Making, Breaking Codes, HW 9

Recall that the book uses the notation $GF(p^d)$ where we use the notation \mathbf{F}_{p^d} .

1. Using the Euclidean algorithm compute the gcd of $X^9 + 1$ and $X^5 + 1$ in $\mathbf{F}_2[X]$.

2. Factor $X^6 + 1$ in $\mathbf{F}_2[X]$, i.e., write this polynomial as a product of powers of irreducible polynomials.

3. Counting polynomials.

a. How many polynomials P are there of degree d in $\mathbf{F}_2[X]$?

b. How many polynomials P are there of degree d in $\mathbf{F}_2[X]$ such that P(0) = 0?

c. How many polynomials P are there of degree d in $\mathbf{F}_2[X]$ such that P(1) = 0? **d.** How many polynomials P are there of degree d in $\mathbf{F}_2[X]$ which do not have a root? (In other words, where $P(0) \neq 0$ and $P(1) \neq 0$ in \mathbf{F}_2 .)

e. Check your answers by listing the polynomials from a., b., c., and d. for d = 2.

4. Elliptic curves in characteristic 2.

a. How many points does the elliptic curve $E: y^2 + xy + y = x^3 + x + 1$ have over \mathbf{F}_2 ?

b. How many points does the elliptic curve $E: y^2 + xy + y = x^3 + x + 1$ have over $\mathbf{F}_{2^2} = GF(4)$?

5. On the elliptic curve $E : y^2 = x^3 + x + 12 \mod 13$ consider the point P = (1, 1). Compute 2P and 3P in the group law of E. (Double check your points lie on E.)

6. The polynomial $P = X^{10} + X^3 + 1$ is irreducible in $\mathbf{F}_2[X]$. Thus we get $\mathbf{F}_{2^{10}}$ by working modulo P in $\mathbf{F}_2[X]$. Why is it easy to compute the inverse of X^3 modulo P and what is it? (Hint: look at the shape of P.)