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GrroThendfecb’s theorem on Plicxis
Qur gool would be to review the general theory on generic
Picord numbers here.

Renoll that for any scheme X, its Pioard group is by olef the
group of isomorphism classes of - invertible shepues “on X. If
X is Smooth projective / R=k, Pic%X) is an abelion varety 4
the group Piel(X)/PicX) is a finitely generated abelion group
whose rank P(X) is called the Picord number.

let X — B be a Smooth projective ﬁmllg

Thm. ( Grrothendieck) . The ﬁnctor* Picxis is represented by o
countoble disjoint union of  projective Schemes.

Furthermore , Uo for‘ ony be B, H (. Ox) =0, then Picxs
is smooth ouver B.

For the proof. see [BLRI1 Néron Models , or Kleiman's notes,
or SGA 6.

As on immediate application of the thm, we hove o first result
on Picard numbers of  fomilies cf smooth surfaces of low degree
n P namely the\q aré  Constants:

Cor 1. Let ¥ —B be the family of smooth degree d surfbces
in [P* where <3, then the Picard ronk is a Constant.
Pf: b, H(Og) = HlWx) = H(Opc4+d)l%)" = 0. o



We con also explicitly compute P in these cases:

d=1. ¥ — B is a fomly of P°, p=1.
d=2, ¥ — B i8 a famly of IPxIP', p=2.
d=3. X — B an be computed or the Fermat surface:
Ko + Aot s + X5 =0
p= dimH" = dim Rz2+1 = 7 whee R denctes the degree 2
part of the Jacobian ning (to be defhed later.

Second, it jolows from this thm. that the image of ench
component of Picxs in B s Closed.

Assume we are now working over an- uncountable . algebnaicall

Closed fleld R, and X.B are varieties ouer k. Then the above
thm implies thot, i the imgge of a particular component of
Picwe in B is not B . then its o proper Closed Subset

B which is “of meoswe zero” in B. So thot these components
will not help contributing to the generic Praard rank.  Moreover,
by the some theorem, if we are only worried about the genenic
Peord ronk. we may safély remove all the comporents of * Picxe

which do not surject” onto B, 8ince there are ony courrta%
mony of them,

Now assume that the generc Picord ronk of the famdg X—8B
s . Then we may pick comporents Po, . Pps of Picxs

accounting for these rank numbers  (Po Stands for the  component
where Oxpay lies).



Cor. 2. If the generic Picosd rank is p. we can pick some
comporents Po. ", Pp- of Pioxs whose €1 in R¥(2)
Spon the generic NS groups. o

We will be interested in cetermining the gerenc Picord number p
for tre other families of sufaces in IP° of deg d=4, ond more
generally families of  surfaces in 3d weighted projective  spaces
This is a purely geometric quantity. We will resort to Hodge
theory, which tums  geometry into algebra that we can deal with
to Solue the problem.

IVHS of  hypersurfaces in "
We recoll the general theory of IVHS via the eg. of hyper-
surfaces in IP™ /€.

Reaall thor the jamily of smooth hypersutface in IP™of ceg d
X < IPTUP. Op0) x P

| n

B« P(I’IP, Op )

where
B=IP(I"IP,Op (d)))\(Smeu.lar locus A).

We Rnow that
(R (Z)=Nz . F°)
s a PVHS Qf WGt n, which leads to the global pericd map

B —B5 D : the period domain



Recap:  Period maps & IVHS
Note that guen F* a partial flag, we have
(o(p)eTpromc(FP,Wa:/FP) ST vp

P g = | o

PP e/ FP
By Griffiths transuersality. on infinitesimal VHS  lorois in
Poez Home (FF/F™ FP/E7)

For infinitesimal - PVHS, it must land in the ¥ - symmetric
elements of the aboue Subset

{\P- ngmefmlc c @pez HOmd: (FP/FP‘AI F‘P"/ }'_“P)
elements

Hence, we obtain, for ony be B . which represents a hypersurface
X:F=o0 in P™

o8 X5, Tam=H ™0 25 {b-gymmenc etts}
N

Dpez Home (HYOXH, HE(OQ0))
Lemma. | ¥ ©8€ HI(X,TX),
dpr(6) = p(Cup product with & : HYX Q) — H¥(X  Q%").

O

From now on, we will foms on surfaces in P*, and assume we
ore in the Quse of genenc ronk p se.



Bg the aor, we have C(Pe Ve and C(Phec! € Ve are (LN
closses | i.e. R ) . .
o=Y" cY¥ € FCF =\
\nﬂ"-l_l
H
Since these are flat sections of H"', YamiCPr®1y=0 | ie
they are inuaniant under parallel transport along any direction of

HXTX) . (e thus obtain:

Criterion 1. ( de Jong - Steenbrink)

K the generc Piaard ronk of the fomly of smooth surfoces in IP*
X >R

S p. then the map at any X:F=o:

HIX TR ® H'(X. Q)pim — H(X, ©5)

or equivalently;

H" (X, Qprim —> Hom (H(X.Tx), HA(X, )

hos at least p-1 dimensional (right) kemel. Here
H"'tx, @prim 2 H"'(XClpim NH (X, Q),

the rational space of LefSchetz (.11 closses .
The next lemma allows us to conuert every quantity into pure algebra.

Lemma 2 . (Grgﬁ%hs) let R be the Jocobion ring cf X, a@?ned bﬂ

oF
Q= @[XDJ"',XMJ/(%YFO, Y aXnﬂ)




Then R is a finite dimensional graded olgebra., and we hove
canenical  1Sormorphisms:
H'(X, TX) = Rad
HEX. Q%)prim = R gend- <2y (where peg=n.
The cup product above tronslates into multiplication in the olgebra:
Rq ® sz—(gma — sz—gd
Sketch of  progf.
The proof” uses the residue map assooated to ., we have
identifications  (for n=3»
H*°(X1= Rd-4 Q/F
{H”(X)pﬁm = Rag-4 Q/F°
Ho(X) = Rsd-+ Q/F°
where £ = A% A 0K A0X2AOKs .
That H'(X.TX) = Ra follows from the fact that
KS: TB=Sd — H'(X,TX)
hos a8 kemel Jd. o

Now qﬁer this aloebraic tronslation. there are two Woys cj shooomg
that the genenic Pleard number is |

Approach 1
Thm. (Mocouley). Let o, fon be @ regular sequence of degrees
Go. -, 0w 1eSp. N Cloo, Kl ONA R = Clo,~ Kan1/ (Jo, - frn) .
Then R 8 a ﬁm‘te dimengionol  groded  algebra. with top dagree
T=Sdi- and the multiplication :

Ra® Rv — Ras
'S non-degenerate  for ony atb<g



Approach 1.
Find one particular hypersurface where

Rd ® Rd-4 —» de-4

Then calulte for the simplest cse: Fermat sug"aoes. (n=2)

F=xde x@ex8+x8

o d=4 Raa= Ro: i-diml Ra= Rt =Re.

In general, use the Koszul nesolution @C R: (S= CILXo. X, X2, Xs1)
0 — S{4wd-ny —s 864{3cd—n}——> SeéfZCd—n}—> D0 S {(d—n}ﬁ: S—R—o

=> dmRn= dimSn -4 dim Sn-w-n + 6 diMmSn-ud- - 4 dimSn-3a-)
+ oim Sn-ad-ny = -

Rmks . Both approaches admit generalizations 1o wyted projective
hypersurfoces , used by (ox . de Jong- Steenbrink resp.

In generalizeo approoch 1, one repbces Macauly's thm.

%‘: anglogue for wgted proj. hypersurfaces . namely Delorme's

m.

In approcch I, ore an identify the cohomology groups Hid.
with certain Charocters of  the automorphism group (Katz, Shioda
ete). This generalizes to weighted  hypersurfaces  (de Jong - Steenbrink)
ond con be used to dedl with more mss that are not couered
by approoch 1.



Weighted  projective spaces

let 9.9.~.9m be positive integers. Let C* act on C"™\ {o} bg
T (Xo, Xi, . Xnw) = (fg"’)(o, TQ"Xl, - 'fgnﬂ’)(nﬂ)

The quotient Space 8 the weighted projective space P9, -, Q)

which can also be regarded as P™/ g, x - x [Uam.

Def A weighted homogeneous polynomial  f defines @
hypersurface in IP(%,.m . Tt's called gquasi- smooth if" al
partiol derivatives 3, . dmmf have no common zeros on
X.

Prop. A quosi-smooth  hypersurface is o V- variety, i.e.
o aniety which s locally the quotient cf a Smooth uaniety

by a finite group 0

Just 6s for a smooth projective hypersurfaces in P™, the
Hodge theory of o quasismooth hypersupface can be dlescribed
in terms of * the Jacobian nng

R = @[/Xo, o, R 1/ (8«@0, a%\f)

Thm . ( Steenbrink). Let H™® be the primitive (p. 9y- Ccohomolagy
of the Quasismooth weighted hypersucfoce of degree o . and
Ra the degree 0. pert of the Uacobian ring. Then there are
([Somorphisms::

HP‘Q = Q(de—s (S=24;, pt@=n)
ond the first onder deformation space -

H'(TxYo = Ra  (image under KS) 0



Cox's  theorem
(Je opply the general theory ageueloped so far on wegftted
projective  surfaces.

Now let X=V(F) S P(2%.9.%:.9) be a wgted hypersurface
of degree km, and let J be the Jocobian ided of F. and
et R=S8/J, S= Cl%. %. % %s1. We Jurther assume that
ged (9:.9).9r) =1, Vixj#k , which is not a restriction bg Delorme.
By Steenbrinks thm. . we have.

H*°(X) = R&m-s

Hom X) = Raem-s

H'(X.Tx) = Rem
Under these isomorphisms,

H'(X, Tx) ®@H™(X) — H"(X)

becomes ring multiplications.

Rem® Rem-s — Rarm-s.
Thus if this mop is always Surjective, then the generic X wil
hove p(X)=(. But this wil be true if' we have

S Rm & Snm—s—-» Szhm-s

This condition on weighted polynomial nng s Studied by Delorme:

Thm. (Delorme).  Given Wgts (9o, . Qny, M=lem (9, ~.2n> and
S =0ot-+8n. Let (7 be the Delorme constant

l
| N+l
G=-8+ 7 Zpa (1) li‘g...ausnﬂ, lem(Q;, Qi) (< -s+nm)

Then for ony Rz, the muttiplication mep
Sem® Se —s Semse




s Sujective whenever £>G. =

In our cose. n=3 and Gg<-s+am, ond 4=bm-s. Thus if
R24. km-s >G and the generic X hos piX)=1.

When R=3, let Oj=au=gcdcQ.9) for i=j. Thus ged{ay. Quel =|
i dujb# {Reh We con write:

Qi =QijQie Qikbi 1. R.2Y ={o.1.2.3)\ (i}
Then m= -ﬂo<¢< <3 af} Tlocies bi. Furthermore. QC *{L‘.J', R, 2} ={0..2,3}
then (cm(Ql Qj) Qg brbe = (cm¢8.9.9) D . SO that

G—-S+(30%J<3_ajb—5 e f\_- o t3)m

<-s+(3(%)+ E'4+§)m
= -8+ 3am
" ff ay=ba=1 vijk which hoppens [ff o=9=0:=% =1

Thus G <-3t3m whenever m>. This Shows that PX)=|
when R=3.

When k=2, Cox did o more careful argqument ond showed that
Sam® Sam-s — Sam-s
is surjective whenever we are in the case ef either
iy, em%.9)<m and lem¢4..93)<m
iy, a=m and all other Qi>i
(i, 9o=1, exeept (1.4,,9:,93) = (L.L,1L,2) or (l,l.a.a) &> up to
permuttartion.
Then he proceeded to show that this covers all R=2 case
(the exceptional @se in i has Py(X)=0).



Thus he obtained:

Tom( (ox) Let F be the famly of quasismooth surfaces X

N Pr.2.2:.9) of deg km.("m=lcm(@.9.2:99), ged (9.9, = 1)
If m>i, k>1, then either

(h Ry(X)=o0, or

(ih. The generic member X of F has PuX)=1

Furthermore, @) fwppens iff ~ R=2 amd (%.9.2.9) = (1112,
or (LLa.a)y o> up to permutation, =

Rmk: The same proof dso works for d=kmss . However, (ox's
proof bregks  down J%r* R=1. by a coutter eg. of Dolgacheu
for” X in Pr1,3.3.4

h*°(xy=1, h"(X) =16, hX e =14
But usmg Q. O([ﬁ%ren‘t method. de Jon3 & Steenbrink  Showed
that p(X) =1 generically in  this Jomily™and more gerenally - for
mony more (oses of R=l.

In foct, uio the eorlier general theory, we can ensily work
out examples not Covered by Delorme's thm,  simply by
checring the Surjectivity of

Rem® Rem-s — Rarm-s
at the Fermar surfice!
g IP12,2.5Y 2 X: X4 X2+ X + X3 =0

9
m=10, k=1 S=0. R= CXo.X. Yo Xa1/(Xo. X'\ Xa" %)
rm=l0=2km-8  km-s=0  Rem= R#ms, Rems=C .



Hodge Theorg cf Ferma’r surfoces
Let Xa 2{xd+-+xi=0Y SP™ Mg acts on P™ coordinate-
wise and preseres Xd. => Mg acts on X4 . with the
diagonol - Subgroup acfmg trivially. Define G

| — Ma 25 lu"é”*” Gd — !

Then Gy 11— Gi — ™ — g — If e iden”cfg
Ma = Z/d . Thep

Gy ={o=ta, aml e 2/d. Zai=o}.
Ga acts on Xd ad thus induces an action on H'(X3.2)
(resp. Q. IR.C). It decomposes H(Xd,C) into isotypical
components . Smoe H' (X4 Clenm = 0 f (=N, wWe J'usf need
to consider the wgt N HS H(Xd .C)pnm 0S o (3d - moolule

Vol Gr%\ , 8et Vo 2 {Se l—l (X.C)prim | @*c3>—o<z8> 3},
Le”c WG = {o=(ao.— anye Q% | Qito. vi}, ond ¥ oe Y

| ot =(Zi=o <a|>)/d
where <0i» is the unigue representative of ai in Lo, d-11,

Thm. (Katz , Shioda) In this notation,

(0 | oe g

dimVo) = {
0  otherwise

(i),

HP 2= @ = gu Vi)



Sketth of progf”
The residue map gives us:

H*(X)= Rd-4 Q/IF

H"' (X)prim & Rad-¢ Q/F°

HO2(X) = Raa-4+ Q/F°
Then given a monomiol bosis gement of H™*,
Lot0+ 2+ 05 = (Q+nd-4)
0<d;i < d-2

Do o 8 A B 0o AOXIAOK2A OXa
Yo Xi" %a™Xa (’ng’x.d-b’)(z“-f’)(s“)g*‘ wnere {

Ga>g, g acts with wgt cdert, &et, &4, &5+n mod d , which is
in 1Wa. It also follows that each wgt spoce is 1-dim', and
& l= 3<oi>/d = Z ity /d = g+l o

de Jong and  Steenbrink's - method

Their method is, a8 giuen in the previous exompe, to count
dimensions for the weighted projective Fermat surfaces . With
the aid of Kotz-Shioda thm., we cn firther reduce counting
dimensions ¢f R to counting the finite number ¢f " group
choracters !

Idertify the weighted Fermat surfaces as the quotient of the
usual - Fermat surface in IP?

7~

X &od"' /;('ld"' &zd-f ”)v(g =0 g
I /IHQOX }MQ,X IHQBX ”/[94 I

4 g g 4 ~ Qi
X’ /)(09-° + IXIQ' + 9(29'2 + f)(gg3 =0 ) ;



we con describe HP4(X) in tems of inupniats of  this
group action. (We &et up Some notation :

C/_\T £ {(ao,al.az,as) é(Z/del Qi=0 modq;, Za(:O}

i.e. tnese are T Mg - invariont Charocters . )
Voo = {3 e Hoim(X.O) | = g3y e G
A ={ot=(a0,0,0..00€G | ai#o for al i}

Thm. ¢ de Joryg - Steenbrink).
(y dimViy =1 if el ond else dimViey=0.
iy
H* ) = Sio=1 Voo
Homm (X) = X =2 Vo)
HO2(X) = > 1m=3 V)
(i Let B ={ae | Ital=2 for ol te(Zdz}. Then

orim (X, QY® € = > weds Vo) |

Sketch of procf.
(i & iy just fo(low fr‘om Kotz - Shioda's thm by toRING  [Ugox -

X [Mas nuariants .

Part ity follows by considering the d-th cyclotomic Culois
group (Zldz)* action on the Fermat Sugpaces in P>, which
commutes with the |ugx-x|uas action , inducing on action on

H‘p’?im (X.Q)®aC

J
(Z/d2)*



Combining thig thm with Criterion 1 gives rise to the fol{own‘ng
purely  (finite) numenicol

Criterion 2. (de Jong - SteenbrinR)
If vBe® ., Ite(2Mz) ond xeX with =3, 8T
<tRi> < <oli> (=03

then o genenic weghted Sufice in the same family as the
Fermat Surface has Proardl rank 1.

This criterion con be checked by computers and many more
coses not Covered by Delorme's’ thm ore found !



