
7. There are p of the form (k, 1) and also (0, 1) for a total of p + 1.
8. Let the three distinct points be P = (p0 : p1), Q = (q0 : q1), R = (r0 : r1) and set the matrix (aij) be

a 2-by-2 matrix. Explicit calculations by multiplying the matrix (aij) on the three points yields the distinct
equations:

a00p0 + a01p1 = 1

a10p0 + a11p1 = 0

a10q0 + a11q1 = 0

a00r0 + a01r1 = a10r0 + a11r1

yielding the matrix equation 
p0 p1 0 0
0 0 p0 p1
0 0 q0 q1
r0 r1 −r0 −r1



a00
a01
a10
a11

 =


1
0
0
0


Since the points are pairwise distinct, their homogeneous coordinates cannot be scalar multiples of each
other. Therefore, the rows of the matrix are linearly independent and so the matrix is invertible and there
exists a solution. Hence, there exists a matrix that transforms three distinct points to (1 : 0), (0 : 1), (1 : 1).

14. Let our conic be ax2 + by2 + cz2 + dxy + exz + fyz = 0. We dehomogenize by setting z = 1 to
reduce the conic to ax2 + by2 + c+ dxy + ex+ fy = 0 and consider the case where p is an odd prime first. If
b = 0, set x = 0 and then one can easily solve for y. Otherwise, complete the square first with respect to x2

(by multiplying the entire equation first by a) and making the appropriate substitution to kill the dxy term,
ie. t = ax + dy

2 . Completing the square with respect to the y term and making the appropriate substiution
reduces the entire equation to f(t) = y2. If f(t) is of degree 0 or 1, then one can choose an appropriate y
to get a solution for t. If f is of degree two, observe that it takes on p+1

2 values as t ranges over Fp (to see

this, complete the square). Moreover, there are p− p+1
2 = p−1

2 non-squares modulo p, so for some t, f(t) is
a square, so there is a solution. In either case, there is a solution when p is odd.

If p = 2, then set z = 1 again and dehomogenize as before. Suppose that no solutions exist for all pairs
(x, y). Then setting x = 0 forces b = c = f = 1 and setting y = 0 forces a = e = 1. Setting x = 1 then forces
b = 0. The only conic of this form (ie, that does not have a solution when z = 1) is x2 + y2 + xz + yz + z2

but this has the solution when z = 0 of (1 : 1 : 0) for example.
So in all cases, there exists a solution.
(This is not a very good writeup at the moment...will clean up later. also, very general result is called

Chevalley-warning theorem)
18. An example over F2: the solution set of x3 + y3 + z3 = 0 is given by (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1)

and these points also lie on the curve defined by the equation x2y+y2x+x2z+z2x+y2z+z2y, even though
the former polynomial does not divide the latter.

Given n + 2 distinct points in general position in Pn, ie. no n + 1 subset of points lie on a hyperplane,
there exists a change of coordinates sending them to [1 : · · · : 0], [0 : · · · : 1], [1 : · · · : 1].

Proof: Call the n + 2 points x0 = [x0
0 : · · · : xn

0 ], . . . , xn+1 = [x0
n+1 : · · · : xn

n+1]. Then by the transitivity
of the PGL(k), there exists a transformation sending [1 : · · · : 0], . . . , [0 : · · · : 1] to the points x0, . . . , xn.
We can write this explicitly as the (n + 1) × (n + 1) matrix whose columns are given by the entries of the
x0, . . . , xn. Then, it suffices to show that a matrix whose columns are scalar multiples of the columns of this
matrix send the point (1 : · · · : 1) to xn+1 = [x0

n+1, · · · , xn
n+1]. Writing this out shows that we only need a

solution to the linear system of equations in n + 1 variables (the scaling factors) in n + 1 equations (whose
coefficients arise as the coordinates of the x0, . . . , xn). But since the x0, . . . , xn are linearly independent in
the vector space kn+1, a solution always exists and so our transformation also always exists.
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