Name:

Final Exam

Write your name on this paper. Explain all your answers. Use common sense. Do not use calculators/book/notes. There are nine parts all equally weighted. Here is the first one:

1. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{x + \sqrt{1 + x} - 1}{1 - \sqrt{1 - x}}$$
 (b) $\lim_{x \to 0} \frac{\sin(x^2)}{x^2}$ (c) $\lim_{x \to \infty} (\ln(x) - \ln(x + 1))$

2. Differentiate the following functions.

(a)
$$\sqrt{e^x + 1}$$
 (b) $\frac{x^2 + 1}{x + 1}$ (c) $x^{1 + \sin(x)}$

3. Consider the following function

$$f(x) = \begin{cases} 5x, & 0 \le x \le 1, \\ x^2 - 6x + 10, & 1 < x \le 4 \end{cases}$$

- (a) Explain why f is continuous on [0,4].(b) Find the local and global maxima and minima of f on [0,4].

4. Graphs.

- (a) Find all the horizontal and vertical asymptotes of the function f(x) = x+1/(2x+10).
 (b) What are the intervals where f is concave upwards or downwards and what are the inflection points of the function f(x) = e^{2/3}x³.

5. Theory.

- (a) State the fundamental theorem of calculus.
- (b) Suppose a continuous function f on [0, 10] has values given by the following table

Evaluate the Riemann sum for f with 10 subintervals using as sample points the right endpoints.

6. Examples.

- (a) Give an example of a function f on [0, 4] with an absolute maximum at 1 and an absolute minimum at 3. No explanation necessary for this part.
- (b) Give an example of a function on [0,1] that is not integrable. No explanation necessary for this part.
- (c) Give an example of a continuous function f on [0, 10] such that $\int_0^{10} f(x) dx = 1/2$.

7. Find the following indefinite integrals.

(a)
$$\int (x^2 + \sin(2x))dx$$
 (b) $\int \cos(x)e^{\sin(x)}dx$ (c) $\int \frac{1+2x}{\sqrt{1-x^2}}dx$

8. Compute the following definite integrals.

(a)
$$\int_{1}^{2} (3x+3)^{1/3} dx$$
 (b) $\int_{-10}^{10} (1+x^{111}) dx$ (c) $\int_{0}^{1} x\sqrt{1-x^2} dx$

9. Area and Volume.

- (a) Find the area enclosed by the line y = x + 1 and the parabola y = x² + 1.
 (b) Find the volume of the solid obtained by rotating the region x² + 5y² ≤ 1 around the x-axis. (Hint: Draw a picture of the region, and set x² + 5y² equal to 1 and solve for y.)