer of K.

Assume that C is polarizable. Then ) and show that G° is reductive, and
it follows that K is a compact real form of G, i.e., that K has the structure of a compact
real algebraic group G in the sense of (2.33) and K¢ = G (see|Springer| 1979, 5.6). Let o
be the semilinear automorphism of G such that, for g € G(C), og(g) is the conjugate of g
relative to the real structure on G defined by K; note that o g determines K. The normalizer
of Kis K-Z(C),andsoc € K-Z(C).
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Fix a polarization = on C with parity €. Let X be an irreducible representation of G,
and let ¥ be a positive-definite K-invariant Hermitian form on X. For any ¢ € 7 (X), the
associated form ¢’(x, y) = ¢(x ® y) can be expressed

¢ (x,y) =¥ (x,By)

for some € Aut(X). The equations (4.12.2) can be re-written as

ﬂ/ﬁX - ;(E;Xcé g€ K®) (4.14.1)

where B* is the adjoint of S relative to v:

V(Bx.y) =¥ (x,%y).

As K(R) is Zariski dense in K(C), X is also irreducible as a representation of K(R), and
so the set ¢(X,m) of such Bs is parametrized by R~o. An arbitrary finite-dimensional
representation X of G can be written

X=@P wiex

where the sum is over the non-isomorphic irreducible representations X; of G and G acts
trivially on each W;. Let v/ and v; respectively be K-invariant positive-definite Hermitian
forms on W; and X;, and let = @V ® ;. Then for any ¢ € 7(X),

¢’ (x.y) =V (x.By). B €Aut(X),

where 8 = @] ® B; with B; € c(X;, ) and ] is positive-definite and Hermitian relative
to /. We again let c(X, ) denote the set of B as ¢ runs through 7(X). The condition

@T0p) that
7(X1) ®@n(X2) C (X1 ®X>3)

becomes

c(Xq1,m)®c(Xa2,7) Ce(X1® X2, 7).

LEMMA 4.15. There exists ab € K with the following properties:

(a) by € c(X, ) for all irreducible X ;
(b) 0 = ok oad(b), where og denotes complex conjugation on G relative to K ;
(c) e le=0b-b =02

PROOF. Leta = ec™! € G(C). When X is irreducible, the first equality in (4.14.1) applied
twice shows that

IBZ.g.x=O’2(g).ﬂ2.x=c.g.c_1.ﬁ2.x
for e c(X,m), g € K, and x € X; therefore
(™' B*)gx = g(c™ B*)x,

and so ¢ ~! B2 acts as a scalar on X. Hence aff? = sc~! B2 also acts as a scalar. Moreover,
B2a = BB* (by the second equation in 4.14.1) and so

Trx (aB?) = Trx (B%a) > 0;
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we conclude that ax 82 € R~q. It follows that there is a unique B € c¢(X, ) such that
ax =p72 Bgx = 0(g)xP (¢ € K).and B* = 7" (i.e., B is unitary).

For an arbitrary X, we write X = @ W; ® X; as before, and set f = id ® B;, where B;
is the canonical element of ¢ (X;, ) just defined. We still have ay = B2, Bgx = 0(g)x B
(g € K), and B € ¢(X, 7). Moreover, these conditions characterize §: if 8’ € ¢(X, ) has
the same properties, then B’ = ) y; ® B; (this expresses that $'gx = o (g)xB’, g € K)
with yiz =1(as B? = a)_(l) and y; positive-definite and Hermitian. Hence y; = 1.

The conditions are compatible with tensor products, and so the canonical 8 are com-
patible with tensor products: they therefore define an element b € G(C). As b is uni-
tary on all irreducible representations, it lies in K. The equations B2 = a)_(1 show that
b? =a~! =& lc. Finally, Bgx = 0 (g)x B implies that o(g) = ad(h(g)) for all g € K;
therefore o oad(h)~! fixes K, and as it has order 2, it must equal 0. o

THEOREM 4.16. Let C be a Tannakian category over R, and let G = Aut®(w) where ®
is a fibre functor on G with values in C; let & be a polarization on C with parity . For
any compact real form K of G, the pair (0, ¢) satisfies (4.2.1), and the equivalence C' —
Repc(G) defined by w carries the descent datum on C’ defined by C into that on Rep¢(G)
defined by (0k,€):

o(X) =0(X), o(Ux)= LX)

For any simple X in C/,
{0@) | ¢ € n(X)}

is the set of K -invariant positive-definite Hermitian forms on w(X).

PROOF. Let (C,w) correspond to the triple (G,01,c1) (see [d.3p), and let b € K be the
element constructed in the lemma. Then oy = ogoad(b) and c =e-0b-b =0ob-¢-b.
Therefore, (0k,¢) has the same property as (o1,c1) (see [4.3p), which proves the first as-
sertion. The second assertion follows from the fact that » € c(w(X), ) for any simple
X. m

Classification of polarized Tannakian categories

THEOREM 4.17. (a) An algebraic Tannakian category C over R is polarizable if and only
if its band is defined by a compact real algebraic group K.

(b) For any compact real algebraic group K and ¢ € Z(R), where Z is the centre of K,
there exists a Tannakian category C over R whose gerb is banded by the band B(K) of K
and a polarization = on C with parity ¢.

(c) Let (Cy,m1) and (Cy,mp) be polarized algebraic Tannakian categories over R with
isomorphic bands By and B,. If there exists an isomorphism B, — B; sending e(ry) to
&(my) (as elements of Z (B;)(R)), then there is a tensor equivalence C; — C, respecting the
polarizations and the actions of By and B; (i.e., such that FIB(C,) — F1B(C;) is a banded
by B> — B1), and this equivalence is unique up to isomorphism.

PROOF. We have already seen that if C is polarizable, then C’ is semisimple, and so, for any
fibre functor @ with values in C, (the identity component of) G = Aut® (w) is reductive,
and has a compact real form K. This proves half of (a). Part (b) is proved in the first lemma
below, and the sufficiency in (a) follows from (b) and the second lemma below. Part (c)

follows from (4.16). O
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LEMMA 4.18. Let K and ¢ be as in (b) of the theorem, and let G = K¢. Then K corre-
sponds to a Cartan involution o’ of G, and we leto(g) = o’ (g). The pair (o, ¢) then satisfies
(4.2.1) and the Tannakian category C defined by (G, 0, ¢) has a polarization with parity €.

PROOF. Since 02 = id and o fixes all elements of K, (4.2.1) is obvious. There exists a
polarization 7 on C such that, for all simple X, {¢’ | ¢ € =(X)} is the set of positive-definite
K-invariant Hermitian forms on X . (In the notation of (4.15), b = 1.) This polarization has
parity e. O

Let C correspond to _(C’ . X — X,p). For any z € Z(R), where Z is the centre of the
band B of C, (C’, X + X, i oz) defines a new Tannakian category ZC over R.

LEMMA 4.19. Every Tannakian category over R whose gerb is banded by B is of the form
ZC for some z € Z(R). There is a tensor equivalence *C — e respecting the action of B
ifand only if z’z71 € Z(R)?.

PROOF. Letw be a fibre functor on C, and let (C, w) correspond to (G, 0, c). We can assume
that the second category C corresponds to (G, o7, c1). Let y and y; be the functors V +— V
defined by (o, ¢) and (071, c1) respectively. Then y;° 1oy defines a tensor automorphism of
w, and so corresponds to an element m € G(C). We have 0 = 07 oad(m), and so we can
modify (01,c1) in order to get o7 = o. Let 11 and j¢; be the functorial isomorphisms V — V
defined by (o,¢) and (o,cy) respectively. Then /,Ll_l o i defines a tensor automorphism of
idc, and so [Ll_l ou==z"1,zeZR). Wehave 1 = poz.

The second part of the lemma is obvious. O

REMARK 4.20. Some of the above results can be given a more cohomological interpreta-
tion. Let B be the band defined by a compact real algebraic group K, and let Z be the
centre of B; let C be a Tannakian category whose band is B.

(a) As Z is a subgroup of a compact real algebraic group, it is also compact (see 2.33).
It is easy to compute its cohomology. One finds that

def

H'R,Z) =,2ZR) = Ker(2: Z(R) — Z(R))
H?*R,Z)=Z(R)/Z(R)>.

(b) The general theory (Saavedra Rivano|1972, 111 2.3.4.2, p. 184) shows that there is an
isomorphism H (R, Z) — Autg(C), which can be described explicitly as the map sending
z € Z(R) to the automorphism w;

(X,ax) = (X,axzx)

o= f

(c) The Tannakian categories banded by B are classified, up to B-equivalence, by
H2(R, B), and H?(R, B), if nonempty, is an H?(R, Z)-torsor. The action of H?(R,Z) =
Z(R)/Z(R)? on set of B-equivalence classes is made explicit in (4.19).

(d) Let Pol(C) denote the set of polarizations on C. For & € Pol(C) and z € Z(R) we
define z to be the polarization such that

$(x.y) €zn(X) = ¢(x,zy) € n(X);
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it has parity £(z7) = z2&(sr). The pairing
(z,m) > zm: Z(R) x Pol(C) —Pol(C)

makes Pol(C) into a Z(R)-torsor.
(e) Let € Pol(C) and let ¢ = &(r); then C has a polarization with parity ¢’ € Z(R) if
and only if &’ = £z2 for some z € Z(R).

REMARK 4.21. In[Saavedra Rivano|[1972] V, 1, there is a table of Tannakian categories
whose bands are simple, from which it is possible to read off those that are polarizable (loc.
cit. V, 2.8.3).

Neutral polarized categories

The above results can be made more explicit when C has a fibre functor with values in R.
Let G be an algebraic group over R, and let C € G(R). A G-invariant sesquilinear form
Y:VxV —ConV €ob(Repc(G)) is said to be a C-polarization if

¥ (x,») EY(x,Cy)

is a positive-definite Hermitian form on V. When every object of Repc(G) has a C-
polarization, C is called a Hodge element.

PROPOSITION 4.22. Assume that G(R) contains a Hodge element C .

(a) There is a polarization wc on Repr(G) for which the positive forms are exactly the
C -polarizations; the parity of w¢ is C2.

(b) Forany g € G(R) and z € Z(R), where Z is the centre of G, C' = zgCg ™ lis also a
Hodge element and t¢c/ = zmc.

(c) Every polarization on Repg (G) is of the form ¢/ for some Hodge element C'.

PROOF. Let ¥ be a C-polarization on V' € ob(Repc(C)); then

V(x,y) =v¢(Cx,Cy)

because ¥ is G-invariant, and

¥(Cx,Cy) =y (Cx,y) =y (y,Cx) = Y (y,C2x).
This shows that v has parity C2. For any V and g € G(R),
Y (y,C2x) =¥ (x,)
=V(gx.gy)
=¥ (gy,C?gx)
=y (y,g71C%gx).

This shows that C% € Z(R). For any u € End(V), u¥ = u‘”c, and so Tr(uu¥) > 0 if
u # 0. This shows that ¥ is a Weil form with parity C2. Statement (a) is now easy to
check. Statement (b) is straightforward to prove, and statement (c) follows from it and
4.19). O
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PROPOSITION 4.23. The following conditions on G are equivalent:

(a) there exists a Hodge element in G(R);
(b) the category Repg(G) is polarizable;
(¢c) G is an inner form of a compact real algebraic group K.

PROOF. (a)=-(b). This is proved in (4.22).

(b)=(c). To say that G is an inner form of K is the same as to say that G and K define
the same band; this implication therefore follows from (.17p).

(c)=>(a). Let Z be the centre of K (and therefore also of G) and let K = K /Z. That
G is an inner form of K means that its cohomology class is in the image of

H'(R.K*) - H' (R, Aut(K)).
More explicitly, this means that there is an isomorphism y: K¢ — G such that
7=yoc, somece K*C).

According to [Serre||1964, III, Thm 6, H(R, K*) ~ H1(Gal(C/R), K*(R)), which is
equal to the set of conjugacy classes in K2(IR) consisting of elements of order 2. Thus, we
can assume that ¢ € K(R) and ¢? = 1. Consider the cohomology sequence

KR) — KYR) — H'R,Z) - H!RK).

The last map is injective, and so K(R) — K2(R) is surjective. Thus ¢ = ad(C’) for some
C’ € K(R) whose square is in Z(R). Let C = y(C’); then C = 7(C’") = y(C’) = C and
7 Load(C) = y~!L. This shows that C € G(R) and that K is the form of G defined by C;
the next lemma completes the proof. O

LEMMA 4.24. Anelement C € G(R) such that C? € Z(R) is a Hodge element if and only
if the real form K of G defined by C is a compact real group.

PROOF. Identify K¢ with G¢ and let ¢ and g* be the complex conjugates of g € G(C)
relative to the real forms K and G. Then

g =ad(C (g =C"'zC.
Let v be a sesquilinear form on V' € ob(Repc(G)). Then v is G-invariant if and only if

V(gx,gy)=v(x,y), ge€G().

On the other hand, ¥ € is K-invariant if and only if

yCgx.g*y) =y (x,y), geG().

These conditions are equivalent. Therefore, V' has a C-polarization if and only if V' has
a K-invariant positive-definite Hermitian form. Thus C is a Hodge element if and only
if, for every complex representation V of K, the image of K in Aut(}V) is contained in
the unitary group of a positive-definite Hermitian form; this last condition is implied by K
being compact and implies that K is contained in a compact real group, and so is compact
(see 2.33). |
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REMARK 4.25. (a) The centralizer of a Hodge element C of G is a maximal compact sub-
group of G, and is the only maximal compact subgroup of G containing C; in particular,
if G is compact, then C is a Hodge element if and only if it is in the centre of G (Saave-
dra Rivano|1972, V, 2.7.3.5).

(b) If C and C’ are Hodge elements of G, then there exists a g € G(R) and a unique
z € Z(R) such that C’ = zgCg~! (Saavedra Rivano|1972, V, 2.7.4). As n¢/ = znc, this
shows that 7¢- = m¢ if and only if C and C’ are conjugate in G(R).

REMARK 4.26. It would perhaps have been more natural to express the above results in
terms of bilinear forms (see #.4] 4.9 B.14): a G-invariant bilinear form ¢:Vp x Vo — R
on Vpy € ob(Repg(G)) is a C-polarization if $€ (x,y) o ¢(x,Cy) is a positive-definite
symmetric form on Vp; C is a Hodge element if every object of Repr(G) has a C-
polarization; the positive forms for the (bilinear) polarization defined by C are precisely

the C -polarizations.

Symmetric polarizations

A polarization is said to be symmetric if its parity is 1.

Let K be a compact real algebraic group. As 1 is a Hodge element (4.24), Repg (K)
has a symmetric polarization & for which 7 (Xp), Xo € ob(Repr(K)), consists of the K-
invariant positive-definite symmetric bilinear forms on Xy (and 7(X), X € ob(Rep¢(K)),
consists of the K-invariant positive-definite Hermitian forms on X).

THEOREM 4.27. LetC be an algebraic Tannakian category over R, and let = be a symmet-
ric polarization on C. Then C has a unique (up to isomorphism) fibre functor w with values
in R transforming positive bilinear forms for m into positive-definite symmetric bilinear
forms; w defines a tensor equivalence C — Repg (K), where K = Aut®(w) is a compact
real algebraic group.

PROOF. Let w; be a fibre functor with values in C, and let G = Aut®(w;). Because C
is polarizable, G has a compact real form K. According to (4.16), w]:C’ — Repc(G)
carries the descent datum on C’ defined by C into that on Repc(G) defined by (og,1). It
therefore defines a tensor equivalence w: C—Repg (K) transforming 7 into the polarization
on Repp (K) defined by the Hodge element 1. The rest of the proof is now obvious. Briefly,
let w1 and w, be two such fibre functors. o

REMARK 4.28. Let 7 be a polarization on C. It follows from (4.20(d) that C has a symmet-
ric polarization if and only if e(r) € Z(R)2.

Polarizations with parity ¢ of order 2

For u = %1, define a real u-space to be a complex vector space V' together with a semilinear
automorphism o such that 02 = u. A bilinear form ¢ on a real u-space is u-symmetric if
¢(x,y) =up(y,x) — thus a 1-symmetric form is a symmetric form, and a —1-symmetric
form is a skew-symmetric form. A u-symmetric form is positive-definite if ¢ (x,ox) > 0
for all x # 0.

Let V¢ be the category whose objects are pairs (V,0) where V = V0@ V1 is a Z/27Z-
graded vector space over C and :V — V is a semilinear automorphism such that 02x =
(—1)%e™) x  With the obvious tensor structure, Vo becomes a Tannakian category over R
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with C-valued fibre functor (V,0) — V. There is a polarization & = 7., on Vg such that,
if V is homogeneous of degree m, then 7 (V, o) consists of the (—1)™-symmetric positive-
definite forms on V.

THEOREM 4.29. Let C be an algebraic Tannakian category over R, and let & be a polar-
ization on C with parity ¢ where €2 = 1, ¢ # 1. There exists a unique (up to isomorphism)
exact faithful functor w:C — Vg such that

(a) w carries the grading on C defined by ¢ into the grading on Vy, i.e., w(g) acts as
(=)™ onw(V)™;
(b) w carries w into 7eap, i.e., ¢ € w(X) if and only if w(P) € 7ean(w(X)).

PROOF. Note that Vy is defined by the triple (w2, 09,&0) wWhere oy is the unique semilinear
automorphism of (, and &g is the unique element of 1, (R) of order 2. We can assume (by
that C corresponds to a triple (G,0,¢). Let G be the subgroup of G generated by ¢;
then (G, |Gy, €) ~ (12,00, €0), and so the inclusion (Gg,o|Go,€) — (G, 0, ) induces a
functor C—Vy having the required properties.

Let w and @’ be two functors C — Vj satisfying (a) and (b). It is clear from ) that
there exists an isomorphism A:w — @’ from w to @’ regarded as C-valued fibre functors. As
Ax:o(X) — o' (X) commutes with action of ¢, it preserves the gradings; as A commutes
with w(¢), any ¢ € w(X), it also commutes with o; it follows that A is an isomorphism
from w to @’ as functors to V. o

5. Graded Tannakian categories

Throughout this section, k will be a field of characteristic zero.

Gradings

Let M be aset. An M -gradingm on an object X of an additive category is a decomposition
X =®,,epr X™; an M -grading on an additive functor u:C — C’ is an M -grading on each
u(X), X € ob(C), that depends functorially on X .

Suppose now that M is an abelian group, and let D be the algebraic group of multi-
plicative type over k whose character group is M (with the trivial Galois action; see (2.32))).
The cases of most interest tous are M =7, D = Gy, and M = 7./27,, D = u» (= 7./27).

DEFINITION 5.1. An M-grading on a Tannakian category C over k can be variously de-
scribed as follows:

(a) an M -grading, X =@ X™, on each object X of C that depends functorially on X and
is compatible with tensor products in the sense that (X ® Y)" =P, , —,, X" @Y,

(b) an M -grading on the identity functor id; of C that is compatible with tensor products;

(c) a homomorphism D — Aut® (idg);

(d) a central homomorphism D — G, G = Aut®(w), for one (or every) fibre functor w.

Definitions (a) and (b) are obviously equivalent. By a central homomorphism in (d), we
mean a homomorphism from D into the centre of G defined over k. Although G need not
be defined over k, its centre is, and equals Aut®(idc), from which follows the equivalence
of (c) and (d). Finally, a homomorphism w: D — Aut®(idg) corresponds to a family of
gradings X = @ X™ for which w(d) acts on X C X asm(d) € k.

18 Gradation and graduation are also used. The Wikipedia prefers the former, and Bourbaki the latter.
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Tate triples

A Tate triple T over k is a triple (C,w,T) comprising a Tannakian category C over k, a
Z-grading w:G,, — Aut®(idc) on C (called the weight grading), and an invertible object
T (called the Tate object) of weight —2. For any X € ob(C) and n € Z, we write X(n) =
X ® T®". A fibre functor on T with values in R is a fibre functor w:C — Modg together
with an isomorphism w(T) — (T ®?), i.e., the structure of an identity object on w(T). If
T has a fibre functor with values in k, then T is said to be neutral. A morphism of Tate
triples (Cy,wy,7T1) — (Ca,wo,T3) is an exact tensor functor 1:Cy; — C, preserving the
gradings together with an isomorphism n(7y) — 5.

EXAMPLE 5.2. (a) The triple (Hodg, w,R(1)) in which

¢ Hodg is the category of real Hodge structures (see [2.31)),
o w is the weight grading on Hodg, and
o IRR(1) is the unique real Hodge structure with weight —2 and underlying vector space
2niR,
is a neutral Tate triple over R.

(b) The category of Z-graded vector spaces over QQ, together with the object T = Qp (1),
forms a neutral Tate triple Tp over Q. The category of Z-graded vector spaces over Qy,
together with the object T = Q; (1), forms a neutral Tate triple T; over Q;. The category of
Z-graded vector spaces over k, together with the object T = kqr (1), forms a neutral Tate
triple Tqr over k. (See Deligne|[1982, § 1 for the terminology.)

EXAMPLE 5.3. Let V be the category of Z-graded C-vector spaces V' with a semilinear
automorphism a such that a?v = (—1)"v if v € V". With the obvious tensor structure, V
becomes a Tannakian category over R, and w:(V,a) — V is a fibre functor with values
in C. Clearly G,, = Aut®(w), and V corresponds (as in ) to the pair (g — g,—1).
Let w:G,, — Gy, be the identity map, and let T = (V,a) where V is C regarded as a
homogeneous vector space of weight —2 and a is z + z. Then (V,w,T) is a non-neutral
Tate triple over R.

EXAMPLE 5.4. Let G be an algebraic group scheme over k and let w:G,, — G be a cen-
tral homomorphism and 7: G — G, a homomorphism such that f ow = —2 (déf s> 572).
Let T be the representation of G on k such that g acts as multiplication by 7(g). Then
(Repi(G),w,T) is a neutral Tate triple over k.

The next proposition is obvious.

PROPOSITION 5.5. Let T = (C,w,T) be a Tate triple over k, and let @ be a fibre functor
on T with values ink. Let G = Aut® (w), so that w is a homomorphism G,, — Z(G) C G.
There is a homomorphism t: G — G, such that g acts on T as multiplication by t(g), and
t ow = —2. The equivalence C — Repy (G) carries w and T into the weight grading and
Tate object defined by t and w.

More generally, a Tate triple T defines a band B, a homomorphism w:G,, — Z into
the centre Z of B, and a homomorphism ¢: G — G, such that t ow = —2. We say that T is
banded by (B,w,1).

Let G, w, and ¢ be as in . Let Go = Ker(¢t: G — Gyy), and let &: up — Gg be the
restriction of w to wy. We often identify ¢ with e(—1) = w(—1) € Z(Gg) (k). Note that ¢
defines a Z/27-grading on Co = Repy (Go).



5 GRADED TANNAKIAN CATEGORIES 50

5.6. The inclusion Gy < G defines a tensor functor Q:C — Cp with the following prop-
erties:
(a) if X is homogeneous of weight n, then Q(X) is homogeneous of weight n (mod 2);
(b) O(T) =1;

(c) if X and Y are homogeneous of the same weight, then

Hom(X,Y) = Hom(Q(X), 0(Y));

(d) if X and Y are homogeneous with weights m and n respectively and Q(X) ~ Q(Y),
then m —n is an even integer 2k and X(k) ~ Y
(e) O is essentially surjective.

The first four of these statements are obvious. For the last, note that
G = (G xGp)/ 2,

and so we only have to show that every representation of w, extends to a representation of
Gy, but this is obvious.

REMARK 5.7. (a) The identity component of Gy is reductive if and only if the identity
component of G is reductive; if G¢ is connected, so also is G, but the converse statement is
false (e.g., Go = 2, G = Gp).

(b) It is possible to reconstruct (C,w, T') from (Cop, &) — the following diagram makes
it clear how to reconstruct (G, w,t) from (G, ¢):

1 s Gm —2> Gy 1
L |
1 Go G — > Gpm 1.

PROPOSITION 5.8. LetT = (C,w, T) be a Tate triple over k with C algebraic. There exists
a Tannakian category Co over k, an element ¢ in Aut® (idc,) with ¢2 = 1, and a functor

Q:C — Co having the properties @)PEI

PROOF. For any fibre functor @ on C with values in a k-algebra R, Isom(R,w(T)), re-
garded as a sheaf on Spec R, is a torsor for (g,,. This association gives rise to a morphism
of gerbs

FIB(C) 5N TORS(G,),

and we define Gy to be the gerb of liftings of the canonical section of TORS(Gy,), i.e., Gg is
the gerb of pairs (w, &) where w is a fibre functor on C and £ is an isomorphism # (w) — G,
(Giraud| 1971} TV, 3.2.1). Let C¢ be the category Repy (Go) which (see 3.14) is Tannakian.
If Z = Aut®(idc) and Zo = Aut®(idg, ), then the homomorphism

aar:Z — Au(T) = Gy,

determined by ¢ has kernel Z, and the composite t ow = —2. We let e = w(—1) € Zy.
There is an obvious (restriction) functor Q:C — Cg. In showing that Q has the prop-

erties (5.6), we can make a finite field extension k — k’. We can therefore assume that T is

neutral, but this case is covered by (5.5)) and (5.6). O

19The Tannakian category Cq is the quotient of C by the subcategory generated by T (see Milne, J. S.,
Quotients of Tannakian categories. Theory Appl. Categ. 18 (2007), No. 21, 654-664).
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EXAMPLE 5.9. Let (V,w,T) be the Tate triple defined in (5.3); then (Vo,¢) is the pair
defined in the paragraph preceding (4.29).

EXAMPLE 5.10. Let T = (C,w,T) be a Tate triple over R, and let w be a fibre functor
on T with values in C. On combining with (5.5) we find that (T, w) corresponds to a
quintuple (G,o,c,w,t) in which
(a) G is an algebraic group scheme over C;
(b) (o,c¢) satisfies (4.2.1);
(¢) w:Gy, — G is a central homomorphism; that the grading is defined over R means
that w is defined over R, i.e., o (w(g)) = w(g);
(d) t:G — Gy, is such that  ow = —2; that T is defined over R means that ¢(0(g)) =
t(g) and there exists an a € G,,(C) such that #(¢) = o (a) -a.

Let Gy = Ker(¢), and let m € G(C) be such that #(m) = a~!. After replacing (o,c) with
(0 cad(m),o(m) - c-m) we find that the new c is in Gg. The pair (Co,®|Cq) corresponds
to (Go,0|Go,¢).

REMARK 5.11. (a) The functor w — w|Cp defines an equivalence from the gerb of fibre
functors on the Tate triple T to the gerb of fibre functors on Cy.

(b) As in the neutral case, T can be reconstructed from (Cy, ). This can be proved by
substituting bands for group schemes in the argument used in the neutral case (Saavedra Ri-
vano|[1972] V, 3.14.1), or by using descent theory to deduce it from the neutral case.

There is a stronger result: T — (Cop, ¢) defines an equivalence between the 2-category
of Tate triples and that of Z/27Z-graded Tannakian categories (ibid. V, 3.1.4).

Graded polarizations

For the remainder of this section, T = (C, w, T') will be a Tate triple over R with C algebraic.
We use the notations of §4; in particular C' = C(c). Let U be an invertible object of C’ that
is defined over R, i.e., U is endowed with an identification U ~ U'; then in the definitions
and results of §4 concerning sesquilinear forms and Weil forms, it is possible to replace 1
with U.

DEFINITION 5.12. For each object X € ob(C’) that is homogeneous of degree n, let 7 (X)
be an equivalence class of Weil forms X ® X — 1(—n) of parity (—1)"; we say that 7 is a
(graded) polarization on T if
(a) forall X, ¢ € m(X) whenever ¢ € 7(X);
(b) forall X and Y that are homogeneous of the same degree, ¢ & € 7(X & Y) when-
ever p € m(X) and ¢ € n(Y);
(c¢) for all homogeneous X and Y, ¢ ® ¢ € n(X ® Y) whenever ¢ € n(X) and ¢ €
n(Y);
(d) themap T ® T — T®2 = 1(2), defined by T ~ T, is in 7(T).

PROPOSITION 5.13. Let (Cy, ¢) be the pair associated with T by (5.8)). There is a canonical
bijection
Q:Pol(T) — Pol:(Cyp)

from the set of polarizations on T to the set of polarizations on Cg of parity ¢.
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PROOF. For any X € ob(C’) that is homogeneous of degree n, (5.6b) and (5.6¢) give an
isomorphism .
O:Hom(X ® X,1(—n)) - Hom(Q(X) ® O(X),1).

We define Qr to be the polarization such that, for any homogeneous X,
On(QX) ={0¢ | ¢ € n(X)}.
It is clear that 7 +— Qu is a bijection. O

COROLLARY 5.14. The Tate triple T is polarizable if and only if Co has a polarization &
with parity s(rr) = & (mod Zy(R)?).

PROOF. See (.20k) 0

COROLLARY 5.15. For each z € ,Zy(R) and polarization 7 on T, there is a polarization
zmw on T defined by the condition

o(x,y)ezn(X) <= ¢(x,zy) € n(X).
The map

(z,m) > zm:2Zo(R) x Pol(T) — Pol(T)
makes Pol(T) into a pseudo-torsor for , Zy(R).

PROOEF. See (4.20(). 0

THEOREM 5.16. Let & be a polarization on T, and let w be a fibre functor on C’ with
values in C. Let (G,w,t) correspond to (T(c),w). For any real form K of G such that
Ko = Ker(¢) is compact, the pair (0g,c) where ¢ = w(—1) satisfies (4.2.1), and w defines
an equivalence between T and the Tate triple defined by (G,ok,e,w,t). For any simple X
inC/,

(@) | ¢ € x(X)}

is the set of Kq-invariant positive-definite Hermitian forms on w(X).

PROOF. See (.16). 0
REMARK 5.17. From (4.17) one can deduce the following: a triple (B, w,?), where B is
an affine algebraic band over R and # o w = —2, bounds a polarizable Tate triple if and

only if By = Ker(t: B — G,,) is the band defined by a compact real algebraic group; when
this condition holds, the polarizable Tate triple banded by (B, w, ) is unique up to a tensor
equivalence preserving the action of B and the polarization, and the equivalence is unique

up to isomorphism. The Tate triple is neutral if and only if & “ w(—1) € Zo(R)2.

Let (G, w,t) be a triple as in defined over R, and let Go = Ker(¢) and ¢ = w(—1).
A Hodge element C € Go(R) is said to be a Hodge element for (G,w,t) if C* =¢. A G-
invariant sesquilinear form ¥: V' x V — 1(—n) on a homogeneous complex representation
V of G of degree n is said to be a C-polarization if

¥ (x,») EY(x,Cy)

is a positive-definite Hermitian form on V. When C is a Hodge element for (G, w,t) there
is a polarization ¢ on the Tate triple defined by (G, w,t) for which the positive forms are
exactly the C-polarizations.
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PROPOSITION 5.18. Every polarization on the Tate triple defined by (G,w,t) is of the
form ¢ for some Hodge element C.

PROOF. See (4.22)) and (4.23). 0

PROPOSITION 5.19. Assume that w(—1) = 1. Then there is a unique (up to isomor-
phism) fibre functor w on T with values in R transforming positive bilinear forms for
into positive-definite symmetric bilinear forms.

PROOF. See {.27). O

PROPOSITION 5.20. Let (V,w,T) be the Tate triple defined in (5.3), and let 7., be the
polarization on V such that, if (V,a) € ob(V) is homogeneous, then w(V,a) comprises the
(—=1)deY _symmetric positive-definite forms on V. If w(—1) # 1 for T and 7 is a polariza-
tion on T, then there exists a unique (up to isomorphism) exact faithful functor w:C — V
preserving the Tate-triple structure and carrying v into mcay.

PROOF. Combine (4.29) and (5.9). 0

EXAMPLE 5.21. Let T be the Tate triple (Hodg, w,R(1)) defined in (5.2). A polarization
on a real Hodge structure V' of weight # is a bilinear form ¢: V' x V' — R(—n) such that the
real-valued form (x, y) — (27i)"¢(x,Cy), where C denotes the element i € S(R) = C*
is positive-definite and symmetric. These polarizations are the positive (bilinear) forms
for a polarization 7 on the Tate triple T. The functor w:Hodr — V provided by the last
proposition is V i (V ® C,v — Cv). (Note that (Hodg,w,R(1)) is not quite the Tate
triple associated, as in (5.4), with (S, w, ) because we have chosen a different Tate object;
this difference explains the occurrence of (2777)” in the above formula; 7 is essentially the
polarization defined by the canonical Hodge element C'.)

Filtered Tannakian categories

For this topic, we refer the reader toSaavedra Rivano|[1972, 1V, 2.

6. Motives for absolute Hodge cycles

Throughout this section, k will denote a field of characteristic zero with algebraic closure k
and Galois group I" = Gal(k / k). All varieties will be projective and smooth, and, for X a
variety (or motive) over k, X denotes X ®y k. We shall freely use the notations of Deligne
1982, For example, if k = C, then Hg(X) denotes the graded vector space @ H. 5(X).

Complements on absolute Hodge cycles

For X a variety over k, C AI:H (X) denotes the Q-vector space of absolute Hodge cycles on
X (see|Deligne|[1982, §2). When X has pure dimension n, we write

Mor?(X,Y) = CLiP(X xY).
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Then

MorRy(X,Y) C H*"12P(X xY)(p+n)

= & HXH X)(p+n)
r+s=2n+2p

= @ H X)"®H*(Y)(p)
s=r+2p
= @Hom(H" (X), H" 2P (Y)(p)).

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

PROPOSITION 6.1. An element f ofMorﬁH(X, Y) gives rise to
(a) for each prime £, a homomorphism fy: Hy(X) — Hy(Y)( p) of graded vector spaces
(meaning that fy is a family of homomorphisms f]: Hj (X) — HZ+2P(Y)(p));
(b) a homomorphism far: Hir(X) — Hgr(Y)(p) of graded vector spaces;
(¢) for each o:k — C, a homomorphism fs: Hs(X) — Hys(Y)(p) of graded vector
spaces.
These maps satisfy the following conditions
(d) forally € I' and primes £, yfy = fy;
(e) far is compatible with the Hodge filtrations on each homogeneous factor;
(f) for each o:k — C, the maps fy, f¢, and fqr correspond under the comparison iso-
morphisms (§1).
Conversely, when k is embeddable in C, a family of maps f;, far as in (a), (b) arises
froman f € MorﬁH(X, Y)if
o (fy) and fqr satisfy (d) and (e) respectively, and
o for every a:k — C, there exists an f, such that ( fy), fqr, and fo satisfy condition

@.

Moreover, f is unique.

2n—r

Similarly, a ¥ € Ci7;" (X x X)) gives rise to pairings

VS HS(X)x H? 75(X) — Q(—r).

PROPOSITION 6.2. On every variety X there exists a { € ngimx_’ (X x X) such that,

forevery o:k — C,
Vo HJ(X,R)x H (X,R) —» R(-r)

is a polarization of real Hodge structures (in the sense of[3.21).

PROOF. Let n = dim X. Choose a projective embedding of X, and let L be a hyperplane
section of X. Let £ be the class of L in H?(X)(1), and write £ also for the map H(X) —
H(X)(1) sending a class to its cup-product with £. Assume that X is connected, and define
the primitive cohomology of X by

H" (X)prim = Ker(@" "1 H(X) — H* 7" P2(X)(n—r +1)).
The hard Lefschetz theorem states that

T HT(X) > HP (X )(n—r)
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is an isomorphism for r < n; it implies that

H'X)= @ CH X)) (=$)pim

s>r—n,s>0

Thus, every x € H" (X ) can be written uniquely x = Y £* (xy) with x; € H"~2$ (X)(—$)prim -
Define
*y — Z(_1)(r—2s)(r—2s+1)/2£n—r+sxs c H2n—r (X)(n _ }’).

Then x — *x: H"(X) — H?"7"(X)(n —r) is a well-defined map for each of the three
cohomology theories, £-adic, de Rham, and Betti. Proposition shows that it is defined
by an absolute Hodge cycle (rather, the map H(X) — H(X)(n —r) thatis x + *x on H"
and zero elsewhere is so defined). We take ¥" to be

H"(X)® H"(X) N H (X)QH* "(X)(n—r)— H*(X)(n—r) X Q(—r).

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear rela-
tions (see [Wells||1980, 5.3) show that it defines a polarization on the real Hodge structure
H](X,R) foreach o:k — C. a)

PROPOSITION 6.3. For any u € Mor,;(Y,X), there exists a unique u’ € Mor%,(X,Y)
such that

Yx(uy.x) =yy(y.u'x), xeH (X), yeH'(Y)

where ¥y and Yy are the forms defined in (6.2); moreover,

Tr(uou’) = Tr(u' ou) € Q
Tr(uou’) >0 ifu #0.

PROOF. The first part is obvious, and the last assertion follows from the fact that the Yy x
and Yy are positive forms for a polarization in Hodp (the Tannakian category of real Hodge
structures). o

Note that the proposition show that MorgH(X , X) is a semisimple Q-algebra (see .

Construction of the category of motives

Let Vi be the category of (smooth projective, not necessarily connected) varieties over
k. The category CVj is defined to have as objects symbols 4(X), one for each object
X € ob(Vy), and as morphisms

Hom(h(X),h(Y)) = Mor%,(X.Y).

There is a map
Hom(Y, X) - Hom(h(X),h(Y))

sending a homomorphism to the cohomology class of its graph which makes % into a con-
travariant functor Vi — CV.

Clearly CVy is a Q-linear category, and A(X UY) = h(X) ® h(Y). There is a Q-linear
tensor structure on CVj, for which

o hX)®h(Y)=h(XxY),
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o the associativity constraint is induced by (X xY)x Z — X x (Y x Z),
¢ the commutativity constraint is induced by ¥ x X — X x Y, and
¢ the identity object is /(point).
The false category of effective (or positive) motives I\./I]'C1r is defined to be the pseudo-

abelian (Karoubian) envelope of CVy. Thus, an object of MI’; is a pair (M, p) with M € CVy,
and p an idempotent in End(M ), and

Hom((M. p).(N.q)) ={f:M —> N | fop=qo f/~} (6.3.1)
where f ~0if fop=0=gqo f. Therule
M.p)®(N.q) =(M N, p®q)

defines a Q-linear tensor structure on M;", and M > (M,id):CVy — I\'/I]'c|r is a fully faithful
functor which we use to identify CVj; with a subcategory of I\'/I,':. With this identification,

(M, p) becomes the image of p: M — M. The category M,’; is pseudo-abelian: any de-
composition of ids into a sum of pairwise orthogonal idempotents

idy = e1+-+ em
corresponds to a decomposition
M=M&-- &My

with e;|M; =1idy;. The functor CVy — l\'/I]Jcr is universal for functors from CVy to pseudo-
abelian categories.

For any X € ob(V}), the projection maps p”: H(X) — H’(X) define an element of
MorgH(X ,X) =End(h(X)). Corresponding to the decomposition

idpx) = po +p1 +p2 4
there is a decompostion (in I\'/I,'C")
h(X)=h’(X)+h"(X) +h>(X)+ -

This grading of objects of CVj, extends in an obvious way to objects of M}, and the Kiinneth
formulas show that these gradings are compatible with tensor products (and therefore satisfy
B.Th.

Let L be the Lefschetz motive 42 (P!). With the notations of Deligne|1982, §1, H(L) =
Q(-1), whence it follows that

Hom(M,N) > Hom(M @ L,N ® L)

for any effective motives M and N. This means that V' ~» V ® L is a fully faithful functor
and allows us to invert L.

DEFINITION 6.4. The false category M. of motives is defined as follows:
(a) an object of My, is a pair (M,m) with M e ob(l\./llj) and m € Z;
(b) Hom((M,m),(N,n)) = Hom(M Q L™ N ® L"), r > m,n (for different r,
these groups are canonically isomorphic);
(c) composition of morphisms is induced by that in M,j.



6 MOTIVES FOR ABSOLUTE HODGE CYCLES 57

This category of motives is (Q-linear and pseudo-abelian and has a tensor structure
(M,m)® (N,n)=(M QN,m+n)

and grading .
(M,m)" =M"—=™,

We identify IVI,': with a subcategory of My, by means to M ~~ (M,0). The Tate motive T is
L~! = (1,1). We abbreviate M ® T®™ = (M,m) by M(m).

We shall see shortly that My, is a rigid abelian tensor category, and End(1) = Q. It is not
however a Tannakian category because, for X € ob(Vy), rank(%(X)) is the Euler-Poincaré
characteristic, Y (—1)"dim H" (X), of X, which is not necessarily positive. To remedy this
we modify the commutativity constraint as follows: let

VMON >NQM, v =&y™, ¥y M QN°—>NQ@M"
be the commutativity constraint on M ; define a new commutativity constraint by
VMON >NOM, v =ay™, ¢~ =1y, (6.4.1)
Then Mg, with v/ replaced by ¥, is the true category My, of motives.

PROPOSITION 6.5. The category My, is a semisimple Tannakian category over Q.

PROOF. As we observed above, Proposition [6.3] implies that the endomorphism rings of
the objects of M, are semisimple. Because they are also finite dimensional over (Q, we may
apply the next lemmaEG] u]

LEMMA 6.6. Let C be a Q-linear pseudo-abelian category such that, for all objects X,Y,
Hom(X,Y) is finite dimensional and End(X) is semisimple. Then C is semisimple (and
hence every additive functor from C to an abelian category is exact).

PrROOF. This is Lemma 2 of Jannsen||1992| o

The following theorem summarizes what we have (essentially) proved about M.

THEOREM 6.7. (a) Let w be the grading on My ; then (My,w, T) is a Tate triple over Q.
(b) There is a contravariant functor h:V; — My; every effective motive is the image
(h(X), p) of an idempotent p € End(h(X)) for some X € 0b(Vy); every motive is of the
form M (n) for some effective M and some n € Z.
(c) For all varieties X,Y with X of pure dimension m,

CHFS™ (X x Y) = Hom(h(X)(r).h(Y )(s5));

in particular,
Cl(X xY) = Hom(h(X). h(Y)):;

20The original followed Saavedra 1972 in deducing Proposition 6.5 from the following statement:

Let C be a Q-linear pseudo-abelian category, and let w:C — Vecg be a faithful Q-linear
functor. If every indecomposable object of C is simple, then C is a semisimple abelian category
and w is exact.

As Jannsen (1992, p451) points out, this statement is false.
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morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties by
means of (6.3.1) and (6.4b).

(d) The constraints on My, have an obvious definition, except that the obvious commu-
tativity constraint has to be modified by (6.4.1).

(e) For varieties X and Y,

RXUY) =h(X)&®h(Y)
h(X xY) = h(X)®h(Y)
h(X)Y = h(X)(m) if X is of pure dimension n.

(f) The fibre functors Hy, Hgr, and H, define fibre functors on My ; these fibre functors
define morphisms of Tate triples My — Ty, Tar, Tp (see[5.2b); in particular, H(T) = Q(1).
(g) When k is embeddable in C, Hom(M, N) is the vector space of families of maps

fe:H, (M) — Hy(N)
deIHdR(M) —> HdR(N)

such that fyr preserves the Hodge filtration, y f; = fy forall y € I', and for every o:k — C
there exists a map fo: Hy(M) — Hy(N) agreeing with f; and f4r under the comparison
isomorphisms.

(h) The category My, is semisimple.

(i) There exists a polarization on My, for which 7(h" (X)) consists of the forms defined

in (6.2).

Some calculations

According to (6.7), to define a map M — N of motives it suffices to give a procedure
for defining a map of cohomology groups H(M) — H(N) that works (compatibly) for all
three theories: Betti, de Rham, and £-adic. The map will be an isomorphism if its realization
in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group algebra Q[G] acts on /4(X), and
we define 71(X)Y to be the motive (h(X), p) with p equal to the idempotent

deGg
(G:1) -~

Note that H(h(X)%) = H(X)C in each of the standard cohomology theories.

PROPOSITION 6.8. Assume that the finite group G acts freely on X, so that X /G is also
smooth; then h(X/G) = h(X)C.

PROOF. Since cohomology is functorial, there exists a map H(X/G) — H(X) whose im-
age lies in H(X)% = H(h(X)). The Hochschild-Serre spectral sequence

H"(G,H*(X))= H""(X/G)

shows that the map H(X/G) — H(X)© is an isomorphism for, say, the £-adic cohomology,
because H"(G,V) =0, r > 0, if V is a vector space over a field of characteristic zero. o
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REMARK 6.9. More generally, if f:Y — X is a map of finite (generic) degree n between
connected varieties of the same dimension, then the composite

H(X) j: H(Y) éﬁ H(X)
is multiplication by #n; there therefore exist maps
h(X)— h(Y)— h(X)
with composite 7, and /(X)) is a direct summand of 2(Y).

PROPOSITION 6.10. Let E be a vector bundle of rank m + 1 over a variety X, and let
p:P(E) — X be the associated projective bundle; then

h(P(E)) =h(X)Ph(X)(-1) B - D h(X)(—m).

PROOF. Let y be the class in H2(P(E))(1) of the canonical line bundle on P(E), and let
p*:H(X) — H(P(E)) be the map induced by p. The map

(COverercm) = 3P ()Y H(X) @@ H(X)(—m) — H(P(E))
has the requisite properties. O

PROPOSITION 6.11. LetY be a smooth closed subvariety of codimension ¢ in the variety
X, and let X' be the variety obtained from X by blowing up Y ; then there is an exact

sequence
0— h(Y)(—c) > h(X)Dh(Y')(=1) = h(X)—0

where Y’ is the inverse image of Y .

PROOF. From the Gysin sequences

o —— H"72X)(~c) —— H'(X) —— H"'(X\Y) —— ...

! | |

o —— H™2Y)(~1) —— H"(X!) —— H'(X'\Y) —— ...

we obtain a long exact sequence
e HIT2(Y ) (=) > H(X) @ H'2(Y)(=1) > H'(X) = -+

But Y is a projective bundle over Y, and so H”~2¢(Y)(—c) — H"~2(Y’)(—1) is injective.
Therefore, there are exact sequences

0— H 2°(Y)(—c) > H (X)® H 2(Y')(-1) > H"(X') = 0,
which can be rewritten as
0—> HY)(—c)> HX)®HY')(-1) > H(X')—0

We have constructed a sequence of motives, which is exact because the cohomology func-
tors are faithful and exact. o
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COROLLARY 6.12. With the notations of the proposition,

c—1

hX)=h(X)® G_Blh(Y)(—r).

c—1
PROOEF. Proposition 6.10[shows that 2(Y') = € h(Y)(r). o

r=1

PROPOSITION 6.13. If X is an abelian variety, then h(X) = A\ (h'(X)).

PROOF. Cup-product defines amap A (H (X)) — H(X) which, for the Betti cohomology,
say, is known to be an isomorphism. (See Mumford||1970, I.1.) O

PROPOSITION 6.14. If X is a curve with Jacobian J, then
hX)=1&h'(J)DL.

PROOF. The map X — J (well-defined up to translation) defines an isomorphism H!(J) —
H'(X). 0

PROPOSITION 6.15. Let X be a unirational variety of dimension d < 3 over an alge-
braically closed field; then

d=1) h(X)=1&L;
(d=2) h(X)=1&rL&L?, somer eN;
d=3) h(X)=18rL&h'(A)(-1)@®rL?>@® L3, somer €N,

where A is an abelian variety.

PROOF. We prove the proposition only for d = 3. According to the resolution theorem of
Abhyankar|[1966| there exist maps

PP xS x
with v surjective of finite degree and u a composite of blowing-ups. We know
hPH=10LaL’aL?

(special case of (6.10)). When a point is blown up, a motive L & L? is added, and when a
curve Y is blown up, a motive L @ h'(Y)(—1) @ L? is added. Therefore,

WX~ 1®sLeM(-1)dsL?>@ L3>

where M is a sum of motives of the form h!1(Y), Y a curve. A direct summand of such
an M is of the form h'(A) for A an abelian variety (see below). As h(X) is a direct
summand of 2(X") (see and Poincaré duality shows that the multiples of L? and L3
occurring in (X)) are the same as those of L and 1 respectively, the proof is complete. o
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PROPOSITION 6.16. Let X]; denote the Fermat hypersurface of dimension n and degree
d:
T¢+TE+-+ T8 =0.

Then,
R"(X™) @ dh™(P") = B (X171 x X))*d @ (d — A" 2(X"72)(=1)

where (4, the group of d th roots of 1, acts on X!~! x X} according to

PROOF. See|Shioda and Katsura/1979, 2.5. o

Artin Motives

Let Vg be the category of zero-dimensional varieties over k, and let CV,% be the image of
Vg in Mg. The Tannakian subcategory Mg of My generated by the objects of CV,OC is called
the category of (Emil) Artin motives.

For any X in ob(Vg), X (IE) is a finite set on which I" acts continuously. Thus, QX)
is a finite-dimensional continuous representation of /°. When we regard I, in an obvious

way, as a (constant, pro-finite) affine group scheme over k, QX k) ¢ Repg(I). For X, Y €
ob(VY),

Hom(h(X),h(Y)) = CRu(X xY)
_ (QX(k)xY(k))F
— Hom (QX(IE)’ @m;)) _
Thus, )
h(X) ~ QX®):CV — Repg (1)

is fully faithful, and Grothendieck’s formulation of Galois theory shows that it is essentially
surjective. Therefore, CV2 is abelian and Mg = CV,%. We have shown:

PROPOSITION 6.17. The category of Artin motives Mg = CV,%. The functor h(X) ~
QX defines an equivalence of tensor categories Mg 5 Repg(I7).

REMARK 6.18. Let M be an Artin motive, and regard M as an object of Repg (/). Then

Hy(M) = M (underlying vector space) for any o:k — C;
HM)=M ®q Qy, as a I'-module;
Hg(M) = (M ®gk)".

Note that, if M = h(X) where X = Spec(A), then
Hr(M) = (Q*® @ok) = (4@ k)l = A.

REMARK 6.19. The proposition shows that Mg is equivalent to the category of sheaves of
finite-dimensional Q-vector spaces on the étale site Spec(k)e.
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Effective motives of degree 1

A Q-rational Hodge structure is a finite-dimensional vector space V over Q together with
areal Hodge structure on V' ® R whose weight decomposition is defined over Q. Let Hodg
be the category of Q-rational Hodge structures. A polarization on an object V' of Hodg is
a bilinear pairing ¥: V ® V' — Q(—n) such that ¥ ® R is a polarization on the real Hodge
structure V Q@ R.

Let Isaby be the category of abelian varieties up to isogeny over k. The following
theorem summarizes part of the theory of abelian varieties.

THEOREM 6.20 (RIEMANN). The functor Hé :Isabc — Hodg is fully faithful; the essen-
tial image consists of polarizable Hodge structures of weight 1.

Let M,'C'r1 be the pseudo-abelian subcategory of My generated by motives of the form

h'(X) for X a geometrically connected curve; according to li M;{“l can also be de-
scribed as the category generated by motives of the form 21 (J) for J a Jacobian.

PROPOSITION 6.21. (a) The functor h':lsaby — My factors through M;{rl and defines an
equivalence of categories,
Isaby, — M

(b) The functor H1: M(EL 1 Hodg is fully faithful; its essential image consists of po-
larizable Hodge structures of weight 1.

PROOF. Every object of Isaby is a direct summand of a Jacobian, which shows that 4!
factors through M]'(H. Assume, for simplicity, that k is algebraically closed. Then, for any
A, B € ob(Isaby),

Hom(B, A) ¢ Hom(h'(A),h'(B)) C Hom(Hy(A), Hy (B)),

and (6.20) shows that Hom(B, A) = Hom(Hy(A), Hy(B)). Thus h! is fully faithful and
(as Isabg is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
(16.20). O

The motivic Galois group

Let k be a field that is embeddable in C. For any o:k < C, we define G(0) = Aut® (H,).
Thus, G(0) is an affine group scheme over QQ, and H, defines an equivalence of categories
My = Repg(G(0)). Because G (o) plays the same role for My as I' = Gal(k / k) plays for
M?, it is called the motivic Galois group.

PROPOSITION 6.22. @(a) The group G (o) is a pro-reductive (not necessarily connected)
affine group scheme over Q, and it is connected if k is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Let k C k' be algebraically closed fields, let 6’:k" < C, and let 0 = o’|k. The
homomorphism G(¢’) — G(0) induced by My — My is faithfully flat.

2lp the original, the hypothesis in (a) and (b) that all Hodge cycles are absolutely Hodge (for the
varieties concerned) was omitted. In (b) it was claimed that if k has infinite transcendence degree over Q, then
G(o’') — G(0) is an isomorphism. This is obviously false — the motive defined by an elliptic curve E over k'
will arise from a motive over k if and only if j(E) € k.
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PROOF. (a) Let X € ob(M), and let Cx be the abelian tensor subcategory of My, generated
by X, XV, T,and TV. Let Gx = Aut® (H;|Cx). As Cy is semisimple (see ), Gy is
a reductive group (2.23)), and so G = lim Gy is pro-reductive. If k is algebraically closed
and all Hodge cycles are absolutely Hodge, then (cf. 3.4) Gx is the smallest subgroup of
Aut(Hy (X)) x Gy, such that (Gy)c contains the image of the homomorphism w: Gy,c —
Aut(Hg (X, C)) x Gy defined by the Hodge structure on Hy(X). As Im(u) is connected,
so alsois Gy.

(b) According to (2.9), Mg — My is fully faithful, and so (2.29) shows that G(¢”) —
G (o) is faithfully flat. O

Now let k be arbitrary, and fix an embedding o: k < C. The inclusion Mg — My, defines
a homomorphism 7:G(c) — I' because I" = Aut® (HG|M2) (see , and the functor

My — Mg defines a homomorphism i: G°(0) — G (o) where G°(0) a Aut®(H, IM).

PROPOSITION 6.23. (a) The sequence

15 G%0) 5 Go) 5T -1

is exact.

(b) If all Hodge cycles are absolutely Hodge, then the identity component of G(0) is
G°(0).

(c)Foranyt e I', (1) = Hom® (Hg, Hy1), regarding Hy; and H as functors on
M;.

(d) For any prime £, there is a canonical continuous homomorphism spg: I — G(0)(Qy)
such that w ospy = id.

PROOF. (a) As My — My is fully faithful, 7 is surjective (2.29). To show that i is injective,
it suffices to show that every motive 21(X), X € Vg, is a subquotient of a motive h(X")
for some X’ € Vi ; but X has a model X over a finite extension k’ of k, and we can take
X" =Resy//x Xo. The exactness at G(0) is a special case of (c).

(b) This is an immediate consequence of (6.22h) and (a).

(c) Let M, N € ob(M). Then Hom(M,N) € ob(Repg(17)), and so we can regard it as
an Artin motive over k. There is a canonical map of motives Hom(M , N) — Hom(M, N)
giving rise to

Hy(Hom(M,N)) = Hom(M,N) Ao Hom(Hy (M), Hy(N)) = Hy(Hom(M, N))

Let T € I'; then ) _
Ho(M)=H;(M)=H;;(M)=Hsc(M)

and, for f € Hom(M,N), Hy (1) = Ho (2 f).
Let g € G(R); forany f: M — N in Mg, there is a commutative diagram

Hy(M,R) =25 Hy(M,R)
lHa(f) ch,(f)
Hy(N,R) -2 Hy (N, R).
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Let T = 7(g), so that g acts on Hom(M, N) C Hom(M, N) as t. Then, forany f:M — N
in Mz
k

Hy(M,R) s H,(M,R) ——— H.s(M,R)
lHa ) lHU 1 ) lﬂwm
Ho(N,R) -2 H,(N,R) ——— H.;s(N.R).

commutes. The diagram shows that gas: Hy (M, R) — Hs (M, R) depends only on M
as an object of M;. We observed in the proof of (a) above that Mz is generated by mo-
tives of the form M, M € M. Thus g defines an element of Hom® (H,, Hy5)(R), where
Hy and Hys are to be regarded as functors on M. We have defined a map () =
Hom®(H,, H.o), and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical element of Hom® (H;(c M), Hy(toM)) de-
pending functorially on M € Mz. Extend 7 to an automorphism 7 of C. For any variety

X over k, there is a T~ !-linear isomorphism 0 X < toX which induces an isomorphism
:Hy(0X) > Hy(t0X). 0

The “espoir” (Deligne||[1979, 0.10) that every Hodge cycle is absolutely Hodge has a
particularly elegant formulation in terms of motives.

CONJECTURE 6.24. For any algebraically closed field k and embedding o:k — C, the
functor Hy: My — Hodg is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for the
essential image of Hy.

Motives of abelian varieties

Let M7” be the Tannakian subcategory of My generated by motives of abelian varieties and
Artin motives. The main theorem, 2.11, of |Deligne||1982 has the following restatement.

THEOREM 6.25. For any algebraically closed field k and embedding o:k — C, the functor
Hg:M" — Hodg is fully faithful.

Therefore, for an algebraically closed k, the group G* (o) attached to MY and 0k < C
is a connected pro-reductive group (see[6.22)), and, for an arbitrary k, the sequence

1->GY0)—>G"0o)—>T —1
is exact (see|6.23) (here G*(0)° is the identity component of G*'(0)).

PROPOSITION 6.26. The motive h(X) € ob(MY") if

(a) X is acurve;

(b) X is a unirational variety of dimension < 3;
(c) X is a Fermat hypersurface;

(d) X is a K3-surface.

Before proving this, we note the following consequence.

COROLLARY 6.27. Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (c), and (d) is absolutely Hodge.
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PROOF (OF[6.26]). Cases (a) and (b) follow immediately from and (6.13)), and (c)
follows by induction (on 7) from (6.16). In fact, one does not need the full strength of
(6.16). There is a rational map

X, x Xj---o-oomoeieoo > XIS
(X0 1. i Xp41), (Vo it i Ysp1) B (XOVs+1 o i XpYs+1:EXr 410 :-.. i EXr41)s)
where ¢ is a primitive 2mth root of 1. The map is not defined on the subvariety
Y:Xr+1 - ys+1 - O.

On blowing up X, X X along the nonsingular centre Y, one obtains maps

7,8
Z\,[ \
XIx X5 ----> X2+s.

By induction, we can assume that the motives of X, X5, and ¥ (= X! x X571) are in
M2Y. Corollary now shows that #(Z;*) € ob(M;") and that h(X+*) € ob(MYY).
For (d), we first note that the proposition is obvious if X is a Kummer surface, for then
X = A/(0) where A is an abelian variety A with its 16 points of order < 2 blown up and &
induces a — —a on A.
Next consider an arbitrary K3-surface X, and fix a projective embedding of X. Then

h(X) = h(]P)z) 2] hz(X)prim

and so it suffices to show that h2(X )prim 18 in Miv. We can assume & = C. It is known
(Kuga and Satake|[ 1967} Deligne|1972, 6.5) that there is a smooth connected variety S over
C and families

fiYy—=S
a:A—S

of polarized K3-surfaces and abelian varieties respectively parametrized by S having the

following properties:

(a) forsome 0 € S, Yo = f71(0) is X together with its given polarization;

(b) forsome 1 € §, Y; is a polarized Kummer surface;
(c) there is an inclusion u: R? S«Q(D)prim <> End(R'a.Q) compatible with the Hodge
filtrations.
The map ug: H}%(X ) (D) prim <= End(H 1(49,Q)) is therefore defined by a Hodge cycle, and
it remains to show that it is defined by an absolute Hodge cycle. But the initial remark shows
that u, being a Hodge cycle on a product of Kummer and abelian surfaces, is absolutely
Hodge, and Principle B (2.12 of |Deligne||{1982)) completes the proof. O
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Motives of abelian varieties of potential CM-type

An abelian variety A over k is said to be of potential CM-type if it becomes of CM-type
over an extension of k. Let A be such an abelian variety defined over QQ, and let MT(A) be
the Mumford-Tate group of Ac (Deligne|1982] §5). Since Ac is of CM-type, MT(A) is a
torus, and we let L. C C be a finite Galois extension of Q splitting MT(A) and such that all
the torsion points on A have coordinates in Lab Let MS’L be the Tannakian subcategory

of Mg generated by A, the Tate motive, and the Artin motives split by L, and let G4 be
the affine group scheme associated with this Tannakian category and the fibre functor Hg.

PROPOSITION 6.28. There is an exact sequence of affine group schemes
1 = MT(4) > G4 5 Gal(L™/Q) — 1.

PROOF. Let Mé be the image of MS’L in Mc; then MT(A) is the affine group scheme as-
sociated with Mé, and so the above sequence is a subsequence of the sequence in |= ).0

REMARK 6.29. If we identify MT(A) with a subgroup of Aut(Hy (A)), then (as in[6.23p)
771 (7) becomes identified with the MT(A)-torsor whose R-points, for any Q-algebra R,
are the R-linear homomorphisms a: H!(Ac, R) — H!'(tAc, R) such that a(s) = ts for
all (absolute) Hodge cycles on Ag. We can also identify MT(A) with a subgroup of
Aut(H 1B (A)) and then it becomes more natural to identify 7 ~!(r) with the torsor of R-
linear isomorphisms a¥: Hy(Ac, R) — Hi(tAc, R) preserving Hodge cycles.

On passing to the inverse limit over all A and L, we obtain an exact sequence

1—>8°— S —Gal(Q/Q) > 1

with S° and S respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles III, IV, and V of Deligne et al. 1982.

Appendix: Terminology from nonabelian cohomology

We review some definitions from Giraud|1971l

Fibred categories

Let o:F — A be a functor. For any object U of A, we write Fyy for the category whose
objects are those in F in F such that «(F) = U and whose morphisms are those f such
that &( ') = idy . For any morphism a:«(Fy) — a(F>), we write Hom, (Fy, F>) for the set
of f: F1 — F,suchthata(f)=a. Amorphism f: F; — F is said to be cartesian, and F
is said to be an inverse image a/( f)* F, of F, relative to a( f) if, for every F' € obFy(f))

22This condition was omitted in the original.
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and h € Homy,( ry(F’, F), there exists a unique g € Homjq(F’, Fy) such that f og = h:

F/
l
|
1 8
I
l

F—3F

a(F1) & a(F?).

DEFINITION. The functor «: F — A is a fibred category if
(a) (existence of inverse images) for every morphism a:V — U in A and F € ob(Fy),

an inverse image a* F of F exists;
(b) (transitivity of inverse images) the composite of two cartesian morphisms is cartesian.

In a fibred category, a* can be made into a functor Fy — Fy, and for any pair a,b of
composable morphisms in A, (aob)* = b* oa*.

Let o:F — A and o’:F’ — A be fibred categories over A. A functor f:F — F’ such that
o’ o B = « is said to be cartesian if it maps cartesian morphisms to cartesian morphisms (in
other words, it preserves inverse images).

Stacks (Champs)

Let Affg be the category of affine schemes over the scheme S = Spec R endowed with the
fpqc topology (that for which the coverings are finite surjective families of flat morphisms
Ui — U).

Let a:V — U be a faithfully flat morphism of affine S-schemes, and let F € ob(Fyp).
A descent datum on F relative to a is an isomorphism

¢: pI(F) = p3 (F)

satisfying the “cocycle” condition

Pékl (@) = P§2(¢) o Pikl (®)

where p1, p> are the projections V' xy V — V and the p;; are the projections V Xy
V xy V — V. With the obvious notion of morphism, the pairs (F,¢) form a category
Desc(V/U). There is a functor Fy — Desc(V/U) under which an object F' in Fyy maps
to (a* F,¢) with ¢ the canonical isomorphism

pi(@*F) >~ (aop1)*F =(aop2)*F >~ p5(a*F).

DEFINITION. A stack is a fibred category o: F — Affgs such that, for all faithfully flat mor-
phisms a:V — U in Affg, Fy — Desc(V/U) is an equivalence of categories.

Explicitly, this means the following:

(a) for each affine S-scheme U and objects F, G in Fy, the functor sending a:V — U
to the set Hom(a* F,a*G) is a sheaf on U (for the fpqc topology);
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(b) for every faithfully flat morphism V' — U of affine S-schemes, descent is effective
(that is, every descent datum for V' /U is isomorphic to the descent datum defined by
an object of Fp).

EXAMPLE. (a) Let a:MOD— Affg be the fibred category such that MODy is the cat-
egory of finitely presented I" (U, Oy )-modules. Descent theory shows that this is a
stack (Waterhouse|[1979| 17.2; Bourbaki, Algebre Commutative, I, 3.6).
(b) Let a:PrROJ— Affg be the fibred category such that PROJ; is the category of finitely
generated projective I" (U, Oy ). Descent theory again shows this to be a stack (ibid.).
(c) There is a stack AFF— Affg for which AFF7 = Affr.

Gerbes

DEFINITION. A gerbe over S is a stack G — Affg such that

(a) in each fibre Gy, every morphism is an isomorphism;

(b) there exists a faithfully flat map U — S such that Gy is nonempty;

(c) any two objects of a fibre Gy are locally isomorphic (their inverse images under some
faithfully flat map V' — U of affine S-schemes are isomorphic).

A morphism of gerbes over S is a cartesian functor, and an isomorphism of gerbes over
S is a cartesian functor that is an equivalence of categories. A gerb G— Affg is neutral if
Gg is nonempty.

EXAMPLE. Let F be a sheaf of groups on S (for the fpqc topology). The fibred category
TORS(F) — Affg for which TORS(F)y is the category of right F'-torsors on U is a neutral
gerbe. Conversely, let G be a neutral gerbe, and let Q € ob(Gg). If F = Aut(Q) is a sheaf
of commutative groups on S, then, for any a:U — S and P € ob(Gy), Isom(a*Q,a* P)
is an F'-torsor, and the functor

P ~~ Isomy (a*Q,a* P):G — TORS(F)

is an isomorphism of gerbes.

Bands (Liens)

Let F and G be sheaves of groups for the fpqc topology on S, and let G2 be the quotient
sheaf G/ Z where Z is the centre of G. The action of G* on G induces an action of G*
on the sheaf Isom(F, G), and we set

Isex(F,G) =T (S, G*\Isom(F, G)).
As G acts faithfully on Isom(F, G),
Isex(F,G) = li_r)nKer(Gad(T)\Isom(F|T, G|T) = GT xT)\Isom(F|(T xT),G|(T xT))

where the limit is over all T — S faithfully flat and affine.
A band B on S is defined by a triple (S’, G,¢) where S’ is an affine S-scheme, faith-
fully flat over S, G is a sheaf of groups on S’, and ¢ € Isex(p} G, p5G) is such that

P31(®) = p3() o pry(9).
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(As before, the p; and p;; are the various projection maps S” — S and S — S§”). If T
is also a faithfully flat affine S-scheme, and a: T — S’ is an S-morphism, then we do not
distinguish between the bands defined by (S’,G,¢) and (T,a*(G), (a x a)*(¢)). Let By
and B be the bands defined by (S’,G1,¢1) and (S’, G2, ¢>); an isomorphism B; — Bj is
an element ¥ € Isex(G1,G2) such that pJ(y¥) oy = ¢ 0 pT (V).

If G is a sheaf of groups on S, we write B(G) for the band defined by (S, G,id). One
shows that

Isom(B(G1), B(G2)) = Isex(G1, G2).

Thus, B(G) and B(G,) are isomorphic if and only if G, is an inner form of Gy, i.e.,
G, becomes isomorphic to G on some faithfully flat S-scheme 7', and the class of G, in
H(S,Aut(G)) comes from H(S, G?d). When G5 is commutative, then

Isom(B(G1), B(G2)) = Isex(G1,G3) = Isom(G1, G3),

and we usually do not distinguish B(G,) from G».

The centre Z(B) of the band B defined by (S’,G,¢) is defined by (S’,Z,¢|p; Z)
where Z is the centre of G. The above remark shows that ¢|p}Z lifts to an element
¢1 € Isom(pTZ, p5Z), and one checks immediately that p3, (¢1) = p3,(d1) o p3;(1).
Thus (S, Z,¢|p Z) arises from a sheaf of groups on S, which we identify with Z(B).

Let G be a gerb on Affg. By definition, there exists an object Q € Gg for some S’ — S
faithfully flat and affine. Let G = Aut(Q); it is a sheaf of groups on S’. Again, by defini-
tion, py Q and p3 Q are locally isomorphic on S”, and the locally-defined isomorphisms
determine an element ¢ € Isex(p} G, p5G). The triple (S’,G,¢) defines a band B which
is uniquely determined up to a unique isomorphism. This band B is called the band asso-
ciated with the gerb G, and G is said to be banded by B.

A band B is said to be affine (resp. algebraic) if it can be defined by a triple (S’, G, ¢)
with G an affine (resp. algebraic) group scheme over S’. A gerbe is said to be affine (resp.
algebraic) if it is bound by an affine (resp. algebraic) band.

Cohomology

Let B be a band on Affg. Two gerbes G; and Gy banded by B are said to be B-equivalent
if there exists an isomorphism m:G; — Gy with the following property: for some triple
(S’,G,¢) defining B, there is an object Q € G5 such that the automorphism

G =~ Aut(Q) ~ Aut(m(Q)) = G

defined by m is equal to id in Isex(G,G). The cohomology set H2(S, B) is defined to
be the set of B-equivalence classes of gerbes bound by B. If Z is the centre of B, then
H?(S,Z) is equal to the cohomology group of Z in the usual sense of the fpqc topology on
S, and either H?(S, B) is empty or H%(S, Z) acts simply transitively on it (Giraud|{1971,
IV, 3.3.3).

PROPOSITION. Let G be an affine algebraic gerb over the spectrum of a field, S = Speck.
There exists a finite field extension k" of k such that Gg/, S’ = Speck’, is nonempty.

PROOF. By assumption, the band B of G is defined by a triple (S’,G,¢) with G of finite
type over S’. Let S’ = Spec R’; R’ can be replaced by a finitely generated subalgebra, and
then by a quotient modulo a maximal ideal, and so we may suppose that S” = Speck’ where
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k' is a finite field extension of k. We shall show that the gerbs G and TORS(G) become B-
equivalent over some finite field extension of k’. The statement preceding the proposition
shows that we have to prove that an element of H?(S’,Z), Z the centre of B, is killed by
a finite field extension of k’. But this assertion is obvious for elements of H1(S’, Z) and is
easy to prove for elements of the Cech groups H' (S’,Z), and so the exact sequence

0—> H*(S'.Z)— H*(S'.Z) > H'(S". 1 (2))

completes the proof. See|Saavedra Rivanol|[1972], III, 3.1, for more details. o

Note (added July, 1981): It seems likely that the final question in (3.5) can be shown to
have a positive answer when k has characteristic zeroFE] In particular, this would show that
any rigid abelian tensor category C with End(1) = k having a fibre functor with values in
some extension of k is Tannakian provided that k is a field of characteristic zero.
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algebraic gerbe, [69]

algebraic group, [I8]

algebraic Tannakian category, [32]
associativity constraint, 4]
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bialgebra,
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cartesian, [67]

cartesian,, [66]
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coalgebra, [T§]
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compact algebraic group, 28|
compact real form, [41]

compatible, @ 38] 39]

descent datum, 34}
dual (of an object), [§]

effective motives, [56]
equivalence of tensor categories, [T1]
equivalent gerbes, [69]
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finite vector bundle, 29

freely generated, [I6]
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grading, 48]

hexagon axiom, [3]
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homogeneous polarization, 40} B]

identity object, [3]

inner,

inverse (of an object),[7]
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module, 33|

morphism of gerbes, [68]
morphism of Tate triples, 9]
multiplicative type, 28]

neutral, [49]

neutral gerb, [68]

neutral Tannakian category, [24]
nondegenerate,

parity, 37,39}

pentagon axiom, [4]
polarization, 43| 7] 52} [53]
polarization (graded), [51]
positive,
positive-definite, [47]
potential CM-type, [66]
primitive cohomology, [54]

rank, [10]

reflexive object, [9]

regular representation, [T§]
rigid (tensor category), 0]
rigid tensor subcategory, [13]

semi-stable vector bundle, 28] 29]
semilinear, 33|

sesquilinear form, [37]

stack, [67]

strictly full subcategory, 3]
subobject fixed by, [31]

symmetric, 0] 7]

symmetric polarization, 7]

Tannakian category, [32]
Tate object, 9]

Tate triple, 49

tensor category , [3]
tensor functor, [T0]
tensor subcategory, [13]
torsor, [29]

totally positive, [39]
trace morphism, [T0]
transporter, [21]

transpose,
true fundamental group, 29]

weight grading, 9]
Weil form, 38} 39
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