LECTURE NOTES A

Contents

1.	Theorem of this lecture	1
2.	Preliminaries on Ext	1
3.	Trivial duality	3
4.	Proof of the theorem	4
5.	Dualizing sheaf of a hypersurface	5

1. Theorem of this lecture

Let k be a field. Let X be a proper scheme over k. We say a pair (ω_X, t) is a dualizing sheaf or dualizing module for X if ω_X is a coherent \mathcal{O}_X -module and

$$t: H^{\dim X}(X, \omega_X) \longrightarrow k$$

is a k-linear map such that the pair (ω_X, k) represents the functor

$$Coh(\mathcal{O}_X) \longrightarrow \operatorname{Vect}_k, \quad \mathcal{F} \longmapsto \operatorname{Hom}_k(H^{\dim X}(X, \mathcal{F}), k)$$

on the category of coherent \mathcal{O}_X -modules. Explicitly this says that for any coherent \mathcal{O}_X -module \mathcal{F} the map

$$\operatorname{Hom}_X(\mathcal{F},\omega_X) \times H^{\dim X}(X,\mathcal{F}) \longrightarrow k, \quad (\varphi,\xi) \longmapsto t(\varphi(\xi))$$

is a perfect pairing of finite dimensional k-vector spaces. The notation makes sense: since $\varphi : \mathcal{F} \to \omega_X$ is a map of \mathcal{O}_X -modules, we obtain an induced map $\varphi : H^n(X, \mathcal{F}) \to H^n(X, \omega_X)$ and we can apply this to the cohomology classe ξ whereupon we can use t to get an element of k.

Theorem 1.1. If X is projective over k then there exists a dualizing sheaf. In fact, for any closed immersion $i: X \to P = \mathbf{P}_k^n$ there is an isomorphism

$$\tilde{u}_*\omega_X = \mathcal{E}xt^{n-\dim X}_{\mathcal{O}_P}(i_*\mathcal{O}_X,\omega_P)$$

In this lecture we will try to indicate the proof of this theorem and compute what happens in a special case.

2. Preliminaries on Ext

Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be an \mathcal{O}_X -module. Recall that $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}, -)$ are the right derived functors of the sheaf-hom functor $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, -)$. Similarly, $\operatorname{Ext}^p_X(\mathcal{F}, -)$ are the right derived functors of the functor $\operatorname{Hom}_X(\mathcal{F}, -)$ of global homomorphisms of \mathcal{O}_X -modules.

Remark 2.1. On any ringed space (X, \mathcal{O}_X) the formation of $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ commutes with restriction to opens. This is clear from the fact that an injective resolution of \mathcal{G} restricts to an injective resolution of \mathcal{G} on any open and that the formation of $\mathcal{H}om$ commutes with restriction to opens. Remark 2.2. For any short exact sequence $0 \to \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 \to 0$ of \mathcal{O}_X -modules we obtain a long exact sequence

 $0 \to \mathcal{H}om(\mathcal{F}, \mathcal{G}_1) \to \mathcal{H}om(\mathcal{F}, \mathcal{G}_2) \to \mathcal{H}om(\mathcal{F}, \mathcal{G}_3) \to \mathcal{E}xt^1(\mathcal{F}, \mathcal{G}_1) \to \mathcal{E}xt^1(\mathcal{F}, \mathcal{G}_2) \to \dots$ (we are dropping the subscript \mathcal{O}_X here in order to fit this onto one line in the pdf). This is a general fact about derived functors. For any short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ of \mathcal{O}_X -modules and an \mathcal{O}_X -module \mathcal{G} we obtain a long exact sequence

$$0 \to \mathcal{H}om(\mathcal{F}_3, \mathcal{G}) \to \mathcal{H}om(\mathcal{F}_2, \mathcal{G}) \to \mathcal{H}om(\mathcal{F}_1, \mathcal{G}) \to \mathcal{E}xt^1(\mathcal{F}_3, \mathcal{G}) \to \mathcal{E}xt^1(\mathcal{F}_2, \mathcal{G}) \to \dots$$

This follows by choosing an injective resolution of \mathcal{G} and arguing exactly as in the case of modules over rings.

Remark 2.3. For any short exact sequence $0 \to \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 \to 0$ of \mathcal{O}_X -modules we obtain a long exact sequence

$$0 \to \operatorname{Hom}(\mathcal{F}, \mathcal{G}_1) \to \operatorname{Hom}(\mathcal{F}, \mathcal{G}_2) \to \operatorname{Hom}(\mathcal{F}, \mathcal{G}_3) \to \operatorname{Ext}^1(\mathcal{F}, \mathcal{G}_1) \to \operatorname{Ext}^1(\mathcal{F}, \mathcal{G}_2) \to \dots$$

(we are dropping the subscript X here in order to fit this onto one line in the pdf). This is a general fact about derived functors. For any short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ of \mathcal{O}_X -modules and an \mathcal{O}_X -module \mathcal{G} we obtain a long exact sequence

$$0 \to \operatorname{Hom}(\mathcal{F}_3, \mathcal{G}) \to \operatorname{Hom}(\mathcal{F}_2, \mathcal{G}) \to \operatorname{Hom}(\mathcal{F}_1, \mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F}_3, \mathcal{G}) \to \operatorname{Ext}^1(\mathcal{F}_2, \mathcal{G}) \to \dots$$

This follows by choosing an injective resolution of \mathcal{G} and arguing exactly as in the case of modules over rings.

Lemma 2.4. Let (X, \mathcal{O}_X) be a ringed space. For any finite locally free module \mathcal{F} we have $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}) = 0$ for p > 0 and any \mathcal{O}_X -module \mathcal{G} .

Proof. We may work locally on X. Hence we may assume $\mathcal{F} = \mathcal{O}_X^{\oplus n}$. To see the claim is true, we observe that

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X^{\oplus n},\mathcal{H}) = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{O}_X,\mathcal{H})^{\oplus n} = \mathcal{H}^{\oplus n}$$

is an exact functor in the \mathcal{O}_X -module \mathcal{H} and hence has vanishing higher derived functors.

Let (X, \mathcal{O}_X) be a ringed space. Let \mathcal{F} be a finite locally free module. We set

$$\mathcal{F}^{\vee} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$$

and we call it the *dual* finite locally free module. For any \mathcal{O}_X -module \mathcal{G} the canonical evaluation map

$$\mathcal{F}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{G} \longrightarrow \mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$$

is an isomorphism of \mathcal{O}_X -modules.

Lemma 2.5. Let (X, \mathcal{O}_X) be a ringed space. For any finite locally free module \mathcal{F} we have $\operatorname{Ext}_X^p(\mathcal{F}, \mathcal{G}) = H^p(X, \mathcal{F}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{G})$ for any \mathcal{O}_X -module \mathcal{G} . Here $\mathcal{F}^{\vee} = \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ is the dual finite locally free module.

Proof. Discussed in a previous lecture. Hint: the functor $\operatorname{Hom}_X(\mathcal{F}, -)$ is equal to the functor $H^0(X, \mathcal{F}^{\vee} \otimes_{\mathcal{O}_X} -)$ by the discussion above and then take higher derived functors on both sides.

Lemma 2.6. Let X be a Noetherian scheme. Let \mathcal{F} be a coherent \mathcal{O}_X -module and let \mathcal{G} be a quasi-coherent \mathcal{O}_X -module. Then

LECTURE NOTES A

- (1) the sheaves $\operatorname{Ext}^p_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ are quasi-coherent,
- (2) if \mathcal{G} is coherent as well, then $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ is coherent, and
- (3) if $X = \operatorname{Spec}(A)$ and \mathcal{F} and \mathcal{G} correspond to the A-modules M and N, then we have $\operatorname{\mathcal{E}xt}^p_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) = \operatorname{Ext}^{\widetilde{\mathcal{P}}}_A(M,N)$ on X.

Proof. Parts (1) and (2) are local on X. Hence it suffices to prove part (3) because we already know that $\operatorname{Ext}_{A}^{p}(M, N)$ is a finite A-module if M and N are finite modules over a Noetherian ring A, see Lemma 08YR.

Proof of part (3). We will prove this by induction on p. If p = 0, then we have to show that

$$\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) = \mathrm{Hom}_A(M,N)$$

on X. This follows by evaluating both sides on $D(f) = \text{Spec}(A_f)$ for $f \in A$. For p > 0 choose a short exact sequence

$$0 \to M' \to A^{\oplus n} \to M \to 0$$

which leads to a short exact sequence

$$0 \to \mathcal{F}' \to \mathcal{O}_X^{\oplus n} \to \mathcal{F} \to 0$$

since $\mathcal{F} = \widetilde{M}$. By Lemma 2.4 we have $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{O}_X^{\oplus n}, \mathcal{G}) = 0$ for p > 0. Using the long exact sequences for $\mathcal{E}xt$ (see remark above), we obtain an exact sequence

$$\mathcal{H}\!\mathit{om}_{\mathcal{O}_X}(\mathcal{O}_X^{\oplus n},\mathcal{G}) \to \mathcal{H}\!\mathit{om}_{\mathcal{O}_X}(\mathcal{F}',\mathcal{G}) \to \mathcal{E}\!\mathit{xt}^1_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \to 0$$

and isomorphisms $\mathcal{E}xt^p_{\mathcal{O}_X}(\mathcal{F}',\mathcal{G}) \to \mathcal{E}xt^{p+1}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ for all $p \geq 1$. Since we have similar results for Hom_A and Ext_A we conclude what we want. \Box

3. TRIVIAL DUALITY

Let $i: X \to P$ be a closed immersion of schemes. Let \mathcal{F} be an \mathcal{O}_X -module and let \mathcal{G} be an \mathcal{O}_P -module. Then we have the equalities

$$\operatorname{Hom}_{\mathcal{O}_{P}}(i_{*}\mathcal{F}, \mathcal{H}om_{\mathcal{O}_{P}}(i_{*}\mathcal{O}_{X}, \mathcal{G})) = \operatorname{Hom}_{i_{*}\mathcal{O}_{X}}(i_{*}\mathcal{F}, \mathcal{H}om_{\mathcal{O}_{P}}(i_{*}\mathcal{O}_{X}, \mathcal{G}))$$
$$= \operatorname{Hom}_{\mathcal{O}_{P}}(i_{*}\mathcal{F}, \mathcal{G})$$

The first equality is true because both $i_*\mathcal{F}$ and $\mathcal{H}om_{\mathcal{O}_P}(i_*\mathcal{O}_X,\mathcal{G})$ are annihilated by the kernel of the surjection $\mathcal{O}_P \to i_*\mathcal{O}_X$. The second equality is a special case of the very general Lemma 0A6F. In fact, this lemma shows that the functor

$$Mod(\mathcal{O}_P) \longrightarrow Mod(i_*\mathcal{O}_X), \quad \mathcal{G} \longmapsto \mathcal{H}om_{\mathcal{O}_P}(i_*\mathcal{O}_X, \mathcal{G})$$

is the right adjoint to the exact functor $Mod(i_*\mathcal{O}_X) \to Mod(\mathcal{O}_P)$. Hence by the already discussed Lemma 015Z if \mathcal{I} is an injective \mathcal{O}_P -module, then $\mathcal{H}om_{\mathcal{O}_P}(i_*\mathcal{O}_X, \mathcal{I})$ is an injective $i_*\mathcal{O}_X$ -module.

Lemma 3.1. Let \mathcal{A} be an abelian category. Let I^{\bullet} be a bounded below complex of injective objects of \mathcal{A} . Let c be the smallest index such that $H^{c}(I^{\bullet})$ is nonzero. Then for any \mathcal{A} in \mathcal{A} the complex $\operatorname{Hom}(\mathcal{A}, I^{\bullet})$ is acyclic in degrees < cand $H^{c}(\operatorname{Hom}(\mathcal{A}, I^{\bullet})) = \operatorname{Hom}(\mathcal{A}, H^{c}(I^{\bullet})).$

Proof. Good exercise.

LECTURE NOTES A

4. Proof of the theorem

See Hartshorne proof of Proposition 7.5 in chapter III.

Choose a closed immersion $i: X \to P = \mathbf{P}_k^n$ as in the statement of the theorem. Let ω_X be defined by the formula in the statement of the theorem; this makes sense by the . The theorem follows from the following string of equalities

$$\operatorname{Hom}_{X}(\mathcal{F}, \omega_{X}) = \operatorname{Hom}_{P}(i_{*}\mathcal{F}, i_{*}\omega_{X})$$

=
$$\operatorname{Hom}_{P}(i_{*}\mathcal{F}, \mathcal{E}xt_{\mathcal{O}_{P}}^{\dim P - \dim X}(i_{*}\mathcal{O}_{X}, \omega_{P}))$$

=
$$\operatorname{Ext}_{P}^{\dim P - \dim X}(i_{*}\mathcal{F}, \omega_{P})$$

=
$$\operatorname{Hom}_{k}(H^{\dim X}(P, i_{*}\mathcal{F}), k)$$

=
$$\operatorname{Hom}_{k}(H^{\dim X}(X, \mathcal{F}), k)$$

The first equality follows from the discussion in the last lecture. The second equality is our choice of ω_X . The third equality: see below. The fourth equality is duality on P we already proved. The final equality we saw before: cohomology of \mathcal{F} on Xand on the pushforward of \mathcal{F} to P are the same.

Lemma 4.1. In the situation above we have $\mathcal{E}xt^p_{\mathcal{O}_P}(i_*\mathcal{O}_X, \omega_P) = 0$ for $p < \dim P - \dim X$.

Proof. By Lemma 2.6 and looking on the affine opens $D_+(T_i)$ of $P = \mathbf{P}_k^n$ this translated into the following algebra fact: Let $B = k[x_1, \ldots, x_n] \to A$ be a surjection with kernel I, then $\operatorname{Ext}_B^p(A, B) = \operatorname{Ext}^p(B/I, B) = 0$ for $p < n - \dim(A)$. To prove this, it suffices to show that $\operatorname{depth}_I(B) \ge n - \dim(A)$, see Lemma 0AVZ. The inequality $\operatorname{depth}_I(B) \ge n - \dim(A)$ is an immediate consequence of Lemma 0BUX.

Proof of third equality. Choose an injective resolution $\omega_P \to \mathcal{I}^{\bullet}$. By Lemma 4.1 and the definition of $\mathcal{E}xt$ the sheaf $\mathcal{E}xt_{\mathcal{O}_P}^{\dim P - \dim X}(i_*\mathcal{O}_X, \omega_P)$ is the first nonzero cohomology sheaf of the complex

$$\mathcal{H}om_{\mathcal{O}_P}(i_*\mathcal{O}_X,\mathcal{I}^{\bullet})$$

Moreover, by Section 3 this is a complex of injective $i_*\mathcal{O}_X$ -modules and we have

$$\operatorname{Hom}_{\mathcal{O}_{P}}(i_{*}\mathcal{F}, \mathcal{H}om_{\mathcal{O}_{P}}(i_{*}\mathcal{O}_{X}, \mathcal{I}^{\bullet})) = \operatorname{Hom}_{i_{*}\mathcal{O}_{X}}(i_{*}\mathcal{F}, \mathcal{H}om_{\mathcal{O}_{P}}(i_{*}\mathcal{O}_{X}, \mathcal{I}^{\bullet}))$$
$$= \operatorname{Hom}_{\mathcal{O}_{P}}(i_{*}\mathcal{F}, \mathcal{I}^{\bullet})$$

The final complex computes $\operatorname{Ext}_{P}^{\bullet}(i_{*}\mathcal{F}, \omega_{P})$ by definition. By Lemma 3.1 we obtain that the middle complex is acyclic in degrees $< \dim P - \dim X$ and equal to the left hand side of

 $\operatorname{Hom}_{i_*\mathcal{O}_X}(i_*\mathcal{F}, \mathcal{E}xt_{\mathcal{O}_P}^{\dim P-\dim X}(i_*\mathcal{O}_X, \omega_P)) = \operatorname{Hom}_P(i_*\mathcal{F}, \mathcal{E}xt_{\mathcal{O}_P}^{\dim P-\dim X}(i_*\mathcal{O}_X, \omega_P))$ in degree dim P – dim X; the equality holds because both the module $i_*\mathcal{F}$ and $\mathcal{E}xt_{\mathcal{O}_P}^{\dim P-\dim X}(i_*\mathcal{O}_X, \omega_P)$ are annihilated by the ideal sheaf $\operatorname{Ker}(\mathcal{O}_P \to i_*\mathcal{O}_X)$ of X in P. Thus we conclude that this is equal to $\operatorname{Ext}_P^{\dim P-\dim X}(i_*\mathcal{F}, \omega_P)$ as desired and the proof is complete¹.

¹We also deduce that $\operatorname{Ext}_{P}^{p}(i_{*}\mathcal{F},\omega_{P}) = 0$ for $p < \dim P - \dim X$, but this is irrelevant to the proof of the theorem.

5. DUALIZING SHEAF OF A HYPERSURFACE

Suppose that $X \subset P = \mathbf{P}_k^n$ is a hypersurface. In other words, we have a nonzero homogeneous polynomial $F \in k[T_0, \ldots, T_n]$ of degree d > 0 such that

$$X = \operatorname{Proj}(k[T_0, \dots, T_n]/(F))$$

as a closed subscheme of $P = \operatorname{Proj}(k[T_0, \ldots, T_n])$. Another way to say this is that on each of the standard affine opens $D_+(T_i) = \operatorname{Spec}(k[T_0/T_i, \ldots, T_n/T_i])$ we have that

$$X \cap D_+(T_i) = \operatorname{Spec}(k[T_0/T_i, \dots, T_n/T_i]/(F(T_0/T_i, \dots, T_n/T_i)))$$

The short exact sequence

$$0 \to k[T_0, \dots, T_n](-d) \to k[T_0, \dots, T_n] \to k[T_0, \dots, T_n]/(F) \to 0$$

of graded modules gives rise (by the tilde functor) to a short exact sequence

$$0 \to \mathcal{O}(-d) \to \mathcal{O} \to i_*\mathcal{O}_X \to 0$$

of \mathcal{O}_P -modules. Here $i: X \to P$ denotes the given closed immersion. Applying the corresponding long exact sequence of $\mathcal{E}xt$ we obtain

$$0 \to \mathcal{H}om(i_*\mathcal{O}_X, \omega_P) \to \mathcal{H}om(\mathcal{O}, \omega_P) \to \mathcal{H}om(\mathcal{O}(-d), \omega_P) \to \mathcal{E}xt^1(i_*\mathcal{O}_X, \mathcal{G}) \to 0$$

because we have the vanishing $\mathcal{E}xt^1(\mathcal{O}, \omega_P)$ by Lemma 2.4. Using the fact that \mathcal{O} and $\mathcal{O}(-d)$ are locally free we may rewrite this as

$$0 \to \mathcal{H}om(i_*\mathcal{O}_X,\omega_P) \to \omega_P \to \omega_P(d) \to \mathcal{E}xt^1(i_*\mathcal{O}_X,\omega_P) \to 0$$

An easy local calculation shows that the map $\omega_P \to \omega_P(d)$ in the middle is given by multiplication by F. What else could it be? On the other hand, tensoring the initial short exact sequence with $\omega_P(d)$ we obtain

$$0 \to \omega_P \to \omega_P(d) \to \omega_P(d) \otimes_{\mathcal{O}_P} i_*\mathcal{O}_X \to 0$$

By the projection formula, see Section 01E6, we have

$$\omega_P(d) \otimes_{\mathcal{O}_P} i_*\mathcal{O}_X = i^*(\omega_P(d))$$

Putting everything together we conclude

$$\mathcal{H}om(i_*\mathcal{O}_X,\omega_P)=0$$

and

$$\omega_X = \mathcal{E}xt^1(i_*\mathcal{O}_X, \omega_P) = i^*(\omega_P(d)) = i^*(\mathcal{O}(d-n-1)) = \mathcal{O}_X(d-n-1)$$