
A LITTLE BIT ABOUT REED-SOLOMON CODES

Contents

1. Introduction 1
2. Construction of the codes 1
3. The dimension of a Reed-Solomon code 2
4. Generating matrix 2
5. Minimum distance 3
6. Adding the point at infinity 4
7. Application of Reed-Solomon codes 4
8. Drawbacks of Reed-Solomon codes 5
9. Algebraic Geometry Goppa codes 5
10. Example of an Algebraic Geometry Goppa code 5

1. Introduction

This document will introduce you to Reed-Solomon codes. We will do this different
from the book, so please read this and not section 18.9 of the book. Also, please
reload before reading.

2. Construction of the codes

Let F be a finite field with q elements. Recall that q = pf for some integer f ≥ 1
and prime number p.

Let 1 ≤ k ≤ n ≤ q. Choose pairwise distinct elements a1, . . . , an ∈ F.

Given a polynomial m = m1 + m2x + . . . + mkx
k−1 of degree ≤ k − 1 we get a

codeword

c(m) = (c1, . . . , cn) = (m(a1),m(a2), . . . ,m(an))

by taking the values of our polynomial at our chosen points. Observe that if m,m′

are two polynomials of degree ≤ k−1 and if λ, λ′ ∈ F are two scalars, then we have

c(λm+ λ′m′) = λc(m) + λ′c(m′)

Thus we see that the set of all codewords obtained in this manner is a subspace
of Fn. In other words, this set defines a linear code and this is the Reed-Solomon
code.

Definition 2.1. Let q and 1 ≤ k ≤ n ≤ q be as above. Let a1, . . . , an ∈ F
be pairwise distinct. The q-ary linear Reed-Solomon [n, k]-code is the set of all
codewords c(m) constructed above.

It is clear that the length of the codewords in a Reed-Solomon code is n. To make
sure our notation is consistent we will now check that the dimension is k.

1



2 A LITTLE BIT ABOUT REED-SOLOMON CODES

3. The dimension of a Reed-Solomon code

Let C ⊂ Fn be a Reed-Solomon code constructed using a field with q elements
and 1 ≤ k ≤ n ≤ q as above. We claim that C has dimension k. To see this it
suffices (and in fact it is also necessary) to show that C has qk elements (see earlier
lecture). Now for every polynomial m of degree ≤ k − 1 we get a codeword

c(m) = (m(a1),m(a2), . . . ,m(an)) ∈ C
The number of possible polynomials m = m1 +m2x+ . . .+mkx

k−1 is qk because
we have q choices for each coefficient mi of m. Thus it suffices to show: if m,m′

are two distinct polynomials of degree ≤ k− 1, then c(m) 6= c(m′). From what was
said above we have

c(m) = c(m′)⇔ c(m−m′) = 0

Thus this happens if and only if the polynomial m − m′ is zero in all the points
ai, i = 1, . . . , n. Thus all we have to do is show that a polynomial of degree k − 1
cannot vanish in n points. This is true by the following lemma which you should
accept as true.

Lemma 3.1. Let F be any field. A polynomial f of degree d can have at most d
distinct zeros in F.

Proof. Let a ∈ F. We claim that f(a) = 0 if and only if the polynomial f is divisible
by the linear polynomial x− a. Namely, by division with remainder we can write

f(x) = q(x)(x− a) + r(x)

in F[x] where r(x) has degree < 1. This means that r(x) = r is a constant polyno-
mial. Substituting x = a in both sides we see that r = 0 if and only if f(a) = 0.
This proves the claim.

Now if f(a1) = 0, . . . , f(at) = 0 for pairwise distinct elements a1, . . . , at ∈ F, then
we can first write

f(x) = (x− a1)g(x)

by the claim above. Note that the degree of g is exactly one less than the degree of
f . Substituting x = ai for i > 1 we conclude that g(ai) = 0 for i = 2, . . . , t. Here
we use that ai does not equal a1 for i > 1 because we are dividing by ai− a1 to see
this. Continuing in this fashion (or by using induction) we find that

f(x) = (x− a1) . . . (x− at)h(x)

for some polynomial h(x) of degree equal to the degree of f(x) minus t. Thus
certainly the degree of f has to be at least t. �

4. Generating matrix

This section is just showing you how to think about Reed-Solomon codes in terms
of generating matrices and to show you some examples.

Suppose that p = 3 and we take k = 2 and n = 3. As our points a1, a2, a3 we take
0, 1, 2. The codeword associated to the constant polynomial m = 1 is

c(1) = (1, 1, 1)

The codeword associated to m = x is

c(x) = (0, 1, 2)



A LITTLE BIT ABOUT REED-SOLOMON CODES 3

Thus we see that

G =

(
1 1 1
0 1 2

)
is a generator matrix for our Reed-Solomon code.

Suppose that p = 7 and we take k = 4 and n = 7. Then we take our points
a1, a2, a3, a4, a5, a6, a7 to be 0, 1, 2, 3, 4, 5, 6. As before we can use the polynomials
1, x, x2, x3 to get the rows of the generator matrix

1 1 1 1 1 1 1
0 1 2 3 4 5 6
0 1 4 2 2 4 1
0 1 1 6 1 6 6



5. Minimum distance

In this section we compute the minimum distance

Lemma 5.1. Let C ⊂ Fn be a Reed-Solomon code constructed using a field with q
elements and 1 ≤ k ≤ n ≤ q as above. The minimum distance of C is d = n−k+1.

Proof. Recall that the minimum distance of a linear code C is the minimal Ham-
ming weight of a nonzero element of C. A nonzero polynomial of degree k − 1 has
at most k − 1 distinct zeros (see Lemma 3.1). Hence a nonzero codeword has at
least n− (k − 1) nonzero entries. In this way we see that the minimum distance is
≥ n− k + 1.

Moreover, the minimum distance is actually equal to this. Namely, we can take

m = (x− a1)(x− a2) . . . (x− ak−1)

This is a polynomial of degree k − 1. The codeword associated to m is

c(m) = (0, . . . , 0,m(ak),m(ak+1), . . . ,m(an))

which starts with exactly k − 1 entries equal to 0. �

This is pretty amazing, because this means that Reed-Solomon codes are maximum
distance separable codes (largest possible value of d for given n and M).

Corollary 5.2. Let C ⊂ Fn be a Reed-Solomon code constructed using a field with
q elements and 1 ≤ k ≤ n ≤ q as above. Then C is a MDS code, i.e., it achieves
equality in the Singleton bound.

Proof. The singleton bound is

M ≤ qn−d+1

where M is the number of codewords. For our code we have M = qk and d =
n− k + 1. Thus we have equality. �



4 A LITTLE BIT ABOUT REED-SOLOMON CODES

6. Adding the point at infinity

It turns out you can use the idea explained above to get codes with 1 ≤ k ≤
n = q + 1. Namely, say F = {a1, . . . , aq} is a listing of all the elements. Let
m = m1 +m2x+ . . .+mkx

k−1 be a polynomial of degree ≤ k− 1. We are going to
think of the leading coefficient mk−1 as the value of m at the point x = ∞. Thus
given m we consider the “extended” codeword

c(m) = (m(a1),m(a2), . . . ,m(aq),mk−1)

As before you can show that this gives a q-ary linear [q+ 1, k]-code. The minimum
distance of this code is n− k + 1 = (q + 1)− k + 1 = 2 + q − k. To see this argue
as in the proof of Lemma 5.1 but now use that it mk−1 = 0, then of course the
polynomial has degree < k − 1. Hence these are also MDS codes.

Example: say q = 3 and k = 2. As our points a1, a2, a3 we take 0, 1, 2. The
codeword associated to the constant polynomial m = 1 is c(1) = (1, 1, 1, 0) The
codeword associated to m = x is c(x) = (0, 1, 2, 1). Thus we see that

G =

(
1 1 1 0
0 1 2 1

)
is a generator matrix for our “extended” Reed-Solomon code. This is a 3-ary
[4, 2, 3]-code.

Example: suppose that p = 7 and we take k = 4. Then we take our points
a1, a2, a3, a4, a5, a6, a7 to be 0, 1, 2, 3, 4, 5, 6. As before we can use the polynomials
1, x, x2, x3 to get the rows of the generator matrix

1 1 1 1 1 1 1 0
0 1 2 3 4 5 6 0
0 1 4 2 2 4 1 0
0 1 1 6 1 6 6 1


This is a 7-ary [8, 4, 5]-code.

7. Application of Reed-Solomon codes

Suppose that F = GF (28) = F28 is the field with 256 elements. Take either

(1) n = 255 (this is what they do in the book on page 441, but please don’t
read there), or

(2) n = 256 (see above), or
(3) n = 257 (see Section 6).

Say we want to correct 16 errors. Then we take d = 33 and hence k = n+ 1− 33 =
223 (in the first case — this is the case used in practice where one uses Reed-
Solomon codes presented as cyclic codes as in the book — don’t read this), or
k = 224 (in the second case), or k = 225 (in the third case).

In the first case for example, we transmit a codeword as a string of bits of length
8 × 255 = 2040. The advantage of this is that if all errors occur in a substring
consecutive bits of length 121, then this can affect at most 16 of the letters of the
codeword and hence this can be error corrected. In certain applications it is more
likely that all the errors occur in a burst (for example if a cd is scratched or when
a radio transmission is interrupted by some short term physical event).



A LITTLE BIT ABOUT REED-SOLOMON CODES 5

8. Drawbacks of Reed-Solomon codes

First drawback: The length of the codewords n is bounded by q.

Second drawback: It is not trivial to do the error correcting, although there are
fairly good algorithms.

9. Algebraic Geometry Goppa codes

You can use the analogue of the idea for the Reed-Solomon codes given above for
more interesting rings of functions. Instead of having one variable x you’ll have
two variables x, y and these will satisfy some algebraic relation; this relation will
define an algebraic curve X over the finite field F. Then we will have a collection of
polynomials m in x, y which we will evaluate at some points a1, . . . , an ∈ C. Just
as before some estimates on the number of zeros will give a bound on the minimum
distance of the code you obtain.

Using this (and a lot more theory), Tsfasman, Vladut, and Zink found sequences of
codes for fixed square q ≥ 49 and n/d tending to a fixed ratio in (0, 1− 1/q) which
beat the asymptotic Gilbert-Varshamov bound! (As far as I know it is still open if
you can do the same with q = 2.)

10. Example of an Algebraic Geometry Goppa code

This example is taken from lecture notes by Rachel Pries with slight modifications.

Let’s work over F4 = {0, 1, ω, ω+ 1} where ω2 = ω+ 1 as in the book on page 362.
Consider the elliptic curve

E : y2 + y = x3

which has 8 points in the affine plane, namely

a1 = (0, 0),

a2 = (0, 1),

a3 = (1, ω),

a4 = (1, ω + 1),

a5 = (ω, ω),

a6 = (ω, ω + 1),

a7 = (ω + 1, ω),

a8 = (ω + 1, ω + 1)

As you know there is also the point at ∞; we will come back to this later. Let’s
take the points a1, . . . , a8 and the polynomial functions 1, x, y. Exactly as before
you get the generating matrix

G =

1 1 1 1 1 1 1 1
0 0 1 1 ω ω ω + 1 ω + 1
0 1 ω ω + 1 ω ω + 1 ω ω + 1


Then you can show that this is a 4-ary linear [8, 3, 5]-code. For example the poly-
nomial m = ω + y gives the codeword

c(m) = (ω, ω + 1, 0, 1, 0, 1, 0, 1)



6 A LITTLE BIT ABOUT REED-SOLOMON CODES

which has Hamming weight 5 hence the minimum distance cannot be greater than
5. You can check all polynomials one-by-one and show that none of them vanish in
more than 3 of the points ai. But actually, this is just the statement that a line,
i.e., a subset of F2 defined by an equation of the form

λ+ µx+ νy = 0, for some λ, µ, ν ∈ F not all zero,

doesn’t intersect the elliptic curve E in more than 3 points exactly as we’ve seen
in our deliberations about points on elliptic curves earlier in the course.

Comments on the example. It turns out that d = 5 which is best possible for 4-ary
linear [8, 3] codes (you can find tables on the site www.codetables.de if you are
interested). On the other hand, a [8, 3, 5]-code is not an MDS code (in other words,
4-ary linear MDS codes with n = 8 and k = 3 do not exist).

Another comment is that if you “add the point at infinity” to extend the code above
as in Section 6 (to really understand what this means you’ll need more theory; to
do this in practice you can just guess an extra column to add to the matrix), then
you’ll obtain a 4-ary [9, 3, 6]-code (here minimum distance 6 is also best possible
for for 4-ary linear [9, 3] codes).

It turns out that there do not exist linear 4-ary [10, 3, 7]-codes. So it shouldn’t
be possible to find an elliptic curve over F4 with 10 points. And indeed Hasse’s
theorem on page 354 of the book tells us this isn’t possible.


	1. Introduction
	2. Construction of the codes
	3. The dimension of a Reed-Solomon code
	4. Generating matrix
	5. Minimum distance
	6. Adding the point at infinity
	7. Application of Reed-Solomon codes
	8. Drawbacks of Reed-Solomon codes
	9. Algebraic Geometry Goppa codes
	10. Example of an Algebraic Geometry Goppa code

