
ALMOST PROPER GIT-STACKS AND DISCRIMINANT
AVOIDANCE

JASON STARR AND JOHAN DE JONG

1. Introduction

Consider an algebraic stacks of the form [Spec(k)/G] where G is a geometrically
reductive group scheme over the field k. It turns out that such a stack is nearly
proper, see Proposition 2.4.1.

Next, consider a pair (V,L) consisting of a projective variety V over k and an
invertible sheaf. Also, fix an integer d ≥ 1. We would like to know if every d-
dimensional family of polarized varieties X → S, N ∈ Pic(X) all of whose fibres
are isomorphic to (V,L) has a rational section. For example this is true if V is a
nodal plane cubic.

Theorem 1.0.1. (Theorem 2.1.3.) Assume G = Aut(V,L) is geometrically reduc-
tive. If X → S has a section whenever S is a projective variety of dimension d then
there is a section no matter what (X,N )/S you start with, provided dimS ≤ d.

Loosely speaking this means that if you prove the existence of rational sections
whenever the discriminant is empty then you prove it in general. For example,
it implies that if you are trying to find rational sections on families of polarized
homogenous varieties over surfaces then it suffices to do so in the case of families
of homogenous varieties over projective nonsingular surfaces. Our proof of this
theorem depends on the result on GIT-stacks mentioned above.

This effort is part of our work on using the geometry moduli spaces of rational
curves on fibres of families X → S to prove the existence of rational sections of
X/S. See the forthcoming papers [?]. In this paper we handle the special case of
a family of Grassmanians over a smooth projective surface S, see Theorem 4.2.1.
The method is to fibre the surface S in curves Ct. For each C = Ct we study
the moduli space Σ of sections of some large degree of X|C → C. We prove that
the MRC-quotient of Σ equals the Jacobian of the curve C. Finally we use the
Graber-Harris-Starr theorem to conclude.

In the end, putting everything together we deduce the period-index theorem for
Brauer classes over function fields of surfaces, compare [?].

Theorem 1.0.2. Let k be an algebraically closed field and let k(S) be the function
field of a surface over S. The the period equals the index for any Brauer class over
k(S).
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2. Isotrivial families

The title of this section is a little misleading as usually one thinks of an isotrivial
family as having finite monodromy. As the reader will see such families are cer-
tainly examples to which our discussion applies, but we also allow for a positive
dimensional structure group. The families will be isotrivial in the sense that the
fibres over a Zariski open will be all isomorphic to a fixed variety V .

2.1. Statement of the result. Let k be an algebraically closed field of any char-
acteristic. We assume given a variety V over k and an ample invertible sheaf L
over V . We let m = dimV . We introduce another integer d ≥ 1 which will be
an upper bound for the dimension of the base of our families. We are going to
ask the following question: Is it true that for any polarized family of varieties over
a ≤ d-dimensional base whose general fibre is V , there is a rational point on the
generic fibre? We make this more precise as follows.

Situation 2.1.1. Here we are given a triple (K/k,X → S,N ), with the following
properties: (a) The field K is an algebraically closed field extension of k. (b) The
map X → S is a morphism of projective varieties over K. (c) The dimension of S
is at most d. (d) We are given an invertible sheaf N on X. (e) For a general point
s ∈ S(K) we have (Xs,Ns) ∼= (VK ,LK).

The notation (VK ,LK) refers to the base change of the pair (V,L) to SpecK. Thus
(e) means that there exists a Zariski open U ⊂ S such that (Xs,Ns) ∼= (VK ,LK) as
pairs over K for all s ∈ U . Considering a suitable Hilbert scheme this then implies
that all geometric fibres of X → S over U are isomorphic to a suitable base change
of V .

Question 2.1.2. Suppose we are in Situation 2.1.1. Is there a rational point on
the generic fibre of X → S? In other words: Is X(K(S)) not empty?

A natural problem that arises when studying this question is the possibility of bad
fibres in the family X → S. Let us define the discriminant ∆ of a family (K/k,X →
S,N ) as in Situation 2.1.1 as the Zariski closure of the set of points s ∈ S(K) such
that (Xs,Ls) is not isomorphic to (VK ,LK). A priori the codimension of (the
closure of) ∆ is assumed ≥ 1, and typically it will be 1. In this section we show
that it often suffices to answer Question 2.1.2 in cases where the codimension of ∆
is bigger, at least as long as we are answering the question for all families.

It is not surprising that the automorphism groupG of the pair (V,L) is an important
invariant of the situation. The group scheme G has T -valued points which are
pairs (φ, α), where φ : VT → VT is an automorphism of schemes over T , and
α : φ∗LT → LT is an isomorphism of invertible sheaves. The group law is given
by (φ, α) · (ψ, β) = (φ ◦ ψ, β ◦ ψ∗(α)). We leave it to the reader to show that G is
an affine group scheme (since L is ample). In the following theorem G◦red denotes
the reduction of the connected component of G. Note that G◦red is a smooth affine
group scheme (since k is algebraically closed, and hence perfect).

Theorem 2.1.3. Fix (V,L) and d as above. Assume that G◦red is reductive. If the
answer to Question 2.1.2 is yes whenever ∆ = ∅, then the answer to Question 2.1.2
is yes in all cases.

The proof has 2 parts: deformation and specialization. The deformation argument
proves the following: For every triple (K/k,X → S,N ), there is a dense open subset
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U ⊂ X and a deformation of (XU → U,N|XU
) to a triple (K ′/k,X ′ → S′,N ′)

with trivial discriminant. The specialization argument proves the following: Every
rational point of the generic fiber of X ′ → S′ specializes to a rational point of the
generic fiber of X → S. Thus Question 2.1.2 has a positive answer for (K/k,X →
S,N ) if it has a positive answer for (K ′/k,X ′ → S′,N ′).

2.2. A bijective correspondence. To deform the pair (XU → U,N|XU
), it is

convenient to first convert the pair into a G-torsor over U , deform the torsor, and
then convert this back into a triple. This subsection describes how to convert
between pairs and G-torsors. As in subsection 2.1, denote by G the automorphism
group scheme of (V,L).

Let U be any k-scheme. Let (X → U,N ) be a pair where X → U is a flat proper
morphism and N an invertible sheaf on X. We assume that every geometric fiber of
(X,N ) over U is isomorphic to the base-change of (V,L). Consider the functor that
associates to a scheme T → U over U the set of pairs (φ, α), where φ : XT → VT is an
isomorphism over T and α : φ∗LT → NT is an isomorphism of invertible sheaves.
This functor is representable, see [][??] notation T := IsomU ((X,N ), (VU ,LU )).
There is a left G-action G × T → T on T over U (by post-composing, see the
definition of the group structure on G).

Lemma 2.2.1. If U is reduced then T is a G-torsor over U .

Proof. It suffices to prove that (X,N ) is locally in the fppf topology of U isomorphic
to the constant family (V,L)× U . To prove this we need some notation.

Take N so large that LN is very ample on V and has vanishing higher cohomology
groups. Let n = dim Γ(V,LN ). A choice of basis of Γ(V,LN ) determines a closed
immersion i : V → Pn−1. This determines a point [i] of the Hilbert scheme
Hilb = HilbPn−1/k. The smooth algebraic group PGLn acts on Hilb, and we denote
Z the orbit of [i]. Note that Z is a smooth scheme of finite type over k, and that
there is a flat surjective morphism PGLn → Z. See [?, Generalitiesaboutorbits]
By construction the pullback of the universal family over Z to PGLn is canonically
isomorphic to V ×PGLn, and the invertible sheaf O(1) pulls back to LN �O.

The question is local on U so we may assume that U is affine. By our choice of
N above, the invertible sheaf NN is very ample on every fibre of X over U with
vanishing higher cohomology groups. Hence after possibly shrinking U we can find
a closed immersion X → Pn−1

U which restricts to a the embedding given by the full
linear series of NN on every geometric fibre. Consider the associated moduli map
m : U → Hilb. Since U is reduced, and since each pair (Xs,Ns) is isomorphic to a
base change of (V,L) we see that m(U) ⊂ Z.

This implies there is some surjective flat morphism U ′ → U such that there is a U ′

isomorphism X ′ ∼= V × U ′ with the property that NN pulls back to LN . Namely,
take U ′ = U ×Z PGLn and unwind the definitions. To finish, do the same thing
for N +1 to get some U ′′ → U . Then over U ′′′ = U ′×U U

′ there is an isomorphism
of the pullback of (X,N ) and the base change of (V,L). This proves the reult. �

Conversely, given a left G-torsor T over U we will construct a flat proper family of
varietiesX → U and an invertible sheafN onX such that IsomU ((X,N ), (VU ,LU ))
is isomoprhic to T .
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The structure morphism π : T → U is a flat surjective morphism of finite type. We
are going to descend the constant family V × T to U using a descend datum

φ : V × T ×U T → V × T ×U T .
Before we describe the descent datum, we recall that the map ψ : G×T → T ×U T ,
(g, t) 7→ (gt, t) is an isomorphism. Also, let us denote m : V × G → V the map
(v, g) 7→ gv, where gv denote the natural action of g ∈ G on v ∈ V . Finally, we
take

φ = IdV × ψ ◦m× IdT ◦ (IdV × ψ)−1.

To verify the cocycle condition on T ×U T ×U T , we can think of φ as the map
(v, gt, t) 7→ (g−1v, gt, t). If on V ×T ×U T ×U T we have a point (v, g1g2t, g2t, t) then
pr∗23(φ)(v, g1g2t, g2t, t) = (g2v, g1g2t, g2t, t) and pr∗12(φ) ◦ pr∗23(φ)(v, g1g2t, g2t, t) =
(g1g2v, g1g2t, g2t, t) and pr∗13(φ)(v, g1g2t, g2t, t) = ((g1g2)v, g1g2t, g2t, t). Thus pr∗13(φ) =
pr∗12(φ) ◦ pr∗23(φ) as desired.
Because all the maps in question lift canonically to the invertible ample sheaf L
this actually defines a descent datum on the pair (V,L) for T → U . As L is ample,
this descent datum is effective, cf. [Gro62, No. 190, §B.1]. Thus there exists a pair
(X → U,N ) over U and an isomorphism δ : T ×U (X,N ) → T × (V,L) such that
φ equals pr∗1δ ◦ pr∗2δ

−1.

Conclusion 2.2.2. The above constructions give a bijective correspondence be-
tween pairs (X → U,N ) and left G-torsors over U in case U is a reduced scheme
over k.

Remark 2.2.3. The construction of the family (X,N )/U starting from the torsor
T works more generally when k is more generally a ring as long as: (1) V is a
flat projective scheme of finite presentation over k, (2) L is ample, and (3) the
automorphism group scheme G = Aut(V,L) is flat over k.

2.3. Deforming torsors over a Henselian DVR. Before proving Theorem 2.1.3,
it is useful to say what is known without the hypothesis that G is reductive. We
thank Ofer Gabber, Jean-Louis Colliot-Thélène and Max Lieblich for explaining
the following proposition.

Proposition 2.3.1. Let R be a Henselian DVR with residue field K, and let G be
a flat separated group scheme of finite type over Spec R. Every torsor for the closed
fiber GK over Spec K is the closed fiber of a torsor for G over Spec R.

Proof. We first give a proof when G is affine which is all we will use in this paper.
Choose a closed immersion G → GLn,R, see [?, Generalitiesaboutgroupschemes]
Let X = GLn,R/G, and note that X → Spec R is smooth, see [?, Generali-
tiesaboutorbits] Since H1(K,GLn,K) = {1}, any torsor for GK is the fibre of
the map GLn,K → XK over a K-point of X. Since R is Henselian the map
X(R) → X(K) is surjective, and hence every GK-torsor lifts.
In the general case we argue as follows. By [LMB00, Prop. 10.13.1], which relies
upon Artin’s criterion for algebraicity of a stack, the classifying stack BG is an
algebraic stack over Spec R. By [LMB00, Thm. 6.3], for each GK-torsor there
exists an affine R-scheme X, a smooth morphism φ : X → BG, and a K-point x of
X such that φ(x) corresponds to the given GK-torsor. Denote by t : Spec R→ BG
the 1-morphism associated to the trivial G-torsor. Since φ is smooth, the base-
change prR : Spec R ×t,BG,φ X → Spec R is smooth. Since t is a surjective flat
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morphism, the base-change, prX : Spec R ×t,BG,φ X → X is surjective and flat.
By [GD67, §6.5], it follows that X is smooth over Spec R. Since R is Henselian
and X is smooth over Spec R, X(R) → X(K) is surjective; in particular there is
an R-morphism Spec R→ X extending the given K-point of X. The composition
of this morphism with φ determines a G-torsor over Spec R whose closed fiber is
isomorphic to the given GK-torsor over Spec K. �

Corollary 2.3.2. Let R be a DVR with residue field k, and let G be a separated,
finite type, flat group scheme over Spec R. Let U be a finite type, integral k-scheme,
and let TU → U be a Gk-torsor. There exists an integral, flat, quasi-projective
R-scheme Y , with nonempty special fibre Yk, a G-torsor T → Y , and an open
immersion j : Yk → U such that j∗TU is isomorphic to Tk as Gk-torsors over Yk.

T

��

Tk

��

oo j // TU

��
Y Yk

oo j // U

Proof. First we show there exists an integral, flat, quasi-projective R-scheme Z
and an open immersion j : Zk → U . Namely, we may replace U by an affine
open, and hence we may assume that U is regular, see [?, Generalitiesabout-
commutativealgebra] In particular this implies that U → Spec k is a local com-
plete intersection morphism, see [?, Generalitiesaboutcommutativealgebra] So after
shrinking U some more we may assume that U = Spec k[x1, . . . , xn]/(f1, . . . , fc)
is a complete intersection, i.e., dimU = n − c. At this point we simply put
Z = Spec R[x1, . . . , xn]/(F1, . . . , Fc), where Fi ∈ R[x] lifts fi.
Define R′ to be the local ring of Z at the generic point of Zk. Then R′ is a
Noetherian 1-dimensional local ring. Denote by π a uniformizer of R. Clearly, π
maps into mR′ and R′/πR′ is the function field of Zk, i.e., the function field of U .
Because R′ is R-flat, π is a nonzerodivisor. Thus R′ is a DVR with residue field
K = k(U).
By Proposition 2.3.1, the Gk torsor over R′/πR′ lifts to a G-torsor T h over the
Henselization of R′. By a standard limit argument, this lift exists over an étale
extension R′ → R′′ contained in the Henselization of R′. Note that the residue
field R′′/πR′′ of R′′ is still the function field of U . By a standard limit argument,
there is an étale morphism Y → Z such that Yk → Zk is an open immersion and
such that R′′ is the local ring of Y at the generic point of Yk. After replacing Y by
an open subscheme, there is a G-torsor T over Y that pulls back to T h over R′′.
We leave it to the reader to see that, after possible shrinking Y again, this torsor
satisfies the conditions of the corollary. �

Corollary 2.3.2 above is a weak version of the deformation principle that we will
esthablish later on. The remaining issue is whether there exists a datum (Y →
Spec R, T → Y, j : YK → U) such that the generic fiber of Y → Spec R is pro-
jective. Presumably this is not always possible, but in case G is reductive we will
show that it is.
Corollary 2.3.2 can be used to lift problems in char p > 0 to characteristic 0. Sup-
pose that R is a complete discrete valuation ring with algebraically closed residue
field k. Let Ω be an algebraic closure of the fraction field of R. We have in mind
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the case where char(k) = p > char(L) = 0. Suppose that VR is a flat projective R
scheme, and that LR is an ample invertible sheaf over VR. We assume that VΩ and
Vk are varieties. Let GR denote the automorphism group scheme of (VR,LR) over
R.

Corollary 2.3.3. Notations and assumptions as above. Fix d ∈ N. Assume that
GR is flat over R. If the answer to Question 2.1.2 is always ”yes” for the pair
(VΩ,LΩ) then the answer is always ”yes” for the pair (Vk,Lk).

Proof. Let (K/k,X → S,N ) be a triple as in Situation 2.1.1 for the pair (Vk,Lk).
Let U be the open subscheme of S over which all geometric fibres of (X,N ) are
isomorophic to the base change of (Vk,Lk). The construction in Subsection 2.2
gives a corresponding GK-torsor TU over U .
There exists an extension of complete discrete valuation rings R ⊂ R′ such that the
induced extension of residue fields is K/k, see[Generalitiesaboutalgebra]. We apply
Corolloray 2.3.2 to obtain Y → Spec R′, T → Y and j : YK → U . According to
Conclusion 2.2.2 and Remark 2.2.3 there exists a pair (X ′ → Y,N ′) over Y whose
restriction to YK is isomorphic to (j∗X|U , j∗N|U ).
Let Ω′ be an algebraic closure of the field of fractions Q(R′) of R′. Since R ⊂ R′ we
may and do assume that Ω ⊂ Ω′. Note that we do not know that the geometric fibre
YΩ′ is irreducible. However, our assumptions imply that X ′ has a Ω′(Y ′)-valued
point for every irreducible component Y ′ of YΩ′ . To conclude we apply the lemma
below. �

Lemma 2.3.4. Suppose that R is a DVR with algebraically closed residue field
K. Let Ω be an algebraic closure of Q(R). Let Y → Spec R be a flat, finite type
morphism, X → Y a projective morphism and let ξ ∈ YK . Assume in addition that
(a) ξ is the generic point of an irreducible component C of the scheme YK , (b) the
scheme YK is reduced at ξ, and (c) for every irreducible component Y ′ of YΩ there
exists a Ω(Y ′)-valued point of X. Then X has a K(C)-valued point.

Proof. Note that right from the start we may replace R by its completion, and
hence we may assume that R is excellent. This will garantee that the integral
closure of R in a finite extension of Q(R) is finite over R. (Not necessary in char
0.) See [?, Generalitiesaboutalgebra]
By hypothesis, and a standard limit argument, there is a section of XΩ → Y Ω over
a dense open V ⊂ YΩ, say s : V → XΩ. By a standard limit argument, there is
a finite extension Q(R) ⊂ L such that V and s are defined over L. Let R′ be the
integral closure of R in L. Since R is excellent the extension R ⊂ R′ is a finite
extension of DVRs. The residue field of R′ is isomorphic to K as K is algebraically
closed.
By construction the scheme YR′ = Y ×RR

′ has special fibre equal to YK . The local
ring O of YR′ at ξ is a DVR. This follows from flatness of YR′/R′ and property (b),
see proof of 2.3.2. Thus the image of Spec Q(O) → YL is one of the generic points
of YL and hence contained in V . Since XR′ → YR′ is proper, we see that s|Spec Q(O)

extends to a O-valued point of XR′ , and in particular we obtain a κ(ξ) = K(C)-
valued point of (XK)κ(ξ) = XK(C) as desired. �

For example this corollary always applies to the case where (V,L) is the pair con-
sisting of a Grassmanian and its ample generator.

6



2.4. Deforming torsors for a reductive group. Under the additional hypothe-
sis that G is a geometrically reductive linear algebraic group we can prove a stronger
version of Corollary 2.3.2. First we prove that BG is proper over k in some approx-
imate sense.

Proposition 2.4.1. Let G be a geometrically reductive group scheme over the field
k. For each integer c, there exists a smooth k-scheme X, a smooth morphism
φ : X → BG, and an open immersion j : X → X such that

(i) X is a projective k-scheme,
(ii) for every infinite field K and every morphism Spec K → BG, there exists

a lift Spec K → X under φ.
(iii) X −X has codimension ≥ c,

The proof uses geometric invariant theory to construct X ⊂ X̄. With more care it
may be possible to remove the assumption that K be infinite from (ii).

Proof. By definition G is a linear group scheme. Let V be a finite dimensional
k-vector space, and let ρ′ : G → GL(V ) be a closed immersion of group schemes.
Consider ρ : G → SL(V ⊕ k ⊕ k) defined by ρ(g) = diag(ρ′(g),det(ρ′(g))−1, 1)
(diagonal blocks). Observe that the intersection of Image(ρ) and GmId is the trivial
group scheme. Thus, without loss of generality, assume ρ is a closed embedding
of G into SL(V ) such that Image(ρ) ∩GmId is the trivial group scheme. In other
words, the induced morphism of group schemes Pρ : G → PGL(V ) is a closed
immmersion.

Denote the dimension of V by n > 1. Let W be a finite-dimensional k-vector space
of dimension c. Denote byH the finite-dimensional k-vector space Hom(W,Hom(V, V )).
There is a linear action σ : GL(V ) ×H → H, where an element g ∈ GL(V ) acts
on a linear map h : W → Hom(V, V ) by σ(g, h)(w) = g ◦ h(w). This restricts to a
linear action of G on H.

The linear action of G onH determines an action of G on the projective space PH of
lines in H. It comes with a natural linearization of the invertible sheaf L := OPH(1)
so that the action of G on H0(PH,O(1)) = Hom(H, k) is the dual of ρ. Denote by
PHss, resp. PHs

(0), the semistable, resp. properly stable, locus for the action of G
on the pair (PH,L). Denote by X the uniform categorical quotient PHss �G and
denote by p : PHss → X the quotient morphism. These exist by [MFK94, Thm.
1.10, App. 1.A, App. 1.C]. By the remark on [MFK94, p. 40], X is projective.
Also, some power of L is the pullback under p of an ample invertible sheaf on X.
Thus (i) is satisfied for X.

For every element w ∈ W − {0}, define Fw to be the homogeneous, degree n
polynomial on H defined by Fw(h) = det(h(w)). For every g ∈ SL(V ),

Fw(σ(g, h)) = det(σ(g, h)(w)) = det(gh(w))
= det(g)det(h(w)) = det(h(w)) = Fw(h).

Thus Fw is invariant for the action of SL(V ). Thinking of Fw as an element
of Γ(PH,O(n)) it is invariant for the action of G. Denote by Hw ⊂ H, resp.
PHw ⊂ PH, the open complement of the zero locus of Fw. By what was said
above, PHw is contained in PHss. The next step is to prove that PHw is contained
in PHs

(0), and, in fact, the geometric quotient PHw → PHw/G is a G-torsor.
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Let W ′ be a subspace of W such that W = span(w)⊕W ′. Denote by H ′ ⊂ H the
subspace H ′ = Hom(W ′,Hom(V, V )). There is a morphism qw : Hw → GL(V ) ×
H ′ defined by the rule h 7→ (h(w), h(w)−1h|W ′). The morphism qw is GL(V )-
equivariant if we act on GL(V ) ×H ′ on the first factor only. There is an inverse
morphism rw : GL(V ) × H ′ → Hw sending a pair (g, h′) to the unique linear
map W → Hom(V, V ) such that w 7→ g and w′ 7→ gh′(w′) for every w′ ∈ W ′.
Thus, as a scheme with a left GL(V )-action, Hw is isomorphic to GL(V ) × H ′.
For the same reason, as a scheme with a PGL(V )-action, PHw is isomorphic to
PGL(V ) × H ′. Thus the categorical quotient of PHw by the action of G is the
induced morphism PHw → (PGL(V )/G) × H ′. Since the categorical quotient
PGL(V ) → PGL(V )/G is a G-torsor, see [?, ?, Generalitiesaboutorbits] also the
categorical quotient PHw → (PGL(V )/G) × H ′ is a G-torsor. In particular, the
action of G on PHw is proper and free so that PHw is contained in PHss

(0).

Denote U =
⋃

PHw, where the union is over all w ∈W −{0}. This is a G-invariant
open subscheme of PHs

(0). Therefore there exists a unique open subscheme X ⊂ X

such that p−1(X) = U . By the last paragraph, p : T → X is a G-torsor. Since U
is smooth and p is flat, by [GD67, §6.5] also X is smooth.

Associated to the G-torsor U over X, there is a 1-morphism φ : X → BG. There
are also morphisms of stacks [H/G] → BG and [PH/G] → BG (because BG =
[Spec k/G]. By construction, X is 2-equivalent to an open substack of [PH/G] as
a stack over BG. The morphism [PH/G] → BG is smooth, since PH is smooth.
Hence X → BG is smooth. For every field K and 1-morphism Spec K → BG, the
2-fibered product Spec K×BG [H/G] is a K-vector space, and Spec K×BG [PH/G]
is the associated projective space. Thus Spec K ×BG [PH/G] ∼= Pcn2−1. Finally,
Spec K ×BG X is a nonempty open subscheme of Spec K ×BG [PH/G]. Since K is
infinite every dense open subset of Pdn2−1

K contains a K-point. This proves (ii).

Finally, the codimension of X−X is at least as large as the codimension of PH−U .
Choosing a basis (w1, . . . , wd) for W , PH−U is contained in the common zero locus
of Fw1 , . . . , Fwc

, which clearly has codimension c. Therefore X−X has codimension
at least c in X. This proves (iii). �

Corollary 2.4.2. Let the field k and the group scheme G be as in Proposition 2.4.1.
Let R be a DVR containing k with residue field K. Let U be a finite type, integral
K-scheme, and let TU → U be a G-torsor. There exists a triple (Y → SpecR, T →
Y, j : YK → U) as in Corollary 2.3.2 with the additional property that the generic
fiber of Y is projective.

Proof. We may assume that dimU > 0. Let c be an integer larger than dim(U). Let
(φ : X → BG,X ⊂ X) be as in Proposition 2.4.1. The torsor TU corresponds to a
1-morphism U → BG. By condition (ii), the base-change morphism Spec K(U) →
BG lifts to a morphism Spec K(U) → X. (Note thatK(U) is infinite since dimU >
0.) After replacing U by a dense open subscheme, this comes from a morphism
f : U → X lifting U → BG. Also, replace U by an open subscheme that is quasi-
projective, say a nonempty open affine. Then for some positive integer N , there is
a locally closed immersion of K-schemes, f ′ : U → (X ×PN

k )K such prX ◦ f ′ equals
f . Denote by m the codimension of f ′(U) in (X × PN

k )K .
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The scheme (X ×PN
k )R is flat and projective over Spec R. Choose a closed immer-

sion in PM
R for some positive integer M . As in the proof of 2.3.2 we will use that the

scheme U is a local complete intersection at a general point, and we will use that
X is smooth over k. This implies that f ′(U) is dense in a component of a complete
intersection of (X ×PN

k )K in PM
K . More precisely, for some positive integer e, there

exist homogoneous, degree e polynomials F1, . . . , Fm on PM
K such that the scheme

Y K := V(F1, . . . , Fm) ∩ (X × PN
k )K has pure dimension dim(U) and contains a

nonempty open subscheme U ′ that is an open subscheme of f ′(U). Let F̃1, . . . , F̃c

be homogeneous, degree e polynomials on PM
R such that for every i = 1, . . . ,m,

(∗) F̃i ≡ Fi (mod mR).

Denote by Y the zero scheme V(F̃1, . . . , F̃m)∩(X×PN
k )R. Then Y is flat over Spec R

(by Grothedieck’s lemma [?, EGA]. The closed fiber of Y equals Y K . Moreover,

dim((X −X)× PN
k )−m ≤ dimX − c+N −m = dim f ′(U)− c < 0.

It is easy to see that the set of all possible choices of F̃i satisfying (∗) forms a Zariski
dense set of points in the relevant vector space of degree e polynomials over the
field of fractions Q(R) of R. Thus the dimension count shows there exists a choice
of F̃1, . . . , F̃c such that Y Q(R) does not intersect

(
(X − X) × PN

k

)
Q(R)

. In other

words, the generic fiber of Y → Spec R is contained in (X × PN
k )Q(R).

Let η be a generic point of Y that specializes to the generic point of U ′. Replace Y
by the closure of η, so that now Y is integral. (Presumably, a suitable application
of Bertini’s theorem could be used to replace this step.) Then Y is an integral, flat,
projective R-scheme, the closed fiber contains U ′ as an open subscheme, and the
generic fiber is contained in Spec R×Spec k (X × PN

k ). Define

Y = Y −
(
Y ×Spec R Spec K − U ′

)
.

This is an integral, flat, quasi-projective R-scheme whose generic fiber is projective.
Moreover, YK equals U ′, which admits a dense, open immersion in S. Finally, the
projection prX : Y → X, and the 1-morphism φ ◦ prX : Y → BG determine
a G-torsor T over Y . By construction, the restriction of this G-torsor to U ′ is
isomorphic to the pullback of TU by the open immersion, as desired. �

We remark that we did not claim that the generic fibre of Y → SP (R) is geometri-
cally irreducible. Since X is smooth and geometrically irreducible over k, it seems
that with a carefull choice of the F̃i and some additional arguments one can obtain
this property as well maving YQ(R) smooth over Q(R).
Next we deduce a corollary to help prove Theorem 2.1.3. Let k be an algebraically
closed field, and let (V,L) be a pair of a projective k-scheme and an ample invertible
sheaf. Denote by G/k the group scheme G = Aut(V,L). Let (K/k,X → S,N )
be as in Situation 2.1.1. Denote by G◦red the reduced, connected component of the
identity of G.

Corollary 2.4.3. Notations as above. Let R be a DVR containing k and with
residue field K. If G◦red is reductive, there exists an integral, flat, quasi-projective
R-scheme Y , a projective, flat morphism f : X̃ → Y , an invertible sheaf Ñ on X,
and an open immersion j : YK → S such that:

(i) every geometric fiber of (X̃, Ñ ) over Y equals the base-change of (V,L),
9



(ii) the restriction of (X̃, Ñ ) to YK is isomorphic to the pullback of j∗(X,N ),
and

(iii) the generic fiber of Y → Spec R is projective.
In particular, let S′ be an irreducible component of the geometric generic fibre of
Y → Spec R. Then (X̃ → S′, Ñ ) over R is a triple (K ′/k,X ′ → S′,N ′) with empty
discriminant.

Proof. If G◦red being reductive implies that it is a geometrically reductive group
scheme over k by a result of Haboush, see [?, GIT] Note that G◦red is a closed nor-
mal subgroup scheme of G and that the quotient G/G◦red is a finite group scheme. A
finite group scheme over k is geometrically reductive, and an extension of geomet-
rically reductive group schemes is reductive, see [?, GeneralitiesaboutGIT] Hence
G is geometrically reductive. Thus the result of the Corollora follows from Corol-
lary 2.4.2 above by applying the bijective correspondence of Conclusion 2.2.2. �

Proof of Theorem 2.1.3. Let us start with an arbitrary triple (K/k,X → S,N ).
Let R = K[[t]]. So R is Henselian, contains k and has residue field K. Let X̃ →
Y → Spec R and Ñ be as in Corollary 2.4.3. Denote by Ω/k an algebraic closure of
the field of fractions Q(R) of R. Let S′ be any irreducible component of YΩ and let
X ′ = X̃|S′ , N ′ = Ñ |S′ . Thus (Ω/k,X ′ → S′,N ′) is a triple as in Situation 2.1.1.
By construction, this has empty discriminant. By hypothesis, the generic fiber of
X ′ → S′ has a K ′(S′)-point. At this point we apply Lemma 2.3.4 to conclude. �

3. Simple applications

We are going to apply this in a more serious way to Grassmanians, but let us
indicate some simple applications of Theorem ?? this section.

3.1. Fermat Hypersurfaces. As a first case we take V a Fermat hypersurface of
degree d in Pd2−1

V : T d
0 + T d

1 + . . . T d
d2−1 = 0,

with L = OV (1), say over the complex numbers C. In this case the group scheme
G is an extension of a finite group by Gm so certainly reductive. Consider the
following family with general fibre (V,L) over P2:

(∗)
∑

0≤i,j≤d−1

XiY jZ2d−2−i−jT d
i+dj = 0,

We learned about this family from Tom Graber. This family does not have a
rational point over k(P2). Reference [?][TomGraber]. The reader may enjoy finding
an elementary proof of this by looking at what it means to have a polynomial
solution to the above. We conclude from Theorem 3.1 that there is a smooth
projective family over a projective surface with every fibre isomorphic to (V,L),
without a rational section. We like this example because it is not immediately
obvious how to write one down explicitly.
There is another reason why the family given by (∗) is interesting. Tsen’s theorem
asserts that, if n ≥ d2 then any degree d hypersurface X ⊂ Pn

F , where F is the
function field of a surface has a rational point. The authors of this paper wonder
what the obstruction to the existence of a rational point is in the boundary case,
namely degree d in Pd2−1. One guess is that it is a Brauer class, i.e., an element
α in the Brauer group of F such that for finite extensions F ′/F one has: X(F ′) 6=
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∅ ⇔ α|F ′ = 0. (Compare future work of the authors.) However, the example above
shows that this is not the case.
Namely, in our example F = C(x, y) where x = X/Z and y = Y/Z. Anand Depokar
pointed out that (∗) obtains a rational point over F (ξ) where ξ is a dth root of a
nonzero polynomial of the form

f(x, y) = −
∑

0≤i,j≤d−1,(i,j) 6=(0,0)

ai,jx
iyj .

(Just take T0 = ξ and Ti+jd = a
1/d
i,j .) Let C ⊂ P2 be an irreducible curve, not the

line at infinity Z = 0. Suppose that α ramifies along C. The ramification data
gives a cyclic extension C(C) ⊂ C(C)[g1/d′ ] of degree d′, where 1 < d′|d. There
is a choice of of ai,j such that the rational function f(x, y) restricts to a rational
function on C such that both f |C and g−1f |C are not d′th powers. (Left to the
reader.) Thus the pullback of α to F ′ is still ramified along the pullback of C to
the surface whose function field is C(x, y)(ξ). Contradiction. Hence C does not
exist. However, the only Brauer class on P2 ramified along a single line is 0.

3.2. Projective spaces. Another case is where we take the pair (V,L) to be
(Pn,O(n + 1)). Note that O(n + 1) = ω−1

Pn so the families in question are canon-
ically polarized, and we are just talking about the problem of having nontrivial
families of Brauer-Severi varieties. In particular, our theorem reduces the problem
of proving the nullity of the Brauer group of a curve to the problem of proving the
nonexistence of Brauer-Severi varieties having no rational sections over projective
nonsingular curves. As far as we know this is not really helpfull, since the proof of
Tsen’s theorem is pretty straigthforward anyway. However, it illustrates the idea!

4. The period-index problem

In this section we show how to use the ideas above to find a proof of the period
index problem for Brauer classes over surfaces. We refer to the paper [?] and the
lecture [?] for a more thorough discussion of the problem.

4.1. Brauer classes and Grassmanians. Suppose that F is a field and that
α ∈ Br(F ) is a Brauer class. The period of α is the smallest integer m > 0 such
that mα = 0. The index of α is the smallest integer e > 0 such that there is a
central simple algebra B of degree e representing α.
Fix a central simple algebra of some degree d representing the class α, i.e., dimF A =
d2. Note that the index of α divides d. For each integer 1 ≤ e ≤ d consider the
variety Xe parametrizing right ideals of rank ed in A. In other words a T -valued
point of Xe corresponds to a sheaf of right ideals I ⊂ OT ⊗ A, locally a direct
summand of rank ed as OT -modules.
Note that if Xe has a rational point I ⊂ A, then the commutant of A acting on I
is an algebra B of degree e representing −α. Hence the index of the Brauer class
α is the smallest integer e such Xe has a rational point.
Geometrically the varieties Xe are isomorphic to Grassmanians. Namely, suppose
we choose an isomorphism ψ : A⊗F F̄ ∼= Mat(d×d, F̄ ). A right ideal in Mat(d×d, F̄ )
is of the form {M ∈ Mat(d × d, F̄ ) | Im(M) ⊂ V } for some subspace V ⊂ F̄ d. In
this way, using ψ, we obtain the isomorphism

Xe,F̄
∼= Grass(e, d)F̄

11



with the Grassmanian of e-dimensional subspaces of the standard d-dimensional
vector space. Since Pic(Grass(e, d)) = Z with a canonical ample generator, we see
that each Xe gives rise to a Brauer class αe, namely the obstruction to descending
this ample generator to an invertible sheaf over Xe.

Lemma 4.1.1. We have αe = eα, at least up to a sign.

Proof. With the notation above we can write down the Galois cocycle of α. Namely,
the isomorphism class of A is given by the 1-cocycle ∂ψ = {σ 7→ σ(ψ) ◦ ψ−1} in
Aut(Mat(d×d, F̄ )) = PGLd(F̄ ). The class α is the obstruction inH2(Gal(F̄ /F ), F̄ ∗)
to lift this 1-cocycle ∂ψ to a 1-cocycle for GLd, i.e., the boundery of ∂ψ for the
short exact sequence Gm → GLm → PGLm. The obstruction to descend the ample
invertible sheaf O(1) on Grass(e, d) to F is the boundary of the 1-cocycle ∂ψ for
the short exact sequence Gm → Ge,d → PGLd, see Lemma 4.1.2 for notation. By
Lemma 4.1.2 below this boundary is d− e times α as desired. �

Lemma 4.1.2. Let 1 ≤ n < m/2 be integers. Let O(1) be the canonical ample
invertible sheaf on Grass(n,m).

(1) The automorphism group scheme of Grass(n,m) is canonically isomorphic
to PGLm.

(2) The automorphism group scheme Gn,m of the pair (Grass(n,m),O(1)) the
extension of PGLm by Gm fitting into the following diagram

Gm,

(tn−m,t)

��

Gm

(tn−m,t·Im)

��
Gm ×Gm

//

(a,b) 7→abm−n

��

Gm ×GLm

��

// PGLm

Gm
// Gn,m // PGLm

with exact rows and columns.

Proof. Clearly the group scheme Gm ×GLm acts on the pair (Grass(n,m),O(1)).
We leave it to the reader to show that one obtains the short exact sequences of
the statement. (Note that if n = m/2 there is an additional automorphism of
Grass(n,m) coming from taking duals.) �

Proof of Theorem 1.0.2. Let S be a surface over k = k̄, and let F = k(S). Let
α ∈ Br(F ) = Br(k(S)). Lemma 4.1.1 means that if we take e equal to the period
of α then the variety Xe carries an ample invertible sheaf which is geometrically an
ample generator of Pic(Grass(e, d)). We conclude that the period-index problem
for the field F is equivalent to the problem of finding rational points on forms of
Grassmanians which are endowed with an invertible sheaf that is geometrically an
ample generator for the Picard group.
It suffices to do this in all cases where e < d/2 since we can always replace A by
Mat(2× 2, A) to artificially increase d.
Thus it suffices to prove the answer to Question 2.1.2 is always yes in the following
situations. Namely, k is an algebraically closed field, the integer d = 2, and the pair
(V,L) is the pair (Grass(n,m),O(1)), where 1 ≤ n < m/2. Lemma 4.1.2 shows
that Aut(V,L) is reductive.

12



By Theorem 2.1.3 it suffices to consider only those cases where the surface S is
projective. By resolution of surface singularities we may also assume that the
surface is smooth. This case is Theorem 4.2.1 below. �

4.2. Families of Grassmanians over smooth projective surfaces. In this
subsection let S be a smooth projective surface over the algebraically closed field
k. Suppose that X → S is a projective morphism and that N is an invertible sheaf
on X. Assume that 1 ≤ n < m/2 and assume that for every point s ∈ S(k) the
fibre Xs is isomorphic to the Grassmanian Grass(n,m) and that N restricts to the
ample generator of the Picard group.

Theorem 4.2.1. With notations as above. The morphism X → S has a rational
section.

The rest of this subsection is devoted to the proof of this theorem. Some of the
discussion that follows applies more generally to the problem of finding a rational
section of any family of varieties over a surface. Note that we do not assume that
the characteristic of k is 0 so we have to be a little carefull.
Let {Ct, t ∈ P1} be a Lefschetz pencil on S. We replace S by the blow up in C0∩C∞
and we replace X by the pullback to this blow up. Thus we obtain

X
g //

h

33S
f // P1

k

so that Ct = f−1(t) is the fibre over t ∈ P1. We denote ∆ ⊂ P1 the discriminant
locus of f (a finite closed subscheme). We writeXt = h−1(t) for the fibre ofX → P1

k

over t ∈ P1
k. From now on we think of S as a family of curves over P1 and of X as

a family of families of Grassmanians over curves.
After replacing N by N ⊗ g∗(M) for some very ample invertible sheaf on S we
may assume that N is ample on X. Let pa = pa(Ct) be the common value of the
arithmetic genus of the curves Ct (of course this is just the genus of Ct for t not in
∆). For d ∈ N set Pd(X) = dX + 1− pa ∈ Z[X]. and set

Hilbd = HilbPd

X/P1,N −→ P1.

In other words, this is the projective scheme over P1 whose fibres Hilbd,t parametrize
1-dimensional closed subschemes Z ⊂ Xt whose arithmetic genus is pa and whose
N -degree is d. Let us denote

ι : Zd −→ X ×P1 Hilbd

the universal family of closed subschemes. Note that g induces a morphism between
flat projective families of 1-dimensional schemes over Hilbd as follows

Zd
//

""EE
EE

EE
EE

S ×P1 Hilbd

xxqqqqqqqqqq

Hilbd

We are only going to use a small piece of this Hilbert scheme.
Let us denote Ud ⊂ Hilbd the open subscheme whose geometric points correspond
to closed subschemes Z ⊂ Xt such that

(1) Z is a nonsingular irreducible curve,
13



(2) the fibre Ct is nonsingular, i.e., t 6∈ ∆, and
(3) the morphism Z → St is an isomorphism.

This could be empty, but later we will show it is not empty for large d.

Lemma 4.2.2. The restriction Zd|Ud
is isomorphic to the pull back S ×P1 Ud.

Proof. Critère de platitude par fibre. �

The lemma implies that the pullback ι∗(pr∗1(N )) determines a section of the relative
Picard functor of S/P1 over Ud. In other words, we obtain a morphism

mN : Ud −→ Picd
S/P1

of schemes over P1.
There may still be some irreducible components of Ud that we want to throw out
as follows. Recall that X → S is given by a PGLm torsor over S. Now consider
the morphism Flag(1, n;m) → Grass(n,m). This is a PGLm-equivariant morphism.
We conclude that there exists a morphism P → X such that for every point s ∈ S(k)
the fibre Ps → Xs is isomorphic to the morphism Flag(1, n;m) → Grass(n,m).
Thus P → X is a Pn−1-bundle over X, in other words, P is a Severi-Brauer
scheme over X.
Consider a geometric point of Ud corresponding to a closed subscheme Z ⊂ Xt for
some geometric point t of P1. Since the Brauer group of Z is trivial we can write
P = Proj(W) for some locally free sheaf W of rank n over Z. The sheaf W is well
defined up to tensoring with an invertible sheaf, and hence whether or not W is a
stable sheaf is independent of the particular choice of W.

Lemma 4.2.3. There exists an open subscheme U ′d ⊂ Ud whose geometric points
corresponds to those Z ⊂ Xt such that the locally free sheaf W is a stable locally
free sheaf on the nonsingular projective curve Z = Ct.

Proof. Stability is an open condition. �

Theorem 4.2.4. Fix n,m, X → S → P1, and N ample as above. Assume pa ≥ 2.
For all d >> 0 we have the following:

(1) The morphism

mN : U ′d −→ Picd
S/P1 ×P1 (P1 −∆)

is surjective and smooth with geometrically irreducible fibres. We denote Fθ

the fibre of this morphism over a geometric point θ of the right hand side.
(2) For any θ as above there exists a rational curve φ : P1 → Fθ so that the

pullback of the tangent bundle of Fθ is ample.
(3) For any geometric point t of P1−∆, there exists and integer h(t) such that

for any θ as above lying over t, if gcd(d + h(t), n) = 1, then there exists
a compactification Fθ ⊂ F θ into a normal projective variety, so that the
boundary has codimension ≥ 2.

Proof of 4.2.1 assuming 4.2.4. First we may choose our Lefschetz pencil so that
pa ≥ 2. Pick d as in Theorem 4.2.4. In characteristic p > 0 we choose it such
that gcd(d + h(t), n) = 1, where t is a geometric generic point of P1. Choose an
invertible sheaf L such that the restriction of L to Ct has degree d. This is possible
since the morphism S → P1 has sections as it is a Lefschetz fibration. The choice
of L determines a section τ : P1 → Picd

S/P1 . We consider the morphism mτ :
14



m−1
N (τ(P1)) → P1. Theorem 4.2.4 gives information on the geometric generic fibre

of mτ , namely it implies that this is a rationally connected variety. In characteristic
zero this suffices, using the theorem of Graber-Harris-Starr [GHS03], to conclude
there exists a lift of τ to a rational section ρ : P1 → U ′ of U ′ → P1. In characteristic
p > 0 we can use Lemma 4.2.5 below to see that we may compactify the generic
fibre Fη of mτ so that all the conditions of the main theorem of [dJS03] are satisfied.
Hence in this case we obtain ρ as well.

By Lemma 4.2.2 the pullback ρ∗Z is birational to S. Thus

S //___ ρ∗Z //___ X

is the desired rational section of X → S. �

Lemma 4.2.5. Let K be a field and let V be a variety over K. Suppose that VK̄

has a compactification VK̄ ⊂ V̄K̄ which is a projective normal variety with boundary
of codimension ≥ 2. Then there is a projective normal compactification V ⊂ V̄ with
boundary having codimension ≥ 2.

Proof. Let K ⊂ L ⊂ K̄ be a finite extension of K over which the compactification
is defined. Let LL be an ample invertible sheaf over VL which is the restriction of
an ample invertible sheaf on V̄L. If we can pick L such that it is the pullback of an
invertible sheaf on V then we are done. (Left to the reader.)

In characteristic zero this does not pose a problem since we may assume that L/K
is Galois with group G and then we can simply replace L by ⊗σ∈Gσ

∗L which
descends. In characteristic p > 0 this reduces the question to the case where L/K
is purely inseparable. However in this case the invertible sheaf Ln with n = [L : K]
will descend since the n-th power of an element of the structure sheaf of VL is an
element of the structure sheaf of V . �

Proof of 4.2.4. Let t be a geometric point of P1 not in the discriminant locus ∆
of S → P1. Thus C = Ct = f−1(t) is a nonsingular geometric fibre of S → P1.
Let Y = Xt → C be the family of Grassmanians over C. Then U ′d,t is an open
subscheme of the Hilbert scheme of Y , consisting of points that correspond to
sections of the morphism Y → C, with a suitable stability condition as in Lemma
4.2.3. We claim that to prove Theorem 4.2.4 it suffices to prove the corresponding
statements for U ′d,t → Picd

C for all geometric points t of P1−∆. The only somewhat
subtle point is that the bounds implicit in the statement d >> 0 may depend on t.
There are two ways to deal with this issue. The first is to notice that in the proof
of Theorem 4.2.1 we only every used the case where t is a geometric generic point
of P1. The second way to deal with this is to notice that once the assertions of
Theorem 4.2.4 have been proven for all θ lying over a geometric generic point of P1,
then the assertions hold for all geometric points θ lying over a fixed Zariski open
of P1 −∆. The additional finite list of points can then be dealt with separatedly.

From now on we work with a fixed family of Grassmanians Y → C, and ample in-
vertible sheaf N ∈ Pic(Y ) over a fixed algebraically closed field as above. As before
the ample sheaf restricts to an ample generator on the fibres. The corresponding
Hilbert scheme is

Hilbd = HilbPd

Y,N ,
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which is now a scheme over the ground field, and we have open subschemes U ′d ⊂
Ud ⊂ Hilbd as above. (In other words we have dropped the subscript t from the
notation.)
The Brauer group of C is trivial, hence we can write Y = Grass(n,V) for some
locally free sheaf V of rank m. Let Wuniv ⊂ V ⊗ OY denote the universal locally
direct summand. Comparing fibre by fibre we observe that

N|Y ⊗ ∧nWuniv
∼= (Y → C)∗H

for some invertible sheaf H on C.
Thus a section Z = σ(C) of Y → C corresponds to a locally direct summandW ⊂ V
of rank n. The stability condition of Lemma 4.2.3 corresponds to the stability con-
dition for this same W. The corresponding point in Picd

C is the point corresponding
to the invertible sheaf (∧nW)−1 ⊗H. Hence the degree of Z with respect to N is
d = −deg(W) + deg(H). Thus increasing d corresponds to decreasing d′ = degW.
We will see below that the integer h(t) of the statement of Theorem 4.2.4 can be
taken to be h(t) = −deg(H).
Let Ms(C, n, d′) denote the coarse moduli scheme of rank n degree d′ stable locally
free sheaves on C. The arguments above show that there exists a sequence of
morphisms

U ′d →Ms(C, n, d′) → Picd′

C → Picd
C

factoring the morphism of the Theorem. The last of these morphisms is an isomor-
phism.
The first morphism is identified with an open subscheme of a projective bundle.
Namely, the fibre over the point [W] is the open subschemes inside P(Hom(W,V))
corresponding to maps W → V having maximal rank in all points of C. Since W is
stable, if d >> 0, so d′ = deg(W) << 0 then the codimension of the complement
is m− n− 1.
For later use we describe this projective bundle a little better. There is a surjective
étale morphism T → Ms(C, n, d′) such that a tautological locally free sheaf WT

over T ×C exists. After refining T →Ms(C, n, d′) we may assume that there exists
an isomorphism

γ : pr∗1WT −→ pr∗2WT

over T ×Ms(C,n,d′) T × C. Over the triple fibre product T ×Ms T ×Ms T × C the
combination pr∗23γ ◦ pr∗12γ differs from pr∗13γ by an invertible function on T ×Ms

T ×Ms T . (This invertible function defines a Brauer class on Ms which is the
obstruction for the existence of a tautological bundle.) All of this means that we
can consider the projective bundle

P(pr1,∗(Hom(WT ,pr∗2V)))

over T . The isomorphism γ induces an isomorphism of projective bundles and the
cocylce condition for γ over the triple fibre product implies that this is a descent
datum. The conclusion is that we get a projective bundle P →Ms(C, n, d′) and an
open immersion

U ′d
//

%%JJJJJJJJJJ P

zzuuuuuuuuuuu

Ms(C, n, d′)

.
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The morphism det : Ms(C, n, d′) → Picd′

C is smooth. This fact corresponds, via
deformation theory, to the fact that H1(Tr) : H1(C,End(W)) → H1(C,OC) is
surjective for every locally free sheaf W.
There is a morphism a : P1 → Ms(C, n, d′) so that the pull back of the tangent
sheaf

TMs(C,n,d′)/Picd′
C

is ample. One way to see this is to consider the Ext group

E = ExtC(B ⊗A⊗−n+1,A⊕n−1)

where B ∈ Picd′(C) and where A is an invertibe sheaf of very negative degree. A
general element e ∈ E corresponds to a stable rank n sheaf, and we obtain a rational
map from the projective space of lines in E to the fibre of det over [B]. One checks
that this morphism is defined away from codimension 2 and that it is generically
smooth. A general high degree rational curve in P(E) maps to the desired curve a.
The description of the morphism U ′d → Ms(C, n, d′) above implies that we can
lift the morphism a to a morphism b : P1 → U ′d. By adding lines in fibres of
U ′d → Ms(C, n, d′) and smoothing we can make sure that the restriction of the
tangent sheaf

TU ′
d/Picd

C

is ample.
Finally, suppose that gcd(d+ h(t), n) = 1. By our choice of h(t) = −deg(H) above
we have d + h(t) = −d′ and hence gcd(d′, n) = 1. This implies that Ms(C, n, d′)
is a projective variety. Thus in this case the projective bundle P → Ms(C, n, d′)
is itself a projective variety, and the fibres of the induced morphism P → Picd

C are
the desired compactifications. �
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