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1. Theorem of this lecture

Let k be a field. Let X be a proper scheme over k. We say a pair (ωX , t) is a
dualizing sheaf or dualizing module for X if ωX is a coherent OX -module and

t : HdimX(X,ωX) −→ k

is a k-linear map such that the pair (ωX , k) represents the functor

Coh(OX) −→ Vectk, F 7−→ Homk(HdimX(X,F), k)

on the category of coherent OX -modules. Explicitly this says that for any coherent
OX -module F the map

HomX(F , ωX)×HdimX(X,F) −→ k, (ϕ, ξ) 7−→ t(ϕ(ξ))

is a perfect pairing of finite dimensional k-vector spaces. The notation makes
sense: since ϕ : F → ωX is a map of OX -modules, we obtain an induced map
ϕ : Hn(X,F) → Hn(X,ωX) and we can apply this to the cohomology classe ξ
whereupon we can use t to get an element of k.

Theorem 1.1. If X is projective over k then there exists a dualizing sheaf. In fact,
for any closed immersion i : X → P = Pn

k there is an isomorphism

i∗ωX = Extn−dimX
OP

(i∗OX , ωP )

In this lecture we will try to indicate the proof of this theorem and compute what
happens in a special case.

2. Preliminaries on Ext

Let (X,OX) be a ringed space. Let F be an OX -module. Recall that ExtpOX
(F ,−)

are the right derived functors of the sheaf-hom functor HomOX
(F ,−). Similarly,

ExtpX(F ,−) are the right derived functors of the functor HomX(F ,−) of global
homomorphisms of OX -modules.

Remark 2.1. On any ringed space (X,OX) the formation of ExtpOX
(F ,G) commutes

with restriction to opens. This is clear from the fact that an injective resolution of
G restricts to an injective resolution of G on any open and that the formation of
Hom commutes with restriction to opens.
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Remark 2.2. For any short exact sequence 0→ G1 → G2 → G3 → 0 of OX -modules
we obtain a long exact sequence

0→ Hom(F ,G1)→ Hom(F ,G2)→ Hom(F ,G3)→ Ext1(F ,G1)→ Ext1(F ,G2)→ . . .

(we are dropping the subscript OX here in order to fit this onto one line in the
pdf). This is a general fact about derived functors. For any short exact sequence
0 → F1 → F2 → F3 → 0 of OX -modules and an OX -module G we obtain a long
exact sequence

0→ Hom(F3,G)→ Hom(F2,G)→ Hom(F1,G)→ Ext1(F3,G)→ Ext1(F2,G)→ . . .

This follows by choosing an injective resolution of G and arguing exactly as in the
case of modules over rings.

Remark 2.3. For any short exact sequence 0→ G1 → G2 → G3 → 0 of OX -modules
we obtain a long exact sequence

0→ Hom(F ,G1)→ Hom(F ,G2)→ Hom(F ,G3)→ Ext1(F ,G1)→ Ext1(F ,G2)→ . . .

(we are dropping the subscript X here in order to fit this onto one line in the
pdf). This is a general fact about derived functors. For any short exact sequence
0 → F1 → F2 → F3 → 0 of OX -modules and an OX -module G we obtain a long
exact sequence

0→ Hom(F3,G)→ Hom(F2,G)→ Hom(F1,G)→ Ext1(F3,G)→ Ext1(F2,G)→ . . .

This follows by choosing an injective resolution of G and arguing exactly as in the
case of modules over rings.

Lemma 2.4. Let (X,OX) be a ringed space. For any finite locally free module F
we have ExtpOX

(F ,G) = 0 for p > 0 and any OX-module G.

Proof. We may work locally on X. Hence we may assume F = O⊕nX . To see the
claim is true, we observe that

HomOX
(O⊕nX ,H) = HomOX

(OX ,H)⊕n = H⊕n

is an exact functor in the OX -module H and hence has vanishing higher derived
functors. �

Let (X,OX) be a ringed space. Let F be a finite locally free module. We set

F∨ = HomOX
(F ,OX)

and we call it the dual finite locally free module. For anyOX -module G the canonical
evaluation map

F∨ ⊗OX
G −→ HomOX

(F ,G)

is an isomorphism of OX -modules.

Lemma 2.5. Let (X,OX) be a ringed space. For any finite locally free module
F we have ExtpX(F ,G) = Hp(X,F∨ ⊗OX

G) for any OX-module G. Here F∨ =
HomOX

(F ,OX) is the dual finite locally free module.

Proof. Discussed in a previous lecture. Hint: the functor HomX(F ,−) is equal to
the functor H0(X,F∨⊗OX

−) by the discussion above and then take higher derived
functors on both sides. �

Lemma 2.6. Let X be a Noetherian scheme. Let F be a coherent OX-module and
let G be a quasi-coherent OX-module. Then
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(1) the sheaves ExtpOX
(F ,G) are quasi-coherent,

(2) if G is coherent as well, then ExtpOX
(F ,G) is coherent, and

(3) if X = Spec(A) and F and G correspond to the A-modules M and N , then

we have ExtpOX
(F ,G) = ˜ExtpA(M,N) on X.

Proof. Parts (1) and (2) are local on X. Hence it suffices to prove part (3) because
we already know that ExtpA(M,N) is a finite A-module if M and N are finite
modules over a Noetherian ring A, see Lemma 08YR.

Proof of part (3). We will prove this by induction on p. If p = 0, then we have to
show that

HomOX
(F ,G) = ˜HomA(M,N)

on X. This follows by evaluating both sides on D(f) = Spec(Af ) for f ∈ A. For
p > 0 choose a short exact sequence

0→M ′ → A⊕n →M → 0

which leads to a short exact sequence

0→ F ′ → O⊕nX → F → 0

since F = M̃ . By Lemma 2.4 we have ExtpOX
(O⊕nX ,G) = 0 for p > 0. Using the

long exact sequences for Ext (see remark above), we obtain an exact sequence

HomOX
(O⊕nX ,G)→ HomOX

(F ′,G)→ Ext1OX
(F ,G)→ 0

and isomorphisms ExtpOX
(F ′,G)→ Extp+1

OX
(F ,G) for all p ≥ 1. Since we have similar

results for HomA and ExtA we conclude what we want. �

3. Trivial duality

Let i : X → P be a closed immersion of schemes. Let F be an OX -module and let
G be an OP -module. Then we have the equalities

HomOP
(i∗F ,HomOP

(i∗OX ,G)) = Homi∗OX
(i∗F ,HomOP

(i∗OX ,G))

= HomOP
(i∗F ,G)

The first equality is true because both i∗F and HomOP
(i∗OX ,G) are annihilated

by the kernel of the surjection OP → i∗OX . The second equality is a special case
of the very general Lemma 0A6F. In fact, this lemma shows that the functor

Mod(OP ) −→ Mod(i∗OX), G 7−→ HomOP
(i∗OX ,G)

is the right adjoint to the exact functor Mod(i∗OX)→ Mod(OP ). Hence by the al-
ready discussed Lemma 015Z if I is an injective OP -module, then HomOP

(i∗OX , I)
is an injective i∗OX -module.

Lemma 3.1. Let A be an abelian category. Let I• be a bounded below com-
plex of injective objects of A. Let c be the smallest index such that Hc(I•) is
nonzero. Then for any A in A the complex Hom(A, I•) is acyclic in degrees < c
and Hc(Hom(A, I•)) = Hom(A,Hc(I•)).

Proof. Good exercise. �

https://stacks.math.columbia.edu/tag/08YR
https://stacks.math.columbia.edu/tag/0A6F
https://stacks.math.columbia.edu/tag/015Z
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4. Proof of the theorem

See Hartshorne proof of Proposition 7.5 in chapter III.

Choose a closed immersion i : X → P = Pn
k as in the statement of the theorem.

Let ωX be defined by the formula in the statement of the theorem; this makes sense
by the . The theorem follows from the following string of equalities

HomX(F , ωX) = HomP (i∗F , i∗ωX)

= HomP (i∗F , ExtdimP−dimX
OP

(i∗OX , ωP ))

= ExtdimP−dimX
P (i∗F , ωP )

= Homk(HdimX(P, i∗F), k)

= Homk(HdimX(X,F), k)

The first equality follows from the discussion in the last lecture. The second equality
is our choice of ωX . The third equality: see below. The fourth equality is duality
on P we already proved. The final equality we saw before: cohomology of F on X
and on the pushforward of F to P are the same.

Lemma 4.1. In the situation above we have ExtpOP
(i∗OX , ωP ) = 0 for p < dimP −

dimX.

Proof. By Lemma 2.6 and looking on the affine opens D+(Ti) of P = Pn
k this

translated into the following algebra fact: Let B = k[x1, . . . , xn] → A be a surjec-
tion with kernel I, then ExtpB(A,B) = Extp(B/I,B) = 0 for p < n − dim(A). To
prove this, it suffices to show that depthI(B) ≥ n − dim(A), see Lemma 0AVZ.
The inequality depthI(B) ≥ n − dim(A) is an immediate consequence of Lemma
0BUX. �

Proof of third equality. Choose an injective resolution ωP → I•. By Lemma 4.1
and the definition of Ext the sheaf ExtdimP−dimX

OP
(i∗OX , ωP ) is the first nonzero

cohomology sheaf of the complex

HomOP
(i∗OX , I•)

Moreover, by Section 3 this is a complex of injective i∗OX -modules and we have

HomOP
(i∗F ,HomOP

(i∗OX , I•)) = Homi∗OX
(i∗F ,HomOP

(i∗OX , I•))
= HomOP

(i∗F , I•)

The final complex computes Ext•P (i∗F , ωP ) by definition. By Lemma 3.1 we obtain
that the middle complex is acyclic in degrees < dimP − dimX and equal to the
left hand side of

Homi∗OX
(i∗F , ExtdimP−dimX

OP
(i∗OX , ωP )) = HomP (i∗F , ExtdimP−dimX

OP
(i∗OX , ωP ))

in degree dimP − dimX; the equality holds because both the module i∗F and
ExtdimP−dimX
OP

(i∗OX , ωP ) are annihilated by the ideal sheaf Ker(OP → i∗OX) of

X in P . Thus we conclude that this is equal to ExtdimP−dimX
P (i∗F , ωP ) as desired

and the proof is complete1.

1We also deduce that ExtpP (i∗F , ωP ) = 0 for p < dimP − dimX, but this is irrelevant to the

proof of the theorem.

https://stacks.math.columbia.edu/tag/0AVZ
https://stacks.math.columbia.edu/tag/0BUX
https://stacks.math.columbia.edu/tag/0BUX
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5. Dualizing sheaf of a hypersurface

Suppose that X ⊂ P = Pn
k is a hypersurface. In other words, we have a nonzero

homogeneous polynomial F ∈ k[T0, . . . , Tn] of degree d > 0 such that

X = Proj(k[T0, . . . , Tn]/(F ))

as a closed subscheme of P = Proj(k[T0, . . . , Tn]). Another way to say this is that
on each of the standard affine opens D+(Ti) = Spec(k[T0/Ti, . . . , Tn/Ti]) we have
that

X ∩D+(Ti) = Spec(k[T0/Ti, . . . , Tn/Ti]/(F (T0/Ti, . . . , Tn/Ti)))

The short exact sequence

0→ k[T0, . . . , Tn](−d)→ k[T0, . . . , Tn]→ k[T0, . . . , Tn]/(F )→ 0

of graded modules gives rise (by the tilde functor) to a short exact sequence

0→ O(−d)→ O → i∗OX → 0

of OP -modules. Here i : X → P denotes the given closed immersion. Applying the
corresponding long exact sequence of Ext we obtain

0→ Hom(i∗OX , ωP )→ Hom(O, ωP )→ Hom(O(−d), ωP )→ Ext1(i∗OX ,G)→ 0

because we have the vanishing Ext1(O, ωP ) by Lemma 2.4. Using the fact that O
and O(−d) are locally free we may rewrite this as

0→ Hom(i∗OX , ωP )→ ωP → ωP (d)→ Ext1(i∗OX , ωP )→ 0

An easy local calculation shows that the map ωP → ωP (d) in the middle is given
by multiplication by F . What else could it be? On the other hand, tensoring the
initial short exact sequence with ωP (d) we obtain

0→ ωP → ωP (d)→ ωP (d)⊗OP
i∗OX → 0

By the projection formula, see Section 01E6, we have

ωP (d)⊗OP
i∗OX = i∗(ωP (d))

Putting everything together we conclude

Hom(i∗OX , ωP ) = 0

and

ωX = Ext1(i∗OX , ωP ) = i∗(ωP (d)) = i∗(O(d− n− 1)) = OX(d− n− 1)

https://stacks.math.columbia.edu/tag/01E6
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