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§1. Sheaves on spaces
:F- Y— X, Continugus mop between 'topologic‘al Spaces. VEU S X open subsets
Let BUYA{S:U— Y, continuous mop S.t. foS=l‘du.}
Note that the restriction of & to V gives a map between sets:
PV FAUS— FLV) ., S sy (2 slv natationally)
By defiition. we howe (Sl = Sl , whenever we have inclusion of open sets
wevecu, or equiual%ﬂg:
Pd=id ; w=PloPd @

Def A presheof of sets T assigns every open Subet U of X a et
FUY, omd every inclugion of open Subsets VE U a mop of eets
P4: FUY — FV)
Such that © holoa JGV‘ omy inclusion of open sets W< V € U.
A presreof F is o sheaf if it Sotisfles the Sheaf condition (of setsy :
If o U=Uezli s on open coer of U,
M Sie FU)
i Siluing = Sjlwny;
then 3! Se FW st Slw=Si, Viel
Equivalently,  FU)— T %@) = Tj-sﬂﬁ?w
SV gilwnu

I8 on equalizer dliogrom.

Remork: Note that by on open covering of U we menn : (> I is dmy set , possibly
empty ; (i eoch Ui ig open, possibly empty. Thus fr a sheaf %, Sie P= Ueals
FD) ={x}, the final object in the aategoy of ts! In particular. if U=VLW.
the equalizer diogrom => LU = FUV) xqupy HW) = U X FLW).

Examples

. GMSfO/V\‘f Sheaf
X: o topological Space | S: o fixed set



Defre FU)= 8. vUSX open. (Fd2{xh. VVeuex, PY2ids
® Is % a sheaf om X7
® Arswer: 10!
But there is such o sheaf that HAlU=S wherever +U is conected , olensted
Sx: gue S the discrete topology . then T: XxS— X is continuous . ¥V U# d
Sx(U) £ { lomlly constomt gections of T: XxS— X§,
For instamce. if X is O reasonable” topologiarl space. the Cohomology of Zx
is isomorphic to the Singulan Cohomology of X with Z Coefficients.

2. X: o topological space : Gx 2 the sheaf of real valued Functions on X,
». X: Olfferentioble monifld. Ex 2 the sheaf of Smovth fumctins on X

Nototion: X: o Topological Space.
BSheX) : preghenf of sets on X ;
IhX) : sheof of gets on X

BObX) = presheaf of obelion groups on X ;
AbX) - ghesf of abelion groups on X
Aod(O): Sheaf of Ox-moduies on X.

Def. A ringed space is o poir (X, Ox), where X is a Topologiosd Space
ond Ox is a sheof of rings.

Def: (X, Ox: ringegl space. A sheaf of Ox-modules F i guen by o. sheaf
of obelion groups F erdoved with 6. mop of Shenues:

OxxF — %
st VUSX open, Oxtyx Fly— F mokes FU) an OxU) - module .
(OxxF is the sheaf of sets + (Oxx Ty 2 Oxh) x Felh. )

Cuestion: F. &G - sheaf of Ox-moolles. How to defie F®oxG?



Ansooem Ur— 7(“)@0«(;)@(&), wWonks (On%) in RMoolt Ox),

¢ Aogomi‘ ﬁmctors

== 0 Junctos betiween tuwo  aztegories.

Dq“. U.v are called odjoint f More (X, UT) E Morg (UX, Y) , ¥ X € Ob(),
Ye Obe@), oml the isomorphism is bi-functorial in X and Y. If so, we say

U is a (é’ﬁ' aog‘ofnf Qf V.

Examples

@. Cmsider the Functor from the Qateqory of abelion grups to the category of
sets u: b — TBets , M—> Mas a set (fogetfil functory |

F: Bets — b, Fc8)=the fiee abelion group on S = Dses Z-rsa.

Then Morets ( S, UMY = Morgs (F(S), M),

(. R— S:a ning mop.
Then Homa (N, Ma) = Homs (S8eN, M), ie. Mol Mools e adjoint Sanctars.

©>. Sheo.fﬁcat«on OESkxy— ThX) , F — F*, adjoint 1 the inclusin Sfumctor
BShX)==2 ThX) © Moresas (T, (€)= Morswn (F¥ ). We shall dlesoribe (-3
in oletoil bElObo

The sheafification F* of % will Come with a mep of presheaves £ F—(F*
st V omy morpism of preshemes o: F— (GG . 3! factarization

g G
72
% /"3.\“#
(FF

® Sheofifioation
Toen: Force the sheaf condition to holdl.
UeX an open Set, Li: {Uiliex an open covering of U.



Def. Let 7% be a peshesf of sets on X
RO F2 ken ( Ther FLY == Thjes FUNUY).
= { (Siviex | Silumuj = Sjlumujk

Lemma. There is a natuml map F— FPLF). S cslun. K F is
0. sheaf . then it's an iSomorphism. o

Def. Given o presheaf . we Oefie F* to be the preshesf with uale:
FHUY £ colimu PO F.
The reatriction maps are Given below.

Def- A Covering N=Uetlhi is a reﬁnement Q)C M= Uwer Ul [)Cf Jo: I—T'
st Wi €U , V¥ i€l
Given such om o, we mow olefine FoL, %y — oL F) by the rule:
(Sier ¥ (Somlwidier.
Then this is o well-defined mop and is independent of choices of o. (Indeed,
Ui € Ui, LS Ui => Ui S Usn 0 Uy, thus St s =( Soues [uwen nupen M i = (Speyd i ).

Observation : Anﬁ two open Coverings Lh, Lz of U have a common refinement.
Then the portially ordered set (POSet) is ako olirected. Thus Colimu is @ olivected
climit. Thus  FU = LLHCUUL F) /n, where Sie FULLF) . i=12, are ouded
equivalort i 3 Common refinement 1A st. the images of Si in FIUULLF) are
the some.

Restriction mappings.
_-gc VEUCS X are open subsets. LU U=Uiet i, S=Sier € FRLLF) , then:
V: V=UeinV , Slv £ (Silwn) € HV, F).

Note that there is & cononical map of preshenves : ©: F — F" . By regarding
U as on open cover of itself conly ome open set. Li= U):



LU — AU
S +— [S1€ HWLLFY/~,

Def. A preshesf A is called seperated if for all open covering LA: U= Uiez Ui
the map F— TLFH W is injective.

Exampe:  Let X={xy} with the disorete topology. Define a preshenf 7 on
follons
F =30t  GUxh=Zh |, Fuyn=2~, F(X)=ZRxBLxZ
FXO— FUixy i guen by projection onto the frst factor
FX)— Fyn s gen by projection onto the seomdl factor
Then % is not seperated as  Fiixyh — Fxy) x FAYY is not infective.

Thm. Let % be a preshesf. Then:

(). T is sepemted

M. ¥ F is seperated, then FTis o shedf

. I %A is o shef, then FT=F.

(on The Construction B~ (F -+ F1) is Sunctoriad in F. Moreowen, fr
omy G o sheaf, ond morphiom of presheaves @: F— (3, 3! fectorization:

G —— G
e\‘c;‘r/;\_qﬂ'

Prof of Thm.

). F is o sepemted preshesf. Let:
m UEX be gpen, U: U=Uiez Wi be an open Cover.
. Sie FHW), ie. it UisUrexiUin , and Sik€ F (i) , Siklumawr = Sie|wiknwin'.
@. 8ilwnuy = Sjluny € FHUinw
Now Siluinyj is given by ¢Sieluwmnuprers 5 Sjluiny given by «Siluinuprirei. As elements
of FUUNUYY, they are equal. (We need to show that 3! eection se FU), whose
restriction to Ui is equal to Sie FTY



Consider the refinement [h: U = UseLkets Uik amd eloments &k € FlUk). (e aom
Check -that Sikluwnujw = Sje'lurnuw. Then it follnas that (Siey defines o. Section in
ML 7). The unigueness follaws from F being Sepemated.

TInoleed, if i=j, we ore oone by cssumption (2)

I i+j. Oy WNW = Urew, kek; Wik O Ujk' 1S @ common refinement of  the
open covers that dg%e Siluiny & Sjlwnw, namely i - Uinj= Ureki Uin Ny
ond LA : Wij = Urek; UiNUjk: Thus (Siklwirnue ), (Sjluirnuj) are two sections
of HLi. %y, which defire the Some eloment under further refrements , by our
oasumption ¢3. Tt follas fom the next lemma that (Shlumnue) = (Sjrluinnuge €
H%uq,‘?«').

Lemma. I F is seperated , then all maps coming from refinements are injective.
Le. L' is & reflement of M. then Fot L oy — FOCLUL Y 78 injective .
Pf: Note that U": U= User,ier WinWi is another refinement of 1L, ond
moreser LU, LL' are refirements of each other , Since LI is o refement of
L. Tt folloos that FPOLL Fy = FI(LL, T,

Noo gen two Sectims (siier, (tivier € R F) , which have the some
image i PN, then Si,ti€ U hove the some image in TT FUNUN)
= Si=ti e R, by epomitrdlress of . O

i, follows from our dleflwition of .
oy, The functariality follows from olefiuition. For the secod statement, pote that
by Junctoriality. we have
7 @ . G
I
It ey
The resutt Sollows.
M. Given . € FHU), whwe resriction to om open cover Ll U=Urez Wi owe
the ewe, we need to shos that, S=8' in FHw). In each KU, Slwi= lui =
3 open re:ﬁnemevrt' i+ Ui=Urels Wik, 8t Sluk=Sluin € Ftllin). Since O: U=



Uretheri Wik 1e aldo an open cover gf U ond r\g‘fneo it ﬁ:(lowsﬁlat s=8'. O

Def We aall F* 2 (FHY, with the aanomiosd ophism F —>F* 5 F*
the shesfification of F. It is the unigue Shesf s:t.
Mor penxy ( Z, Q) = Mor siexs (FFF, C{[)

(Indeed, the lost statement follaws from the Commutative Cliagram:
GF _9__, %‘t ___Qla;#

T
G — 6" — G ),

(Ohy ~ Sheafification ?

—~ There are operations on sheaves whase *olirect” outcome is not @ sheaf:

For instonce , (X=C with Ox= Zx, . G ore shy- somper Sheaves Supported at olistinct
points of X, then F0®ow Gz FX®zGUO. But chovsing a cver Li: €=UpL U
where Up=C\gs. Ug=C\p} = Fllp)@owpGlUpe 0 . ond S0 is FUpOowug Gllg) =0
= G B0 GX) > (FUp)® 0wt GLU X ( FlUg) B G LU,

Def. (Stak>. xeX a poit. F a preshegfon X The stalk of F at
Fx = colimxeu FLU)

where (L runs thrugh open reighbontoods of X in X.
Equivslontly, Px = { (U. &) |SeFW), U cpeny/~, where (U, sy ~ (U 8 ff

I wopen, WEUNU' st Slw= €'l € K.

Rmk: The set of cpen neighborhoonls of % in X forms @ Olirected POSet. It follaos
that if F is a preshesf of abolian grous ¢ rings, Ox-modues), then Fx is am
obelion group. (ring,  Ox.x-modlule ).

Fact: Fx=Fx (=F) , oml F—Fx is functorid.

Lomma: Let @: F — G be o mophism of sheaves. Then:



@. @ is an isomorphism [ff Vx€X. @:Fx—Gx i8 on isomorphism .
iff YUEX open, @: FU - GU)
(k. © is o monomorphism ff ¥V xe X, : F— Gix is mjective .
F YUCSX open. Flh — G,
(©. @ is on epimonphism [ff V¥ Xe X, ©x: Fx— Gx is surjective.
W YUSX qen ond SeG(UW , 3 LIt U=Uiex Ui
et Slw lfle o MU for ench iel.
Pf: .’<" is eny. ‘="
Pick US X open, we need to Shao that @ FU-2GU

Injectivity - S.8'e AUy s.t. Qy=@s). Then the images of qxsy omd sy in Ggx Gre
come , vxe U. By injectivity of @, Sx=8xe Fx, ¥ xeU. By okefinition of stalk,
we bnow that Sluc= Sux for some open neghbohood Ux of x. But Lk U=Useulh
Jorms an cpen cover of U =>8=8' by the Sheaf propery.

Surectivity: Pick te GU). By asumption, v xe U, 3se Flo. 8t QSx) = txe G
By oefuition of Stalk. @iy amd t agrees on Some open neighborfioed sl I 8
i another Such Section in PlUx) , then QuSky= QsHx= @S)x = PLSx) , v x€ Ux N Ux .
By injectivity above . §'=S on UxNUx. By sheaf property {cUn.s3} glues to be
O Section in U,

@. @ . Note that in the ategory of Sheaves. we have fiber produats ardl push-
outs. P—G is moomophism ff FEFxgF iff Fx = Fuxgu P cby port tin
W Fx—Gx b injective. ( Toking Stolks commutes with taking fiber products and
push-outs ). O

Lemma.  ©ABCX). Ab(X), Mod(©Ox) are obelion categories. Given @:%— G i
these oategories . we have
kerg : U kerc F— Gy lies in each of them
Pookerep : U — Coker ( FLUy—GUU) Lied in BABIX)
Cokerp = (Peokergy® (iea in Ab(X) or Mod(@x
Furthermore, toking ken. coker commutes with toking stalks , and
0o—%— G — H —o



8 a ses in AbX) or ModtOo iff vxeX
0— Px — Gx — Hx—o0

is S.e.

Exampe: X=S'=R/z. Let (X be the shegf of C™- functions on X.

Then we howe 0. 8.e.g.
0— 2y — Cx— @®—0

where Q & the sheaf of C%-fumctions valued in IR/z =S'. In portioular, we
con treat ids € QUX)  (which tums out to generate H'(X, Zx).

Skyscroper  sheawes
Def xeX, S:set. The shyscmoper sheaf (xx(S) is oefined os the sheof of <efs:

cx*<s>(u>g{ S if xeu
ixy if x&U

with the obuious restriction mops.

S yedxy
Ip Y& 4y O

Lemma. ([x*CS))g = {

Note that if S is on abelion group, then (xx(Sy is an obelion sheaf. ¢ so
is rings, monowls ete). If (X.Ox) 8 o ringed Space, xeX omd S 8 an
Ox.x - module, then (xx(Sy is in a natumsl way an Ox- mooule. Tndeed :
wyxS— 8 if xeu
. ~N U
Ox(Uyx Dt SYWU) = { Oxx xS

OxtUyx {of— 10t if x&U

Adjointness property:  Morpsnx (7. (xx(8)) = Morsets (Fx. S). This aleo wombs
in the category of Sh(X), ©Ab(x). AbIX) and Mod(Ox).
Aside :  This explains whg %#« = % :]%7‘ % e BShex).



Moresnox (7. Cxx(Sy) = Map( %x, S)
I}
Mor ghon ¢ F2 (xx (89 = Morpges (F* cxl S = Mop( Far. .

Lhot's reallyy going on here 7 (4§ e X is O Continuous map . then the

skyscmper is the push-forunrd" of the condtomt shesf Six, (to be clefined
below) and ts adjoint to the pull-back” (7 (taking Statky !

TTensor products
Let (X.Ox) be a ringed space. If F omd G are Shewes of G- modules. we
define the preshenf of Ox-modules % ®poxy -
FRGW £ F®ow GU.
with the obuious restriction mops.

Def The tensor product of % and (G is the sheof of Ox-modules :
%®©x@ 2 (%®D(Dxcﬁ )#
):O.C't: (¢®Oxcﬁ)x = %x B Ocx Qx

Recol that i we hove 0. map of rings: A—B. M an A-modile, N o B-mode.
then Homa (M®4B, N) = Homa (M, aN).

¥ Xisa /mjspacemd@:——‘(‘)z:samap@fShMofnhgs,ﬁen
% on O - mode, G om (O2- module, then

Homo F. 0G&) = Homea @0 02, G)

Examples
w. I X=12p.q} with discrete tapology. Ox=Cx. U=1p}, V=1¢}. then
O =C, Ox(V)=C. (Dhat's on Ox - module 7
Answer: AU is a € vector Spae Ki ;5 FF(V) 18 & C-vector Space Ka
Fldr=40t, F(X)=K@ka hut now on a COC-modue ! )
Similaly toke G t be another Ox-module , then

FOraGU) X F@poxG(V) =Ki®cL)x(K2®cL2)
ond. ZR®px(G(X) = (K ®K2) @gaa (LiBLs) = (Ki®cL)® (K2®cLa)



Thua in this cose. the preshesf F®pexG 1S 0 &heaf alrendy.

@ X=IR, Ox=2Zx, F=loxZ)® [ixZ)

Then Oxo=%. Ox. 22. ¥®F = F cbg [ooking ot Stulks)

tws FOOF (X)= ZBZ. Hoveer. F®ppF (X)=(202)02(287) = 2*
In this cwe, P®pex? is not o Shef,

Functoriality
f: X— continuous map between topological spoces.
Def.  fx: BSHX) — ESACY) by the rule:
(HFW 2 Ffiun
with the obuows restriction mops comming from F. The some olf: voorks
in Sh. ®Ab. Ab, Rings, . by the following:

Lemma. If F i o sheaf. then g0 is HF.

Pf: B V=Ujer\} is on open caenng of VE'Y, then fi\Vi= Uy
s om open Covering. The sheaf codlition of F

= FF) = ker (Tia P V== ijez FWnnfvm)

= fFn=ker (Ta FFV) == T FFviny)y) O

Next, we define the adjont of fx: BSh(X) S OShCY). Note that previsuly the
adjpnt of i 1 (ike toking the stulk, thus this rnust inuolve Colimit :
Def. Given o presheaf GG on Y, we define £G in BShx) by

EIn, éﬁCO(im GV

weV
Vopenin'Y

with restriction map given by: Ui E Ua S X Open subsets.

a%ca?\f(uz) ----- > fpr“uu.)

ColimG (VY — ColimG (VY . tis map guoen by idgwy siee V2fity=> Vafiu.
V2 ftta V2 ftu



Eausg cor. : ('F;Cﬁ)x= Gﬁm.
Note that if G is o sheof. then $oG is generslly not o sheaf. For example, take
Y tobe apont, ond G oy sheaf on Y, then $oG & o Omstant presheaf, whih

is generoly not o sheaf

Lemma.  Morgsnx (pG. ) = Moreshon (G, P
Pf. Note that . map from o colimit is o compatible collection of raps from
objects in the colimit . i.e.
@ $G (L) = Colimyagn GVY — FU
ia gven by 0 Collection of Qu. : GVY— F j&r o : qu—-»Xf ¢ a4 Objects)

ond compatible with reatrictions in the Sense that: VeY
Ue—U =X FU) «— FH
Lf Jf lﬂ-‘ => (Pu'.v'T ? Tcpu.v
Ve—Veo Y GV «— GIV)

On the other homd . 0. map Y: G— K& is guen by a collection :
Wy GV — HF (V) = Fofvy

ond compatible with restrictions.

Now , frm © to ¢, defire Yy 2 Qpenr.v. Comenely. Jrom ¢ to @, define
Quu 2 PTYedy. Now the compavtions :

P @ Phy= P gy = pTES Prews.v = Puv

ond Y= QP Py S Qeyyyy = Pfc‘:i\\l;:°\l’v=% ,
by the compatibilities everywhere. 0

Note that ¢ € Morpsnon (fpG. F) or equivalently . b € Moreshn (G, %, gies
rge o a mop Gfw — Px.

Def: ¥ G b asheaf on Y, we defire £ (@ 2FHGN"

Prop. Moreno (FG. F) = Morsrn (G. A%,



Pf: Morewo (f'G. F) = Morgano HG. F> by def. of sheafification.
= Moreshin( 3, HF by lemmag

= Morsnox (G x> sine H% is alresdy a shesf. O

G)‘{\ (JC_G)X = Gﬁm Qanonicollyy
Pf: For ony skysoraper oS in Sh(X).
Morswon (FG, (xS Y = Morenen (G . o ixxS)
= Morshn (G, Lfoo* S)
= Wseh(&ﬁx), S
= ()C_G)x = Gﬁ’o- O

Morphism QJC ringed Spaags.

Good: Given ring mops A— B, we will define morphism between offine schemes

Cringed Spacea) Spec8 — SpecA, ond Mov‘m@(A,&:MormcSpecB, SpecA)

Motivation: \b: M—>N, a C* mop between C” monifolds . (We com regard it

D4 0. morphism Detieen ringed spaes: (M. CR)— (N CR),
UEM, VEN pen st UM

he CINY(V) L l\p Lw
= hod € CXMY W) Re™~Ve—sN
ie. we obtoin: (N — }QS , the factorzatin being automatic since C¥ is
W CN

0 sheaf. This equiilently gives rise to CN— WCh.

Def. A morphism of ringed spacss (X,0x) — (Y, On s & pair ¢f. £ where
JC-‘X—-*Y IS Cotinuoud .  omal f'ni @Y‘_’Jgf@x (or equivalently F# F Oy — Ox;
oraao(lecﬁongcfmpaﬁblemapsz U X

Fiv: Ostvy — Ox>, fo‘r eoch obect: F If

VeoY

Def. A morphism gf ringed Spages (XiOx)‘iﬁ(Y. Ov) gives rises to:



iy Ix: Mod(Ox) — Mool(Oyy : F— £:F . which is an  fuOx-modue regorded

os on Oy-module via £*: Oy — HOx.
(in JC*= Mod (Oy) — Mod( Ox) G HJC*Ct}@f*Or@xé JD‘G] : JC-I@Y — Ox s the

oononicel one aagoirrt to f#: Oy — F Oy

® Adjpintress . Homov(G. +F )= Homo £G. F>.
Pf: Homov(G. FFY = Hompor (G, foF) (08 FOx- modules )
= Homox ( " G®r0:Ox. P« property of tensor product
= Homox( FG )
Trivial  corrollories :
° f*Ov=0x (A®AB=B)
e (LF*G )x=Gﬁx>®(of,ﬁx: Ox.x.



§2. Schemes
Locolly ringed spaces.

Goal :  Mor Ringed Spacea ( SpecA, SmB)-—?—? Moreings(B.A). But this doewt work in gerercl.
E.g R:a DWR. SpecR={¢ wm} Let K be its fiaction field. SpecK=4wat,
Now we hawe & rng mop R— K cinclusion). But there are 2 mops as ringed
Saes gc Speck — SpecR. Nowmely:

W +— @ or WA —

Q=©Soecﬂ.'_'©Sp&%VA=K K=©Sbezﬂ,m—‘(05peck,vm= K

Def. ( Locally ringed spaces)
. A (,ocabg r‘in\%d spoce is A nhged Space (X.Ox) st ald Stolks Oxx are (oo rings.
bs. A morpism  of (oaally ringed Spoces is @ morphism (£, fa3: (X, Ox) — (Y, Ox) of
ringed Spaces st Vxe X, the map fx'+ Ovfoo — Oxx is @ local homomorphism of
local rings .

We derste Ktxy £ Oxx/mxx the residue field of Oxa.

Lemma.: X, ringed Spaces. f X— is an tsomorphkism in the Qxregoy of ringed
Spaces . Then JC s an isomorphism in the ategory of éomdg ninged  Spaces. |

Open subspaes. (X, Ox) : locally ringed Space, j: US X open. Then (U *Ox2 Oxlu)
is a new (ocally ringeol spoce.

Affire Sctemes.
Lemma: Let R be a ring. M on R-modie.
o. ¥ £ geR with D@ < Def . then
@. f is inertible in Ry
bs. =0f for Some €21, aeR.
(. there is o aanonical mop R — Ry
0h. there is a nonicod Rf - module homomorphism Mg — Mg.



(. Any open Cowering of D> @n be refired by Defy= Ui Dign. I g~ GreR
and D S ULDIG). then G- Gn geremte the unital ideal in R (In porticular,
this soys that the Cowerings formed by Standard opens is Cofingd in the Coverings>. O

Let & ke the oollection of Standand open Sets of SpecR. Defne o presheaf M on
& bty the rue MDif» 2 My (which mokes sense if Difs=Digy, F is invertible in
Ry so Myf =(Mgip=Mg. and it's ako et to Mgy, and f D@ SD¢f> . the restriction
mop Pg?g: Q(D(ﬁ):Mf — UDgny=Mg s the mnonicd map.
Note that, the sheaf Condition Says that , w-r.+ O Stadlerd open Cmvening of Def
Db = U;Q;D(gi) , then
0— 'becﬁ) — & Q(D(gn) — By QCchigj»
Mg vy Mag
This is true by the guing lemma ard Digs S D¢fy = £ is @ wnit in Ry = D)= Dugf
ord Mg=(Mglg, Mgigj=(Mpgmg;.

Foct: There is on epuivalence of aotegpries - ShiBY = Sh(SpeeR), where Shi®
denctes thoe preshepves on B tisfyng the above sheof condlition w.rt. Standlard
open Covers.
i Explicitly. ﬁ?‘ eoch U open in X, let TIU. KN be the set cgcelemen’cs {Sp} € Tlpeu Mp
Jor which there is a. covering of U by Dtfur's together with elements Sue Mg such
that S equals Su under the restriction Mfs — Mg. The restriction mop is Given by
the coomdinatewdise  projection:  TipeuMp — Tpev Mp. Then it's easy to check that this
defines 0. sheaf . Moreover, by the guing lemma cbwe. I'(DY . My= My, Showing
that this is an equivalence of aategory

Hostshome Led this J‘Zv:t ;mplxar@ in his construction. A

Corclusion : there exists @ unique Sheaf of rings Osee st OsekDef =R Df =Ry
Moreawer, for every R-modue M, there is o unigue sheaf of Ospeck- modtule
F=Mst. KD = ADfn=Ms as on Oser(Def) = Rf - module. In partioulor
T(SpecR, Ogpecry =R.



Def. An offine scheme is o lomally ringed Space isomorphic 1o ¢ SpeeR. Ogiece for
Some ring R.

Def. A scheme is o éocauﬁ ringed Space St every point has an open neighborhood
which is an affine scheme.
Remosks on F =1

0. xe SpecR  Corvespords o @ prime ideal PER. We hae Fx = Colimaens FDP)
= (olimeR. fup KOS = Colimger.fep Mg =Mp. (the colimit is a direct limit Sice £i.fa
ER\p = fic R\P . ad Dffay €D, i=12.). Moreower, Mp is an K- modlule in
an Obuious way.

. The functar % — T or DM s et

(3. @: M— RN an Ospeca - mop => © on globol sections : @: M—>N.

Why do we dlefhe M on B instead of ol opens?
E.g. X=Speckixya, U= X\{o}. 0:the maximal ideal (x.y.
Cloim: Ox(h=Rrx.ya .
0— Ox(L)— Ox(Dixry@® Ox(Diyp) — Ox(Dexy)
= O =ker(Rrx.y, %1@ kIx Y. g1 — Rrxy, <31)
= Roxya
This is an anclogue @C Hartog's tm in Complex oralysis.

E.9 (SpecZ. Osxz) is an gffne scheme.

wm —o—@ @- -@- @— ---
(0) 2y (3) (B) € )) un

Any non-empty opon get is of the fom Do, which is Stamdand open, thus
Ospecz (DY = ZL51,

The Main Lemma.



The moin result of this section is the ﬁUowirg lemm.:

Lemma: Let (X.0x, (Y.O0v) be locally ringed spaces. Y affine ¢ say. isomorphic to SpecR,
Then MorLrse.(X,Y) = Homag (R, TUX,0x) . Equality holds fanctoriolly in X.

Rmk: Together with Yoneda's lemma, this fomula determines ¥ o looalky ringed spaces
From the R=TY.0.

Proof of the moin lemme. ( cketchs.

Given (. e MorLrs (XYY, W¥ induces o ring map -

o R=TCY.00 =2 TY, 400 = 0%, O,
We will express & as @ set mop in tome of o ¥xeX, Yo=1
PC)SrOx) —— Oxx
R=T(Y, Oy) —— Orin

The above dliagram commutes by dlefinition of morphisms of (ocally ringed spaces . Hence, if
W =peSpeR , we have

@f.rx Spee Ox,x
R—— Q@ Spec?<—— Spec Qp

Since Rs —> Oxx is a locel homomorphism of local rirgs , the (unique> closed poirt of
Spec Oxx must be mopped to the closed point of SpecRp . (This is not tnie i we only
require ringed spaces !) In tum it is mopped to @ wnder SpecKp — SpecR -
® Conclusion: Vx> comeaponds o @ SR which 8 the kemel of the compite

R —— ["(X,Ox) — Oxx—> kex

© Sublemma: Giiven amy looolly ringed space (X, Ox), ond any globed section fe I(X. Ox)
the set D 2 { xe X | FamxcOxx | s open in X and fe T(DF), Ox).
Notation: I ©'is o sheaf of rings on X, we oefine O the sheaf of units in O,



which is @ sheaf of obelian groups.)

Pf of siblemma: V xe DXP. Fe&mw = F is 2 wnit in Oxx = 39¢ Oxx st. f3=1
in Oxx. By def. of a stalk, 3Usx, fg=1 o U = FeTlU. 0. This works for
ony X D) => DS is open. Moener, this aleo shoss that fe (D¢, OK). O
Rmk: The result is not true for ringed Qaces. (it Oloean't even make serse 1)

Now, we con conatruct from o ring map o: R— I(X.Ox) a. movphism of locally
rnged Spaces (Y. 4™, nowely:

o Set Lxy= kent RZ5 X, Ox) — Ox.x — Kex)
Cloim: b 1s continuows. Ingleed . (D) = Diof, which is open by sublemma.

® T corstruct U¥F: Oy — Yo Ox, it &ﬁm <o OOY\S’fWCfJQ‘t"H’E Stomolodl opens :

e, Oy —---- > 1D, duOx)
| I
%200 ———————— > TIDwoefsy, Ox)
R —  T(X.0x0
£ of

By sublemma , oify is o wnit in I Deaeh), Ox) . thus by the universal property of
loobization, & lifts to o map Rp — ITDuefy, Ox).

Tt suffices to check that the Junctor we constructed is invere o I, wohioh is
omitted.

Cor1. There is on onti- equivnlence of affine schemes (as locelly ringed Spacesy amdl rings:
¢ Affine SM&)%’ ¢ Rings )

The moin lemma implies that Spec is @ jldﬂ Joithful Jumctor. O

G2 F Y is on offne sdeme amd fe TUY. Oy, then (D, Oxop ) 2 ( Specky.
Ospecs) 0 offire sohemes. Consequently, ony scheme hos o bosts of topolegy
consisting qc Ofﬁne opens.



Pf: MorLas (X, D=4 th,Yhe MorLes (x, Y | £ is inertible in TUX, 00}
={ ote Hom (C0Y.0p, T, 0| schr e DX, OX) |
= Hom( Re , I(X.0x))
= Mories. ( X, Specl¥)
=(D(F) . Oxlog) ¥ (Spec R, O gy, O

Immersions of  Locatly Ringeol  Spoces

Let (X.Ox) be o Looally ringed space, UCX, an cpen eubset. TThen (U, Oxlu) is an open
subspace a» loaplly ringed gpoce -

Def. An Openimme:bioncféom%ﬁrgadsmaesmaﬂmpﬁu‘smqflomﬂgﬁngad Spaces
j: V= entisfying:

(@. j is a homeomorphism onto an open subset of Y

. j*: J'Or —Ov is an isomorphism.

Lemma.: Let Xi’Ybe o morphism of locuﬂﬁnrged spoces. Sugome US X and VEY

are open subsets st FIWEV. Then in the categry of locally ringed spas, the
Pllowing diogram commutes:
Ues—X

mo

VY O

Closed immersions ore horler to defre. The usual defintin for Schemes ¢ Hartshome)
oloeant work in general for looally ringed Spaces -

BExample:
let X=IR with the uual topdegy. k=22, constont sheaf. Z=lo} ©Oz=22. Let
(: Ze s X be the indusion and (*: Ox — (x0z the obuiows map.

This would be & closed immession if we toke the uaad olefinition of closed immensions
for schemes. Howeven, this is not so good in the sene that we want Closed sets o be
out out by (ideplsy of regulan Sfumction.



Def: Let (: ZesX be a mophism of looally ringed spoces. We say ( is @ olosed
immexsion (ff:
@. ¢ i8 o homeomorphism of Z onto & closed Subset of X.
. i* Ox—(xOz is Surjective, with bernel 7.
©. As on Ox-module. T is locolly gerenated by sections . i.e. vxeX ., Ixell EX,
ad Sections Sie AW, iel st the mop:
Bie1Oxlu — Tlu i Frer — Sfs
is surective.

Example bis.

In the previows example . T =kertOx— ixOz) 8 rwt locally generated by sections.
Tnoeed . vUsx, U comected, Zh=0d S bOxy=24 = TU=0. J Ffr some
U it were gererated by (oonstonty sections, L) #0 sine Iy = Z/ =0, vyeU. y=o.

Upshot. f i Zes X is o dlosed immension . then v ze Z, IUEX, imell, FreOxw
st (@NU s cut ot by the vawising set of 5= A1 xeUt| Jj=0 in xm},

Foct: I X=SeeR is an affire stheme, then any closed immersion ¢ Z < X i
of the fom SecRi1 % SeR for a wnigue idead I in R, Moreover,
ker( Osece — Yo Ogeeriy = T € R = Ogecee.

Immensions of Schemes

Lemma. X:a Scheme, USX an open subset, then U is a Scheme.

PF: vxeU, omd eV open offne neghborhord. Then UNV is open amd xe V.
Now. take fe (v, 0x) st. xe s and s SUNV, then Defs 1o affive o

Equivalently:
Lemma Ifj:X—*Y is on open immenson, then Y is o Sdeme => X s a Sheme. O

Note that even Y offine. X need not be. by owr previows:



Example: SpecRlxy1 2 U= Dy udyp. but U is net affine.

]:rom‘theg%rrabwe:
Lemma." - If X —Y is a cloed immenion, Y a scheme, then X is o Schewe. O

Tact dbe => i SecR) = SpecRlr for ome unigue 1. Hartshome auoids this Comptexity
by requiring oleo that X be o soreme.

D%D.- AmOT‘pWSme-—’Y@eSC?B”eA ks called on immension or Locally closed]
immension i it n be Jactored aa joi where [ is a closed immension ard j is an
open immexdion.

Lemma.. An immesion is closed {ff its image is closed. O

Lemma. X: o scheme, then amy imeducible closed subset has o unigue generic
point. (i.e. X is a Sober topological Space).

Pf: Let ZE X be imeducible . closed. Prck U = SpecR € X cpen affine . st. UNZ#.
Then UNZ i8 imeducible . Closed and by the fact above. Comespords to o unigue. rodio
deod p . Ineoucibility = p s prive. Then fe GRS X atisfes 9p5 = Z since
BNZ conoing an open subset of 2, romely UNZ, and Z o imeducible.  Unigueness
Jollows since amy gereric pont of Z is in U, O

Lemma: The open gffires of X fom a bass of topolegy i X is @ Sheme. O

% In gereral, U. V offine 7 UNV affine. (Seporatedress required). However. 6
weeful technicod lemma. we sholl use is:



Lemma: Let X be a scheme. U. V offine opens, xe UNV. Then IWCUNV, W
Stardoard open in both U amd V.

PF: U=SpeeA, V=SB, Ohmse feA st xeDifs S UNV. Apin chose ge B

st xeDP S DHSUNY. Now ge B=T(V,Ox) rearicts to an element 3% in Af

= [U. 00, Tt follows that DGy=Diafy is aleo Stardard. open in SparA. m

%. 3 non-empty Scheme without closed points !

To cliscuss closed subschemes, we first olefine o revluced scheme:
Def. A scheme is reduced iff vxe X, the lomd ring Oxx is reduced.

Lemma: X is reduced iff ¥ U open. OxU) is reduceol.

Pf: =" vucX open, feOul), f"=0 = F'=0in Oxn,yxeU, Sine Oxxis
recuced by casumption, f=o in Oxx => f=0 in Oxl), by sheaf' properties.

<" Colimit of reduced rings are revluceo. =

Cor. An offine scheme X=SpecR s reduced {f R is reduced . O

Cor. X: o scheme, TRAE:

M. X 8 repuced

2. 3 on open covenng X=Ui W st each T1UI. Ox) /8 reduced.

@). YU offine open. TTU.Ox) i8 reduced

@. YU open, ITU.Ox) is reduced. O
This kindl of chamocterization of a property Jor Schemes wil occur many times
(oter ¢ Noetheriom, Guosi- Coherent, - )

Closed  subschesres.

Def T X is a scheme and F is a sheaf of Ox-modules. We sy 7 is
Quosi- coherent {ff YUS X affine open, U= SpecR, we have Flu =N for some
R - moolule M.



Lemma. Tt's encugh to check the abme def. for members of an gffine open
Cover of X. O

X: 0. scheme. Suppwe I is a quas-coherent shagf of ideals. Then for every

affine open . Ifuzfﬁr Some ideal ISR, Look ot the c.es. of sheaves:
0— I — Ox—Ox/T— o on X

omol 0— /f—>§-—*(é7&)——>o on U

Foct: there is a unigue dosed subscheme Z <t>X st T = ker(Ox— ixOz)
and on eoch offine cpen U, we hae ZNU = Spec(RITY,

Upshot: There is a. 1-1 inclusion reversing bijection between closed subschemes of
X anol quosi- toherent sheowes of ideals of Ox. gien by:
(Zch X)) ker(Ox — (x0z)

Lemma. Let X be o scheme, amd TS X o closed subset. Then, 3! closed
Subscheme Z € X St

. Z2=T o a St

oy, Z is reduced.

Pf: To construct 2, oll we need to do is to construct o Suitnble Quosi-coherent
sheof of (odlicaly idenls, by the upshot obove.

Given T. defie TIU) 2 { fe Oxw | fety=0 mod Me, vteunT} . ie. F maps
t n each Kety = Oxt/me,

T is outomaticolly o subsheaf' of Ox , because the definition is locad in
nature. (e just need <o check that 7 is quas- coherent. Pick U= SpecR open
offine in X, Since T is closed in X, TNU= V(1) for some wnigue rodlicad
idleod I Qf R. Infact, I=pemuP=T11U.I) SR, we just howe to Show
that Tlu=T. I now Suffices to check For Standard cpens : vfeR,

I, Ty =T Ty
= {he OxDH)| hetr=6 moo mt, vteDefinT



= Npexpavn P

= Ig

"_FCDcf)).

Finally, toke Z to be the closed subscheme associated to T O

Def. Given @ closed subset Z S X, we will oy let (2,02) be the reduced
induced  Scheme Structure on 2" to indicate the cbove reduced scheme structwe.

Def. A scheme is called integral if for ok U X open, the ring Ox(U) i5 &
Olomoin. ( Also assume X+, U+ ).

Lemma: X integrel <= X is imeducible and  reduced.

P "=" T there were o nomemoty opens U, V. st. UNV=a, then I(ULV, On
=TMU.Ox)x TV, Ox) is not a domoin. Tt's reduced by o previows lemma.

& vuex. £9eTU 0. ¥ fo=0 = U=VIHUVQ. Sine U is imedlucitle,
U=V or Vig) . soy Vi Hence f=o0 mool mx, vxeU = F is nilpotent in

oy offine open in U. By the reduced assumption, f=o. O

We summanze all the equivalent olefiuitions of a dlosedl immensim for schemes :

Lemmo.. Let + Zc— X be o mophism of shemes. TFAE.

M. L s a dosed immersion.

@. V U=SpecR open offine in X, we hove (U (2 iliaw): SpecRiT—> SpecR,
the cononicol morphism odlefined by Some ideal I of R.

@. 3 open affine covering X=Ujeallj » Uj = SRy st (MU = SecRilT ae
n (2)

@). (Hartshome's olefinition) : (. ¢ is & homeomorphism onto . closed subset
of X and ¢by. (*: Ox — (x0z is orto.

&. @ +cby + 0> Ker(*: Ok — (xOz 18 0 quos-Coherent sheaf of  iokeals.

BY. (@ + by + c): keri® EOx is o chegf of idleals, looally generated by Sections.



Moreover, v Quani- coherent heaf of idesls 1< Ox. 3 Q. clased immersion
22— X st T =kerti®,

A Guen on immessin [+ e X, there doesn't oliays exist a Joctorization of ¢
st (1 Z e Z EAX. (Xt dhwext F 2 is reducady
E.g. X = SpeeCx, %2~ , U= U= Dxiy. Take Z U, and Z olefined
on exch Dfo<;>=8pecﬂitx.,x,,~--,—>';:1 by the comespomdling ideol
Ti2 X!, xd o, Kia, K=\, Kie, Kiea )
(the clased point (0,-~0.1,0. ) with j‘aﬂef\mfa:fz‘eﬂ idlep) y. Then on Dxix))
Ialexvxp = SpecCLX. X, x—';xj] = I IDsz-),
ond thus Li's glie o define o closed subscheme in U. On the other hand,
there iS no clewed Subscheme Stucture on Z in X that restcts to tus
scheme stucture of Z in U: since ¥ f€Clx. %1, flu«neliﬂdegfzi
= {=o,



83. Construction of Schemes

G[uing Schemes

let T be a set. For ench ieI, we howe (Xi. Oi), a acheme cor (.18, and
Vijel. IUjEXi, Ujic Xy open Subschemes . ond @i : Uij—> Uji an isomorphism
of schemes, ci=j, toke Wii=Xi @ii=idx) satisfying: Vi.j. keI, cequities omong
i.juk allowseol

. @i Ui N Uy = Ui N Uik
@, Ui N Uik —2hs e Ukf
\q"i @ / Py ¢ cocycle condlition
Ujin Uje

The above setting 18 cavked a gwl‘ng datn.

Lemma. Given a gluing data, 3! scheme X , with open subschemes Ui S X. and
iSomorphisms - @iz Xi — Ui 8t

w. @i (U =Uiny;

Q). @i =P |uiay ° Prlu;
Moreover, Morgh (X,Y) = 1 (fiex) FiXi—Y, £‘°@g'=£'wj } O

A special @se of the lemma is when there are only 2 pieces to glue, in which
coxe the cocycle Condlition 18 triviod.

E.g. Affine line coith zero oloubled.  ck=h>
Or€ Xi= Specktx1, 02€ Xa= Speckrya
Xi2U = Dx) = Speckix, %1, Xa 2 V=Dyy= Speckry, 41,
Let @: U—V be the isomorphism olefled by the ring mop:
kix, 31 — koy. g1 . Py,
Write X=X Uu=v X2, Let's caleulate (X, Ox):



o—s [X.Ox) — I'(Xll.l(')x)xf'()(:. Ox)— [ 1TU. Ox)
RCX1 xR — ROX %3
(foo. gy = foo-gw
= TIX, Ox)Zhexa . It follows that X s not ffine, since v fe TTX,Ox), fon
=ftoek = X is not To.

Fiber products

Def. Given f: X—S and g: Y— S morphism of Schemes , @ fiber product
is @ Scheme XxsY ﬂogether‘ with morphisms p: XxeY— X and §: XxsY—,
Fitting into @ commutative diagroam -

XxgY —g—> Y

P 8

P
X — 8

St guen o Schewe T ctest schemey ond morphisms a: T— X, bs T—Y st,

the d:agmm commutes
T. b

o
P 3
\ 7
X — 8
Then 3! (dlotteol > morphism making the whole dliggram  commute.

Rmk: In the ontegory of Sets, uectr gpores . fiber product exists.

Thm. Fiber products exist in the categoy of schemes.

Shetch qf prDQf  Woredng backionola |, assuming  Xvg exist.

m. I USX ad VEY, WES are cpens st. fih). gv> EW, then
UxwV = pitth Ngew

iS on open Subscheme qf XxgY. Thig j:;é(ms ﬁm caiegov-iazl nor-sense.

(. I X=SpecA, Y=5pecB , S=SpeR, then XxsY = Spec (A®:B).



Pf: Moran(T, Spec(A®eBY) = Hom (A®eB. OT)
= Hom (A. O« XHomR. 0wt Hom(B, O«(T))
= Mor( T, SpecA) X Mon(T.Specrd Mor (T, SpecB)
@. For gereral X.Y. S, gue gffine pieces together. m

E.9. The offine n-space cver & ring R is Az = SRt (with the
Structure morphism Ar — SpecR.
Then A xser A% = AR, since R, %3 ®r Ry Yn1 =R % %, Y Ypm1.

Is the set of points XxsY the eome 0w |XIxsl¥| 7 Not true in genera! !

Eg Ac? Parts of Ae x Poirts of Ae

{x-o>,0ect LYY {(yY-pd Bec} U {lo)}
Then the product Set of points comsits of 4 (x-ot, Y-, (-0, (YR, (O},
There oue oy points of Ac not in this set, for instance  (x% Y. Hovever,
for closed points . they are the same.

Aside: Let K be a feld, and S @ Scheme. (Ohat's Speck — S 7

Morsen ¢ Speck, S) =1(S, kves Ky § . In pamﬁadm.fcr every S S, we geta
Caronical morphism S= ( Speckey — S,

Points of XxsY <> quadruples (x,y.s.p> with xe X, Yye Y. seS. fm=s=gup,
and S Kex)®xs Kiy.
Tn this notation, -y € Co@c LW is a pont of At.

Def. Given . morphism of Schemes £: X— S and a point se S, the fiber
of fat s is a scheme Xs fitting into the ﬁbe/\ product dliagrom.
Xa=Speckemyxg X — X

l l colwoys think of Xs on over kesy!)
SpecKcs>-—-—> S



Eg X=Ac (%Y Crxya
| 1 ompmigte |
S=Ac arx]
There are two tuypes of Sfibers:
(5. Quer a Olooed point ¢X-o) € CTx1, CIXYI®coa T x oy =28 2
ie. Xs=Ac
(2. Quer the gereric point S=(0), CxY1®coxa CX) = T0LY3. In this Qe
XS'E/Atlrm.
Both kinds of fibers ave of the wme fom except the bute Rl being algebroicolly
closedl or not cwhich is & minor problem in AG).

Eg. X = Cpec(Ztx1/tx*100)) — SpecZ.
Over o general point S=#(23.(5), (o), SW. S=03), e hae

X = Spee (Z0x1 /ex%100.13) y = SpecFiaLxa /¢x-oyxti0) & SreclFa x SeclFa.,
which i3 o Scheme of two reduced points over [Fi,
OQuer S=c23(or (B))

Xs = Spee (ZOx1/ X2 100, 23) = Specla/exd , & Scheme with on wunreduced|
pomt over [ cor [Fs).
Over s=(0y, Xs = Spec(Qx3/(x-orex+i3) , O Stheme of two reduced points over
Q. Ths on example of gereraly reduced scheme with some unreducedl fiber.

Eq. Fanlies ?JC plone cunes .

Spec CLx.Y TI/cty-K2) Spec LY TI/exY-1)
l !
Specrta Specrta
Qeredcodly redluced. with an geredoolly imeducible, vath @

uneduceo. fibor cver . reducible fiber over o.



“Terminology -

m.Let S be o scheme. A schewe cver S or an S- scheme & just & Scheme
X ﬂogeﬂw with & Structuwed morphism X— S

. A stheme over Hrg R« R-scheme) is Just @ soeme over Speck

@. Bree change. Grien o Schewe X— S and a mophism S'— S, the bse
Chazge qf X s just X'=Xxg S — S' which is o Scheme cver S,

E.g. The fiber of X— 8 at se S is jut the bue change of X & 8.

@. A morphism of Schemes X to Y over S is just & commuting clisgram.

X —Y
\ o/

Lemma: Quppoaef: X——Y is on open immession ¢ rep. clxed . locolly cloed )
of &hemea over S. Let §'—S be a mophism of Schemes. Then the bose
chonge f's Xs' —s' ig an open cresp. clmed , looally cloved > immension.

This lemma Jg(/lows j%m the next Sublewma:
Sublemma.:  Yxsy LY F: open creap. dmedl ) immerion

l l then Q IS an open immersion.
X —5-8
Proof of lemma. By actegorical ron-sense. the top spuare X' — X
is o Sfiber product spuare: lac' l:F
Mor (T, Xs'Y =Moo T, X)XuonT, &3 Mor( T, €') Yo —Y
= Mor(T, X) ¥ygneTyy (Mor(TY) Xuongr.s Mon( T, 81)) l l
= Mor(T, X)x Moncryy Mor(T, Ya!) § —S8

Hence by the sublemma, f open immersion => So ks ' (rep. Claedl. Locally claed
needs to be factered ove step further.) O



Pfgf sublemmg. (In the clmedl immenion cose, open immension Js eyy).
A clased immersion is gven by a quasi-coherent chesf of idkenls X8

closed immenion < 0— I — Os — (xOx —o Y
Now Im¢g*T— O = Int@'T — s = Ov) s locally s
Gererated by Sections , hence cuts out o. cloed subscheme ZEY, X—-t-g
Then Z=XxY. On the ring level, s is to 0y that : A/I-Aé——?
T 2
Ri+«—R O

Def. A mopuism of schemes f: X — S is called quasi- compact iff the map
on topologiond Spaes 18 quas-compact. (<> YU q.c. open in S, fHU) is 9.C).

Characterization of quay'- compact monhisms.

Prop. Let f* X— & be a mophism. TFAE :

M. :)C s ¢.C

2. YVUE S open affine, f*((,{) s §.C.

®. 3 on open offine omering S= Uier Ui, st f(Ui) is g.c for Gl €1

@. 3 on open affine Oerng S=Ulex Ui, st. Uiz is o fiite unin of open gffines.
Pf: == @ =@, easy. Note that affine schemes are g.c.

@=m. VU gc open in 8. Sine the gffines Dth. he A U;=S’pecx4rﬁrm a basis
of topology for S, U is a fiite wnion of such open affines. Now let (i =
UR SpecBj. Then (D)= UriSeecBify . where hy is the image of h under

Al —B;. It folloss that f1U) is a fnite union of open affines, thus g.c. O

Lemma.

(. A bese chonge of @ g.c. morphism s 2 g.c
. Compooition of g-c. mophism is @.c.

@, A choed immenion s ¢ c



Pf: @ Corsider the fiber product. Vs'eS. 3 an affine open X' = x
neighbsthood U of g and an affire neighbortood V of S st la‘ ' Jf
g S U. Now fAw is cvered by finitely many offne cpers, g—3.9
Soy Wi, Wn, Then VxuWi fom a finite affine cover of ().

. x—i»\r-g~z. VU openin £, Q“(U)=U£.\/;, Vi open affine in X,
FViv=Ugi Wi . Wi open affire =>(@efy" (U= Uijwij is & finite unim of
open offines.

3. Follos by oef sine it's ooy of the form SpecAlt — Specd . O

é& An aren immersion need rot be g.c. in gereml. A conterexomple is glen by
Tabmg the (ooaUﬁ Closed Subscheme in U= Ui Dixiy € Spec €CX, %~ 1
defined locally on exch Dixiv= SpecCl%. %~ 3031 0S the closed  subscheme
Ti= (Kb Xio, %=1, Xin,- ). Then on Dixixjy |, i#).

L COX Xa,~ T Texixg3= I COX X2, I3 = CLX X 060%™
Thus this Sheaf of idenls gue to define a Scheme on U Hoawever, there is
no closed Subscheme on  Spec CCX. X, 1 guing rise to this dosed subscheme
stucture on U, IF there were, it wodd corespnd f an ideal I of
@ %a, -3, ond Vel f&Iu when N> degf.



S4. Voluative Crterion

Lemma.colgebmy. R—A = a. ring map. TS SpecA is closed. If ftT) is closed

undler Speciglizotion (notation: xwex' ff x'€ 4x1) , where F: SpecA — SpecB

then £T) s closed.

Pf: Write T=V(I), ICA. Set J=ker(R—=A—A/D). Then we hae
CpeccAIMY=VMD=T & SpecA

b
SoertRIT=VT) & SpecR
U 4—want this be ="
Fm
Thus we are reduced to tre Situation:
. ResA 2, T=5ecA @ fT is closed wnder specialization.
ono we wont o Ghow Ty = SpecR.
Toke QSR any minimak prime. then Ry is @ local ring with only | prime idead
Furthermore Rg S Ag = Ag+0 => g e Incfy.
Now any prime of R is a Specwlization gC Some minimod prime qc R. B_g
@, we get fiH=R. O

Def. f: X—8 : mop of topolegioasl Spaces. We say specadizations Uift along f
v foo=s, 0 smss in S, I KEX, K’ and fuxr=¢.

Lemma. ¢ topalogy). . I specickzations (ft alorgfand TEX i3 closed under
speciphizations . 80 18 .
2 Speciplizations Uift along closed mops between topologioad spaces. O

Lemma. Let JC X—§ be a quasi-compact mophism of schemes. Then f is
closed (ff spevializations (ft along f-
Pf: =" easy by the above lemma.

& Toke T closed in X. We moy osver S by affne opens Ui ondl 1y to
Shuo that fN Ui = FeTnftw is closed in Ui, This reduces us to the aase



where S is affine. Snce £ is g.c. X=UiRiXi, ond X =SpecAi affine open. Set
Ti=XiNT. Now we knoaw that S=8pecR and Ai is on R-olgebra. FTEGecR
is closed under specialization and it's the image :
,_L_'l._l_i = .Q.Xi = Gpec (AN
/ }
fmn S
We ore clone by the algebra. lemma. m

Lemma. Let R—A be a ring map f SpecA — SpecR. Then R— A satigfies
Qoing up (GU <=> Specializations Uft alrg f I portioular f is closed as @ map
of -topologicol spaces. O

Rmk: T A is integmal over imR) ten it satisflee GU. In particular, fnite mops
ond Sugjections Satisfy GU.

Def. Let K be o feld. A. BEK are local domaing crot fedls ). We sy A
dominates B ff BSA and Ma=Bnma. This gues o. partiel ordering on the
set of local Olomoins contpined in K. Lhbluation rings are the moximal elements
wnder this relation.

Lemma. Guven ony local domoin RS K. then 3 a valuation nng ACK st
A domirates R and {£A=K. O

\oluative Criteron =+ X—S : yorphism of Schemes.
(E). We sy f satisfles the existence part of the waluative Criterin if Given
any Soliol dliggrom

Speck —, X

| s

SpecA—s S



whee K=1.{(A) ond A is & valuction ring, then the dotied amow exists .
(W), Unigueness post : i the datted arvow exists, it 1S then unigue.

Rmk: How to map SpecA into o scheme S if A is o loadd ring?

Moran ( Spec, 8) = { ts, Dss > A1, W loc. hom. of Loc. rings §.
The inverse map 18 given 04 follows: ¥ (S, b:Oss—A) , take an cpen affine nhd
SpecR of 8. Then S~ pcR ad R—Rp=0s8 4 A = GeA— SR CS.
A speciel cone is when A=Dss . which Gives o awoniced maphism of  schemes
Spec@ss— S, whuse impge /s ewctly these S'e S which spevilize o .

Lemma. Let f: X—8 be @ mophism of sohemea. TRAE:
w. f satigfies (E).
2. Speciplizotions Gft along any bose chorge of f.
PF: E = univerally . Given a. solid oliagram:
SPTK - T' '71(
SR — § — S
The blue dotted arvow exists by assumption = the regl olotled arrow exists by the
universod property of fiber product. Therefore to prove (1> =, it suffices to
prove  Specindizotions (ft olorg
Let 8w s in S. xeX . fiw=8 (assuming S=s'y, we hwe:

Spec Kexy . X
s
Speckisy—s SpeeQes—— S

On the algebma level . let R be the image ring of Oss in K. Then R is not equal
to the image of X in K by own axswmptin that 8#8'. Thus R is ominated by
Kixy= K «—— R

L]

K(S) ¢e——— @S.s‘



0. valustion ring A whoese £.(AV =K.

Kxy= K+« A«0R GpecK =X
R I P
KkS) «— s s Spec A SpecR = Spec Os g —S

(E) => dlotled amow exists. Let X' be the image of the closed point of SperA
in X. Then Jixy= &' by the commutativity of the cliagram.
Conversely, given o. soliol dliagmam 05 below , we obtoin, by definitim of fiber
product
Speck —— X Speck —Xa2 XxgA — X

T e R L
SpecA—— S SpecA = SpeeA —— S

Since specipkizations (ift almg £, the be change of f. 3 X'e Xa st X!
where x is the image of Gpeck , and fexs the closed point of SpecA
Now we have algebraicadly -

K «<— Oxxa
! f
A= A

=> The image ring R of Orxa in K dominates A, thus must eual A. Tt follows
that Ok.xa — K fictors though Ox.xa —A , which is & loc. hom. of loe rings.
This ges & dlesired sectin of SpecA — Xa . By further compasing with the
projection Xa— X, we are dore. O

Def. A morphism is called univewsally Closed w.e» iff v S'— S, the bose chage
Xg'=XsS'— & is closed.

G)mbrvung the topology lemma with the above one, we obtain:

Prop: Let : X—S be quosi-compact. TFAE:

w. Fisue

. (£ holots for f O



Seperntion Axioms

Motivation: In @ topologicel Space X, X 18 Howsdonff (ff A: X—>XxX /3 closed.
(XxX with the proguct topolegy).

Lemma. For omny morphism of Schemes f-‘X——>S, the diagomal 2: X— XxsX
IS aNn immession.
Pf: Dg‘ﬁne W=Uwwwth* UxvU S XxeX om open set, where % 8 the
condlition: UE X open affire. Ve S open gffine ard = v "

Claim: AXYS W.
Indeed, vxex, VES open offine with fxre V. then we may toke Usx opon affive
n X st fanev. Then oo is satisfled for CULV) and Aco=cxxe s,

Tt suffices to show that A: X— W is closed. Now whenever 66 hobls for
(UVy, U=SpecA, V= SR,

A U — UxvU
is & closed immension since it's associated with the ring map A®A— A— 0.
O
Cor 1. A s closed [ff AXYCXxsX is a closed subget
¢ An immension s cloed (f the imgge is cloed). O

Cor 2. Given a commutative oliagrom :
X #‘3 Y

N/

The equelizer Z of Q.b cexists since fiber product exists in Schemes ) i8 & loaadly
Closedt subscheme of X. It's closed {ff Avis is closed.
PF: 0.b gie XxsX BES\uey. Then the equaliser is just the fiber product

Z_——>Y

lA

VORIV



The result Jollaws since immeasions are Stoble under base chonge. O

Def. Let f: X—'S be a morphism of schemes.

w. We sy F is seperated (ff Axis is closed

@ We oy f is quan-seperated [ff Awis is Quasi- compact.

@. We Soy a Scheme S is (Quosi-y seperatedl If As|Secz 18 (Quasi-> Seperated.

Lemma ¢ Characterization of quasi-seperated morphisms),

Guen f: X—S. TFAE:

. £ is quosi- seperated .

2.V U \/ open Gffines mapping info @ common affine Open in S, the qen UNV
IS QuObI- Compoct.

@. 3 offine open avering S=ViesUi . F*(Uid=Ujear\/j affine open cowering ard

Vji.jpedi. VjnVja is quai-compact,

Lemma. ¢ Choractenization of  sepenated. morphisms ).
Guen f: X—S. TFAE:
w. § is Seperated
@. ¥ UV open ffines mapping i @ common affine Open in 8, we howe

. the gpen UNV is offme.

b, the map Oxh®z Oxt\VY—s Ox(UnV) is onto.
®. For 2l x xe X, ﬁm:fm'), 3 aﬁ?ne opens Usx, Vax in X, mapping
into @ common ¢ffine open W of S, st (@. b above holdds.
Qf: M = 2>, Assume f Sepervted , and U= Spec A, V= SpecB mopping into IN)=SpecR,
open gffine in S. Then Spect ABRB) = UxiwV = pHU) N Q(V) EXvsX i an offine
open. F sepemtedl = A s dosed immenion ond UNV = A UxyV) 1S Closed
thus aquals Spec(ABRB/1) Jor Some iveal IS A®eB.

Hence A®zB —» A®rB —» ARRB/I.



= 3 . Triviad

@ => ). Sine such UxwV's Jorm an affine open cover of xxsx. I suffices to
shaw that A™(UxwV) =UNV — UxwV is closed. But by our assumption,
unv =SpeeC and A®2B—A®B — C 8 jectie, Since AB2B—»A®eB
A®B—» C ord A is a closed immerion. m

Cor. Any offine scheme is seperated.
Pf: R®zR —R. m

Remonrks: IJC X— S is seperated and S is Seperated, then the intersection gﬁ
Gry two open offire in X i affine. Indeed, the compusition of 2 sepergted
morphisms j8  Seperated : X —— S > T , two &eperated morphisms , then:

XAXXSX — S

N l
Xxr X — Sxr$

the right-fard-side diagrom is . fiber diogram , thus the composition X—» Xx:X
is closed. Hence X—Specz is Seperated . and UNV = Az (UxaV), which
is 0 closed subecheme of an affine Scheme , thus gffine.

Thm. ( \bluative criterion qf Seperatedness ).
Let f: X— S be & mophism. Suppose
D. f is Quasi- Seperated
2. f eatisfles U.
Then f 8 Seperated.

Rmk: We will see that later S is loml@ Noetherion f/slom@ g‘"ﬁm‘?‘e
type . then £'is Qutomatically quasi- Seperated,



Pf : Need o check X —2->XxsX i closed. Now gier
Speck —— X

I, e
SpecA —— XxeX
then g=(Q.by, which gives
Qpeck — X
Q
| A|
SpecA—— S .
Now U= a=b, thus Asl=(a.a=(a.b)=g.

Speck —— X

| 27 |a

SpecA — s yxex

=g Gonstruction of IP= by by gluing:
Ar = SpecRrx1 2 Doy e, = HAr= SpecRrya
2 — y~
X' e Y

Pk Constructed in this woy S Sepemated : we just Check that for the cpen cxering
UV, OhezOw—owunv) :

ow ., oy . Ownwn
Rexa , Rxa — Rrx3
Rox1 , Royl — Rx x™2
Rtyr . Rmxa — Rox.x™
Roy1. Ry — Roya

Cloim: Pe — R is universally closed.
We just need to check E:

cgt—ax-')

((AHM.

Speck —— Pk

i

SpecA — SpaR



Suppose It Speck) € SpecRox
K —* prxa

]

A——R

If 4% ¢ A, we are done. Othenvise. §¥y"= 3%y e A gine A is o ualuation

K «—=—Rry3 Speck —— SpecRey3

ST T

«—R CpeA — SpaR



R5. Properties of Scherres
We first define quasi-cohesent sheaves .
Def. (EGA) X: ringed Space. An Ox-mode % is colled quos-conerent (G0
iff VxeX . 3Usx.openin X ond an exact Sequence :
Bjes Ou— ®iaOy — Flu — 0

This Oef., being geneml in natwe. is not thit easy to wee. Howeer, in the

cotegory of schemes. we howe :

Lemma. Let X be o scheme, % on Ox-module. TFAE:

w. % is QC

. For all affine opens U= SpcRE X, we have Flu = Jor some R-module
M.

3. 3 on affine open covening X=Uier SpecRi st Tl = M.

Lemma. (Mapping properties of 5. X=SpecR. M: an R -module. G on Ox
moolule. Then Morex(M, G) = Home (M, TTX.G)).
B = Bx:M=IX.0h — [X.G).

Lemma. X: o scheme.
(@. Kemel. cokemel of maps between Q.C. shepues ave Q.C.
. o—% —F —FK——0 is a ses of Ox-moolules, ond
2 out of 3 are Q.C., then o is the thind.
PR . Tt reduces to the case where X is gffine by the finst lemma. Now suppase
@: 1— KN is on Ox-module morphism, then by the previous lemma . ¢ onises
as some R-module map ®: M—N. Now, we will show that kev@:(@@ owd|
Cokendy = (Cokery . AUl we need to do is to Show that

0 —— tkaiepy — > —— R —— (cokeny — O
s exact. But on staks. it's just:

0 — tkergiy,——M— Npy— (Cokery;— 0




Thus it's exact since loalization /s exact.

Rimk: The obwe lemma. soys that ™" is o Jally-foithfil fanctor from R-mool
to Ox-mad. The proof souys that it's exact.

by. It Suffices to shoaw , on SpecR. i we have o s.e.s. of Ox-modules:
o—-—>M|—-—> % — M: —0
then F=M for some M. It syfficas to Show that
o— T, 0y — X %) 2 Tx, S — o
M N
iS exact. or. Px is sufjective. (Lafer we will see that ts is true since for
any Q.C shea\zf on X=SpecR, HiX,My=0, vi>0),

Now V mae Ma, set I={feR | fm:eImpBx}, which is on ideal of R, ond
we will show that I=R. We hawe X=Ui Dify Stendand open couering . St
m locally Ufts, 1.e. 3 Sie DD . Besiy=malofhs. Then:

Siloffy - SJch;f‘@éh@rBlDLfﬁ ImM.(leﬁ))
= Silodfifp - SJIDtHn—caff>
where by finiteness qf (.. we can choose ore A prge enough for old ij. Fx i,
set Sh=F'Si . and Si=Flsi+ met/fAe FlU for i+, We compute:
Gi-Sh=Flsi+ Mt/ 5 - FiS0 =-Fn (Sio-Sir + Miet/FA= = Mai/ F+ Mui/FA = 0
Now if i#] both not equal to io, we have:

Si-§j = Finsi-§p- mal i+ mog/f = £ cmplfifity - mioel £+ mog /£

Note that o8 o section of T(DEFF) M) = (MOfidy = (Mg e

Mi/FifirA + mioi/ cfifir® - Misj /ey = (Si=gj) + (Sio-8i) - (So-§j) =0
=> By multiplying 0. large €nough power of Fi3, the obove elt on the Lh.s. cwill be
billed i Mgf; . where agoin we @ ke one Bx»o to work for all iij. Hence
we hwe if si=fi"si, si= fA*Bs.+ Miilfi ti%ioy . they would glue to g'ue
o section s of TP, ie. Fmaz sy e may 0o this for any io €.
This R= <", - §>CI (N>0) = R=1I, O



Pull-back of QC .

Let ' Xx—=8 be a mophism of schemes, F Q.C. sheaf of ©s - modlule.
Then f*% is Q.C on X. In porticur. if X=SecA ond S= SpecR, %=
on S, then £*F=A®M |
PF: vxe X, 3U open affine on X, Ffunc Vv open affine in 8. Then

' BieaOy—> BiectlOv — F —0
= Bieg Oy —> Bic1Ou —FF —0
(It's exoct since on Stalks G rx=Gign®0gms Oxx , and tensor s right exact) .
In the affine cze.
Morox (F*F, G) = Mores(F, £Q)
= Home(M. IS.4G))
= Home (M, TUX.G))
= Homa(M®zA . T(X.GY
= MGY‘@,H\/T@IQA , Q). a

Pughforannd of Q.C

._lf §: SpecA — SpecR | and N an A-module , then Jge{l’\]v)=l\~}9 where NR /s
N considered 08 on R module vie R —— A, This is Some sort of Jogetful

functor (]%rgew;'g its “bigger" A-module structure).

£g Suppose R is & feld cor ang ring), X = I Sperbra L et Let
¢ be Ox. Then:

TS, HFr=1"(X, F)= ﬁ,hcfx:

I’CD(X).J&%FF(J("(DM)). P = ﬁ, REXIex,
There is . notuml map:

IS, %) — T, 7%

which indidces (Ths RTX1 )ty —— (Thney RCX ), whiich would be an [Somonphism
if HF were QC. This is not tne shee, for instance (1., 36, = 3, )
is not in the image .



Pop. If f:X—— S is quas-seporcted ond quasi-compact , then fx preseres
Q.C. shewes.
Pf: It reduces to S affine immediately. Now let F be a QL. Ox-module.
Write X=Ur= Xi, Xi open offire and  Gince X is Quasi-Seperated., we howe
XinXj = Und Xik, Xijr open affine. Now

0 — HF — Diflaw(Flxr — BijcF k= Flxje)
is exact. Thus Hx% is the kemel of a mophism of Q.C. sheaves. previous lemma
opplies. O

Remark: £ being quosi-seperated is usually free . but quoai-compactness s not
usuodly - automedic .

Properties of  Schemes
Let X be a scheme, P a property of rings.
Def' X is soid * locally P" (ff vxeX, 3Usx, affine open st P(OwW).

Def (e S%:P is (ocpd iff
(. PRy => P(Rs)Y, vfeR.
. B fifn geremate R, P(Rf) i=1.-n => P(R).

Meto.- lemma.

Let P be a loml property of rings , and X o scheme. TFAE:

. X is locslly P.

. Y UE X open affire, P(Ow.

®. 3 an open offine covering . X=Uilki st. P(OwWi.

4. 3 open covering X=UiXi , each Xi (ocally P.

Moreguer . if this holds. then ony open subscheme is locolly P.

Pf: The only non-trivied part is 3> => ).

V X=Uilli affine open st PO, vi. Now bg Q previous l[emme, 3



U= Ujg\\/\)j, Wy standord open in U owd in Some U¢. Thua:
PCOUip = PO} = Pow. m

Lemma. Being Noetheran is a (ocal propenty.
Pf: (. R Noetherion = Ry Noetherian.
(b, 0 —> R — TLRpy — il Refj . Now Rfi Neetheriom implies
Ref; Neetherian. Thua R is Noetherian. being the kemel of Noetherion ring maps
O
Def. A scheme X is called Noetherion iff X is locally Noetherian ondl quesi-
compact .

Lemma: If j: Ue—X is an immesson ard X is locally Noetherian, then j is
Quaai - Compoct.

Pf: X is covered by affine cpens which are spectrum of Noetherian rings, and
these Opens are thus Quosi-Compact ab topological Spaces, ord So ore their
subgpaces. O

Classes of morphisms assoointed to properties of ring mags.
Def: Let P be o property of ring mops.
m. We sy Pis (ool if

0.V feR., P(R— Ay = P(Ry —Ap)

hy. VfeR, aeA ond Rf— A, then P(Re —AY=> P(R—An)

©. ¥R —A. if PR —Ax) with (&.~.an=A4=>P(R—A).
(usually (@) &cby are ensy. and ccy reeds Some worky.
@. (e gy that P i stable wnder base chonge iff ¥ R —A. amd R —R'
P(R —A)Y = P(R'— R'®A).
3. We soy that P is stoble under composition if v A—B, B—C ring maps,
with P4 — By, P(B —C) = PA—0),
“. Let P be Q. property of ring maps  and f:x—>s & morphism of Schemes



We sy £ is loally of type P if Ve X, 3xeUcX affine open. VES gffine
open st. FHES V., ad P(OsV) — OxW),

Rmk : Usuatly we woont define a. morphism to beéoau@ gf tpe P unless P s
(ocad !

=.g. looad properties of ping mops.

* P(R —A): finite tupe A s a finte type R-algebra "

- P(R — Ay : finite presertation : A is of Sfinite presentation over R
° P(R—A: flat " A is flat oer R”

* P(R —A): smooth + YA s a smooth R -algebr”

Pf of finite type (algebra):
(@ : P(R — A &> A= Rxi#n1/1 => Af= RFL% %1/ IRp L% %a2
< P(Re—Ap)
tby: P(Rg—A) &> A=RpIx%1/1 &= A= R % Y1/I. yf-1)
= Aa=RI%~%n. Y. 22N yf-1. 20-1) <= P(R —Aa).
©: P(R —Aa .i=t--n = Aoi=Rixu, - xwm1/Ii. By olefinition , Xij in Aa
is of the form hj/pl', where we toke N (arge erough to work for all i=1-wm
J=v-ki. Since DGir's cover SpecA. we howe I==0if .
C{aim: QEU.LV;J'.ZRJ —>A

Ui Qi Vi hi, Ze—> Qe
is Suffective. Indeed, voeA . IN,M>>0

a=01=30"™Gi-a G combination of gi, g's)

=S al'hjGi  where M»0 s that GMGGN- hijy=0)

ondl the cloim Jollows. => P(R — A, 0

Lemma: Let 2 X — 8 be @ mophism of schemes. TFAE

w. I is locally of type P.

@. For every open affine US X ard VE § with FUHEV, we have
P(Os(\) — Ox(Wh).



(3. 3 open Covering S=UiexVi and open Coverings JC"(\/»')=Uje1: Uj st
FlUj—Vi is locally of type P.

). 3 offne open Qovering S=UierVi omd affine open coerings A= UjeniUy
st P(Os(viy — Ox(Uyy,

Moreover if £ is locally of type P, then & is Flu: U —V, where Uex

VES are open Sbdemes st. JUHE V.

Pf: (2) =>4 =) =>¢) is triviad. open

Wy =2 By deff, 3 U= Ui Wi, Ui=SpecAi, JQUA')C_Z Vi €S, Vi=SpecRi st

PRI — A, But Vi is ot necessonly in V. Vxelli, fooeVNVi. Thus 3

foerVij ENNVi, Strdlard open in both V and Vi sy Vij = Spec (Ridnj, hyeRi

Now FHV NUi= Uixv;Vij= Spec (Ai®ri(Riw) . and by odef . a. we have

PURI K — Ai®r (Ridn) . Next, we may toke Ui'= Spec(Oxilhaiyax. Stardard

open offine in both U and Winf (Vi) , and since Vij is also of the form

Vip= SpeeOstvr) | by def .. P(Ostvity= (Rivy — A®aRidky) =

P(Os(Vy — OxtUai). Since U is quasi- compact, fiuitely such Ox(Uh)ai wil

do. F—_ina,i,lﬁ, oqum.ccs = P(Os(v) — Ox(Wh). O

Def. 1. We say o morphism of schemes i Loaally o  finite type (f it's looally
of tye P: finite type as in the exanple bove.
2. We say f 8 of finite type [f it's locally of finite type and quasi-comoact:

Def (Voriety) Let R be @ Feld. A variety over k is on integred, Seperted
scheme of finite type over R

Rmk: Here we oon't require h=h pa Hartshome cloes. Note that vaneties are
not Stoble under bose changes k' — k.
E.g SpecQuy is o variety wer B, yet
CoecC x SpecC = SpeeQety *geea Spec € — Spec @i
—_
Not 0. varely !

Spee© SpecQ



Lemma. Let P be a property of ring maps .
m. X Pis local and stable urder bae change , then a morphism (ocally of
type P is stoble under base change.
. If Pis lowd ond stable wnder compasition , then 0. morphism locally of
type P is stoble wnder composition.
Pf: wlet 8'— 8 be a bwse change map: x 45 X
Then VeSS’ aU'S S’ affne open, LSS affive open st f’l lf
guheu. Now fiw = UieVi, and f7UY=Uil'*x, Vi is g —>¢
on offine open cover , and P(Ost) — Ox(Vi))

= D(Os (U — O lU'xuViy= OstU) xogquy Ox(Vid)
@ Let X v 2 be maphions loally of type P. WUS Z affine open
g = Uier Vi, P(Ozty — Ovvid) . Moreover  FViy = Ujex: Wij. and we hove
P(O«(Viy — Ox(Wij)). Now P is stable under compaition

= POz — OxtWip)

ard @ef V() = Uie,jer: Wij. O

E.0. P finite type" is stable under base change andl composition. Thus eo
ore morphisms  (ocaldy of finite type.

Lemma. If f:x —8 is locally of finite type. and S is locally Noethenon,
then X is locally Neetheran. Consequently. f is quasi- sepented.
Pf: VxeX. 3 xeUSX. affine open . VES affine pen st fib S V. Now
S lomlly Noetherion = Og(V) 18 Noetherian. Now Os(\v) — Ox s of finite
type = Ok is Noetherion.
For the second Stotement . consider
X 2 Axg X

\ x/—P—L A S

It suffies to show that XxsX— S 8 locally Noetherion since A is an




immersion. Now since XxsX — X is locally of finite type by base chonge.
ond f: X — S s of finite type, XxsX — S is (ocally @Cfm@tgpebg

Composition .

Rmk: In gereml, the aboe proof shows that if f. g - X Y
are (ocally of finite type. S0 is XxsY — . f\S/e

Upshot: I f is of finite type and S is locally Noetherian, then Fx¢QC) = QC,



86, Projective Schemes

Notation:

S=0®dx0Sd : groded ring. S+=@d>0Sd : the imelevant iolea.

ProjSy2 {pcS1 6 gmded st S &pl.

M: o graded S-module, M=@gezMd, Sa MbE Masb.

Note that ProjS) & SpeeS is a subset . Give it the induceo topology-
Let fe S+ be o homogeneows polyromial, Dufy £ Dify N ProjS , and

Mep 2 { F7| xem homogeneous, degx=ndegf § (S Mgy Then D is
open in Proj(S).

Ea.bg :)Cac’cs :

@). De(f» JCDYWl o bos of topology of ProjS.
. There is o natural biection of Sets Deef <= Spee Sey, where Sefs i
the subring of Sp consisting of elements of degree o

Sy =1C%f X homogengous , and olegx = k-aegf }

CpecS 2 Dffy < SpeeSp
Ul ul Ul \

Proj@ 2 Dufhy —— % < SpeeS
This dirgram i3 exploined by the ﬁuming.-

Lemma. If S is a Z-guded ring, S=@dezSa, ard assume 30>0. fe Sd

st f is invertible. Then:
% BS SpecS D {Z-grded prime ideols of S}

@Lo L Spi‘go /

® is I:1 ond o homeomorphism., O

Note that in the Special case S = Solx.%"3, then SpecS = SpecSox Gm



where Gm is the Qrup Sheme SpecZCx.x3  (Hom(T, Gm) 2 T(T.OM)

If £SS is a homogeneows prime, then we can Okfine
M@ 2 {5 x.§ homog. of the came degee, f&pt & Mg
Sips is defied by reganding S a8 & homog.  S- modkue.

©. If Dug S Detf> then:
= ®=of for some €21 ad A homey
® The diagram is defined ord commutes by the oboe fact:
Sg —— Sg  clomlization wrt.g)

desf
SL‘F) — Sts) ((,OCMEA'UOY! w.nt. %:_Faﬁ )

* Similan clisgroms exists woith -
Mf — My
I\)[}hj-’)—'—> Mo
® The diagram commutes:
D) =2 Dx
Jer oy
Spec Sc{‘x « Spee S(g)
® For every he S . 38€ S+ homog. st Dr(@= P (Dthyy . Here
Dchy is token in SpeeSip

Prop. / Def. S+ graded ring, M: graded S-module. Then:
o, The stucture shenf Opms 18 the uniue sheaf of rings on PoiS st
Oprojs (Defy = Sy
and with restriction mops gen by:
@P@(S)(D»r(ﬁ) = S¢py — ch) = @PIDJ(S)(D-HQ))

S — Gy



In porticular. @Png)s.p': 8(@).

(. The poir (ProjS, Opnjs) is o Stheme, and the opens Ditfy are affine
ond isomorphic to  Spec Sefs .

©. 3 a wnique sheaf of Opmjs-modules M oith McDstf) = Mefy and
restrictions  given bg: CDifn= M) — Mg = A (Deegy

I\£l§ E— I\glg
. M s a quasi-coherent sheof of (Oprjs - modules , i.e. iy = Mcj)
©. There is & Qnoniced map : Mo — P(quS.M) , wluch when restricted
to Di(fy gues the mop Mo — M. x— 3
if. There is @ Canoniaad morphism of Schemes :
ProjcS) — SpeeSo
Comirg fmm So—>P(D@58,§)=P(D@S,©ws).

Def. For neZ (et M be the groded S-module with Mcnyd = Masn .
Opms (m 2 Seny (st of Structure sheaf
Note that Sn= Sty — PCDYQ)S (OPrgscm)

Rmk : In gererd. the cbove map is reither Quiective nor injective , and Opmstn)
need not be invertible.

Constructions with Oprjsn) -
Gioen greded S modides M. N, we hae & @nonicl Opeys - modlule mop
Cl@oN — MesN
On exch Def) M(-F)®Sc-f‘) ch’; —(M®sN)Yp s guen bg
d.‘k ® :F.e = wﬁ:
Tis gives muktiplication maps:
Oprgs (N ® Oprs Oprjs M — Opgsomemy, — (my
7\

@Pm;s (M @oprys M — M (M2)



Eg. ProjS need rot be quas-cpt.
Toke S= CCX.%2--3, then PrjS 18 not cpt. Dutxiy ci=r.2.+> Jom on
open cover , but no finte subset of Decxin's coer it.

Lemma. ProjS — SpecSo is seperated.
Pf: By our previous resuts, it Suffices o Shaw that

. DefH N D@y = Drfyy is affine (e sine it's Spee Segyy)

(i Sc{-‘; ®z Sy —> Sefyy .
But v ;f"gm e Sy, then dega= nd@ﬁ mdegg . thus it comes from:

¢ R
O g — i

¢Jor instonce, we moy toke R=oesg-Cegfs", £=0leggf )™ -m. for r>o.

O

Def For R ring . RT%. %, %n1 the groded olgebra with degxi=1. Set
PR £ ProjRC%. . %n3 —> SpecR |, the projective N~ Space.

Lemma. Let Y=PrjS , and asume Y=Ores Dief>. Then each Ovem is
invertible and the multiplication mops_m and 2 are jsomorphisms.
p\]C" Pick :FG S . @YCn)lD»f(f) = Sfmcf; —(S{: n ((SPin a8 an Sepr-mod ) |
But "e(SfIn and
SCF> —*(S{)am
x — flx

iS On isomonphism .

For mi ondt ma

(SFIn® g0 (SProm —>(Sfimm %" ® YyF™— xyf™"

(M$In ®sefst Seyem — (Mf)entmy VY\P‘@ HJCM = Umfmm
Qre ISOMopEms =

Rmk: v In the situation 0o in the lemma, ¢ Uges DuHr=Y), we have:



S — @dzoCY, Ovidy) 2 T (Y, Oxen)

s a graded ring mop .

2. In this awe, Oyim & @rcnm. Since i 8 m2 are [Somophisms
I\;\?;h = f\’>\®o@{‘l)

(note that M®sStny = Mm ).

Def. T%Y. M) 2 @nez TUY, K , which is a TxY, Oven) -module .

There is a natual map:

M —2— T(Y. M) (« an S-module map)

[\Lo\ — T7CY. My
Question: Ts the map 3t on isomoyphism ? o hoo clae to being an iso?
(We know that Q.C. sheaves on SpecR «— modules over R. Is every Q.C.
O- module of the fom 47

Lemma. TThe morphism IP§ — SpecR is quasi-cpt . of finite type . sepenated,
ord universally  closed .
Pf: Quosi-cpt: PR = Ulo Dtk = Ulko SpecRIR %21, (p< PgS =
B2 St = paxi for sove i),
Also RI %81 is @ finitely generatedl R-algebra.
Seperatdness Jollawes from @ lemma above.
Universolly Closed-ness uses veluative Criterion. O

Def. A morphism of schemes is called proper iff it's of finite type,
Seperpted. and wniverselly Closed!.

Projective space as an example of Proj.
Consider PR = Proj(REXo,~ Xny —— SpecR



Lemma: @. IPR=Uio DetXn
by, Di(Xi) = AR
©. Di(XXpy is affire.
Df 0. Si=(Xo, -~ Xn) €0 Di(Xi)'s Cover PR
. DX = AR = SpecRL3, -~ 321
. AR = GecRTE 1oAY xsﬂa@m,a;,specm%mmz
I I I
DiX) <= Duxi%) s DX)
ll
Specrx,Jl:c—i)J
Spec[ ][( O

Rek: (e aon redefire IFe ob the stheme ore gets by gluing cnv) Starpland
offire Spaces along the cpens Drcxix)) obove.

Lemma. The aanonical maps R Xo,--, Xnld — TPk, Ocdyy  are  isomorphisms
J%v‘ oM de Z. (n>o!y,

Pf: By the sheaf condlition, we have.
0 — I(P". Ouby — &, TUDxx, Oy 2> &, TUDex%p, Occly

Ker ¢ &, (RT o, XnIxidd — Bifeo (RTXo,~ Xndxix)d) =T

Guen (F/xViearn , Xt Fi. degFi-ni=d, we hae Ffr-Flxm=o, or
quinlently. X"Fi = X"F; => XjIFj or nj=o0. By oasumption, XiAFi, tus ni=o
Jor ol i. Hence we have polyromials Fi's to st with, Fi-Fj=o =>FR=F
for alh i=0,n. FeRCXo,~ Xnldb. O

How to map into P4 ?
® Motivation: From topdlogy, we know that IP*= Bc@x) . LX.IP°1 = {line bundies
on X}



Recall that: on ProjcSy, where S is generated by degree | elts oer R.

® Opny is an invertitle Opr - module

® @[p'\(h) = @,pn(l)sn_

o TP, Ow) = R¢X- Xn>, where {Xi, X} genenate Opren over Opn.

Def. Let X be a sdeme, L an inertible Ox-rmose.

n. Gioen seTAXZ) , we st Xa={xeX| sx&amlx} (e hae shoon that
Xs is an open et of X,

2. Given Sections So, S € TIX.L) . we sy they genemate £ over X (ff
X=Uio Xsi,

Trivial observations.

° If FeR%~xd , d>o . then thie of it aa a gobal Section, we hae
(IPR)E = Di(F).

° I\f fr Y —X i§ a morphism Qf Schemes , then fH(Xe)=Yptsy . Frsselty P,
® et @: X — PR be a mophism . then we get 42 @*Opra> an invertible
sheof on X ond Si=@*Xi) i=o,-n sections of TUX.L) which generate L
over X.

Convee Thm. Given o scheme X ower R, om invertible sheaf” 2. on X and

i+ global gections S, Sn of £ which geremte £, then 3! morphism
Ped, so8m © X —> PR

which 18 chorcterized by:

(Y. Pg gy 5my (Oprcy) = 4,

i, @*(Xi)=Si.

Pf. Let pe X, choose i st pe Xsi. Chase an offire apen pe UCSXsi , write

U= SpecA, where A is an R-module. Then Llu =, where §jlu=mjeM.

Sice USXsi, M=Ami. Write mj=f-mi for some unigie fie A. Define



SpecA= (U —> DiCXi)=SpecRI R 1< IPR

by the ring mop:
RIST — A
KRN
Then it's routine to check the rest of the thm, O

Rmk: This thm says that MorcX. P - - - --Pic(X).

Particular coses.
(. X=SpecB where B is an R-algeba, £.=Ox . Then So-. Sn Comespod 1o
Jo. . fn € B=TIX.0x) st i fr>=8 Then by cur thm, 3 SpecB —> PR,
ond we Sholl Oesorible this morphism.
Note that we howe :
AR \NV o~ X 2 DIXi)
T T
P 2 DilXi)
Then o fn gue rise 1o a mophism of SpecB to AR auoiding VCXo~,Xn),
Sine (fo,~~.far=B. Then the morphism in the thesrem Comesponds to the
compaytion of this morphism with TC.

(i. How to map IPk into PR (k- aﬁelm

'£, = @lP'(d) :

n. d<o, not possible, singe TP, Opcdh)=0 in this one.

. d=0. So,~Sr€ (P Op)=k . cthey generate R cver Speck 1)
Cloim: P(Op, So, .50y is Constont.

Indeed this morphism foctors though  IP —— P
" OTP 4 Jpa ’ug \Swh}CSof..-:Sh)

3). d>0. So. -, Sn < Fo, - Fn € BCXo, = Xn1d , with Fo.—.Fn haufng no Common
Zors in Ak exept (0,0). We derote this morphism by (Xo: XY F—>(Fo - Fn).



Let's olesribe this mophism on Dr(Xe): write fi=Fi/x3 = Fic1. % ekt
The obove Condition implies that : lﬁ;—-.ﬁmbl:%: =

Aﬂ;l \ '{O}
Speckr$e3 — ln
Pl Dk IPa

Closed subschemes of Pa

Prop. Let Z <Pk be a dosed subscheme, then there exsts a graded idenf
I & RXo,+ %1 s:t.

m. Z=\Va(I) ab Subsefs.

@. Z 2= Prj(RIXo.~ Xn1/1)

. The ideol sheaf T< Omg of Z equals T E RXoXal = Oma.

This will follaw from a Slightly more gereml result about quasi-coherent
gheaves on [Pg.

Brop. (Hartshome , T5.15). Let  be a q.c. sheaf on Pr. Then %=1 for
Some gradeol RCXo, - Xn1-module M. In ﬁwf we on toke
M=T%(IPR. F) = ®dez 1(IPa. Fedy) .

Rrk: Suppe @: S — Ss is a homomorphism of gradied rings. then
ProjeSay ------ > Projts)
is only well-defined a6 a marphism on an open set Uy
Uy = Ufe )+ Drch)
where on each D@y the morphism is given by
Dr(@ifyy ——— Dr(P
I I
Spec Sz(cpcf\) — SpecSntﬁ
with the bottom amow  induced from Sipy — Sacoe.



Note that Uty = ProjcSa) iff (Sar S @SS, A special aase where this
is qutomaticoly True is when Sy —» Sa, in which case the morphism
Projc Sy e— ProjcS1»
is a closed immersion.

Eg  €rx Y1 @xY.21, the Standand inclusion.
=  P'=ProCxyzn------ » Prje@xy) = P
ul /
U@y = Dx(X) U DY)
On Dx(X). the momphism is induced flom CL¥Ics Cr%%1 ie— A
projection onto the y-oxis.
P*

&

Eg. CLX.Y. 21— CIX.Y] Z—o0
This is nothing but the closedl immession of P' into p?

EQ B\(j {A)V‘thg * me-'s }’lgpemWface @C 0(93 d in ,PGV]: xg_‘_.___‘_xﬂ:ou,

Now we show that the 2™ prop. => the 1 prop.
Derte for short, Opy by © and Opyoh by Od>. (e have the defining s.es.
0—I—>0—uxl:—o0
where (: Zc P is the dosedl jmmersion.
By the 2™ prop. we know that . sine T is a g.c. sheaf of ideals. T =T
ond I= @dezI”(P" Ty S Bdez I7(IP", Od) = RTXo, -, Xnl. (Here the inclusion
comes Jrom tenoring the above S.e.8 with O (invertible!s and toking 17.)



Moreover, since T is an RCXo,Xn1-module, I i then an ideal.
Now (- Z<s [PR i3 a closed immension, we have Ilduxy=T; for some ivlend

Ij in RI3G1, ZNDuxp = Spee(RUF/I. By def of I, we hae Tj=Iog
= {3/x| fe1. degf=d} Hence we obtain

(RD¥.~ Xn1/Tdexiy = RT%I/T;
= Dr(X)NZ = Di(¥X). where ¥} is the image of X in RTXo, Xn3/I. Hence
on on affine open cover, we have:

Dixpnz < Z2 < Proj(RIXxn1)

I

D:(¥)) S ProjRI% %D
It follows that Z = Proj(ROXo Xnl/1), O
Eg Pe=PrjRIXY.21). I= (OGXTTXZ, X143 Y2, ZX+ 2T+ Z)

Ta= (X+Y+2).
Cloim: PrjeREX. Y.21/1) = ProjtREX X.23/1) . 08 closedl subachemes of P,

(We check this on each aﬁime Drex), Dx(Y), Duy. For instoance, on Ds(2)

X2 X1+ X2 XY+ YZ  XZ1YE+ 22
Ma=("=z= “z "=z ) = (0%, aYtYry, ey = XEYHD.

(I = x+;+2 )= (xty+) = (T))z.
In generad. given ony homogereous TS RO X1, 1 ond TRCxo Xed+
define the same closed Subscheme.

Next we prove the 2 prop,
We need to show that if % is g.c on Pk, then
T (PR, Frowy = T(DXo), F)
|
{5 | seTP" Fohr |/
This tums into the Jollwig 2 statements.



(. Guen S.S2€ PR, F) st SiIDixey = SalDuee) , then IN>v0, st
X0'Si = Xb'sa € T(IPR, N,
. Given s€ (DX, %), d20 ., and Se PR . Fud) st Elpwa=Xs.
More gererod uensions con beﬁwnol in Hortshome , T 5.14:
(X.F. L), L invertible sheaf on X, F q.c. on X, FeTX. L), then
TXs. F) <= Thx 2. %o = (Daea (X FolL™)
under reosorable condlitions (R Noetnerion or X quasi-cpt and quasi- Seperated ).

Pf of (.

It suffices to show that Se ITP" %), Slbww =0, then o= X'se ITP" Fy).
Now on ench De(Xiy, Flowxy = Mi for‘ some RLR1- module Mi , Slbwxy = mie M
DiXo) N DicXi) = Specl REE .22 7' Thus M IDomndroxny =0 =2 mi= 0

. . xmi
or XNmi/xt=0 Toke N2max{Nj j=i-ny Then X§Slowgp = Sw=o0. O

P of .
Now F[Drxpy =M for some RE%’,---.-’%J medule Mj . We have:
Flowa — Floweg «— Flowxp
r1~ ] r1~ : pIN
Mo — (Mo)§2(Mj)ge e— M;

Now § Comesponds to an element Mo Mo , obnote the image of Slpwxexy by
amoy, then oxemor05)%= oy for some mj and o', by of: of Loanlization.
Choose §j= Xmj € TUDxx)), FTed), So= Xélmo€ TDrcxj), Fealr), d large enngh
2 that the above equation holds for alk Dx(Xj). If these sections gle to an
eloment & € T(Dr(X)). Fuohy , then we are dorne. But now we only know that
SilDeexexyy = SolDetxoxp, we Still reed  SilDuxiy = SjlDwxixy. Hovever, on DXexix;)

SilDioxoxingy = SjlDecxexingy = So[Decroxix}y = So[Drcxaxixgy = ©
By port @, we oy mitiply X&' to ol So.-, S &0 that
X6 [oroagy - X g5l = 0
Toke d= o'+ d", &lpaxy = X', the caim Sollows. O



Question = & : g.c.on P, R Neetherian , then [x(IPR. %) is an RCX. Xa1
module. If F is further Coherent, is this module olways finitely generated ?
The comect” Gererality g“ the J[frmeness cgf H° s .
R: Noetherian ring, S= SpecR, T: X—>§ a proper morphism. omd %
s o coherent Ox-module ceg. F=Ox. invertible / locally  free sheaves. etc:.
Then HUX.7) is o finite R-module.
The * comect” proof consists of
. Use cohomology and prove it ﬁr H(X. %), viz0.
(2. Use Chow's lemma to reduce to the projective case.
@, In the proectie age, IPs— S
@.0). Pove F=M (as dme abase ﬁr M fﬁm‘t’e Type over KX -Xn1)
@.by, Reduce to M= RLXo,. XnJcoh
13.00. Explicitly compute cohomology of Opaco = RIXo,Xnlcoh



8 7. Chows Lemma
Qef CHortshome, T.ex 407, CEGA, 15.6.13, [limits, § Chaws lemmal,
Thm. ( Chow)
let S be a Neetherian scheme . f: X—S : finite type, sepemted . Then
there exists Q oh‘agrnm-
Tt

SN
\/\

PS
S
8t e TU is proper and Swective
o X' IP8 is an immenin
o TThere exists some open dense US X st TIUY— U 8 on iSomorphism.

Discussions gbout the lemma.
Assume X, S are reduced, then we can take X’ to be reduced. Let
X' — IPs be the closwe. We hae the dliagram

X' & % &g

™ | / (%)

X
\S
Dercte the compsite X' <% X &= L by b

Def: We calk & morphism gc Sdhemes X — S " H- projective” if 3 a Olosed
immersion X < [Ps over S. (“H" stamls for Hartshome's definition, which
s not totally the same as in EGA).



Lemma.
(. Closed immersions are proper and  H- projective.
(bs. H projective = proper.
©. Composition of H- projective Cresp. proper) is H-projective Cresp. propery
@. Bose change of H-projective (resp. proper) is H-projective Cresp. propery
e>. Fiber prodduct of H-projective Cresp. proper) is H-projective cresp. proper.
Ef: (@) Obuiows. by Proven beﬁve
. Gien Y—> X, X —>8 H- projective mophisms . we have. by def.
%
(S
Then by base change we obtain -
lel = Ppg = P2 %2 (Pa x2S) = (P2 xx/P§ 1xa S
X s [P5 =IFf x2S
ond PaxalPz is projectie over SpacZ by the Segre embegdling:
Pz x P2 —— PZ™"
(%ot %l , CYfo::Ymd > [helfo:~: AnYm]
This Y <= P} e (Phxa PhxeS e—(PE" " 1% S = P is a closed
immession. Qb required.
. X —>Y i Hoprj, Y — . Then by def X — ¥
Thus toke the fiber product. we have:

n
Xy s PY=PayY! Py
X — |PY
. If X—8, Y —S§ are H-pm. then 8o is  XxsY —s X by @, and

XxgY — Y

]

X —_



tHws S0 IS the compositin XxsY —> X — S, O

Lemma. Given a disgrom: X —y L ohere fis proper ord

P
g s Sererated, then hx) is dlosed.
P: The diagam gies rise t:
w e
X oY
f\"s'/ﬁ

where h' is o section gien by h. g seperated = XY X is seperated.
= 00 is clwed chix being the equalizor of the mophisns XxsY =Y.
Moresver, § proper => Ty is closed. Hene hiX)=TrvehtX) is cloged O

An imeresting application Qf the lemma, is the ﬁuowirg-.

}f X Is 0 proper uariety over R=k, then TUX.Ox)=Fk.
Indeed, if X —> Speck is proper, ITXO0)=Mon(X.Ae)  (Ar=Gatk)
= Fi X — AvcesiPp

Speck
Lemma => foo is Closed in both Ar and [P, thus must be o clmed point
of Av = TTX00=hk=k

Now we mn discuss about the cliagram (%),

If we further assume X is proper over S. then Chod's lomma = T’ is
proper and thus So i8S the compate X' —>X — 8. The lemm aboe =>
X > X < PE ha closed imgge. Hene X'e— P& is a clmed immewion,
ghee we howe asSwred X, S reduced.

Comme/g if X=X => X’ is H-projective over S => X' is proper over S
=> v T cleed in X, we have FT)=Fom (e /s closed. This alao holdd
J%PO//y baaechavge S'—>8: Xs —>Xs, Thus X — S /s proper,



Upshot: (Q@Cinement of Chow's lemma)

Gen f: X — S sepemted. fiuite type. X —S s proper {ff 3 H-pnj
X' — S with a sujective S -morphism : X' — X.

O of dlistussion
ngc of Chuwrs lemma.
We only prove it in the Special aue where S=Speck, k=R and X s a
variety.

Write X=UU~UUe , where ¢=Ui S X is affne open and Ui = SpecAi,
ard Ai= SpecRCio, ’qu]/Iu i8 the offine coordlinate ring. Then we have:

e
opev\\z‘
where Zi is the doure of (Ui in P™
Set U=UiN-NUn EX . which is olense open. ond j=(ji,~. jm:

J u _— lpn' lemE
\ /M

let Z be the closwe of the image j(). We have the dliagram:

U < Z s Zix-xZn

o] N

Wi © o > Zi
Then Pri is proper sinee it's the restriction of IP"x--xP™ — IP" ¢0 2 clomed
subscheme.  Consequentty Pi is proper.

Let Vi=PUin. oand X=P{U)U-~ U PUR = ViU~ U Vk. We will try

to mop X' — X.

Claim 1 Pilviny; = Bylviny; . ardl hence they glue to gue a morphism of  Schemes .
T: X' — X



In foct, the locally cleed subscheme in VinVj where Pi: VinVj —s Vi e— X
and Pj:VinV; —sVjes X ogree is dmed gince X /s seperated and oontsins
U cdenser. Hence it's all of VinVj.

Cloim 2: (W= Vi
Consider the dliagram:

Vi e—s (U € Z
PilVi\ / T wwa
Ui

Snce Z is seperated, W) 8 Sepenated (or T wun 18 sepenatedy. Pilvi is
proper Sinee it's the base change of 4 proper mophism to Ui. Thus the imoge
of Vi is closed in mHUy. amd thus must be equal Since it's dense ¢ contains L),

Cloim3: T 8 proper.

This is tue becouse X=UiU~Uln and exch restriction of T to TUN
IS Now identfﬁed with Pilvi: Vi— Ui is proper. and beirg proper 18 Loaad
on the bose.

Coim 4: T — U s on iSororphism.
EF’ Wsamepmof as in claim 2 to the diogram:
U e——

W

U O

Def. A scheme X of finite type over o fied k is called quasi- projective
if X has on immersion into 1Pk for Some n.

Lemma. A proper quesi-projective uarety is projective.



QF'- Similar o» in Chow's lemma.

=> In(X) is closed. 0

We con reformulate Chow's lemma for varieties.

Thm. For any wrety X, 3 a quas-projective varety X' amd o Suljective
morphism X' —— X which 1S an iSomorphism cver a non-empty open USX.
Morecuer, X proper <> X' projective.

Application to  curves
Def. A cuve ower R i8 a uariety g"dimens:bn I.(i.e. we hwe one

Gererc point and every other point, infiuitely many, is closed)

From dlimension theory . we knaw that, for & uarety X :
dim(X>=0d <> vxeX. cosed point, AimOxx =d
= 'tﬂd@hb()()=0f

Def. S: an integral scheme . we gt the Function field RS) eal to ff Osttt
for ony non-empty open USS. ¢ RS)= Osy, where 1 is the gereric point

of So

Def: A morphism fr X —Y gf varieties over R is called :
(>, Dominant <> ftX) is dense in Y.
= JCCQx)=VZY
< {ix) contoins a non-empty open subset of Y
(This uses Cheualley's thm, which Soys that f(X) is constructible . Thus it's
dense if it contoins o non-empty U



@. Binational < it's dominant and  Oge=ReYy —Rex) = Onx is an isomorphism.
< JP+UCSY open st FIUW-S> U is an isomorphism.

Lemma. Suppose f: X — ¥ is a proper, birationad morphism of curves.
Assume Y is regulor , ie. Oy is requiar for ol ye Y. Then f is an isomorphism.
%Cr Algebm: A Noetherion Llocel /‘ing czf dim |, then A is /Egulo/‘gﬁ" A s
a DVR.
Pick xe X. Then: )
Onx £ 0y,
h{l;(u E th‘f)
= [)C* iS an isomorphism , bg d@“ qfa ueluation n‘ng (maximal ).
Furthermore, Suppme . x'€ X are Closed ponts with fuxs=fixs. “Then
Ox = Ox: =Opw~ . ond o diagrom:

Sp&’@'x /\LIJX

A\

Spec Oy ——— Y
Since Of = Ox. Ox, we hove sctios Si.8:, and comping With ¢1. (> resp.,
we hawe two morphisms, (105, (208: from Spec O to X . The valuative
Chiterion of properness => (08 = (2082 => X='.
Finally, since f i proper, we See that ﬁX) is dosed in Y. Since it
Contains the genesic point of Y, fix)=Y. Summing up, we hawe Shoon f
is 1-1, onto and closed, Fx: O« = O . omd thuis X =Y, O

Rmk: A cume is reguar ff its normal. This follows from the algebmic
foct that a (ocal Noetherion Oomain of olimension 1 is reguiar iff it's
nomald, iff its a DVR.



Prop. A reilor curve is quasi- projective.

(The correct Qeneradity of this result is that, Q. I-cimersional Seperated
Scheme of finite type over o field is Guasi-projective )

Pf: Let X be one such cume. Chow's lemma gives: Tw: X'—s X proper. bingtional
and X' Quosi-projective. The lemmo. oboe show that T: X e X. O

Lemma.  X: regulor Qurve 5 Y i proper uariety. Amy morphism fu—y,
where ®#U open in X extends to a mophism X —> .

Pfi Toke Z = closwe of (uxf: U—>XxY. Then Z is a wnety. omd
UE Z s open Oenge:

22— XxY — Y

o

X = X
Lem. oboe = Z=X, and thus we obtain an invene X — 2. Compasing
with Z2 — Y. we are dme. O

Rmk:  Ancther way to prove /s o rotice that X\U={finttely many closeol
points , and using (Ey of the Unkitite critenn we can extend the marphism
owr ench of these points, whae (ol rings are DVR's.

Def. An integrod scheme S s called noval if Y USS affine open, Osita)
SKS) is integrully closed, ie. Osll) is o novmal ocomoin.

Def A rmorphism of Schemes ¢: S’ — 8 is auked finite iff v USS affine
open, @7(L is affie ad Oscatun is finite cver Ost.

Lemmo: For any variety X, 3 a Qanonical morphism of varieties L:X° — X,
coed the rommalization of X . which is birationad , finite , with X° a normad



vanety.
Pf: This bosically  follows J(;Dmthe olgebroic foct that if Ais Sfinitely generated
domoin cver R , then the integrad dloswe A of A in ffAy is a fwite

A meolule. O
Lemma. A finite morphism is proper. O
E.g.
Consider the Singubr  curves:

Spee (RO Y1 /cy*-23) Spec Rk /€ Y= K21-%1))

<ra0usp O<:anode

In their respective function ﬂelds. Gl x=o, BV -(-x=p e integred . It
@n be checked thet AC$3SR(X) are normal for both rings. These are the
respective normalizations.

4 Imeyul coswe of o futely geremted domain over & in its Faction feld
is finite oer itself. This is not true for finitely gererated algebras over k.
(wohere there Moy be nilpotent dements). For example . in RCx.€3/ce». In the
total ﬁacﬂon ring (where we invert @l non-2ero divisors ) RxIEI/(€), the
integral closure s ot fnitely genemsted : (%)% 0 satisfles an integrod
equation , ¥ n2o.

Def. (Rational maps).

@. X,Y: vaneties over R, o ratimal map X--->Y is on equivalence
class of mophisms  f: U——Y, where UCX s no-empty open, and
F U=y~ (g V—Y) ff 3O+WCSUNV, nm-empty open St

Flw = glw.



(by. We sy a rationad mpp X ---~Y is dominant if for any represerative
f-‘ U—Y of this mp, it i3 dominant, i.e. Finw = Ny Note that fu=nx,
thus tiis /8 indeperdent o representatives Chosen).

Rmk: X, uvarieties over R, Iff U—Y and g V—Y define the same
rationad map , then Flunv = Qluny. Indeedd, Since Y is seperated /k. we bnao
that where they agree i closed in UNV. But it's also dense since it cantains
& non-empty open W. This f and g gue to ge o maphism UUV — Y.
(thus there /s o maximal open where this rotional map is odefined 0b a rorphism).

Notation f X-=-=-=Y meus a ratimal map with G Chosen representative.
Constructin:  f: X ---»Y , g:¥ =--»2Z rational maps and f is dominant .
Then we may compase them , oefined by:

Rmk:  Set R(X) ={the set of rational maps from X ---» Ar }
= the set of rational functions on X.
Then R(X)= ColiMuex (Morua (U Ar)y = Colimuex (O = Oxn=Rex).

Thm. The aategory of uarieties with marphisms dominant rationad mops s anti-
equivalent to the categry of finitely gererated field extensions R S K with
morphisms  R- olgebra. - homomarphisms.
Unriety Frelols
X RX
(@: X --->Y) — (% RYy — R(X))



Pf: * Surectivity on objects” : RSK., ﬁm‘te@ generated field extension , i.e.
Il e K st K=RoAan). Let A be the k-algebra. generated by M.
Anoin K, ie. AsROA-d1 S K, which is a fintely generated domoin /k.
Then X=SpeeA is o Unriety whoe fumction field is K .

) Swjecﬁumj on morphismg” = X, Y : vareties. W: RY) — RX) 8 a
R-algebra. map. Then we want a ron-empty open USX and a dominant
morphism f: U — Y which induces Y on function fietds.

Pick ony non-empty affine opens SpeeAC X, SpeeBC Y, A=RIx . %n/1
B= kLY, ~.ym1/J. BES RO ¥ Rexy=> Wiy €hix). The problom is that
Wiy need not be in A, But FF A =kix) = Wiyn= B ateA vi.
Then s € Aa-am . ond SpectAa-am) € SpecA is non-empty affine
open. Thus ¥: B — Aa-am => Spec(Ao-om) — SpecB . which induces ¢
on function fields. O

Thm. Let R be o field. Then there is an anti- equivalence of categories:

* The category of regular ¢ie. normal) projective Curves , with morphisms dominant
morphisms of vanieties  (i.e. non-constant)

® The categoy @Cfm‘fe{g gerenated field extensims RS K of rdegnk=1, with
morphisms R algebra. - homomorphisms.

Consequently, for eery K with 1n degek =1. there exists o unique regular
projective curve X/R up to unigue Somorphism.

Rmk: . One crucinl part i3 the finitely-genentedness of K. Thoe fields
of 1rdeg. | which are not finitely generated ore oralogies of Riemam
surfaces with infinite genus:

Cr: Y= Xix-nX-N : - sheeted branch cover of P

o

[ A )



gerus §(Cn=n-1 . This we have a Jomily of field extensims (maphism of
cuwves)  K(Cn) e K(Can) e K(Cany < ¢ o= Can—>Can— Cn

Cokg—> Cokn Yy 8".) The fi‘e(d -&Mu K(Gwm) i8 not fmte@ genemi@d
but of trwnsendlonce degree | . It's not the function field of on algebmic

Curne.
(2. In Oncent times, people restrict thomeelues to curmes in IP* and hod

e ingoniows ways o oreste Qmovth cumes.

]
P2

Ei

They toke the Cremora. trangformation of P* (Cx.y,23 — Cyz. 2x.x43) to How
up pi.pa owd blow dowon E,. Afler difficult computations they could only abtoin

ounves with Shqulerity ke below in finitely many steps.

%
O of thm.

Assume that we con construct 4 Smooth cuve X ﬁr ooy K, Then given
KON, KXY, Trdeg =1 and W KOYy — K(X), we have
K(X) X =2U

I = 4l
KCY) Y <oy

Sice Y is poper ard X s reguar, (of extends to o maphism X —> Y. Tha
the only thig (eft to show & that : Given K . tr.degK=1, find & replar



projective Curve with R(X)=K.

By the previows thm. 3 Some cume U st Rh=K. By Shrinking, we may
asswme that U is affine. Then take the close of the image of:

Uecs Ar = PR

ol it Z. U2 is open derse. ond Z is o projective vanety with fmm
Jield R =k, ie. Z is a projective cune.

Set X=2°—> Z the romalization. Then X is o cuve and is regular.
Since L s prper (finite mophism!y => X is proper. Hence X is projective ,
by o previous  lemma. O



88. Degrees of Morphisms

[ Rend: Hartshore T §6. ]

E.g. (Thm/ Motivation Jrom number theory)

Let L/K be o fiute extenson of fiebls. Oc. Ou rings of integess. Let

ge SpecOx be o prime . G-, ¢r the primes in SpecOL over p. Let

Fi=CK@ir: Kepy1, where Kepy, kg ore the resigue freldls cf Okp. Ouyi.

and € = the expoent of @i in the expression BO=9 - 0F Then e

have the degree formula for the morphism Sper(©Ox) —> Spec(©u :
[L:kl= % efl

oy =1L

Upshot: This formula States that the degree of f aboe the generic point
Ne=t(0) /s the Same as above f.

Genersl. stutement: A: DVR . with £fAr=K. L: a finite extension of k.
Assume the integral closure B of A in L is ﬁmfe over A. (when the ring /s
ressonable : Jopanese, Nogoato., ) Then maB=mP--ms" (B s o Dedekindl
domoin )y, and

[L:KI= Z & [Kam: Kmay]
Pf: Since B is a finite A-module and torsion free ao on A-mode ,
B is free-. B=A"" Obuiously n=CL:K1,

Since B is the integral closwe of A inL . B s romal. B finite ovor
A= dimB=dimA=1. Henee B oo a fite ctype) algebra over o Noetherian
ring is Noetherian. => B is a Dedekind Oomain. Thus all the (ocad rings
at dosed points are DVR‘'s , and mB = me.-ms”



=> n=lengtha(B/maB) ( being finite is cruonl here 1)
= 3 (Brgﬁm (B/mi®R) ¢ Chinese remaindler thm.)
m? B
= 3 ei-lergthac B/miBy ¢ length is adolitive, ond e = 7w, = T
= ;€ Lremiy: Kimar]
*: Here finite Quorantees the following Stuation won't ocour :

-

VT

Def. (Divisors). Let X be a Noetherion scheme.
M. An efj”eca'ue Cortier divisor on X i8 a closed aubscheme D <cs X st
VxeD. 3 an affine open nhd SpeeA of x in X st DN SpecA= Spee AL .
for some non-zero divisor feA. (f mn't be o wmit as well: % € DNSpecA
is  hon-empty ).

An equivalent dgc is that Io< Ox the ideal sheaf of D is an invertible
ShE&f qf (Ox - moolules.
. A Weil oivier on X i8 a finite ormal sum D= SnfZ1, nzez
with each ZE X o prime divisor.
. A prime divisor Z S X 8 an imeducible , reduced closed Subscheme
st dimOxa=1 where $eZ 18 the gereric point of Z.

* Rue to associate o Weil divisor t on effective Cartier divisor :
Let D be on effective Cartier divisor:
D +— [D1=>zex, (engthoes(Ops) [Z]
Z prime divisor, 3eD
Here feDe>43s=2ZCD. This works since if & D, then Obg=
Oxa/cfy, where f is not @ 2om-divisor in Oxg and this dimOb.g=
dim Ox.g -1=0



* Pulling- back divisors.
Rmk: Not always possible.

=4 48
p
X

It's ot eayy deﬁne the pull-back (Ve divisor of the Shquiar point [p3J .
(The comect definition showd be 2CQI+3LQ'1, by symmetny of the picture).

E.g. Simple @ses where we aan.
Suppme f: X — Y s a mophism of Neetheron schemes. D <Y on
effective Citier duisor. Let {7y be the fiber product:

iy — T

£ —Es v

If £y is an effective Cortier dvisor, ¢ this always holds i fi X—s Y
s @ dominant morphism of uareties, sice ROY) =— RCX) ), then

f*D 2 f4D).

Rik: ( Cartier dlivisars | Tnwertible Sheaves y fom o cohomology theory  while
(Weil dlivisors) form o hamology theory . It's easy to define pull-back of
cohomology Gnd push-farwandl of homology. The cther way arund s ot
ensy.

Apolication on Curves

Lemma. On a regular crormal curve ', ony Weil divisor D oan be written
uniquely o D=CDi1-CDa1, where Di. Da < Y are effctive Cortier
divisoss and DiNDa= .



Ramson: D=2 yev. cied pts Nylyl = ZH5>0 Nytyl - Znﬂ«; -ryfya . Just let
Di= Snyro LYl . Da= 2 myeo My LY1. It suficen o see that ench
Ty is assoviated to an effectie (botier olivisor | invertible sheaf® Tty
ond then >nyCYl js aSsocinted to ®Ztg>n5. But we hae the invertible
Sheaf*

Icgn:{@“‘- s

my . x=y d

Eg IPe=PoCh T, t==F.
The Weil divisor 3Tt=01+50t=171 is 0Ssciated with

D = Spec (RLt1/ (t-1154%) & Spechkrta &P
The Ccompaitim IS Q. clesed immersion &ince the imgge get is closed. ( This is
not true for higher dimensismal caues !y Thus this clased subscheme /s an
effective Catier livisor.

® Dyl back of Weil diisors ﬁv‘ ourves.
Let f: X—Y be a nm-cmstant ¢ dominant ) mophism of curves and Y
requor. Let D be a Weil divisor on Y. and write it as D=Di-Da
0d in the lemma above. Set:

CF*D?- EJO*DIJ - E‘]C*Dz]
here *Di is the pull-back of Citier dlivisors , ond Cf*Di3 taking the
pssooated  divison,

Eg. Pe = Pr : Prj(€r8.83) — Py Ty, Tor> 83, T2
On the offire open SpecCrt1. @ gites o finite morphism:
Pe - Pe
Ul Ul
Specrs1= Ac = A = Spec Crt
<F|‘1‘S’pec(¢‘ctm.



which 8 induced from the finite ring extongtm: Crt1c—s CLST . tes &2
@l SpeeQrea) = Spee€rsl becruse Crs1 is the integral closure of @rt3
in €. Now consider our divisor ob before:
¢*D)y= LP"D]
= [ Spec Cr81/(8° (81755 ]
= 6[S=01+5C8={F1+5[8=-A171

S={3

s=-{§ S=o

| t=8
+ +
=1 t=0

D%o. Given a. Weil divisor D= S n«fx3 on o cwrve X. Set:
d%D= S x Nx LKexy: R1
( [Koxy: RI <00 bg Hitbert Nullstenllensatz )

Lemma. Any non-constant proper mophism  between cunes /R 8 finite.

Rmk: The corect generlity of the Stafement is that any proper morphism
with finite fibers is finite. We an prove this cune ce hy hond, as dme
in Hortshorne,  but it's betler to prove this comect genemdity after Same
machinary I8 oeveloped. O

Thm. ke a field. Let f X —> be a non- constant morphism of projective
requor curves (<= proper requlor curvea ). Let n=cho: RO be the clegree
of - Then VyeY. claed point, we have:

deg ( £*tcyyy = n- degey)
and by lnesiity. ¥ D weil diviser on Y.

deg ( $*D) = n. degD

Pf. Take Ye closed amd Chose an affine open nhd SpeeA S Y of y
Now by the previows lemma T SpecAry = SpeeB is affre ad A— B



is fiite | B i integrately Closed sine X is regular.  Now the algebraic
resutt at tne begmmhg applies 1o :

Amy — hcj)

Blmﬁ s RIX)

Moo M 0UA maximal - iclenla
ond MyBmy = ME- mx’. Now wwdind the definitions

deg ¢f*tymy = deg Lfiyp2

deg( S5 lengthoxK;()<cg>®@x,«:)-[o<i:l)
= i tergrhsm,;(—m%—,’;;) CKexiy: R1
= Z;:. dimeexcs E_:ué,_ L Kexo) = Key) ICKeyd: k3
S, @i CKoo: KipICKy): R1
CR(X): ROY) - [y R
n- deg (TyD.

I

1|

1l

Before more applications, we need more gerenal results.

Inertible Sheaves and effective Cartier divisors
X: noetherian Scheme . 1.+ invertible shecg“. Se T(X.L).
Def. We aut s o reqular Section if Ox =4 s injective.

Let Zisy2 the lnrgest closed  subscheme of X st Slz=0, e (ZcsX
then o=i*se [1Ze, 'Ly, Loally. if we choe & triviakization : Quidu=Ou,
then Quay=f€I U Ox). ond Z&NU = Zf; if U=SpecA, then Z0u
=Spec AlPy). S reguar meons that f is a ron-zem divisor. In cther words
S 18 a regubr Section lﬁ Zy is on effective Cartier divisor on X. On an

integrad  noetherion Scheme, 8 is reguler iff S#o.



Lemma X. 4.8 as obove ond S requies. D= Zc8), then
L2 ' = Homou In, Ox)

Pf: Another way qf Saying s is tat £.®mZo= Ox. But
'L@Oxzb — @x
g. f o :(-fg‘—’)"

where 8. are looal sections, s ensily Seen to be an isomophism. O

Converse construction: If DesX is an effctive Gatier divison, then we
can defre OxD) 2 To = Home(To. Ox) to be the iwertie sheaf associated
to D, Which hoa & cononicad Section 1o st. Zcdpy =D.

Question: Given D. D', when is OxDy & OxD)?

A portich onswen:

Lemma.. IJC X is integrod , then OxD) = OxD) ff sfe ReX)* st v
SpecA € X affne open, DN SpeeA= Sper Allny. D0 SpeeA= SpeeAl ('
we have f=(unit in A

Pf: Soy. i ¢: Oy 5> OD) , then Petoy= f o, The resutt folloas.

O

Def. Given an integral Noetherion scheme X, and fe ki)™ we eet the
Weil  cdlivisor (?)D JO:
dive> = 2 gezex ondy(f L21.
where Z i a prime divisor and & its gereric point . and
ordy ¢fs & Length Oca /> - LengthOxg /by
and @, be Oks, f=%e £5(Ocpy = e,

Def. The class group  CUOX) = (el dlivisors on X/ ¢ principed dlivisors)

Back to applications for Qurues



Lemma. On a regular curce X, ClUX) =5 Piecxy,
D — O«Dy® Ok’
where we write D=Di-Da 08 a differece of effective (hrtier dlvisons.
Pf: By the previous lemma, the map is wel-defined and injective. Tt suffices
to show that it'S Swjective.

Fist of all. ony 4 which has o non-zerm Section is isomorphic to Ok
J%r some effectie D Thus it Suffices to show that given any £, there
exists Some Da effective st. 4(D) has a. non-2ero (lobal Section.

Pick ¢+uU<cX. nm-emty affine . st. TIULy#o, pick any non-2er0 s
in it X\NU=ix,~ %Y finitely many closed points. Then for N»0, S
extends to A Section £ @oxOx(N(IXI+-+Ixe2yy . (Fon instance, regurd S as
o rational sectim in L®oxR(X), then take N2 maxL, { odiessy. ) O

Lemma. On a non-singular projective curve X , the degree of o principad
Weil odlivisor is ©.

Pf:

Gen fehy, (w.l.0.q . assume f is not fite cver R. in which case
dufr=0. f defines o morphism  f: X — IP'. This ges Ret) < Rex)
t—f  Observe that djucﬁ:f*(to:\—toon

= deg(diu¢f>) = desf*tE01> - o(egf“‘(toon
= degf’ - degf
=0
(both 0 and o0 are k- points . degrod=degrood=1). O

It follws that the oegree of on inertible shesf £ on a reguiar projective
Oure is well-oefined: 4. = OxDy® Ox(Da3" , then

degd £ 0y - degDa.

E.Q. Pe(lPy = Z.



Pf: S Pexy=Clexy, it suffices to hoo that every degree 0 Weil
clivison 18 principal.
In owe k=k: & degree o divisor I8 (f ﬂveﬁv‘w
S0il] - ij [B;3
a1 bj>0 and Z0i=3b. By o lineor change of coordinates i resessony,
ossume o, B # oo. Then tws iS the diisr of the rational Junction
Tet-any ¥/ Tt- ﬁj)bj
which is requiar at oo Sine Xai=3by.
B h#k. Rowzhota/cfiy for some monic imeducible polyromial fe krta.
(Simibr g for Bj>. Then degree 0 means
> Qi degefhy - S bj degegj) =o
ond thus it's  div( TR/ gb.

Eg. K X is ron-singuar . projective . k=R, and PieX=Z. Then X=Pe.
Pf: Pick x. Xxae X, clwed ponts, Piecx) & Z = [X1 - [x3 = duef.
Consider f: X —> Pk . then it has degree | gince ftrony = Cxi1. Hence
Ry RP) (deg 1 extensin) . X requion, projective = X = IP'.

Rek: In geremat it's not tue that PieAr 2 PicSpecR ard PrellPeyz PetRyxz
It's only tue Pr R “nice”, Jor instonce regular in codim 1. (C.f Hortshome).

Motivation : (/Ohﬂ do we introduce  Cohomology *?
Question = Are there ony other curves thon IP'? (Yes )




Later we will see that, if C#o.-27. 00, chark#3, C /s regubor
Claim: C 2Pk,
Othenise , pick on isarorphism  @: Pa — C SIPa. Then f is gven by
an invertible sheaf Opdy and 3 géobal SectinS . Sx. Sy, Sz € [P, Opiedy) .
Fusthermore , we  have
(). Sx. Sv. Sz have no Common Zeros on IP'
2. (Sx+Sy+ Say3+ 0. &SSz=0 in I[P, Opecdy)
®. ZSo=P, Z(Sn=Q. ZS=R are 3 diglinct ponta tinflection
points ).
After o. linear change of coordinates, we moy assume that P-=rlo. 11,
Q=CLo1 and R=(.-1y in IP. It fllows that:
Sx= Axd, Sy= ux?, Sz=DeXot X
P(ugging into the relation in (2. we have
(AXS+ yX,d+ DKot X0 2 = - CApo X8 X (Kot X0
Obuinly d#o , othenose imeP" = pt.
= Xo| rhs. Xi| rhe = Xllhs, Xi|lhs.
= UtD=0, A+v=¢
=> C=0.d=l. whch we hawe exduded from the outset.

d (A\U.L#0)

Imaging doing this cose by case for cwves ! After enough cohomological machinary
s developedt, this will folloo simply from Caloulating  Cohomological inuariats:
{ H'(P, Op) =0
H'C, ©c) = |

Motivation / Qluestion:

o X: o scheme . i Xet i offre. what an we say abat X?

Thm. Xred is affne < X is affine.

The proof is not easy ard Quen in Noetheron case uses Seme's  Cohomological
Criterion of being offine.



. Over R. Xred proj %> X proj  (No)
No easy proof dter than using Cohomology.



80. Cohomology
let & be an obelian category.
Def: An object I of A is oplled injective iff v cliagram of solid amous,

the Odotted o exists. Ac—B
\1,

Lemma.  Given oy ses 0—I—A—>B—0, with I injective
AzIoR (o0 Ext'(B.IV=o0). O

Def's/ Lemmos.. n
w. A complex K ig -~ — K" LA K™ — - with d%d"™ =0, V¥nez.

(b>. The n-th cohomology object iS H"(K" £ kerdd"/ Imad™.

. A morphism of complexes o: K'— L' is a Sequence of maps

o K" — " st

Kn i) Knﬂ

[, e

L_n _d_) Ln‘H
This induces maps H"o: HY(K) — H"(L")

(h Two morphisms of complexes . p: K" — L™ are homotopic iff 3 fomiy of
morphisms '+ K' — L™ st. o-p=hd+dh. ouv(s for short .

. — —_— |<‘ I<H'l

/l//l

N Ll N Ll LI'H

Lemma. (dh=> Hioy =Hicpr, Vie Z. 0



Lemma. oi~B => Boatey ~ SePoy,  iofere M'—V—>l<'=:‘>l_°—8—>N'. O

(©. A morphism of complexes oi: K'— L is @ Quasi- [Somorphism (gis)
iff vnez, H is an isomorphism,

B We oy A has erough injectives iff VA, object of &, FA—T,
with 1 injective object.

@. Gien AeObg)y, an injective resoution of A is a complex I° and
A—1° st
m. I"=0, vn<o
. 1" injective. vn.
(3. HN(T) = {O n+o
A n=o
Notation: Aro1 = the complex with A in degree 0, and evenything else o.
Then via this map:
= 0 D I° -1 — -
rtron
i ) — A — 0 —> -
A1 —1"is a gis. Or really . Aros — 1" is an injective resolution of
the complex Ato1 of chy.

chy. Giiven o complex K™, an injective resolutin K* is @ gis oK' — T’
s.t.

W, I"=o vn<<o (bounded below)

2y, Each I" is injective.

Lemma. Assume & has enough injectives . then
. Every object ot every complex K* with all H'KY=o for all neo



has an injective resolution.
@). If K"=0 , then we may pick K’ I° temmwise injective.
(by. Given a Solid dingram: T'L'L.
I e
with: . 1 & bounded - beloo  complex of injectives .
. ¥ 8 Q8.
Then @ exists making the diagram commute up to homotopy
. In . i o is Temwise injective. then we cn moke the dliagram
Commutte.
. The B in (b i8 unique up to homotopy.
Pf. (0 For objects it's easy. For complexes . we reduce it to @) by
introducing the trunaation : pick n<<o :

———3 |<n-2__> Kn-l _ Kn N Kn-t-\ — e K.
I A
s 0 — imd" K" — K™ — - oK

which is i of complexes ond TenK' s bounded from befoud.
To prove b we reduce it to ¢&y. Claim: Given any map of complexes,
K'2s L7, there exists @ temwise injective rmap:
K0S
&D‘_/’

where T hos 0 section " -7 st eom s homotopic 1o the identity
on C*. Then composing 8 with B obtoined from by, we get B=pes.

Corstruction of L (mapping - Cylindler ) :
K' — L'eK"@K™ — LI

W /2

Knﬂ N U*\@ Knﬂ@ KVH-Z — Ln‘\'l



Now we only reed to show by Gien
K'e2s LS
I« &
with o termwise injective , gis. we need to define 8. By induction, we may
assume ﬁ 1S dEﬁned up to @n-l; Ln"—>In-|_.

K /c__?' el
| &
1

In-l /

Note that ? is alresdy odefined on d™(L™). and agree with the map
defined on d™K"™. Gince K'emL' is gis, we have K"Nd™LM=g"K"
Hence by injectivity. we con exterd the map K"+ o™ — 1" o 7

Upshat = Given ony solid dliagrom:
Ki f— Kz.

J o

where o, % are injective resolutions, 3 dotled amow mating the dliagram
commute up to homotopy . ond is unigue up to homotopy.

Moreoer, if K'—K: is a qis, we hae ancther dbtied armow in
the other dlirection, which is inverse to the finst one up to homotopy in both
Clirections .

In the pictwe of categories, we have obtained:

A — Gl K4)

Oue original Categy of Objects are the same, with morphism

obelion catgoy Compleves, bod below  Homxees (K L = Hom ety (KL /&




Now with enough injectives in 8, we  hove

Ky —L— Q)
where in Q) , objects anre bdd below complexes of injective objects, morphisms
ab in K14y, On objects, j(K)=1" where 1" js & chosen injective resolucion.
On morphisms, Ki % K,

l

L A,
and j(@) I8 unique up To homotopy. The ﬁnctorj mokes every qis an iso
in Q).

D%D. A fuﬂd‘or‘ FY— 8B 90 abelion cotegories is (alled l@c} excct iff

F s odditie for ay ses, 0 =A—B—C—0 in K, we hwe
0 —s F(A) — F(BY — F((C)

is exact in &.

E.g. m. K =_bX) o~ ModtOo. B=_b =bcx)

Then F=T(X,") is left exact

@. More gererlly, if £ X —Y is o mophism of riged spaces,
A=_dbX) or Adod(Ox) B =8bY) or Aad(Oy), then I—_=JQ+
is left exact

Recall that f & hoa erough  injectives. we have
A — Cmp'c Ky — Ky - Qldy
ord the i-th homology furctor H': Chmp'edy — & foctms to glue functors
Hi: Ky — 4 and H: Q) — 4

Thm F-d — &, left exact, ard & hos enough injectives. Then there exists
o functor RF: Q1) — KB with the ﬁ:blowing propertied -



A —  Ato] _
A — Compcy — Ky - Qlxdy

(RF ¢+) 2 HI(RF(-»

0. RF(IN £ F(IY e ObXB). ﬁr ony I in Ob¢ Q1=9y).(This makes sence
since our def. ‘Zf Ry is ad bowded below complexes (f injectives 3.
w. For Ae Obedy, we hawe
QszA>={ 0 <0
HA) i=o
(). I\f Te Obtd)y is injective then R'F(I)=o {f [£0.
. Given ony ses. 0o —A—B—C—o0 in & we gt ales
0 — F(A) — F(B) — F(C)
—RFA —RAB) — RFO)
—RFh — -

w,  0—K —L" —M —o s a ses in Gmpladr, then we
get o les:

- — RF(K) — RF(LY— RF(M)
— RMRKY— RMFILY— R™FiVY
— RPFI) —

Pf: Recal| that we defined ji Kitds — Q') by choosing for each K* an

injective resolution K*—s j(k". Note that if A — 1" is an injective resolution.

then RFAY=F(I".

(>, TThe injective resolutin I": 0 —I°—T1'— -

of A (Aon). Sie F is left exact,

0 —A—I°—Z—o % - { 0 — FIA) — FI% — F(2)

0 — 2 —1T 0 — F(2)y — F(1I"

- I8 an injective resolution

}exact



= 0 —FA —FIY—F(IY is exact

@. soys that i 1 is injective, then RF(I)=0. v i>o. This is true
Sine It01++— 0 — I —0-—0—- 8 Gn injective resolution of I
=> RF(I)=FDlo1 has no oohomology except at okgree 0.

To prove (3). we need the foaow'rg:
Lemma: Given ory S.e.s. in
0—A —-B—C—o
there exists @ digram:
0 —s Aol — Bro1— Cros— o0
o Bk
where the Uertical Grmows are injective resolutions , and the lower horizontad
Sequence s temwise Spt exact. More geremlly. the Same gtatement hobls
with 0 —s Ato1— Blo1— Ctoa—o0 repheed by 2 sesg. in Gmp'ey
0 K — L — M —0
(Termwise  Split meaning L =1/ @ Is)
P omitted.

ka:m.Anﬂ odditive j?mctor opplied to o Spit S.e.s. gues @ Ses. Hence we
moy compute RF(A) oa F(IN, RFB) as F(ID, ete. A for t: A— R
we moy compute RF oy ad Fjtny ete. Then:
0— F(IA—HIs)— FIc)—o0
is o termwise Split exact Sequence in Comp'(®).
@. Supme 0 —A'—B —C'—o is a temwise spit ses. of
complexea. ond i we chose o Spittig B'2 A"@C", then

dsn=[ o 8 }

0 den



ond devoder=0 = dame8+8edcn=0. Tus 8 C'— A3 is a
marphism of Complexes where (ATID" =A™, ond dlifferentiod —-dlam. (1t
follows  HEATy = H¥(AN. ) By fle lemma , the |.e.s. assooiated o
0—A"—B —C'—o i8 guen by

= HifAy — HIB) — HIO)
/
H*(A) — -

The morphism & gives :
A B AT
which makes o distinquished triangle and  K'U8) a. triangulated - category.

Now 3y and @& J%Uom dmd'(g fmm the lemma ond remorks, O

Lemy's acyelicity lemma
Let F 88— @ be a leff exact functor. @C K is a bownded-below complex
ond R'F(K™=0. vi>o, vn. Then:

RF(K") = F(K"

Rek: This says that f K" is aoyelic for the ﬁnctw F e all higher
derived functors upnish on K™, then i A2 K’ we hue (n DB
RF(A") =RFK) =FK")

Upshot - If we have Ae Obd) and a gis Alod—K', with K baunded
below complex of acydic’s. “then

RF(Aro1) = RF(K" = F(K")
ond thus

RF(AY = HK"

Pf of Leays lemma
Choose K'e— 1" injective resolution, ond set Q'=1'/K". So we have:



0—K —I'"—Q —o0
By the Les of cohomology goups. we hawe . for each ne
0o — FKY— FIM— FQ"
—>R‘F”(K")—> Q‘E( I'— RF@QY
9] 0
—RFKN— RF(IN— -
v
= Q" is aqylic 08 well and
0o — FKY— FIM"— FQY— 0o
is exoct. Hence
0o— FK)— FIH— FQY— 0
is a ses in Comp'@). Note that by the same arqument as obove without
F. Q" is on acyclic complex in Comp't).
Since FIT) is o monifestation of RF(KY), it suffices to show that
FIKY — F(IY s a gis, or FQ) is agelic.
Set Z'=Im(Q™"— Q") , then:
0—Q"— Q™ - Q™ —-
\zm/ \n;_{"‘/ \zms
0/’ N o’ \.O/'

%)

Look ot the complex : 0 — 27— Qi — Z%—o0
i=n, Q"= 2™ = Z™ s F-agelic and FHQ")=F(Z") .
(=, 0 —Z"M—Q"M—2™ —0 = Z™is F-aqplic
and 0 —F(2Z™) —FQ™) —F2") —o0 is exat.
=n2, 0 —Z2" —QW—Z™—o0 = Z™ s F-agyplic
ond 0 —F(Z") —FQ"™) — F(2"*) —o0 is exct
ete. etc,
This applying F to (%, we obfoin a [e.s. 0 —F@". O

Applications on - ringeol  Sprces



Thm. X: topological Space. The aategoy 8bX) of abelion sheaves on X
has enough injectives. More generasly. (X.Ox) : ringed Space, then the
aategory Adeoll@x) hos enough  injectives.
Pf: Recoll that b(X) = Aool(Zx). Hee it suffices to show the [oat
statement.

Constructions = I for eveny e X, we are gien on Okx-module Mx, then
the rule U +— TlxexMx I8 a‘ Sh%f(f Ox - modlules.  This sheof 8 juA'l'

Txex (Jx)% (Mx)

0. direct product of SRyscaper Sheaves.

Let F be a sheaf of Ox- modules , then

G < Tlxex (xstF) = Tlxex (jx)*Ix

s on injection of sheques of Ox-modules, where Jor each xe X, we choose
on injective Oxx-module I« Contining Px ob o submodule. The thm jBU,aos
ﬁbm the next two lemmas:

Lemma: A product qf injectives IS injective. O

Lemma: ¥ Ic is an injective Oxn-moddule . then (xle(T) i on injective object
N Adool(©x).

Pf: ¥ GeMod@n. Homox(G. (v = Homoux(Ge. In) . Since I is an
injective opect in Mod((Oxx), Homoxx(—, Ixy i8 exact. Moreover, taking stalks
s an exact functon. Hence beirg the compoition of two exact functors.

Homwoxx ( (=)x, Ix) i8 exact. O

By previoss results, we have defined -
Def: . X: topological space.
(X, =) . TUU.~): XY —.Sb.
(2). f: X — Y contiruows mop qo '(:opotogm{ spaces
Fx o AhX) —AbeY)



@, (X.0x) - ring space.
(X, -y Ahool(®x) — Mod(T(X.0x)

LU=y Adod (Ox) —> Mod (TIU. Oxy)
@. J: (X.00 — (*.00 a mophism of ringed Spaces.
Fx + Ao (Ox) — Ahodl(Ox)

Notation:

w. HX, P 2 RTXF) . Hu %) 2 RIUF)

@. If %" is o bounded below complex in AQbX) or Alood(®x), then
H(X. %) 2 RTIX.F)  chypercohomology)

Rmk: By def.  Fedool(Ox), pick any injective resolution F — 1,

RIMX.Fy=T"1x,1H
iS the ocomplex:
0 — [1X.I°) —I1X. 1) —IIX.IH —

Then HIX.F) = H(DIX.IN . oy TIX, 00 - modules. Gimiloy

Qf*(%)=ﬁ(l') .o compex of  Oy- modlules

Rfe(Fr= HAIY : a sheof of Or-modules
Also note that by okf

Hox. Fy =T (X.%F) and HIX.%y=o0 ;f (<0

R‘i)c*(%)= k% ond Q"f*c%mo if i<o.

Gor. Given o cheof % and t31¢ HIXF). p>o0, 3 an open coverig

X= UiezcUi St the Image gf (21 in axch HPLWL ) s .

then

Pf: 2eTUX.I" ond o=deX.IP"y = Wn=0 in I Bursne I' s
ooyclic owoy from 0. &=dix, Jor some fxe I%. Hene in some gpen nhd

U of x. &lu=dn.

Cech complex

ad



X: o topologiosd Space. U:U=Usesli an open covening (f Ues X, an
open Subset. Fe.db(X).

Def. Let CNUF) 2 Timip Flllio-ip)  ohore tio e I The Cech cplx
s defined 04

GUFy: 0 — CU.Fy s C1UL F) L CULF) — -
with oifferentiol: v fe CRU.%)

(olf)io"'t‘p-rl = Zp:t‘) (=1 )J. L'o“'z.,\‘-" L‘P'H lu.l'o-"l.'{x-l
Lemma.. o*=o0. O
Def. R(UF) 2 H(CIUR)

A In geemt, there is no long exact sequences of Cech cohamology of
Sheaves .

Lomma A. If 1 is an injectie Ok-module, then MU . I)=0 for all >0
and any open coeenny U of Ue— X,
Pf: Let j: Ue—X be the indusin of an open set. Consier jiOw) . extersion
by 0 of Ou to a sheaf’ of Ox-modules. It's chamacterized by J!0u € Ox,
ond (1:0u)x = Oxx if xe U, or o cthenvise. Furthemmore. we have the mapping
property :

Homex( i (Ow, ) = 11U, F)
Denote  Jis-ip : Uin-ip e— X ol consicler for U+ U=UiezWi the complex of
Ox- modlules -

J o — B i) (Oini) — BDiollio)! (Oui) — ©

“Then:
. For ony Foe Meol(@). Hom@, %y = CU.F) cononicodly
(0. The complex qf Sheaves " is exact except in oegree o, andl in ﬁct



= @iy ikt (Outiois) — Dialliol (Ouie) — 1Oy — 0
i exoct. Indeed. VxeX. the Stalk of thus complex is the smpliciad Cplx
of a single point with coefficient Oxx.
Since  Homox(-. Iy is exact. the lemma ﬁuows by applying ) and (2.

O

Lemma. B. I 0o—F -G —H—0 is a ses of Ox-modules,
ard BMU . F)=0 J‘Brau open coverings U of all opens, then ¥ (==X
open, the map GU) — HIU) is swrective. O

Thm. Suppme F is 0. sheaf of abelian groups or Ox-modules st
HUQL . Fy=0 Jor all (>0 and all open coverings U of all cpens. Then
HU, ®l=o0 ﬁn" oM Ues X ard i>0.
Pf: Pick on embedding of F—1 with 1 injectie ond set Q=1/F.
Then we howe:
0—%—-I1—->Q—0

Foom the Cech complexes:

0 CMYU F)—CMU.1)— EWU. Q) — 0
By lemma B, we hawe Surjectivity on the rh.s. Toke the [.e.s. of Cech
cohomology groups end by lemma A.

0 — FUUF)— HU.D) — HU.Q)

HH'(‘%%) ——>\rv-i‘{H‘u,I) — MU

0 0

— MU R — UL — HU.Q)
0 5

— Y5 — -
I

0
= Q s also among thoe Sheowea with umShjng higher Cech cohomology ﬁr

any open cowering of any open. Take the [-e.s. of Cohomology:



0 — HIU %) — H(U.I) — HUQ) — HIULF) — HWU.I)=0
By lemma B again, H(U.Fy=0. Hence HU Q)=0. Continue the Les.
- — HUI) — I—\‘uﬁl.Q)——» HUF — Hz(ltlA,I) —
0 0
= HIU. %K) =0. Repaxt the agument and we are done. O

Cor If f: X—Y 8 a morphism of ringed Spaces and 1 is on injective
Ox-module. Then 1 is a sheaf of Or-modules cohich satisfles the
osswmption of the thm.

Pf: Toke 9/:V=UsexVi on open covering of an open set V in Y. Note
that (fxID(Vieipy = I(JD"(V» LP»-Icf'(v.om N VY. Tt fllows trvially
that CXV B0 = CLUTD) where U= FLvi= Uies f(Vo). The resutt fllads
Jrom the lemma for injectives. o

Cor. (X Ox) ringed Space. % an Ox-mogule. Then
Hauwoaon (X. F) = Hason (X, F) .
as  obelion groups.
Pf: Consder f+ (X.Ox) —> (X, Zx), where f=idx o X. s @ maphism
of ringed spaces. Choose an injective resolution & —>1" in Aded(Ox.
Note that ﬁef/Uod(@x\——*Mthz@b(X) . G ""ﬁf@ & just the ﬁfgetﬁd
Junctor (forgetting its Ok- module Structurey, thus is exact = BFE —FI" is
Q. resolution.
The previous Cor. =>fI' s agydlic for TUX,-). Thus by Lerys anpelicity
lemma.. [(X. 1" ) 5 RIUX, f?) It follows that
HidwoX, F) = H(TIX.1)
= H'(TXHI)
= H(X. ;%) by qis)
= Hewo(X, F. o



é& In gererl JC:X—»Y 0. morphism of ringed spaces, it's not true that
f*( injectives) = injectives.  Moreover, fw on osbitrary morphism of - Schemes , tre
Cor will not be e unless f is mther trvial . for eg. the forgetfil mop
b in the cor. In gereral. Lemuy's spectmal sequence says that

[ -
i
HPOY. RRF) = HP™(X.F)

By the some proof ad in the thm, we have:
“Thm (\ariont ). Let (X, 00 be a riged spaces. F an Ox-matue, & - a
basis of topology on X. Assume that ¥V Ue B, and any open covering U:
U=Uiezli, U aon be refined into V: U= Uieaj st

@. Vi-jpe B, ¥p

. HV, F)=o0. Vi>o
Then H(U.Fy=o0, Vi>o and e B m|

Z‘é\k‘. This doest imply that HXFr=0 for all i>0 unless Xe@.

Application on  schemes
Lemma. X Scheme. F: quas-coherent (Q.C) Sheaf of Ox- modules. Then
ﬁr any Qﬁ?ne open USX and any Stardard open cosering U u=Uj2|Dcﬁ).
we hoe: Vi>o,
MU, %y =o

Pf. Say U=SpeA amd Flu=T. We hae o show that

0 — M — B Mfi, — Mfifi — © Mfififs —
s exoct. It's enugh to shuw that the Sequence. affer lolizing at ol pEA.
pime IS exact. Since Defir's cover U, Some fi, Say fiep. Then rote that



Mfg=Mp and (Mffi-fip =Mf-fidp. We an construct & homotopy
operator  h: @ (Mfi-fiplp — © (Mfimipdp by
m = (NN Yieipet = (M)
Then (e Compute -
(dh+hd YMie-ip = (Athm)Yimip + (M) iip
= 3 Lo M iy + OMY1iaeip
= Sf:,, (-l)jmlgo...’fj---ip + ijo(‘l)jﬂfﬂIio"'E}-"fp'1‘ Mio--ip
= Mio-ip
=> dh+hd=id on the compex and thus it's exact. O

Cor. For ony scheme X, ond onj %: QC. she@ogf Ox- modules, we have:
HYU. Flu) = 0

Jor ony g>0 ond U affie cpen in X. O

Cor. Let X be a scheme, and U X =Uiez Ui ff an open Ooering by offines .
8t each mutti-intersection of Ui's is affine. (tne for eg when X is
Sepertedy. Then v Q.C. sheaf of Ox-modules. we have
Hi(X. F) = H(U. F)
Pf: Pick an injective rescution F — 1" and form the olouble complex
Chu. 1% |

1
CrqL 18 I

—_—
4

Note that fiing p. (CRUIY . dv) is exact ad HCUU T, do) = Tiomip HUiv-ip. I
=0 f i>0 Since Uio-ip 18 aﬁ%e. ond equals  Tlio—ip T Uio-~ip, %) j?)r i=0 Sine
the complex Flutieip — I'luio-iv 1§ 0N injective  resolution.

On the other hand, ﬁxing 0. (CUUIY . dn) is exact exept at p=o. Shee
I* is injectie, and has HACAUIY. dn) = TIX %),



Hone the dowle compex computes both I'(X.1°) and  CUU F). and
ﬁom the 8.8. of the double complex, we hove:
HiUX Ky = HIx, 1 = K (C@. T = HeCHU Fo = FaU, F) O

Altemating Cath cochoins
U: s beﬁ‘le. Cat (U, F) = Tieweis Fllioi) . where we have chosen
o totol orderdng on L.
dott : exactly o bq%ve: v me ChcU, %,
@MYio-ip = ?;(—l)j PMio- -~ ip
We howe: _
CatU. Fy — CMU Fy 22 s, 7o)
M (M= { 0 i come iesie
0% M- 0tip) lf o letie and

Ttioy<= < Ttip)

Foct: Acwaug this is @ Chain homotopy equivalence. (EGA. Cm).

Cor. Let X be a scheme which fos o Covering U: X=Usu~ulin &t. ench
Uie-p is aoffine. Then H(X.Fr=0, Yizn and any Q.C Ox-module.
Pf: Hitx, Fye FEaUL F) = Mo UL Fy. But éfxcﬁu,%=;l_[¢,,3ffucr--cp)=o

ﬁf‘&/ﬂdj p>n. O

_lgpfml opplication Of the Cor: X seperoted ond  X= U0~0lUn. each Ui
offine . For instore, IPR"=Di(Xe) U-- UDk(Xn).

Mayer- Uietaris : - Let (X.Ox) be o ringed space, and X=UUV an open
covering. For any Ox-moolule %, we hwe a (. e. 8.
0 — HAX.F) — HAU.F) 0 HIV.% — Huny. %)
— HX.%P— -
Pf: Choose an injective regolution % —>1". Then:



o — X I —TW.Iel1V.IY —Iuny, I"y —o
e — ~— S~—
This computes  This computes This computes  This computes
H%%) HYFw  HYFNVY  H¥ Fluon)
The complex i8 short exact Since
0 — (uav )1 (Quav) —> () (O B o) (Ov)

ord Hom(- Ty is. ()i is left adjoint to [*y. Here we have the les o

The comect genemlity of this result is:

There is a spectral sauence: MU, HAF)) = HPYUF), where
U: U=ViezUi and HYF is the preshenf on X which assigns U the group
HYU U Flw.

Higher olirect images .

F (X.00—Y.0n, @ maphism of ringed Spaces. Rewal] that for an Ox-
modue F. RFEF EH (KI) whee F— 1" is on injective resolution, and
I i3 o compex of Ox-moolule.

Lemma. RfF is the sheaf asscoated to the presheaf’ V — Hi(V. Flv).
Pf: Hitf oy, Flpan) = Kent Tf . T — D), I/ Inc v, TH— T, I,
=Ker( HIV)— FIv0/ In(HI7v) — KT,

= ( preshesf’ cofomology of the complex Iy (V)
Sheofify it to get HRID. o

Lemma. (Moyer - Viietoris for higher direct images).
F:X—Y as above, X=UUV open covering, % an Ox- madle. Then
there i8 a [.e.s.
0— JC*? —-*(ﬂu)*(%qu)@Cﬂv)*(Wv) ——>(ﬂunv>-x(%|mv)
__,Q'J(;gz_, ......
Pf: The same proof o abwe wsing the previous  lemma. 0



Lemma. Let J: X — be a mophism of sheaves. Assume f is quasi-
compact and  quasi- Sepenated , then:

(. For oy Qloh Ox-module F, the sheawes RSF are Qloh Ox-
moclule.

by, I Y is quasi-compact. Then 3 NeN st VizN, RfEF =0,V
QGh Ox- module %

Pf: . The question is o, this we may assume Y is affine.
Stepr: X i aoffre. We daim that, in this e, RF:F =0, i>o. Nomely.
v tondord opens. DS Y, we have
Hi(fDigy . F> = HI(Difgn, Fy =0 , v i>0.
Shesfification = it's o.

Stp 2. X seperatedt ond g.o. Set o2 smallest integer n st we @
cover X by n open affnes, which is finite. (Write X=UUV with \V affine
ond N sn-i. The relative MV gives -

o — fx% —-»fﬂu)*(g:lu)ﬂafflv)*(%"v) — Cﬂunv)*(%'[unv)
—491)%% —A(quu)*(mu)@ CR‘ﬂvM%lv) —"(Q'Jclu.nv)*(glunv)
;sz*g

QCoh by ingluction hypothen's  @.Coh. by induiction hypothens
= RHF s QGh
Step 3. X is quasi- Seperated and g.c. Induct on n(Xy: X=Uu-uUn.
Let W= hu-=UUn-, V'=Un
o — f;% — lﬂu')* (%lw@fflv')*l%,v') — Cf ’u.hv')*(?:[u'm/)
—*Qi)gx% —( R‘ﬂu’)*( Fu® fR‘ﬂV'\-X (Fl) — (Q’ﬂ )% CF v
__,sz*g__, ......
QCoh by incluction hypothexs  Q.Coh. by step 2 Since
wnv' i8 contoined in on
affine open ond thus Sepemtedl.
b. The came prof as agbowe on the number of open affine covers of Y. O
Rk: The corert proof uses Spectral Sequence.



810. Theorem of (Coherence
Cohomology of IP&.
R: ony rig, n21. U: Pr = UZeDr(Xi), the stardard affire cver of [Pk,
F=Oracdy. e will calodote HPE Fr= MU Fy . Here Uio--ip = De(Xio = Xip)
ond Cat(U. F:
0 —> Dinzo RCXo, X, Xiv1d — =+ —> Bicmcip REXor X, (K~ Xip) ™ Td— -
— RIXo ™ Xn, (Xo=-Xn)"Jd — O

From the previous section. we know that:
Lemma. For any Qloh sheaf Ox- modules F on IPr. we have:
@. HiPY Fy = B, F) = Har(U Foy.

by. HiUPR. F)=0, Vv j>n. o
Thm. We howe:

. RCXo,~ Xn 1d j=0
HI(IPz, Oy = 0 o<j<n

(Q[Xo."'. Xn, (X0 Xny'] /(-}:——o RI X%, Xn, (Yo~ ﬁj"'Xn\_‘] ))d j=n
Pf: (e use the alterrating Ceoh complex obove. For ony e=(e.~eneZ™,
wth 2@i=d, get:
NEGey= {o0si<n| ei<o}
POScey = {0.--, nt\ NEG (&)
Then we hae a Subcomplex qf éalt(‘u,@(dn:
C(e>= 0 — Oneaerciiof RXE — ®neae e finit RXE—

and  Cat = @eczm G, Ceer looks Like, 8oy NEG©@)={jo< i< <o}

Cey: 0 —» - —»0— RX®-2s @ieposerRxE 2> @ ijeposer Rxe 2
deg p oeg pri deg p+2
- 9, Rxe 0
deg n

with differentiol 3 induced J‘?um the Cat 08 a subcomplex. Deﬁne Mt be



the degee pri part of Cer: M2 BieposmRXe, A bogis of M is guen
by bi=X in the summand comespondling to 1€ POSte). Dencte MoeM
Mo£ 8X®, where X° is the geremtor in deg p.
Cloim: If NEGey#¢ and POS@ + 6, then Ceer is isomorphic To
the Koszul complex:
0—R—M >/\2M—»..-_+/\#p°s‘e’M—+o
with  oifferentiol AM =AMt Miae A — MoAM A=A,

E'S‘ Nn=20, NEGce>={o,---.é\,---,ﬁa,---zok, POSee)y =15, I0}.
0 —Rx® & Ry Rxe 2 Rxe — 0
— —_— e

Summoand index: (0~ 820y (0 6~20) (0~~20) (020
v w

n

o

The differentials ose -
(B%)o-8-2 = 1) g0 B0
Q%) o- -2 = (-1 0--8-R~
(0No-20 =(- 1’ 0820 + 1Y°L 0 020
Thus the complex 1S isomorphic o :
0 — R Ehper Wr_ o
which is the Koszul complex.

Gereml Foct: M: free R-module, moe M. port of a bosis of M. Then

0 —> R 4™ (g A papg A, . Alle, pikyg
s on ocydic complex of R-modules.

Hence 'f both NEGey#¢ and POSwey+®, the complex Cees contributes
nothing to - cohomology.
If NEG @)=, POSer={o.-.nj, this gives
Cey: 0 —> BicRXE — Bincis RXE —> -
contributing Rx¢ to HPR, Ocdh.



If POStey=9¢. NEG@ =10}, this gues
0 —Rx® —0
contributing RX® to H"(Pe, Ord, 0

Cor. HIUPR, Oy is a fim’fe ﬁ\ee R-module O

Our goal 18 to prove that

If S s a looally Neetheron scheme ard f: X —8 8 a proper
morphism . F: @ coherent Ox-modle. Then R'KF are ol conerent. Tn
porticulor, this 8oys that if X is a proper variety/k and Fe Goh(x). then
Olime H'(X, Fy< 00, Vi

Dgf-. Let S be a lomlly Neetherion scheme. A Q.Goh Ox-mooule F
i colled coherent iff v affine open U= SpaeRS S, Flu=M wth
M o finite R -moolule.

Focts about coherent  Sheowes:

. Tt's enough to check the conditions in the def just or on affine
open cover of S

@. Kemels and Cokemel q" mops Qf corerent Os -moodules  are conerent.

@ Inoa ses 0o— % —F —%F —o, if two axt of three are
coherent, 0 is the third,

Lemma. Let R be a rig, n21, & Q.Gh on PR. Then %% is a Quotient
of @uea 0oy for some index set A ardl integers ce 2, v aEA.

Pf. F = M for some greded  S=RCXo, Xn1- module. Pick & Swijection
Baer St —> M with Stday the shifted grated S-module. Applying
the ~ functor gives ®aea Occy —» F. 0



Lemma: Let R be a Noetheron ring, n21 ond % a coherent shesf
on Pr. Then 3t>0, di.~ dt€ Z with a Swection:

@'t‘r;l @(di) —» OJ‘
Pf: This follows from the previous lemma and the next O

Lemmo. S+ Noetherian scheme , % : coherent Os-module and A any set
ord GGa: QGoh Os-module. with

BacA Ga — F
Then IA'CA Sinite subset st

Baca Ga — F O

Cor. R: Noetherion, n21, %: ooherent on PR, Then vi, Hi(IPR. %)
S Q ﬁm‘i‘e R - module.
Pf: Induction bockwords. (e know that HIX.Fi=o ﬁr i>n.
Suppwe the result true j&w ony coherent Sheof ﬁr (> k1. Then ﬁr ony
% coherent, pick o surfection: SOy —» F. Then we hae & ses:
0 — K — &L Oy — F —o0
ard K s ooherent as well. By the [.es.
o — HYIPR, &t Ocdin — HY (PR, Fy — H"'(PR, 4) —> -
R TR TR R
finite’ R-mod finite R-mod

= HYPR,F) is & finte R-modle. 0

Lemma. Let f: X—Y be an gffine mophism of schemes ie. v Ve 'Y
offine open in Y, fvy is affine in X. ceg. vector bunolles over Y /
cloged  immersions / finite morphisms ). Then, for any Q. Coh. Ox-modlule F -
@. RxF=0,vae>0

tby. HP(X.F) =H(Y, 5%

Pf: @ follows from the fact thar R*AF is the sheaf dssociated to the
presheaf  V +— H(UW), Flpew), which 8 o Jor ary offine open v



since Q. Coh. sheowes on offines have uanishing higher Cohomology,
. fo(louos fmm @ and the ﬁllowing lemma. O

Lemma. JC:X—>Y: 0. morphism ?f ringedl gpaces. % : on Ox-module |
with RAF =0, va>o0, then:

HP(X,F) = HPOY. $F)
Pf: Pick an injective resolution % —1". By assumption, ﬁ?:o: — fI°
s a gis. By previous resuits, each term in HI"is I(Y.-) - agyelic. By
Leray's ocyelicity lemma. we con comute cohomology of % by the
complex FxI'. snce I(Y. HI' 18 gis o RILY. 5%, =

Rmk: The comect proof’ uses Lemy's spectmal sequence.

E.g, Let C: FIXY.2)=0 SIP:, where FIXY.2) is homogeneous of degree d.
(d>0). (What's H(C Oc)?
By previous lemmas, H(C, Oc) = H(IP:, ixOe), where C is an effective
Cortier divisor => Te is an incertible Sheof
Clam:  Ops L Or(0) = Homow( Te. Or)
N
Oricd
o 8 on isomorphism of i - modules
Thus Te= Orit-dy and we hawe o ses. of  shenies:
0 — Orit-dy — Opz — Oc — 0
= 0O— O — R — HAC.Oc)
— 0 — o — H(C. Oc)
— H(IP., ORe-dy — 0 — HY(C. Oc)
— 0
By our previous coloulation, dimH(Ps, Opi-th) = $td-ne-2. It Jollows
that  dimH(C.Oc)=1 and  dimH'(C. Oc) =5 (d-ned-2.



As @ Corollory, we see that if Cod G are to such curwes howing
dég"&’.s d:idz, Then CIQ-L'C:. unless bUth dl,dze'{l-2}.

Dej. A morphism f: X— 8 is mlled locolly projectie iff vseS, 3Vas
open neighbov%ood st Jc‘j"w JWV — vV s H- projective. i.e.
X 2§ —— PV ¢ closed immensiony

AN

V

Lemma. Let f X — SpeR  be quasi-compact and  quasi- Seperated , and %
Q. Gh on X, Then:

(. HIX,F) = T(SpeR, RF)

(i Qiﬁe?:= HUX. %)™

Pf: From a previous thm we know that Rﬁ? is O.-Gh o SpeeR. Thus
Gy=>(iiy. For (), note that Since Qjc*% s QGh on SpeeR, and by
offreness, e have HiSperR, REF)=0. vj>0. Thus (v follaxs from:

Lemma.. f X— mophism of ninged Spaces. F: an Ox- module st
HICY. REFy =0 J%r ah j>0 ond ok (. Then:
H'(X, F) = HUY, REF
Pf: (This fo/lows dlirectly fmm Lemy's epectml sequence
HPLY, RAF) = HPUX.F) . )
Pick on injective resolutin F — 1" on X. Then since 1" is injective, we
brow that  $I" hos HU(Y.HIM =0 for ol j>0. Split the complex fl'
into Short exact  Sequences:
0—HI° — Al = AP — K — -
NN 7N 2N
Bcz fcZ Bc? B -
we hove:



y 0 —FKF —HI°— B —o0
y 0— & — Z —»Pﬁ?—*o
» 0— 2 —HI' — B —o0
H 00— B — 2’—>Qi—f¥%—+o

Then n= &' 8 agelic. =>2' is aoyclic . 3»=> B> is agyplic -
= oll &', 2" are ogylic. Now taking global sections  giues :
o — I'(Y, #F) — TY, {1 — T, 8)
rocE mr
o — I, 8) —TIY.2) — TR —o0
o— Y. 2 —TIIX. 1IN —TIY. gy—o
o—TUY. 8y —I112) —T(Y.RHD —o

which ges the [ e.s. o

J

o — TIX. %) — XTI —TI1Y. BY

0 — ['(Y. 2" =TIXIY = TI1Y. B)y—o0

| T

['(Y.REP 0 — T2 — X, IY -

] l
0 C(Y.REP
l
0
= Hi(X.F) = kerd'/Ind™ = T1Y,Z)/T(Y. B') = (Y. REF). O

Thm. S Neetheran, X — S locally progetive , F coherent on X Then
F ooherent => R'RF is coherent,
P The problem is looal on S. Thus we may assume that S=SpecR, with



R Noetherion ond :
X <t IPr : closed immersion

N,/

pecR

Step 2. RUxF =0 va>o, sine ( s affre. Hene
HeX . F) = HUIRR, xFy,
by o previous [emma.

Step3. @nbfning the previous lemma. that R & = HYX.F)", with the
finiteness of cohomology of Coherent sheaves on PR, we howe :

RYF = HAX. T = HY(P2, )™
we obtain the desired result O

Now o reach owr goal :
f:X— 8 prper, S Noetherinn, € GohiX)
= RY%HF € CohiX),
We need to use Chowrs lemma: 3 surective, birational ., proper morphism Tt:
X =
|
S
We need to wnderstand how Cohomology chonges under Tt. Let:
) S: Neetterion, : X — S be proper
*%): FelhX) = Rgﬁe% e (oh8) ., v 4.

H-proj.

Lemma. In Situation &0, suppose Gie Goh(X) and
0 — ‘% — % — Fs —0
s s.e.. If txy holds for oy 2 out of 3. then it hods for the third



Pf: (e know that each RMGF: is QGh. By the Les.
- — RRF —R%F — RYFs —
the resut follows. o

Notation. In Stuation (%), set (oh(X) the aateqory of coherent: Ox- modules
on X . which i an abelion category.

Let Cr2{FeGhxlox is tue }. We shald show that CF = Coh(X),

Lemma. Let C< Goh(X) be @ subclass of objects st
@. In oy ses. of (hiX), 2 oxt of 3 isinC = g0 is the 3.
.V o= FeGh(X), Ia: F —F , with F'eC ., and
Supptkerst) U SUpp(Cokers) & SUpp%

Then C = Goh(X).
PJC: 85 Noetherion induction. Recall that Supp. Qf 6. Coherertt Shea}f 8 ahonys
closed . Congider T={2cX|Z2=Sup® F&Ct. We need to show that &
is empty. Otherwise. we an take Z €T minimod. Write Z= Sp¥  with
F&Ch(X). Apply cby. 3 o F'—F with the condition on Supports. By
minimadity gf Z. kera and Cokero € C. Then

0 — kersl — F' — iMxx —0 & ImueC

0 — ims —F —len—0 = e,

Contregliction. O

A variont of the lemma:

Lemma’ : The same cordition os befire . woith by reploced by

By For any FeGoh(X). with syp% imeducible with generic point 8, and

Ty = kg as Oxy-modules, there exists an F'eC with ' %, ond
Supp(Kkeray U Suppc Cokeroty & SUpp %

Then the same condition holds as in the previous lemma.



Before poving this. we need a few lemmas.

Lemma. X: Noetherian scheme, FeCoh(X). USX open od GS Flu is
Q. quosi- coherent Subsheaf  ccoherent theny. Then 3 coherent subsheaf %'
of % st Flu=G as subshewes of Flu.

PFe jpUs—=X is e omd g8 = jxG is Q.Gh on X ond i8 a
subsheaf of FFu = bR e howe:

F oo F
L]
fa = pjF

Thus Taldng the J(fber poduct ¢ F'=kert F @ j«G — Js]*%)) in the (abelion)
cotegory QGh(x), &' is then & Q.Gh subsheaf of % (thus coherent )
and ¢ = G. O

Rmk: This resut geremiizes to X quosi-compoct and quos-sepenated | then we
con obtoin F' Q.Goh subsheaf of %

Recall the resutt from algebra
R: Neetherion, M: fiite R-module. Then there exists a filtration:
0& Me&E M& - & Mn=M
gt Mi/Min =RIpi for some prime .
We shall globalize this result to Noetherion schemes.

Def. Let Z be an integed Scheme with gerenc point 8¢ 2, and F be a
Q. Coh Oz - moolule .
m. 4 i torsion fnee on Z iff °F comesponds to a torgion fnee Moglule

on eveny affine open of Z.
@. ronkF = OUMX(;, %1 (recold thot @2.3=K(§) ).



Lemma. X: Noetherion scheme. % Coherert on X. 4e Sup% is o Qereric
pont (of an imed. comporent of supp%). Then I 4 ses.

00— % —%F — %, —o0
st Fyzo. %= Fy ond supFa =13y,
Pf. Let Z=131. TzS O« (with the reduced induced structwe). Set e TR F.
Since €2 is a gereric point. and Z is an ireducible comporent of Supp% |,
% s of ﬁm‘te length over Oxs. and Ts=ms <= Oxs = IW'Fi=o0 ﬁr N> Q.
Set %= Gn ond Fa=F/Gn. Then INFa=0 = va& 2, (TN Fala= Fox = O,
Thus Supp® =18t ad Fa=o

Lemma. X: Noetherion scheme , %€ Goh(X). Then there exists o filtration:
OGS F &G~ CSPn&F

st i/ Fn =(Zies XL, where Zi i integral . dosed and L

o ooherent rank 1 Oz - module. Furthermore, 4.i an be taken to be

torsion free Og; - module,

Question: Con we moke i bocally free? For quasi-projective it's true. In

Qenerad . not Rnown.

Pf: By Noetherion induction. Set T={Zcx| closed subset st IF with

supp% =2 st the lemma is false ﬁr %Y. If T+ pick Z mnimal Such,

with Supp®=2Z. Z mnimal = Z must be imeducible. Othenvise pick £ the

genesic point of on imed, comporent. By the previous lemma, 3 %, % with

strictly smaller support, then %,. F. hove the required Sfiltmatins => 8o does

% . contraoliction,

Pick U X affine open st ZnU*$. By owr algebmic lemma qusted
obove, 3 fltration: 0€ G € Ga S~ € Gr= Flu, with Gi/Gi& O For
TSU integat closed. By a previous lemma. 3 fittration:

ockckrc-cH=F
with Flu=Gi. Ths susz%IT,-/%—.mu='ﬁ=4§}. Apply the previous lemma



to the shewes i/ Fi-i and the point &, we obtain:

0 — Ki — /% — Qi —o0
with SuppQi = Zi =184 ol Kigi=0, Qisi = (F/Fi-dg:. Now.'f 3-3 we
leove Qi unchanged. and Ki then has sTn‘c'dg smolfer Support, By ingluction,
Ki hos o required filtation and we moy -toke the preimage of this fltmtion
in % to obtnin a filtmtion between Fi omd %i with required Condlition .
If &+3. both K and Qi have Strictly Smaller Support and  agoin we oy
enlprge the filtnation between %+ ond %Fi. Furthermore, Jor this enlanged
Filttration. we may further modfy it o that Fi/ % is on Oz - torsim Free
moole. (for instonce toke the preimage of Iz (F/Fiy). Now we obtain o
filtration of % with the required conditions, controdiction to owr Choice of
Z. O

Now we @n prove the vanont lemmo.
Lemmo:  Let C be a subcass of Goh(X) st
@.In aw ses. of C. 2 at of 3 arein C = 80 is the 3.
(. For ony Fe GhiX) with F=(Z2—X)«L , with 4 a rnk | (torsion free)
Oz-module, It F— %' st FeC ond
Supptkeraly U SUpp(Cokeray & Z

Then C = Goh(X).
Pf: By Neetherian induction.
Filter % € (oh(X) :

0GR CFas~ G%Pn=F
with each il Fos = (Zies X0xdi for some rank | (torsion free sheaf of
Oz - module. By b, I FeC with F = F' ond

Supptkensy U Suppcookeray & Z
This by induction, kerx. Cokercie C. Then cokera € C. Fe C with ) =
Flers € C. With keraeC and @ ogoin, FeC. O



To reach our goal, we need to Show that:
S: Noetherian offine, f: X — S proper. Let
Cr 2 {Fe Chix)| R Fe Gh(S), va |
Then Cp=Coh(X). By a previous lemma, we hwe *2 out of 3" rule applies
o Cf. Thus it suffices to check condition by of lemma’, i.e.
Given ‘
Z < X

aqz\ /;f
S

where Z i integel closed substheme of X amd F=ixL , o 2 eCh@),
of ronk 1. Then wemnfnal o F—F' st
0. F hos R¥GFeGhS) for all g
‘*’{ Suppkerst U Suposkers & Z
Apply Chors lemma to 2— S, we get a diogram:

,Ps @Z’

NS

where  TU is proper birational (H—pngectum, and ' i8S a Cosed immersion
¢f is H-projectiver. Set 2'=m*L . and Ozay=*Oma , the very ample
iuertible sheaf’ on Z'.

Claim: For Some d»o. we hae:
@. RimxL'dy =0 vaz
by, 3 B: L' — L, which is an isomophism at the generc point of 2
(This is only done when S is affine).

The %> condlition follaes fom this cloim . Trdeed . set F'= inTocLcdh)
we hawe :

F=isd — L = ix T **B el 2F




Conclusion 0. 2> ﬁt&m becouse T s birationel ard B is an iSemorphism .
To shaw 6. h., we need to use the following result:
o R¥x=0 vg>1 (Sne ( is a Cosed immenion ) =>
Rt isTintLcdlyyy = Rfol)x (i Llechny
i I
' flz
* By @. aboe = RPcfladx (medlidry = R (Lo,
(These followo in genen from spectrol sequences, by in our core it's proved
in the lemma below).
Thus V2. RYeF'= R:Flad (v (Ll = REf 5 (i) , wohich is cohenent
since f’ S projective  ana L'y s coherent. O

Lemma. XLy z Morphism (ﬂc ringed - Spaces. %: on Ox- moolule
Suppose RIZ=0. v@2. Then:
RPGu (hF) =R (gefrnt P
Pf: Toke an injective reslution F—1I" in Alod(Ox). Then
o =R'AF = hi(RI) = HI' s a resltin of AF
More over. Sie RAHI" is the gheof assooted with the presheqf
Vi— Higlw, =0
Pl e Gu-aoyolic. By Lemys agyelioty lemma, we an comute R (%
o hPCGHT) = MPegefuI’y = RPcgefin (B, O

Claims @ and c¢by Folkow fmm;
Lemma. Given

Xe—t, P2
N/
S
where @ is a Closed immenion and S is noetherion. Set (Oxty = i* Oryeny.

For ony %e Gohx), Id&Fy »o st Rgﬁf%’cd))zo, vax  d=diF. @C
S s affine, then for all drdFr, the sheaf Fudb is genemted by



global - sections,
Rmk: The claims ﬁaow since gf

lP%«LZ'L»/z
\ S
with 2 projgctive over S and taking the base chage we get

2 — s PlxgZ =P}
f\ /:
Z

where ' is 0. closed immession since ' is proper and T i seperated. Then
§is H-prjective ond Oz = *Opyny.

=.g. The second condusion fals when S is net affine, in which case Oxo
s only re(aﬁ‘ue@ omple. For instance, S=Pr X= PaxIP2 woith  the identity:
X = Pax Py 4, PrxIP = IPp,

\\f \PL/

Tt's knoon that Pietxyz ZxZ . Pich F=Oxt-2.00= f*Op 2. Then the relative
omple - Sheaf Oxtn'= Ox o, 1y, Thus Fedy = Oxc2.d>. Hence.
RH'(X, Fady) = H'(PxIP? T*Op-2y@ T Opdhy)
= H'(IP, Op-2) @ H(IP Oped) & HYUP', Op-2»@ H (P Opcdhy)
= R®RIXY2Dh ® O
0 ,Vd>o.

P{ of lemma.

It reduces ensily to the cose when 8 s offine . Since (s o Closed
immersion, R%x(F> =0, W22 Fe Ghox). Since ixFe Gh(IPE), e may wel
ossume that X=IPg.

I\f F = @i Ocdliy , then the result is OK whenever o> - min{dit | bg



our expliit coloulation for 1P8 cose. In general. we know that F may be
written 0S8 o Quotient:
0— G — ®L:0wiy —F — o0
Thus taking d > -minddi , Fud> is globally generdted. e prove by dimension
shifting doomoards that H(IPE. %y =0, v i>0. i=nt follows Since PR can
by covered by i open affines. Note that Gge CohtIPe) as well. By
induction, for d>>0. and Rz,
o — H (@ Odtdiny — H* (Fedry — H*' (G —> -
lc|) g inoluction
= HXF) = 0. O

A portial converse to this lemma is proved in the next sectin.

Prop.  S=SpecR  R: Noetherian, f X—S proper. L : on inwertible

Sheaf on X. Suppse V@ coherent, 3 diFye 2 st Vd=d%,
H'(X, &, 2% =0

Then there exists teN st.

Xty P3
S
where | is 0. closed immension and 2.5 = *Omgo.

Rmk: Cf Hartshome. Prop 15.3. The some setting os obove . Then Z: ample
m XS VFeGhix) Fo2® s gLobauﬁ generated fc}r al d>di%.



811, Ample Invertible Sheoves
Def (EGA). 1. L: an invertible sheaf on X is colled ample iff

@. X B quasi-Compoct
(y. v xeX, 3se (X, 1), n21 st

b, : Xs={'xeXl 8§ gererates dx 08 an Oxx-module}
(b2: Xe 18 affine

@.f: X—8 is called projective iff there exists
X e——IP(E)

\./

S
where € I8 @ quosi- coherent Os-mostule of  finite type . ond
IX(EY=Proj (Syn°E).
Locablg on S, E’SpecQ =M" ﬁr Some ﬁ?ute type R -module , then
IPCE)|specr = Proj ( Symatmy).

.4 /s re(aﬂue(,g ample on XIS :ﬁf jr;r any VE S open qﬁﬁ'ne, we  howe
Llgwvy is ample on V).

@. L s relotiely very ample on X/S ff 3 an immenion -
X «——— (&)

S
st Z=*Oretr for some E quosi-cherent of finite type.

®. £+ X—S is quasi-projectice iff f 8 of fnite type ad I an f
relatively ample invertible  Ox- moclule

Hortshome has  different * olefinitions



Def. (Hortshome) Z: invertible sheaf o X . Noethenian,
. 4 is (H) ample iff v coherent F on X . IF) st @0 1 is
globally gereroted , v d > dot%).
. f: X —8 is (H-) pojective i there is a closed immersion
X < Ps

\ /
S
@. f:X —8 is qus-poectie ff { factors as
X S X' 2% S

Lemma. S=SpecR , R: Noetheron. f: X —S proper. £+ an invertible
sheaf on X. Suppse v F coherent, 3 diFse Z st Vozd%,

H'(X, F&,2% =0
Then 1 is H-ample.

éﬁ The converse is ot e
Eq Omevior s H-omple, but  HI(Awob, 0 #0,

Pf of lemma.

Pick xe X o closed point. Then we howe:
0 — Tx — Ox — (k) XX —0

Twisting by 2%, e get:

O—>f[u®£,®d—>ﬁ®d—>£®d®)«oo—>o,
ard  T(X. %@ koY= xexy not canonioallys. Thus by assumption, we moy
picR Sie T(X, .29 for ol iediTa, -, 20T0-1 with Sixy+0. Then set U=
Mo Xsi. Then we see tht ¥weUx. and v dsdeTo, 3 selUX, 24, st
Sexy#0. Indeed, we may just fake S= S Sd-m, where m= LG —11.
Then gince X s quasi- compact, X=Ux U~UUxe for some .~ xt closed.

Set 0olOx) = moxiz~+ 10T}, Then this shows that v d=oiOx), 429 is




globally - generateol.
For a general coherent sheaf . we can do the same argument for the ses.

O—'Zx%_’%—’g"QE}xK{'X)ﬂO O

Lemma. X: Noetherion. ZL: H-ample. then <4 is ample (EGA) .

(This works in both dlirection).

Pf: Pk xeX and USX offine open nhd of . Let I= the ideol sheaf
of X\U in X, which is coherent since X is Noetherian. By assumption,
Jd>»0 ond Se X, T®£%% with sx+=0. Then Xs S U by Construction,
ond its epsy to Show that Xs is offine. (Or we coud hove assumed
that LluzOu. so that Xs =Dy where s feTlUOW. ). O

Lemma. If X is Noetherion and £ is ample, then
X ey P(IH(X,2))
where TH(X.2.)= @dzo [(X. 2.5%)
Rf: vse TUX.2.%%), Dug) = Spec (Th(X. L) € P(L(X.2). We then wish
to have:
X —— PZ(X 1))

Xs & Dus
Pick on & st Xs is affne ond by assumptin. these Xs's cver X. By
oonstruction, Ok(Xs) = Ta(X. L)y, Then just toke Ys: Xs — Dxs) to ogree
with this identifiation. O

Combing these lemmas, we obtpin:

Prop. X: proper over SpecA, with A Noetherion. Z.: invertible sheaf on X st
Jor oll coherent F on X, I st. vd2dFr, we have H(X.Fel =0 .
Then X2 Prj(Ta(X.2y). (For ds>o. 44 = ¢*Ouh).



Pf: Bﬂ lemma 3, b i on open immersion. Since T is Seperated. imy is

X = Proj(Th(x.L)

e N,/
Spec(A)

Closed.  Thus ProjtT2(X. 2y =gy Y. Then Y=¢. Othenoise. Dusicy
Jor some 8 => Xe =¢. = S 8 nipotent - S¥=o0. Then

Dr(8)y = DeiSNy= ¢
Controgliction. O

Rik: (e know that each HUX.2%) is a fiute A-module. But more
importontly, the whole ring Tx(X.Ly is o fitely generated A- algebra.
This doesnt Jollows dlirectly from the first resutt. For instance. the
plgebro. CCx.y1 s finitely generated in each degree yet the subring
Crx. Xy, x4, xy.~1 s not finitely gerecated.

Up to now. we have shawn that : f:X—>S=SpecF2 : proper ard R
Noetherion. £ an invertible Sheaf on X s.tﬁr every  coherent Seof F
on X, we howe statements:

ty. H'U(X F®1™ =0, Vn>»o.

iy, FOL" i3 globally gererated for n>>0. (ampleness in Hartshome)

Gy, VxeX, 3seTTX L"), n21 8t xeXs and Xe is affine (ampleness

in EGA),
Then Wy => (i =>(ii). (Aamuﬂ in this case (in=>(y as well but this
requires Some uwork).  Moreover X = Proj (Th(X L3y

Pmp. Under the assumption f X — S=SpecR : proper ard R Noethenion
ond ony of v, dn, din, TaX Ly is a ﬁufe@ Qenemwd R- algebrn

Rmk: I} X is a quasi- compact scheme with L invertible on X satigfying



(iiiy obove. Then:

@. XS Proj(Ta(X.L) is an cpen immenion

by, This is what EGA mlls an ample invertible sheaf
In this (ase, Thex.2) need not be finitely generated.

=g ki a feld. X=Poj(RCUv, 2.2:,25,1/1) , where degu=degv =1 and
degZi=i. I=(Z-U*). Then it can be shouan that

(. X=DHW) U D+(V)

. Oxcy is on invertible Sheaf on X omd @x(n)’:‘@xcnm;

3. (X, Oxm) = (RCUV, 213/1)n « degree n part. (This needs Some
Caloulation ), and thus 18 finite dimensional.

However, A is not ﬁmt@(ﬁ gererated  ( X — Speck 18 not proper;
it's not finite type.

Procf’ of prop.

As o fint Step, we shal ty to find a Closed immensin: X «—— IPS.
To do this, choose &€ IX.4%)  i=o0,-n st X=UDoXs. This an be
done sSince X /8 Q.c.. Next gne X/S is ﬁme type. Ai= RTG.~ i1/ 1.
Recold that Ai= Ox(X) =T%(X.L)en. Choose Sje (X, 1.9%) sz SH o
extends to be the global section Sij . for jei—ni. Let N=lem.cdi ejdiy,
and Consider @2 @yn: X — PR defined by the ections (8o, .. gNldn
SrJ-S,-ﬁsL'e'J',---), and m=n+Z2.Ni. Since Xsi= X' j=0,-.n cover X
the map i8 G morphism.

Claim: @ is a closed immersion.

Since X/S is poper . QX) is closed. Furthermore, let IPg=Prj¢RCT:, Tj1).
ond note that Cp"(DHI;)):XSi iz0,-n Cover X. On the ring level,
QE:-TE‘::——[T-—'\'O -—-I-{-J;] — Ox(Xoo)
TwJ/ Tio ¥ (Sl‘o‘j'Si;%_e""j)/SE’ = S,‘,ﬂ' /88 = O
s surective. Hence ¢ is Closed in the open Ui, Du(Tiy. So it's



an mmersion.

o Conclusion: there is o closed immesion St *Opacy = 4N fm‘ Some
N>0.

Now, ITH(X Z1)= Bnseo(Tul X, LM
= @nzo ( BhooI7(X, L.5M™)
= @nao( ORoo TIPR, 2"
= @nzo( Onoo I'(PR , ix (4"® *Orgm))
= @n2o ( Oz I(IPT (v y® Opgem)  ( projection Formula)
= @2 (P(Iprz Ix(Dn=L™) ® Opiny))
Let F= ix(@h=L™). Then this is a coherert sheof on IPR. Then
TAX 2y = T%UPR, ).
We cloim that T%(PR.F) is a finite R[To,~, Tml-module. Then it follas
that I%(X.2) is o fintely generared R-algebra O

Lemma. For any  coherent sheaf % on IPR. with R Noetheman . Then
vkeZ, the module ©nze (PR, Fom is @ finite RLTo, -, Tnd- module.
Pf: Choose a Suiection: @: L Oty —%F. Then for k>>o. the
higher - cohomologies Qf kerpcny vanish  ond

@nsk PR, @iz Ocdirm) — Dnapl (IPR. Fom)
Snce ench individual T'(IPR. Fm) is finitely generated, we moy fgnore the

storting terms. The lemma. follows from owr previous computation  of Oprcd,
O



