
Notes on Representations of Finite Groups, Fall 2025

List of topics we will discuss in the lectures. This document will be updated during
the semester, so please make sure to reload the page before downloading. The
content of the course is what is discussed during lectures, so you are encouraged to
take notes.

1. Linear algebra

(1) Vector spaces and linear maps. There is a general notion of a vector space
V over a field F , but we will mostly work with vector spaces over the real
numbers, so F = R, or over the complex numbers, so F = C.

(2) A linear map A : V → V is called diagonalizable if there exists a basis
of V consisting of eigenvectors of A. An n × n square matrix A is called
diagonalizable if there exists an invertible matrix P such that PAP−1 is
diagonal; this is equivalent to asking the linear map Fn → Fn defined by
A to be diagonalizable.

(3) A vector space V over a field F has a dimension. Most of our vector spaces
have finite dimension.

(4) Let V be a finite dimensional vector space over F , say of dimension d. Let
A : V → V be a linear map. Then we have the characteristic polynomial
pA(t) of A. This is a monic polynomial of degree d with coefficients in F .
The roots of pA(t) are the eigenvalues of A. It is defined as

pA(t) = det (tidV −A)

(5) In the situation above, the trace of A is the negative of the coefficient of
td−1 in pA(t) and the determinant of A is (−1)d times the constant term of
pA(t).

(6) Jordan normal form and relation to pA(t), especially for F = R or F = C.
For example, suppose that A : V → V is a linear map and that there exists
a basis v1, . . . , vn of V consisting of eigenvectors for A, i.e., A(vi) = αivi.
Then pA(t) =

∏
(t− αi).

(7) Given two vector spaces V and W over F we can make some other vector
spaces, for example
(a) the direct sum V ⊕W ,
(b) the tensor product V ⊗W ,
(c) the space Hom(V,W ) of F -linear maps from V to W , and
(d) a special case of (c) is the dual V ∗ = Hom(V, F ) of V , i.e., the space

of linear functionals λ : V → F .
(8) In (6) assume we are also given linear maps A : V → V and B : W →

W . We obtain corresponding linear maps A ⊕ B : V ⊕ W → V ⊕ W ,
A⊗B : V ⊗W → V ⊗W , “Hom(A,B)” : Hom(V,W ) → Hom(V,W ), and
A∗ : V ∗ → V ∗.

(9) In (7) assume V and W are finite dimensional and F = C. Write pA(t) =∏
i(t − αi) and pB(t) =

∏
j(t − βj). We can express the chacteristic poly-

nomials, the traces, and the determinants of the maps A⊕B, A⊗B, and
“Hom(A,B)” in terms of pA(t) and pB(t) as follows:
(a) pA⊕B(t) = pA(t)pB(t), Trace(A ⊕ B) = Trace(A) + Trace(B), and

det(A⊕B) = det(A) + det(B)
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(b) pA⊗B(t) =
∏

i,j(t − αiβj), Trace(A ⊗ B) = Trace(A)Trace(B), and

det(A⊕B) = det(A)dim(W ) det(B)dim(V )

(c) pHom(A,B)(t) =
∏

i,j(t−αiβj), Trace(Hom(A,B)) = Trace(A)Trace(B),

and det(Hom(A,B)) = det(A)dim(W ) det(B)dim(V )

(d) pA∗(t) = pA(t), Trace(A
∗) = Trace(A), and det(A∗) = det(A).

(10) An inner product on a real vector space V is a function ⟨−,−⟩ : V ×V → R
which is linear in both variables, symmetric, and satisfies ⟨v, v⟩ > 0 for
v ∈ V nonzero.

(11) The standard example of an inner product is to take V = Rn and ⟨v, w⟩ =
v1w1 + . . .+ vnwn.

(12) A Hermitian inner product on a complex vector space V is a function
⟨−,−⟩ : V × V → R which is linear in the first variable, semilinear in

the second variable1, is Hermitian, i.e., ⟨w, v) = ⟨v, w⟩ for all v, w ∈ V , and
satisfies ⟨v, v⟩ > 0 for v ∈ V nonzero.

(13) The standard example of an Hermitian inner product is to take V = Cn

and ⟨v, w⟩ = v1w1 + . . .+ vnwn.
(14) The Gram-Schmidt algorithm works for both inner products and Hermitian

inner products on finite dimensional vector spaces V . It follows from this
that, if W ⊂ V is a subspace, then we always have a direct sum decompo-
sition

V = W ⊕W⊥

where W⊥ = {v ∈ V | ⟨w, v⟩ = 0 ∀w ∈ W} is the orthogonal complement
of W in V .

2. Orthogonal groups, Unitary groups, Quaternions

Notation: given an integer n ≥ 1 we denote

(1) O(n) the group of n× n orthogonal matrices,
(2) SO(n) the subgroup of O(n) consisting of orthogonal matrices whose de-

terminant is 1,
(3) U(n) the group of n× n unitary matrices,
(4) SU(n) the subgroup of U(n) consisting of unitary matrices whose determi-

nant is 1.

Finite subgroups of SO(3): a finite subgroup of SO(3) is isomorphic either to
a cyclic group, a dihedral group, or the rotational symmetry group of one of the
regular solids

The quaternions H. This is a (noncommutative) R-algebra which as an R-vector
space has the basis 1, i, j, k. In other words, we have

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}

1This means that ⟨v, λw⟩ = λ̄⟨v, w⟩ for λ ∈ C and v, w ∈ V .
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The associative multiplication is characterized by the rules ij = k and ji = −k and
i2 = j2 = k2 = −1. Written out this gives

(a+ bi+ cj + dk)(a′ + b′i+ c′j + d′k) = (aa′ − bb′ − cc′ − dd′)+

(ab′ + ba′ + cd′ − dc′)i+

(ac′ + ca′ − bd′ + db′)j+

(ad′ + da′ + bc′ − cb′)k

The conjugate of a quaternion q = a+ bi+ cj + dk is

q = a− bi− cj − dk

Conjugation on the quaternions is an involution in the sense that it is additive (in
fact R-linear) and satisfies p · q = q · p.
Det and Trace. From the above definition one sees that

Norm(q) = qq = qq = a2 + b2 + c2 + d2

is a nonnegative real scalar positive if q ̸= 0 similar to what happens for complex
numbers. We call qq the norm2 or determinant of the quaternion and we call

Trace(q) = q + q = 2a

the trace of the quaternion q. The Norm is multiplicative and the Trace is additive,
i.e., we have Norm(qp) = Norm(q)Norm(p) and we have Trace(q+ p) = Trace(q) +
Trace(p). The trace also satisfies Trace(qp) = Trace(pq).

Groups of invertible elements. Since qq = Norm(q) is a positive scalar if q is
nonzero, we see that every nonzero quaternion is invertible with inverse

q−1 = Norm(q)−1q

In other words the (noncommutative) group of units H∗ of H is equal to H \ {0}.
Unit quaternions. By the above, we see that the set of quaternions q of norm 1
form a subgroup of H∗:

{q ∈ H : Norm(q) = 1} ⊂ H∗

Inner conjugation. For a nonzero quaternion q consider the map “conjugation
with q”

innq : H → H, p 7→ qpq−1

Note that
innqq′ = innq ◦ innq′

hence we get a homomorphism from H∗ into the group of R-linear automorphisms
of H itself. The map innq preserves the algebra structure and preserves the trace
and the norm because

Trace(qpq−1) = Trace(q−1qp) = Trace(p)

and similarly for Norm. Thus innq preserves lengths hence defines an element of
O(4) and a calculation shows it is even in SO(4). However, innq also preserves the
subspace of elements whose trace is 0 and acts as the identity on its orthogonal
complement (the multiples of 1 in H). Thus we obtain a map

H∗ −→ SO(3), q 7→ innq restricted to Ri⊕Rj ⊕Rk

2In some references the square root of our norm is used.
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Fact. The displayed map above determines a map

unit quaternions = {q ∈ H : Norm(q) = 1} −→ SO(3)

which is surjective with kernel the group {±1}.
Quaternions as complex matrices. There is an algebra homomorphism

H −→ Mat(2× 2,C), a+ bi+ cj + dk 7−→
(

a+ bi c+ di
−c+ di a− bi

)
Under this map the Norm and Trace of a quaternion match the determinant and
trace of the corresponding matrix (and the conjugate of a quaternion maps to the
conjugate transpose of the matrix). In particular, this determines a homomorphism

H∗ −→ GL2(C)

Via this homomorphism we get an isomorphism

unit quaternions = {q ∈ H : Norm(q) = 1} ∼= SU(2)

Upshot. There is a surjective group homomorphism SU(2) → SO(3) whose kernel
is {±1}.
Finite subgroups of SU(2). A finite subgroup of SU(2) is either: if of odd order,
then maps isomorphically to an odd order finite subgroup of SO(3), or if even order,
then it is a double cover (full inverse image) of a finite subgroup of SO(3) via the
map above.

Finite subgroups of SL2(C) or GL2(C). The finite subgroups of SL2(C) (up to
conjugacy) are the same thing as the finite subgroups of SU(2) (up to conjugacy).
Similar for GL2(C) and U(2).

Finite subgroups of U(2). There is a map U(2) → SO(3) because U(2) modulo
it’s center is the same as SU(2)/{±1} = SO(3). Thus if G is a finite subgroup of
U(2), then its image in SO(3) is on our list above. Then one can work out the
possibilities for G from that3. See for example Falbel, E., Paupert, J. Fundamental
Domains for Finite Subgroups in U(2) and Configurations of Lagrangians, Geom
Dedicata 109, 221–238 (2004). https://doi.org/10.1007/s10711-004-2455-2.

3. Some group theory

(1) Elementary concepts: groups, homomorphisms of groups, subgroups, nor-
mal subgroups, products, semi-direct products, group actions, orbits, cen-
tralizer of an element, center of a group, conjugacy in a group (conjugate
elements, conjugacy classes), abelian (or commutative) groups, commutator
subgroup and the abelianization of a group, and simple groups.

(2) Most of our groups will be finite groups.
(3) We will allude to p-groups and p-Sylow subgroups (definition, existence,

conjugacy) in finite groups.
(4) Examples of groups:

(a) cyclic groups: either infinite cyclic Z, sometimes denoted C∞, or finite
cyclic of order n, i.e., Z/nZ (integers modulo n) or µn (nth roots of
unity), sometimes the notation Cn is used.

3This description in particular tells us that G modulo its center is a subgroup of SO(3). Hence,
for example. only a finite number of noncommutative simple groups arise as subgroups of U(2).

https://doi.org/10.1007/s10711-004-2455-2


5

(b) finitely generated abelian groups and structure theorem,
(c) finite abelian groups and there shapes,
(d) dihedral groups Dn of order 2n; these are the symmetries of a regular

n-gon and generated by two elements ρ and τ where ρ is a rotation
over 2π/n and τ is a reflection in the x-axis,

(e) groups of low orders 1,2,3,4,5,6, etc
(f) symmetric groups Sn, permutation matrices, generated by transposi-

tions, products of disjoint cycles (unique up to reordering), conjugacy
classes, sign of a permutation

(g) alternating groups An, generated by 3-cycles, simple for n ≥ 5
(h) automorphism groups of mathematical objects
(i) subgroups ofGLn(R) andGLn(C), for example the “Heisenberg group”,
(j) Inside the unit quaternions we have the finite groups

(i) quaternion group Q8 = {±1,±i,±j,±k} of order 8
(ii) binary tetrahedral group 2T = ⟨2, 3, 3⟩ defined as Q8⋊C3 where

C3 is the order 3 cyclic group generated by the quaternion− 1
2 (1+

i+ j + k). It turns out that the elements of 2T which are not in
Q8 are the elements 1

2 (±1 +±i+±j +±k). Thus 2T has order
8 + 16 = 24

(iii) binary octahedral group 2O = ⟨2, 3, 4⟩ defined as

2O = 2T
⋃

{
1√
2
(±1 +±i),

1√
2
(±1 +±j),

1√
2
(±1 +±k),

1√
2
(±i+±j),

1√
2
(±i+±k),

1√
2
(±j +±k)

}
of order 48.

(k) finite groups of Lie type, eg SL2(Fq)

4. Representations

(1) definition of a representation, maps of representations, category of repre-
sentations,

(2) new representations from old ones: direct sum, tensor product, dual repre-
sentation, and Hom representation,

(3) the group algebra of a group G over Z, over R, over C. We will denote this
Z[G], or R[G], or C[G],

(4) relation between representations and modules over the group algebra,
(5) examples

(a) trivial representation,
(b) 1-dimensional representations and Gab,
(c) standard representation of Sn,
(d) permutation representations,
(e) 2-dimensional representation of S4 using S4 → S3.
(f) Quaternions as complex 2×2-matrices and the complex representations

of Q8, 2T and 2O in dimension 2,
(g) regular representation of G,
(h) representations of the infinite cyclic group and JNF
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(6) invariant subspaces, decomposable representations, irreducible representa-
tions, completely reducible representations,

(7) the invariants V G in a representation V of G,
(8) canonical projection onto V G,
(9) Maschke’s theorem; two proofs
(10) representations of finite abelian groups,
(11) Schur’s lemma over C; counterexample over R.

5. The character of a representation

(1) the character of a representation,
(2) a character is a class function,
(3) the value of a character at the neutral element,
(4) the value of a character at g−1,
(5) character of a 1-dimensional representation,
(6) character of direct sums, duals, hom, and tensor products of represenations,
(7) examples of characters

(a) character of the trivial representation
(b) character of a permutation representation
(c) character of the standard representation of Sn

(d) characters of the 2-dimensional representations of dihedral groups, of
Q8, 2T , and 2O,

(8) the dimension of V G in terms of the character,
(9) orthogonality relations between characters,
(10) decomposition into irreducibles and characters,
(11) character determines isomorphism class.
(12) Example: decomposing the regular representation.
(13) |G| =

∑
d2i

(14) consequences of permutation representations (other pdf Bob)
(15) irreducibility for small standard representation for Sn for n ≥ 2 and for An

for n ≥ 4.

6. Characters, part 2

(1) dimension of the space of class functions is the number of conjugacy classes
(2) main theorem on the number of irreducible representations and their char-

acters
(3) special formulae for character values
(4) character tables

7. Fourier transform

Skip this section?

8. Characters, part 3

(1) representations of product groups
(2) Theorem of Frobenius
(3) Theorem of Burnside
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