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1. First problem set

Exercise 1.1. Let a = (a1, . . . , an) ∈ Cn. Recall that eva : C[x1, . . . , xn] → C is
the map f 7→ f(a). Carefully prove that

(1) the ideal (x1 − a1, . . . , xn − an) ⊂ C[x1, . . . , xn] is a maximal ideal, and
(2) we have (x1 − a1, . . . , xn − an) = Ker(eva).

Exercise 1.2. Let R be any ring. Let I ⊂ R be an ideal. Carefully prove that if
I 6= R, then there exists a maximal ideal m ⊂ R such that I ⊂ m.

Exercise 1.3. Consider the subset

X = {(t, 1/t) | t ∈ C, t 6= 0} ⊂ C2

Show that this is an algebraic set by finding an ideal I ⊂ C[x, y] such that X =
V (I).

Exercise 1.4. Consider the subset

X = {(4t2 − 4t+ 1, t3 − 1) | t ∈ C} ⊂ C2

Show that this is an algebraic set by finding an ideal I ⊂ C[x, y] such that X =
V (I). (Hint: Write t in terms of x.)

Definition 1.5. Consider the affine space Cn. An affine line in Cn is a translate
of a linear subspace of dimension 1.
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In other words, a line can be defined by a system of linear equations a11x1 + . . .+ a1nxn = b1
. . .

an−11x1 + . . .+ an−1nxn = bn−1

where the rank of the matrix (aij) is n− 1. This makes it clear that an affine line
is an algebraic subset. Of course we can also parametrize an affine line as

l = {tv + w | t ∈ C}
where v, w ∈ Cn, and v 6= 0.

Exercise 1.6. Let X ⊂ Cn be an algebraic subset. Let l ⊂ Cn be an affine line.
Show that X ∩ l is either empty, or finite, or equal to l.

Exercise 1.7. Show that the subset

X = {(t, et) | t ∈ C} ⊂ C2

is a usual closed set, but not an algebraic set.

Remark 1.8. More generally, if you have an algebraic set of the form {(t, f(t)) | t ∈
C} where f : C→ C is a function what can say about the function f?

2. Second problem set

Exercise 2.1. Let C ⊂ C2 be a nonempty plane algebraic curve (remember this
just means that C is a hypersurface in C2). Consider the map

C −→ C, (x, y) 7−→ x

What can you say about the fibres of this map? More precisely, show the following:
(1) Show that if the fibre over a ∈ C is infinite, then {a} ×C ⊂ C.
(2) Show that there exists an integer d such that all but finitely many fibres

have cardinality d.
(3) Show that, with d as in (2), the other fibres have either < d points, or are

infinite.

Exercise 2.2. For which primes p do the polynomials x2 + 2x + 3 mod p and
4x2 + 5x + 6 mod p have a root in common? (Hint: Compute the resultant of
x2 + 2x+ 3 and 4x2 + 5x+ 6. Please state the result you are using.)

The space of n×m (row × column) matrices is denoted Mat(n×m,C). Of course
we may think of this as copy of affine nm-space, because we can use the coefficients
of the matrices to get a bijection

Mat(n×m,C) −→ Cnm, A −→ (a11, a12, . . . , a1m, a21, . . . , anm)

In this way we can speak of algebraic sets in Mat(n×m,C).

Exercise 2.3. Consider the subset

X = {A ∈ Mat(2× 2,C) | A2 =
(

1 0
0 1

)
} ⊂ Mat(2× 2,C).

(1) Show that X is an algebraic set.
(2) Consider the map

Char : Mat(2× 2,C) −→ C2, A 7−→ (Tr(A),det(A))

What is Char(X)?
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(3) What does your answer to (2) mean for the topology of X? (Just give the
most obvious thing here.)

Since Ca×Cb = Ca+b we can given X ∈ Ca and Y ⊂ Cb take their product X×Y
in Ca+b. It turns out that if X and Y are algebraic sets, then so is X×Y . Namely,
if fi ∈ C[x1, . . . , xn] define X and if gj ∈ C[y1, . . . , ym] define Y , then

X × Y = V (fi(x1, . . . , xn), gj(xn+1, . . . , xn+m))

inside Ca+b. Then X, Y and X × Y inherit the Zariski topology from Ca, Cb and
Ca+b. Now, it is not true that that the Zariski topology on X × Y as defined just
now is the product topology! This is clear on considering X = C ⊂ C, X = C ⊂ C
and X × Y = C2 ⊂ C2 which clearly does not have the product topology (it has
many more closed sets than just unions and intersections of products of closed
subsets). What is true is that if X and Y are irreducible then X×Y is irreducible.
Here are two exercises whose combination implies this fact.

Exercise 2.4. Let X, resp. Y be an algebraic set in Ca, resp. Cb.
(1) For every x0 ∈ X show that the map Y → X × Y, y 7→ (x0, y) is continous

in the Zariski topology.
(2) Show that the projection map

X × Y −→ Y, (x, y) 7−→ y

is continuous in the Zariski topology.
(3) Combine (1) and (2) to show that the maps Y → X × Y , y 7→ (x0, y), and

X → X × Y , x 7→ (x, y0) are homeomorphisms onto their image in the
Zariski topology.

(4) Show that the projection map

X × Y −→ Y, (x, y) 7−→ y

is open1 in the Zariski topology. [Hint: If you have a continuous map of
topological spaces f : Z → Y such that for every z ∈ Z there exists a
continuous map σ : Y → Z with f ◦ σ = idY , then f is open.]

In the following exercise we use the convention that an irreducible space is nonempty.

Exercise 2.5. Let f : Z → Y be a continuous map of topological spaces. Assume
that

(1) f is open,
(2) Y is irreducible,
(3) for a dense set of points y ∈ Y the fibre f−1({y}) is irreducible.

Show that Z is irreducible.

3. Third problem set

For an n × n matrix A over C we have the famous Cayley-Hamilton which says
that

P (A) = 0
where P (x) ∈ C[x] is the characteristic polynomial ofA, namely P (x) = det(x1n×n−
A). Here 1n×n indicates the identity n × n matrix. Please use this in solving the
exercise below.

1A continuous map of topological spaces is open if the image of an open set is open.
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Exercise 3.1. Let R be a ring. Let A = (aij) be an n×n matrix with coefficients in
R. Let P (x) ∈ R[x] be the characteristic polynomial of A (defined as det(xidn×n−
A)). Then P (A) = 0 in Mat(n × n,R). [Hints: Prove it for the ring Z[aij ] where
you think of the aij as variables and as entries of the matrix A. Use that any
polynomial ring Z[x1, . . . , xN ] is isomorphic to a subring of C. Then use this to
conclude for any R and A.]

The result of the preceding exercise says that if P (x) = xn + an−1x
n + an−2x

n−2 +
. . .+ a0 then the map

R⊕n
An+an−1A

n−1+...+a0 // R⊕n

is the zero map. Please use this in the exercise below.

Exercise 3.2. Suppose that ϕ : R → S is a ring map. Let s1, . . . , sn be elements
of S which generate S as an R-module. Let s ∈ S be an arbitrary element. By
assumption for each i we can choose elements aij ∈ R such that

ssi =
∑

j=1,...,n
ϕ(aij)sj

Denote A the n × n matrix over R whose coefficients are the elements aij . Let
P (x) ∈ R[x] be its characteristic polynomial. Show that on writing

P (x) = xn + an−1x
n + an−2x

n−2 + . . .+ a0, ai ∈ R

we have
sn + ϕ(an−1)sn + ϕ(an−2)sn−2 + . . .+ ϕ(a0) = 0

This means that s is integral over R, in other words this means that R → S is
integral.

Exercise 3.3. Find the irreducible components of

V (xy, xz, yz) ⊂ C3

where we use x, y, z as coordinates on C3 instead of the usual x1, x2, x3.

Exercise 3.4. Find the irreducible components of

V (xy − z2, x2 + y2 + z2) ⊂ C3

where we use x, y, z as coordinates on C3 instead of the usual x1, x2, x3.

Exercise 3.5. 2 Find the irreducible components of

V (x2 + y2 + z2 + 1, x2 + y2 + z2 + 2) ⊂ C3

where we use x, y, z as coordinates on C3 instead of the usual x1, x2, x3.

Exercise 3.6. 3 Find the irreducible components of

V (x2 + 2y2 + 3z2 + 2, x2 + 3y2 + 2z2 + 1) ⊂ C3

where we use x, y, z as coordinates on C3 instead of the usual x1, x2, x3. (Hint:
This one is pretty hard. Try to eliminate a variable after changing coordinates.)

2In the actual homework there was a typo, namely the second equation had a z3 instead of z2.
3In the actual homework there was a typo, namely the second equation had a z3 instead of z2.
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4. Fourth problem set

Some questions about dimension.

Exercise 4.1. Let X ⊂ Y ⊂ Cn be affine algebraic subsets. Show that dim(X) ≤
dim(Y ).

Exercise 4.2. Let X ⊂ Cn be a linear subspace. Show that X is a variety and
that the dimension of X as a variety is the same as the dimension of X as a linear
space.

Exercise 4.3. Let X ⊂ Cn and Y ⊂ Cm be affine varieties. Let fj(x1, . . . , xn),
j = 1, . . . ,m be polynomials. Consider the map

f : Cn −→ Cm, (a1, . . . , an) 7−→ (f1(a1, . . . , an), . . . , fm(a1, . . . , an))

and assume
(1) f(X) ⊂ Y , and
(2) f(X) is Zariski dense in Y .

Prove that dim(X) ≥ dim(Y ). (Hint: Consider the associated map of coordinate
rings Γ(Y )→ Γ(X), see Fulton.)

Exercise 4.4. Let C = V (f) ⊂ C2 be an irreducible affine plane curve. Consider
the projection

π : C −→ C, (x, y) −→ x

Prove the following are equivalent:
(1) the corresponding ring map C[x]→ Γ(C) is finite,
(2) the polynomial f can be written as λyd +

∑
i<d ai(x)yi with λ ∈ C not

zero,
(3) the map π : C → C of usual topological spaces is proper.

Hints: In the course we proved that (1) implies (3). Prove (1) is equivalent to
(2) by doing some algebra. To prove that (3) implies (2) try to show that if
f = ad(x)yd +

∑
i<d ai(x)yi and z ∈ C is a zero of ad(x), then the solutions of

f(z′, y) = 0 are unbounded as z′ → z.

Definition 4.5. Let C ⊂ C2 be an irreducible plane curve. We say a (linear)
projection π : C → C, i.e., a map coming from a nonzero linear map C2 → C,
is finite if the equivalent conditions of Exercise 4.4 hold (after suitably changing
coordinates for conditions (1) and (2)).

All the linear projections C2 → C can be parametrized (up to linear coordinate
changes) by an element s ∈ P1 = C ∪ {∞}. Namely, to a slope s ∈ C we associate
the projection

ps : C2 −→ C, (x, y) 7−→ sx− y
and to the slope s =∞ we associate the projection

p∞ : C2 −→ C, (x, y) 7−→ x.

Exercise 4.6. Let C = V (1 + x3 + y3) ⊂ C2. This is an irreducible affine plane
curve (you can use this). Which of the projections ps given above define a finite
morphism

π = ps|C : C −→ C?
Explain your answer. More generally, if C = V (f) which projections ps give a finite
morphism C → C? Only give an answer, no need to explain.
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5. Fith problem set

Let R be a ring. Let f ∈ R be an element. Any of the following symbols

R[1/f ] = Rf = {1, f, f2, f3, . . .}−1R = R[x]/(fx− 1)

will denote the ring constructed out of R and f in the following manner. An element
of R[1/f ] is a fraction a/fn with n ≥ 0 and a ∈ R. We identify two fractions a/fn

and b/fm if we can find an integer N such that fN (fma− fnb) = 0 in R. You can
check that this defines an equivalence relation. If R is a domain (and f 6= 0) then
this is equivalent to asking fma = fnb, which is the thing you are used to. We add
and multiply fractions by the rules

a/fn + b/fm = (afm + bfn)/fnm, a/fn · b/fm = ab/fnm.

Then it is easy to verify that this is a ring with zero 0/1 and unit 1/1. The map
R → Rf , a 7→ a/1 is a ring map with the pleasing property that f maps to an
invertible element. In fact the ring map R→ Rf is universal among all ring maps
R → A which map f to an invertible element. The identification of Rf with the
ring R[x]/(fx− 1) uses the maps

Rf → R[x]/(xf − 1), a/fn 7→ axn, R[x]/(xf − 1)→ Rf , ax
n 7→ a/fn.

Finally, if R is a domain, then the ring Rf is simply the subring of the quotient
field of R consisting of all fractions whose denominator is a power of f .

Exercise 5.1. Let f ∈ C[x1, . . . , xn] be nonzero. Let

X = Cn \ V (f) = {a ∈ Cn | f(a) 6= 0}

Show that the ring of regular functions on X can be described as follows

O(X) = C[x1, . . . , xn][1/f ] = C[x1, . . . , xn]f .

(This may have been explained in the lectures, but please rewrite it anyway.)

Exercise 5.2. Let f, g ∈ C[x1, . . . , xn] be nonzero. Assume that V (f) and V (g)
have no irreducible component in common. Set

X = Cn \ V (f, g).

Show that
O(X) = C[x1, . . . , xn].

Hint: Use previous exercise.

Exercise 5.3. Consider the affine plane curve

C = {(x, y) | y2 = x(x− 1)(x+ 3)}

and the point c = (−1, 2) ∈ C. Let U = C \ {c} which is a quasi-affine variety.
Find an element of O(U) which is not an element of O(C) = Γ(C).

Exercise 5.4. Consider the cuspidal curve Ccusp = {(x, y) ∈ C2 | y2−x3 = 0} ⊂ C
and the affine line Csmooth = {t ∈ C | 1 = 1} = C. Consider the map

ϕ : Csmooth −→ Ccusp, t 7→ (t2, t3)

Note that ϕ is bijective. Show that its inverse ϕ−1 : Ccusp → Csmooth = C is not a
regular function.
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Exercise 5.5. Consider plane conics

C = {(x, y) ∈ C2 | a+ bx+ cy + dx2 + exy + fy2 = 0}.

over the complex numbers where we assume at least one of d, e, f is nonzero. For
which (a, b, c, d, e, f) ∈ C6 does there exist a “parametrization” ϕ : C → C? Here
“parametrization” means

(1) ϕ(t) = (P (t), Q(t)) for some polynomials P,Q,
(2) ϕ is bijective, and
(3) the inverse map ϕ−1 is a regular function on C.

Hint: Remember your classification of conics...!

6. Sixth problem set

Exercise 6.1. Let X ⊂ Cn be an affine variety. Let f ∈ C[x1, . . . , xn] be a
polynomial such that X 6⊂ V (f).

(1) Show that

X \ V (f) −→ Cn+1, a 7−→ (a1, . . . , an, 1/f(a))

is a morphism.
(2) Show that the image is a Zariski closed Y ⊂ Cn+1.
(3) Show that the induced map X \ V (f)→ Y is bijective.
(4) Show that the inverse map Y → X \ V (f) is a morphism too.

Conclude that X \ V (f) is an affine variety (as redefined in the course).

Exercise 6.2. Let X ⊂ Cn be a quasi-affine variety (as defined in the course).
Let a ∈ X be a point. Show that there exists an open neighbhourhood U ⊂ X
of a which is an affine variety (as redefined in the course). (Hint: Use previous
exercise.)

Let X ⊂ Cn be an affine variety. Let a = (a1, . . . , an) ∈ X be a point. Let I = I(X)
be the ideal of X. Then we have f(a) = 0 for all f ∈ I. But it is usually not the
case that

∂f

∂xi
(a) = 0

for f ∈ I. Hence we get an interesting C-linear map

(6.2.1) I −→ Cn, f 7−→
(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)
)

We say a is a nonsingular point of X if and only if rank(6.2.1) = n− dim(X). We
say a is a singular point of X if and only if rank(6.2.1) < n − dim(X). It is a
theorem in commutative algebra that the rank is never > n− dim(X), so that this
covers all cases.

Exercise 6.3. Let X = V (x2
1) ⊂ Cn. What are the singular points of X? (This is

a trick question. Think, don’t compute.)

Exercise 6.4. Let
X = V (x2

1 + x2
2 + . . .+ x2

n) ⊂ Cn.

What are the singular points of X? (Compute, don’t think.)
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Exercise 6.5. Let f ∈ C[x, y] be irreducible, so that C = V (f) ⊂ C2 is a plane
curve What equations define the singular points of C? Can there be infinitely many
singular points?

Exercise 6.6. Consider the affine curve C ⊂ C3 defined by the ideal

I = ((x− 1)2 + y2 + z2 − 1, (x+ 1)2 + 2 ∗ y2 + z2 − 1) ⊂ C[x, y, z]

Compute its singular points. (You may use that I is a prime ideal and that C =
V (I) is indeed a curve.)

7. Seventh problem set

Please, please use any of the statements from the list in Section 100. If you need
an extra general statement, then email it to me and I’ll add it to the list.

Exercise 7.1. Compute O(P1).

Exercise 7.2. Is there a nonconstant morphism P1 → Cn for any n?

Exercise 7.3. Compute O(P2 \ V+(X0 +X1 +X2)).

Exercise 7.4. Compute O(P2 \ V+(X2
0 +X2

1 +X2
2 )).

Exercise 7.5. Let F0, F1, F2 ∈ C[X0, X1] be homogeneous of the same degree.
Assume that

V+(F0) ∩ V+(F1) ∩ V+(F2) = ∅.
Show that the map

P1 −→ P2, [a0 : a1] 7→ [F0(a0, a1) : F1(a0, a1) : F2(a0, a1)]

is a morphism of varieties. Generalize the statement to higher dimensional projec-
tive spaces (but don’t prove it).

Exercise 7.6. Find two (nondegenerate) conics in P2 which meet in one point.
Find two irreducible cubics in P2 which meet in one point.

8. Eighth problem set

Review of holomorphic functions. Let Ω ⊂ C be an open subset. A function
f : Ω −→ C is called holomorphic if for every z0 ∈ Ω there exists a complex number
f ′(z0), called the derivative of f at z0 such that

∀ε > 0 ∃δ > 0 :
∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε ∀z ∈ Ω, |z − z0| < δ.

These functions have the following properties:
(1) Given complex numbers a0, a1, a2, . . . such that |an| < C(1/R)n for some

C,R > 0 then the powerseries f(z) =
∑
an(z − z0)n converges for all z,

|z − z0| < R and is a holomorphic function on that disc.
(2) Conversely, if f : Ω→ C is holomorphic, and a disc of radius R around z0

is contained in Ω, then f is given by a convergent power series on the disc
with radius R around z0 as in (1).

(3) If f is holomorphic, then f is continuous.
(4) If f is holomorphic, then the derivative z 7→ f ′(z) is holomorphic too.
(5) The derivative of f(z) =

∑
an(z−z0)n as in (1) is f ′(z) =

∑
nan(z−z0)n−1

which converges on the same disc.
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(6) If f : Ω→ C is holomorphic and nonconstant on each connected component
of Ω, then f is an open mapping.

(7) If f, g are holomorphic on Ω and f(zn) = g(zn) for some infinite set of
points {zn} ⊂ Ω which has a limit point in Ω then f = g.

(8) Let fi, i = 1, 2, 3, . . . be holomorphic functions defined on the open subset
Ω ⊂ C. Assume the pointwise limit f(z) = limi fi(z) exists for all z ∈ Ω.
Assume moreover that the convergence lim fi = f is uniform on every
compact subset of Ω. Then f is holomorphic too.

Theorem 8.1. Statement of the implicit function theorem as we proved it in the
lectures4. Suppose that C ⊂ Cn is a quasi-affine curve. Let p = (a1, . . . , an) ∈ C
be a nonsingular point of C. Then there exist

(1) an i ∈ {1, . . . , n},
(2) ε > δ > 0 , and
(3) functions g1, . . . , gn : {z ∈ C : |z| < δ} → C

such that the following conditions hold
(1) gi(z) = z + ai,
(2) g1, . . . , gn are holomorphic,
(3) |gj(z)− aj | < ε for all j and all |z| < δ,
(4) we have

C ∩ {(z1, . . . , zn) : |zj − aj | < ε, |zi − ai| < δ} = {(g1(z), . . . , gn(z)) : |z| < δ}

What this means geometrically is the following: Consider the projection πi : X → C
to the ith axis. For a sufficiently small open neighbourhood U ⊂ Cn (above this is
the ball of radius ε) of p, there exists a small open neighbourhood Ω ⊂ C (this is
the disc of radius δ) of ai such that

πi : X ∩ U ∩ π−1
i (Ω) −→ Ω

is bijective, with inverse Φ : z 7→ (g1(z), . . . , gn(z)) whose components are holo-
morphic. A reformulation which is easier to parse is the following. (Here we
reparametrize the disc |z| < δ to convert it to the unit disc.)

4I owe you the proof of the uniqueness of the solution. Suppose that ϕ1, . . . , ϕn−1 ∈
C[x1, . . . , xn] are as in the lecture, i.e., have no linear or constant terms. Pick a constant C1 > 0
such that

|ϕj(x1 + y1, . . . , xn + yn)− ϕ(x1, . . . , xn)| < C(max{|xi|}+ max{|yj |}) max{|yi|}

for all xi, yi ∈ C with |xi|, |yi| ≤ 1. This constant is slightly different from the constant in
Lemma 1 of the lecture. Let |z| < ε. Suppose that we have y1, . . . , yn−1, y′1, . . . , y

′
n−1 ∈ C with

|yj |, |y′j | < ε and yj = ϕj(y1, . . . , yn−1, z), and y′j = ϕj(y′1, . . . , y
′
n−1, z). Set δj = y′j − yj . Then

|δj | = |y′j − yj | = |ϕj(y′1, . . . , y
′
n−1, z)− ϕj(y1, . . . , yn−1, z)|

= |ϕj(y1 + δ1, . . . , yn−1 + δn−1, z)− ϕj(y1, . . . , yn−1, z)|
≤ C1(max{|yj |, |z|}+ max{|δj |}) max{|δj |}

with C1 as above. Now note that this is a contradiction as soon as ε is small enough (Hint:

|δj | ≤ 2ε; for example 4εC1 < 1 is good enough). In this arguement I did not have to impose a
stronger condition on |z| to make this work. But in the statement of the theorem I do need to

choose 0 < δ < ε because in the theorem we are working with a general coordinate system, and

then the trick with requiring |z| < δ is necessary, see Exercise 8.3. The discrepancy happens in
the translation of the general result into the special coordinate system.
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Theorem 8.2. Let p ∈ C ⊂ Cn a nonsingular point of an algebraic curve. There
exists a map

Φ : {z ∈ C : |z| < 1} −→ C, z 7−→ (g1(z), . . . , gn(z))

such that: (a) each gi is holomorphic, (b) Φ(0) = p, (c) g′i(0) 6= 0 for some i, and
(d) Φ induces a homeomorphism of the disc {z ∈ C : |z| < 1} with a usual open
neighbourhood of p in C.

Exercise 8.3. Show that the statement of Theorem 8.1 is false if you try to take
ε = δ in it. Namely consider the curve

C = {(t+ t2, t− t2), t ∈ C} = {(x, y) | 2y − 2x+ x2 + 2xy + y2 = 0}
Show that there does not exist an ε < 1 such that

{(x, y) ∈ C : |x| < ε} = {(x, y) ∈ C : |x| < ε and |y| < ε}
and similarly that there does not exist an ε such that

{(x, y) ∈ C : |y| < ε} = {(x, y) ∈ C : |x| < ε and |y| < ε}
Hint: Look at real t!

Exercise 8.4. Let f ∈ C[x, y]. Assume that f = xy + h.o.t., in other words f
has no constant and linear terms and its quadratic term is xy. (For example f =
xy+x3 +y3). Show that there exist holomorphic functions g1, g2 : {z ∈ C : |z| < 1}
such that

(1) f(g1(z), g2(z)) = 0 for all |z| < 1,
(2) g′1(0) 6= 0.

Hint: Apply Theorem 8.2 to the algebraic curve given by x−2f(x, xy) = 0 and the
point p = (0, 0).

Consider a sphere of radius ε in C2. It is given by

S3
ε = {(z1, z2) ∈ C2 : z1z1+z2z2 = ε} = {(x1, y1, x2, y2) ∈ R4 : x2

1+y2
1+x2

2+y2
2 = ε}

and we have a stereographic projection

S3
ε \ {northpole} −→ R3, (x1, y1, x2, y2) 7−→ (

x1

1− y2
,

y1

1− y2
,

x2

1− y2
)

Hence if we have a subset of the sphere then we may think of it as a subset of
R3 ∪ {∞}.

Exercise 8.5. Consider an algebraic curve C ⊂ C2. Assume that (0, 0) ∈ C is a
smooth point. Convince yourself that for any small enough ε

C ∩ S3
ε

is (topologically) a single unknotted loop. Things you should do here: (a) do a
straightforward example, (b) do a less straightforward example, and (c) give an
idea of how you could use Theorem 8.2 to start proving this (for example translate
it into a question about holomorphic functions which seems reasonable to you).

Exercise 8.6. Consider the algebraic set X = V (xy) ⊂ C2. Show (by a calculation
and picture) that for any small enough ε

X ∩ S3
ε

is (topologically) two circles and show that they are linked (I mean that if they
were made out of steel then you couldn’t separate them).
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Exercise 8.7. Consider the algebraic curve C = V (y2 − x3) ⊂ C3. Show (by a
calculation and picture) that for any small enough ε

C ∩ S3
ε

is (topologically) a single loop which is knotted.

Exercise 8.8. Let f =
∑
i≥0 aiz

i be a power series with complex coefficients.
Suppose that a0 6= 0. Let n ≥ 1. Show that there exists a power series g =

∑
i≥0 biz

i

such that f = gn.

9. Ninth problem set

Suppose that X ⊂ Cn is an affine algebraic variety. Let f̃ ∈ C[x1, . . . , xn] be an
element such that X 6⊂ V (f̃). Then in Exercise 6.1 we have seen that U = X \V (f̃)
is an affine variety. Let f ∈ O(X) denote the restriction of f̃ to X. Then f restricts
to an invertible element of O(U). Hence the restriction induces a canonical map

O(X)f −→ O(U).

This map is an isomorphism. Actually, in the course of doing Exercise 6.1 you
most likely proved this along the way, but it wasn’t clearly stated as such. Also, in
Exercise 5.1 you proved this when X = Cn.

Exercise 9.1. Let X be an affine algebraic variety. Let V ⊂ X be a nonempty
Zariski open which is an affine variety also. Show that the restriction mapping
O(X)→ O(V ) induces an isomorphism of fraction fields. Hint: Use remarks above
and a suitable choice of an open U ⊂ V ⊂ X.

Exercise 9.2. In the lectures we classified all discrete valuations on C(x)/C by a
direct argument.

(1) Let K = C(x)[y]/(y2 − x(x− 1)(x− 2)). Classify all discrete valuations on
K/C using a direct argument.

(2) Suppose K = C(x)[y]/(y2 − x(x − 1)(x − 2)(x − 3)). What happens with
the discrete valuations “at ∞” in this case?

Exercise 9.3. Give an example of a finite extension C(x) ⊂ K which is not cyclic;
for example an extension which is not Galois or an extension which is Galois but
whose Galois group is not cyclic. (This exercise is here to convince you that C(x)
is very different from C((x)) which has only cyclic finite extensions.)

Exercise 9.4. Let P = [0 : 0 : 1] ∈ P2. Consider projection from P which is the
morphism of quasi-projective varieties

π : P2 \ {P} −→ P1, [a0 : a1 : a2] 7−→ [a0 : a1].

Show that every fibre of π is isomorphic (as a variety) to the affine curve C.

Exercise 9.5. Let C = V+(F ) ⊂ P2 be projective plane curve of degree d. This
means that F ∈ C[X0, X1, X2] is irreducible and homogeneous of degree d. Assume
that P = [0 : 0 : 1] 6∈ C. Consider the restriction of the projection π of Exercise 9.4
to C, which is a morphism π|C : C → P1. Show that

(1) π|C : C → P1 is a proper map on underlying usual topological spaces, and
(2) for all but finitely points in P1 the fibre of π|C has exactly d points.

Hints: For (1) use results from Section 4. For (2) use the result of Exercise 2.1.
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10. Tenth problem set

Let A→ B be a ring map. The integral closure B′ of A in B is the subset

B′ = {x ∈ B | x is integral over A}.

Exercise 10.1. Show that B′ is an A-subalgebra of B. Hint: The difficult step is
to show x, y ∈ B′ ⇒ x+ y, xy ∈ B′. To see this show that the A-subalgebra B′′ of
B generated by x and y is finite over A, and apply the result of Exercise 3.2.

Exercise 10.2. Let K ⊂ L be a finite separable field extension generated by
a single element. So L = K[y]/(P (y)) where P ∈ K[T ] is a monic irreducible
polynomial with gcd(P, P ′) = 1. Here P ′ = dP/dT . Note that this implies P ′(y)
is not zero in L. Show that

TrL/K

(
yi

P ′(y)

)
=
{

0 if i = 0, . . . , n− 2
1 if i = n− 1

where n = degT (P ) = [L : K]. Use the following steps (or if you have a different
proof that would be great too):

(1) Let K be an algebraic closure of K and write P (T ) = (T − α1)(T −
α2) . . . (T − αn) with α1, . . . , αn ∈ K. The fact that P is a separable
polynomial means that αi 6= αj for i 6= j.

(2) Let β ∈ L be any element. Represent β as the congruence class of Q(y) for
some polynomial Q(T ) ∈ K[T ]. Show that

TrL/K(β) =
∑

j=1,...,n
Q(αj).

It is OK to find this in a book and refer to it.
(3) Show that

TrL/K

(
yi

P ′(y)

)
=
∑

j=1,...,n

αij
P ′(αj)

(4) Show that

P ′(αj) = (αj − α1) . . . ̂(αj − αj) . . . (αj − αn)

(5) Show that
1

P (T )
=
∑

j=1,...,n

1
P ′(αj)(T − αj)

(6) Take the previous expression and do Taylor expansion in 1/T to conclude.

In the following exercises you may use the following fact that was proved in the
lecture by Jarod Alper: Suppose that we have

A = C[x] ⊂ B = C[x, y]/(P )

where P is a polynomial in x, y which is monic as a polynomial in y and irreducible.
Let B′ be the integral closure of A in the fraction field of the domain B. Then we
have

B ⊂ B′ ⊂ 1
P ′
B

where P ′ = ∂P/∂y.

Exercise 10.3. Let f ∈ C[x] be a nonconstant polynomial which is not a square.
This implies that P = y2 − f is irreducible. Let A = C[x] and B = C[x, y]/(P ) as
above. Show the following:
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(1) The integral closure of A in the fraction field of B is C[x, z]/(z2−g), where
g is the square free part5 of f .

(2) The ring B is integrally closed its fraction field if and only if f is square
free.

Exercise 10.4. Let f = (x − 1)x2(x + 1)3. Then P = y3 − f is irreducible. Let
A = C[x] and B = C[x, y]/(P ) as above. Compute the integral closure of A in the
fraction field of B.

11. Eleventh problem set

Catch up with homeworks you are behind on.

12. Twelth problem set

Exercise 12.1. (Krull intersection theorem.) Let R be a Noetherian domain.
Prove the following statements (please skip the ones that you think are too easy):

(1) If I, J are ideals in R and for every x ∈ I there exists an n > 0 such that
xn ∈ J , then IN ⊂ J for some N ≥ 1.

(2) Let I ′ be an ideal of R and x ∈ R. Set I ′n = {y ∈ R | yxn ∈ I ′}. Show
there exists a k such that I ′k = I ′m for all m ≥ k.

(3) Let I, J be ideals of R. Consider the set of ideals I ′ of R such that
I ′∩J ⊂ IJ . Show that this set ordered by inclusion has a maximal element.
(Hint: Zorn’s lemma.)

(4) If I, J are ideals of R then In ∩ J ⊂ IJ for some n. [Hints: Let I ′ be
maximal with I ′∩J ⊂ IJ as in part (3). Show that (I ′+ IJ)∩J ⊂ IJ too,
so I ′ = I ′ + IJ by maximality. Hence I ′ ∩ J = IJ . By part (1) it suffices
to show that any x ∈ I has a power which lies in I ′. Let pick k exactly as
in (2). Consider I ′′ = I ′ + xkR. Check that I ′′ ∩ J ⊂ IJ by a clever little
argument. Hence I ′ = I ′′, hence xk ∈ I ′ as desired.]

(5) Conclude that
⋂
n≥0 I

n = 0 if I 6= R. [Hint: If x ∈
⋂
In, then use (4) to

show that x ∈ In ⊂ xI for some n which gives x(1−f) = 0 for some f ∈ I.]

This argument is from a paper by Karamzadeh. But I’m sure there are lots of other
even more elementary arguments. Actually I just found one. It is an argument
of H. Perdy and you can find it in his paper “An Elementary Proof of Krull’s
Intersection Theorem” published in the The American Mathematical Monthly, Vol.
111, No. 4 (Apr., 2004), pp. 356-357. If you want to look up his argument and
explain it then that is fine too (and it will probably save you quite a bit of time).
Note: it doesn’t prove part (4) which is interesting in itself. Part (4) is a special
case of the Artin-Rees theorem.

The rest of the exercises is a series of exercises aimed in some sense at understanding
the “points at infinity”. While doing them you will also be reviewing some of the
material we’ve treated in the lectures. This means that some of the questions are
formulated in a somewhat strange manner.

5For example the square free part of f = (x− 1)3(x− 2)2 is g = (x− 1).
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Exercise 12.2. Consider a situation

B̂ // L̂

C[[x]] Â //

OO

K̂

OO

C((x))

where K̂ ⊂ L̂ is a finite ring extension, the ring L̂ is reduced, and B̂ is the integral
closure of Â in L̂. Recall that this means we can find compatible isomorphisms

B̂ // L̂

∏
i=1,...,r C[[yi]] //

∼=

OO

∏
i=1,...,r C((yi))

∼=

OO

with moreover x 7→ (ye11 , . . . , y
er
r ). Prove the following: Given r + 1 units

u1, . . . , ur+1 ∈ L̂∗

of L̂∗ there exist integers m1, . . . ,mr+1 ∈ Z not all zero such that u = um1
1 . . . u

mr+1
r+1

is an element of B̂∗. (In other words, u no longer has a “pole” at any of the “points”
lying over x = 0.)

Exercise 12.3. Let C be a normal affine algebraic curve. Recal that this means
that the ring of regular functions B = O(C) is a normal domain. More precisely,
if L = C(C) = f.f.(B) is the field of rational functions of C, then B is integrally
closed in L. We have also seen that C is a nonsingular curve. Moreover, we proved
that there exists a ring map C[x] = A → B such that B is finite over A (Noether
Normalization – works even for nonnormal affine curves). Fix such a choice. Denote
K = C(x) ⊂ L. Diagram

K // L

A

OO

// B

OO

OK, now let’s introduce the “variable” y = x−1. Set A′ = C[y] ⊂ K. Let B′

be the integral closure of A′ in L. By the result of Jarod’s lecture this is a finite
ring extension of A′. We can also consider A′′ = C[x, y] = C[x, x−1] ⊂ K and its
integral closure B′′ ⊂ L. This produces the following diagram

B′ // B′′ Boo

A′

OO

// A′′

OO

Aoo

OO

Having said all of this prove that B′′ = B′y = Bx. See Section 5 for the notation
Rf . (You may use that the situation is symmetric in x and y and hence that you
only need to prove either B′′ = B′y or that B′′ = Bx.)

Exercise 12.4. Notation as in Exercise 12.3. Let f ∈ L be an element which is
contained in B′ and in B′′. Show that f ∈ C using the following steps:

(1) Show that B ∼= A⊕d as an A-module. (Quote a theorem on modules over
the polynomial ring C[x].)
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(2) Show that B′ ∼= (A′)⊕d as an A′-module. (Quote a theorem on modules
over polynomial ring C[y]. Yes, this is silly.)

(3) Let P (T ) ∈ A[T ] be the characteristic polynomial of multiplication by f on
B as an A-linear map. Let P ′(T ) ∈ A′[T ] be the characteristic polynomial
of multiplication by f on B′ as an A′-linear map. Show that P (T ) = P ′(T )
in A′′[T ]. [Hint: Char Pol independent of chosen basis.]

(4) Conclude P has constant coefficients.

Exercise 12.5. Notation as in Exercise 12.3. Show that the group of units B∗ sits
in a short exact sequence

0→ C∗ → B∗ → B∗/C∗ → 0

of abelian groups and that the group B∗/C∗ on the right is a finitely generated
free abelian group. [[[Hints: This exercise is a quite a bit harder... First of all,
by symmetry it is OK to switch the roles of B and B′ (this is just a notational
convenience). Let d = [L : K] as in Exercise 12.4. Suppose that u1, . . . , ud+1 are
units of B′. Try to find integers m1, . . . ,mr ∈ Z not all zero such that

u = um1
1 . . . u

md+1
d+1

is also in B. Having found these then by Exercise 12.4 we see u ∈ C∗. To find the
mi use the result from Exercise 12.2 and the result from the lectures that says that
A ⊂ B matches with Â ⊂ B̂ in some sense, but try to be somewhat precise here. If
you do not remember the statement ask me.]]]

100. Review Course Material

Review of material in course.
(1) Projective space Pn = (Cn+1 \ {0})/C∗ is defined as the set of nonzero

vectors in Cn+1 up to scaling.
(2) A point of Pn is denoted [a0 : a1 : . . . : an] which means that (a0, . . . , an) ∈

Cn+1 is a nonzero vector and [a0 : a1 : . . . : an] is the corresponding point.
(3) For F ∈ C[X0, . . . , Xn] we defined

V+(F ) = {[a0 : a1 : . . . : an] ∈ Pn | F (a0, . . . , an) = 0}

and we showed that this is well defined.
(4) The standard affine opens Ui, i = 0, . . . , n. We have

Pn = U0 ∪ . . . ∪ Un
where Ui = Pn\V+(Xi) is the set of points whose ith coordinate is nonzero.
For each i we have a bijection

Φi : Ui −→ Cn, [a0 : a1 : . . . : an] 7−→
(
a0

ai
, . . . ,

â0

ai
, . . . ,

an
ai

)
whose inverse is given by the map

(c1, . . . , cn) 7−→ [c1 : . . . : ci−1 : 1 : ci : . . . : cn].

(5) Let π : Cn+1 \ {0} → Pn denote the map (a0, . . . , an) 7→ [a0 : a1 : . . . : an].
(6) There is a topology on Pn defined by saying U ⊂ Pn is open ⇔ π−1(U) ⊂

Cn+1 \ {0} is open in the usual topology. This will be called the usual
topology.



16 EXERCISES

(7) The map π is continuous and open (in the usual topologies). It follows that
Pn is Hausdorff in the usual topology.

(8) The maps Φi are homeomorphisms in the usual topologies and the standard
affine opens are open. (This determines the usual topology.)

(9) The unit sphere S2n+2 ⊂ Cn+1 \ {0} (the set of points (a0, . . . an) such
that

∑
|ai|2 = 1) surjects onto Pn we see that Pn is compact in the usual

topology.
(10) The space Pn is a compact topological manifold in the usual topology.
(11) We defined a topology on Pn whose closed subsets are

Z =
⋂

F∈E
V+(F )

where E ⊂ C[X0, . . . , Xn] is a subset consisting of homogeneous elements.
This is the Zariski topology on Pn.

(12) A Zariski closed subset of Pn is usual closed.
(13) The maps Φi : Ui → Cn are homeomorphisms in the Zariski topologies and

the Ui ⊂ Pn are open in the Zariski topology. (This determines the Zariski
topology.)

(14) The Zariski topological space Pn is Noetherian.
(15) A quasi-projective variety is a Zariski irreducible locally closed subset X ⊂

Pn for some n.
(16) A projective variety is a Zariski irreducible closed subset X ⊂ Pn for some

n.
(17) The maps

Φj ◦ Φ−1
i |Φi(Ui∩Uj) : Φi(Ui ∩ Uj) −→ Φj(Ui ∩ Uj)

are isomorphisms of q-affine varieties.
(18) For any quasi-projective variety X ⊂ Pn with X ⊂ Ui and X ⊂ Uj the

images Φi(X) and Φj(X) are quasi-affine varieties (by the above) and

Φj ◦ Φ−1
i |Φi(X) : Φi(X) −→ Φj(X)

is an isomorphisms of quasi-affine varieties.
(19) If X ⊂ Pn is a quasi-projective variety with X ⊂ Ui for some i the we

define the algebra of regular functions on X by the rule

O(X) = {f : X → C | the map Φi(X)→ C,Φi(x) 7→ f(x) is a regular
function on the quasi-affine variety Φi(X) }

This is independent of the choice of i such that X ⊂ Ui by (18).
(20) If X ⊂ Pn is a quasi-projective variety we define the algebra of regular

functions on X by the rule

O(X) = {f : X → C | f |X∩Ui
∈ O(X ∩ Ui) for i = 0, . . . , n}

This makes sense because we have defined O(X ∩ Ui) in (19).
(21) A regular function f on a quasi-projective variety X ⊂ Pn is continuous

in both the Zariski and the usual topologies. This is true because we have
seen this holds for f |X∩Ui .

(22) If X is a quasi-projective variety and Y ⊂ X is a subvariety, then the
restriction f |Y of a regular function on X is a regular function on Y . (This
is true because we’ve seen it holds on X ∩ Ui.)



EXERCISES 17

(23) Let X ⊂ Pn be a quasi-projective variety. Let f : X → C be a map of sets.
The following are equivalent
(a) f is a regular function, and
(b) there exists an open covering X = V1 ∪ V2 ∪ . . . ∪ Vm such that each

restriction f |Vj
is a regular function.

(24) A morphism ϕ : X → Y of quasi-projective varieties is a continuous map (in
Zariski topology) such that for every open V ⊂ Y and any regular function
f ∈ O(V ) on V the composition f ◦ ϕ|ϕ−1(V ) : ϕ−1(V ) → C is a regular
function on ϕ−1(V ).

(25) If X ⊂ Pn and Y ⊂ Pm are quasi-projective varieties and ϕ : X → Y is a
map of sets then the following are equivalent:
(a) ϕ is a morphism,
(b) ϕ composed with the map Y → Pm is a morphism from X to Pm,
(c) there exists an open covering X = V1 ∪ V2 ∪ . . . ∪ Vm such that each

restriction f |Vi
is a morphism,

(d) for each j ∈ {0, . . . ,m} we have that ϕ−1(Uj) is open in X, and the
composition

ϕ−1(Uj)
ϕ|ϕ−1(Uj)

// ))
Uj

Φj

// Cm

is a morphism, and
(e) there exists an open covering X =

⋃
Vi such that for each i you have

ϕ(Vi) ⊂ Uj(i) and moreover the composition

Vi
ϕ|Vi

// 55Uj(i)
Φj(i)

// Cm

is a morphism.
The easiest way to use these is to find Vi as in the last condition such that
moreover each Vi is also contained in a standard affine open of Pn, since
in that case you reduced to checking that the restriction is a morphism of
quasi-affine varieties .
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